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ABSTRACT 
 

In this paper one of the new generation soft computing technique that is known as 
Gene Expression Programming (GEP) is used to develop a meta-model for the multi- 
objective design of a hypothetical production line. The developed meta-model is used 
to optimize production line design with Multiple Objective Tabu Search algorithm 
(MOTS). It is found out that GEP and MOTS can be effectively used to solve 
production line design problems which are known as complex design problems. 
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1.  INTRODUCTION 
 
In today’s very competitive manufacturing environment it is crucial to improve 
manufacturing performance in order to be able to compete. Responsiveness is 
already become one of the most important performance indicator. Manufacturing 
systems must be designed optimally by taking into account responsiveness related 
measures like tardiness, flow time etc in order to improve responsiveness. A 
manufacturing system should be robust and able to perform several objectives. This 
requires solving the multiple objectives manufacturing system design problem under 
changing production requirements. However it is very hard to define performance 
measures analytically for such a problem. In order to obtain analytical forms of the 
objective functions and in some cases constraint functions a meta-modeling 
approach that is based on simulation is necessary. In a meta-modeling study, 
simulation responses are converted into equations by using some advance statistical 
techniques. Classic regression models are generally used for this purpose. But the 
performance of these techniques is very sensitive to the type of structural equation 
selected and they usually give poor performance [1]. This can make the meta-
modeling approach unsuccessful. Another difficulty is in the optimization of the 
resultant multiple objective mathematical programming models with the conventional 
solution algorithms, which are generally not very effective with highly non-linear 
functions [1]. To overcome the mentioned difficulties a meta-modeling approached 
that is based on soft computing algorithms is proposed in this paper. In the meta-
model generation a new generation of soft computing algorithms that is known as 
Gen Expression Programming (GEP) is used [2]. GEP is very effective in converting 
simulation responses into system equations with very high correlation values. After 
obtaining the manufacturing system’s mathematical model, the MOTS algorithm [1] is 
used to generate optimal manufacturing system designs. In the next section first a 
very brief review of GEP is given than the problem definitions along with some 
experimental studies are presented. 
 
 



2.  A BRIEF OVERVIEW OF GENE EXPRESSION PROGRAMMING 
 
In this section, a brief overview of the GEP is given for motivation. For detailed 
explanations on GEP refer to Ferreira [2]. GEP is a natural development of genetic 
algorithms and genetic programming. GEP was invented by Ferreira [2]. Most of the 
genetic operators used in GAs can also be implemented in GEP with minor changes.   
Like genetic programming, there are mainly five components in GEP; the function 
set, terminal set, fitness function, control parameters and stop condition that must be 
determined when using GEP to solve a problem. Unlike the parse-tree representation 
in canonical genetic programming, GEP uses a fixed-length of character strings to 
represent solutions to the problems, which are afterwards expressed as parse trees 
(called "expression tree" in GEP) of different sizes and shapes when evaluating their 
fitness. Each GEP gene is composed of a list of symbols with a fixed length that can 
be any element from a function set like {+, -, *, /, Sqrt} and the terminal set like {l, a, 
b, c, d}. A typical GEP gene with the given function and terminal set can be             
{+.*.Sqrt.a.*.+.+.-.c.a.d.Sqrt.c.d.2} where “.” is used to separate elements for easy 
reading; Sqrt is the square-root function; 2 is a constant; and a, b, c, d are variable 
(or attribute) names. The above is typically named as Karva notation, or K-
expression. A K-expression can be mapped into an expression tree (ET) following a 
width-first fashion. The conversation starts from the first position in the K-expression, 
which corresponds to the root of the ET, and reads through the string one by one. 
For each node (from left to right) in one layer in the ET, if it is a function with m 
(m>=1) arguments, then the next m symbols in the K-expression are attached below 
it as m child branches. Otherwise each terminal node forms a leaf of the ET. This 
tree expanding process continues layer by layer until all leaf nodes in the ET are 
composed of elements from the terminal set. For example, the above sample gene 
can be expressed in a mathematical form as: acddca +++− ))2(*)((* . 
 
GEP Algorithm and Operators: Like GA and GP, the GEP algorithm begins with the 
random generation of the fixed-length chromosome of each individual for the initial 
population. Then, the chromosomes are expressed and the fitness of each individual 
is evaluated. The individuals are then selected according to fitness to reproduce with 
modification. The individuals of this new generation are, in their turn, subjected to the 
same developmental process; expression of the genomes, confrontation of the 
selection environment, and reproduction with modification. The process is repeated 
for a certain number of generations or until a solution has been found. In GEP, the 
individuals are often selected and copied into the next generation according to the 
fitness by roulette-wheel sampling with elitism, which guarantees the survival and 
cloning of the best individual to the next generation. Variation in the population is 
introduced by conducting single or several genetic operators on selected 
chromosomes, which include: 
• Crossover, in which two parent genomes are randomly chosen and paired to exchange 

some elements between them. There are two kinds of crossover; one-point, and two-
point crossover, working in the same fashion as that in GAs. 

• Mutation, which can happen with any times at any position in a genome, as long as that 
the mutated individual passes the validity test. Note that like crossover, a mutation in the 
coding sequence of a gene usually drastically reshapes the ET. 

• Rotation, in which two subparts of element sequence in a genome are rotated with 
respect to a randomly chosen point (this is similar to the inversion in GAs).  

 



3.  PROBLEM DEFINITION 
 
The hypothetical manufacturing system consists of 5 stages. Machines in each stage 
are identical and are varied in the optimization and simulation process. One of the 
machine in each stage malfunction in 2 hours period successively. It takes 40 min. to 
repair the malfunctioning machine. There are 3 products in the system which arrives 
exponentially. The maximum number of products to be produced for the planning 
horizon is 1000 (for each product). TWK rule is used to assign the due dates; FIFO is 
used for machine selection. Products must pass from each stage and there is a 
buffer in front of each machine. Buffer size is set to 10 or 15. The processing times 
are presented in Table 1. 
 

Table 1. Processing time in each stage 
 

 Product 1 Product 2 Product 3 
Stage 1 Uniform(20,25) Uniform(15,20) Uniform(15,19) 
Stage 2 Uniform(15,25) Uniform(20,25) Uniform(10,18) 
Stage 3 Uniform(12,18) Uniform(25,30) Uniform(15,18) 
Stage 4 Uniform(25,30) Uniform(15,20) Uniform(15,20) 
Stage 5 Uniform(14,19) Uniform(15,25) Uniform(15,25) 

 
4. EXPERIMENTAL STUDY 
 
In order to observe the system behavior, the simulation model is run with different 
number of machines in each stage and different buffer sizes. The number of 
machines in each stage is varied between 1 and 5 and the buffer size is set to 10 or 
15. Simulation with 250 different combinations of variables is carried out. Tardiness 
and flow time measures are collected for each configuration in order to derive the 
corresponding equations with GEP. 210 runs are used for training and 40 runs are 
used for testing GEP. After training GEP, high correlations are obtained (R2 for 
tardiness=0.978, R2 for flow time=0.977). The resultant equations for tardiness and 
flow time are shown as the first and second objective functions in Table 2. The test 
results for tardiness and flow time functions are shown in Figure 1. As it can be seen 
from Figure 1, there is a very close match between the actual (simulation results) and 
the predicted (GEP results) curves. The GEP function is able to closely follow the 
trend in the actual data.  
 
A stepwise regression analysis is also carried out in order to have an idea about the 
predictive power of the soft computing techniques in comparison to a classical 
statistical approach. R2 of the prediction by the regression equation on the test data 
is 0.775 for tardiness and 0.775 for flow time. As it can be seen from the results, the 
stepwise regression analysis performed very much worse than the GEP algorithm. 
This was an expected result. Mainly because the production line design problem 
depends on many different factors, and the relations between these factors are highly 
non-linear and complex. The results obtained from this study have also shown that 
GEP is a good candidate for making predictions on the behavior of complex systems 
including the performance prediction of manufacturing systems.  
 
       
    



Table 2. The MOO model for the production line design problem 
 

 
MIN Tardiness =(x4*((x6+(x1*x1))/tan(pow(10,x1))))+(((x1+(x6*(x6+x1))) 
/tan(log(x1)))*x4)+(x3*((x1+((x4+x4)+x2))*((x3-x6)-
exp(x2))))+(tan((cos((x5/x1))+(x4+x3)))*(x1*x2))+exp((pow(10,cos((pow(10, 
cos(x2))*(x3/x2))))-log(x3)))+exp((pow(10,cos(((x5/x1)/x5)))-
tan((cos(x2)*cos(x1)))))+((tan(tan(x5))-tan(tan(x2)))*(x2*x1)) 
 
MIN Flow-time =(exp(pow(10,pow(sqrt(sqrt((x2*cos(pow(10,(((cos(x5)-x5)-
(x5*x3))/pow((x4+x3),x2))))))),((x5/x3)-x5))))/sqrt(x4))+ 
(exp(pow(10,cos(exp((x4-
exp(sqrt((x4*sqrt((log(x2)+cos(cos(sin(log(log(pow(exp(x4),sqrt(x4)))))))))
))))))))/sqrt(x2))+ 
(x2+(x4*(((((x4*tan(pow(10,exp(cos(log10(x3))))))*x2)*x1)-
exp(x5))+x2)))+(x6*((((pow(x2,tan(pow(10,exp(cos(log10(x3))))))-x5)*x1)-
exp(x3))-x5)) 
 
MIN Total # WS= x2+x3+x4+x5+x6 
 
Subject to:    1≤x2≤5 
               1≤x3≥5 
               1≤x4≤5 
               1≤x5≤5 
               1≤x6≤5 
x1 discrete (10,15) &  x2,x3,x4,x5,x6 Integer 
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Figure 1. The test result for the best GEP function a-Tardiness, b- Flow time 
 

The next step in the meta-modeling study is to search for optimal production line 
configurations. The problem is an integer, nonlinear Multiple Objective Optimization 



(MOO) problem as depicted in Table 2. There are three objectives the first one is the 
minimization of tardiness, the second one is the minimization of flow time and the 
third one is the minimization of the total number of workstations. The last objective is 
especially important for an economical design. There are six variables in the model 
the first one is a discrete variable which determines the size of the buffer, the last five 
are integer variables which are used to determine the number of machines in each 
stage. The maximum number of machines in each stage is restricted to five. The 
MOO problem is solved with the MOTS algorithm that was previously developed by 
the author. The details of this algorithm can be found in [2]. The algorithm converged 
into 81 Pareto optimal solutions in 3 seconds which are shown in Figure 2. The 
designer can select one of this efficient solutions based on his/her utility function. 

 
Figure 2. Pareto optimal solutions for production line design problem 

 
5. CONCLUSION 
 
In this paper a meta-modeling approach based on soft computing algorithms namely 
GEP and MOTS is proposed for the optimal design of a hypothetical production line. 
Responsiveness related criteria like tardiness and flow time are used to evaluate 
goodness of the production line through the MOTS algorithm. It has been observed 
that soft computing algorithms are quite effective for modeling and solving complex 
production line design problems. These algorithms must be included into the toolbox 
of the production system designers in order to obtain effective solutions.  
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