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1 Introduction


This paper reports an evolutionary approach called Scatter Search, that uses the concept of Pareto
optimality to obtain a good approximate Pareto frontier. In order to designate a subset of strategies
to be a reference solutions a choice function called Kramer Selection is used. A variant of measure of
Kemen-Snell may be used, in our case study, in order to find a diverse set to complement the subset
of high quality current Pareto solutions. Path Relinking and Extrapolated Path Relinking are used as
a Combined Method. Several cases are studies to demonstrate the ability of our algorithm to find a
diverse Pareto frontier.


2 Multiobjective Optimization


Multiobjective Optimization using evolutionary algorithms is a new area of research that has grown
considerably in the last 15 years [1]. Evolutionary algorithms seem particularly desirable to solve
multiobjective optimization problems because they deal simultaneously with a set of possible solutions
or strategies. This paper investigates the problem of using a Tabu Search and Scatter Search approaches
to solve a discrete multiobjective problems.


2.1 A Pareto-Based Approach


Formally, we can state a quantitative decision making problem as follows: Decisions have quantitative
characters, strategy s ∈ Es, where Es denotes a space of solutions or strategies, S ⊆ Es is a set of
admissible strategies. The set S is usually not fixed since a DM can change values of coefficients and/or
bounding parameters. We have functions f1, f2, . . . , fr defined over a set of situations SxV, where V is
a finite set of values uncertain factors ( called elementary events or state of nature ). Then for each sit-
uation (s,v), where s ∈ S and v ∈ V , we have a vector function f(s, v) = (f1(s, v), f2(s, v), . . . , fr(s, v)).
For deterministic problems the vector function f(s) determines the quality of the strategy s. In our
implementation in order to obtain a reference set of solutions that encourage the search toward the
Pareto front, an optimality principle is used: ” Selection by a number of a dominant criteria” [2].
For all s, s


′ ∈ S, let q(s, s
′
) the numbers of criteria for which the strategy s


′
improve the s strat-


egy. QS = maxs′∈Sq(s, s
′
), s ∈ S. The function QS can be see as a discordance index


if strategy s is assumed to be preferred to s
′
. Then the Kramer choice function is defined as follow:


CK(S) = {s′ ∈ S|QS(s
′
) = mins∈SQS(s)} This choice function have the following properties [2]:


P
¯


roperty 1. For r = 3, CK consists of one element that improves the remaining elements in at least
two criteria or CK = ΩP , where ΩP is the Pareto set. P


¯
roperty 2. For r = 2, CK = ΩP . P


¯
roperty
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3. CK ⊆ ΩP . The selection function CK can be utilized as a quality of optimality principle without
information about importance of criteria.


2.2 Search by Goals


To implement our process, memory is maintained of selected attributes of recent moves and their
associated solutions, where a current move is classified tabu if it reinstates an attribute (or attribute
set) that was changed by earlier moves. Aspiration criteria are introduced in tabu search to determine
when tabu restriction can be overridden. Aspirations are of two kinds: move aspirations and attribute
aspirations. A move aspiration can remove the move’s tabu classification. Our implementation uses
as move attributes variables that changes their values as result of the move. We represent change by
a difference of values fi(s


′
) − fi(s∗)∀i = 1..r , s∗, s


′ ∈ S where s
′


was generated from s by a recent
move, s is a current solution and s∗ is a reference solution. A thresholding aspiration is used to obtain
an initial set of solutions as follows: without lost generality, assume that every criteria is maximized.
Notationally, let ∆f(s


′
) = (∆f1(s


′
), . . . ,∆fr(s


′
)) where ∆fi(s


′
) = fi(s


′
) − fi(s∗), i ∈ {1, . . . , r}. Set


U = (u1, . . . , ur) such that ui = max∆fi(s
′
j) where s


′
j is an element of the set of strategies generated


S from s∗ to s
′
, excluding s


′
, and U is a goal or aspiration threshold point. Let


∆fi(s
′
) =



preference if ∆fi(s


′
) > ui,


indifference if ∆fi(s
′
) = ui,


nonpreference if ∆fi(s
′
) < ui,


A goal is satisfied, permitting s
′


to be accepted and introduced in S if (∃∆fi(s
′
) = preference)or(∀i ∈


{1, . . . , r}[∆fi(s
′
) = indifference]), in otherwise is rejected. The point s∗ is updated if all attributes


of s
′


are preference or indifference attributes, that is, s∗ = s
′
if(∀i ∈ {1, . . . , r})[∆fi(s


′
) ≥ ui]. In this


case the goal U is updated too, setting all components ui = 0.


2.3 Scatter Search and Path Relinking Methods


Multiple Criteria Optimization applications are conveniently suited to the use of a population-based
approaches. We use scatter search and its generalized form path relinking, that have demonstrated the
practical advantages for solving combinatorial problems. An overall view of our procedure is given in
this subsection. The procedure starts with the generation of | S | distinct strategies. These strategies
are generated by a search by goals approach explained above within a long term taboo search (I
phase). The reference set RefSet is constructed with CK and P\CK where P is a Pareto set. Scatter
Search/Path Relinking Phase has three main loops: 1) a ”for loop” that control the maximum number
of iterations, 2) a ”while loop” that monitors the presence of new elements in the reference set and 3)
a ”for loop” that controls the examination of all the subsets with at least one new element. Generate
subsets of the reference set as a basis for creating combined solutions and for each subset X, use a
Solution Combined Method. We propose in our algorithm a Path Relinking Approach, to produce a set
Ω(X). The variable MaxSubset takes the value of the number of subsets with at least one new element.
Avoiding the duplicated strategies already generated can be a significant factor in producing an effective
overall procedure. The control is limited to these solutions that hold the condition to be Pareto. Our
algorithm is provided by a ”critical event design” that monitors the current solutions in the RefSet
and in the Combined Set. The elements of this critical event are the values of the objectives. The new
solutions are put in the set Ω(X) if they do not belong to the set of critical events. If all subsets have
been examined then, the algorithm subtracts the Pareto set ΩP ⊆ ∪Ω(X)\C, where C is the critical
set. New elements are incorporated into RefSet if | P


⋂
RefSet |<| P | where P ⊆ ΩP ∪RefSet. Then


add to RefSet1 the strategies pertaining to CK(P ), RefSet1 contain the best solution so far, and set
RefSet2 = P\CK(P ). Note that our reference set is a dynamic reference set.
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3 A Case Study


Multiobjective optimization in a one-machine problem with weighted flowtime is a very popular objec-
tive, it is easy to use and very intuitive, also it is robust in the sense that schedules that are optimal for
it often produce good schedules for problems with somewhat different objectives. Reducing the amount
and frequency by which individual flowtime exceed due dates will often be the primary objective when
customers desire reliable time delivery. For this we take the weighted tardiness objective. Then we
have two objectives, the total weighted flowtime denoted by Fwf, desired in order to minimize WIP
inventories, and the total weighted tardiness to penalize tardy jobs, denoted Twt. Flowtime is defined
as Fj = amount of time activity j spends in the system
Fwf =


∑
j wfjFj


where Fj = (Cj − rj)
Tardiness is defined as Tj = amount of time by which the completion of activity j exceeds its due date
Tj = max{0, Lj}
where Lj = Cj − dj and Cj = completion time activity j.
The Total Weighted Tardiness is
Twt =


∑
j wtjTj


Here we consider one-machine problem, J is the set of jobs, the resource is available over the scheduling
interval ts to te, n-single operations jobs arrive over the interval, the job j has a processing time pj , a
ready time rj , a due date dj , nonpreemtive, objective functions Flow and Total Tardiness times.


3.1 Neighborhoods and Diversification Strategies


In our Tabu Search Phase to generate an initial solutions set we use a general pairwise interchange
operation that considers the neighborhood generated by every possible pairwise interchange. In order
to explain our diversification scheme we use the following notation [4]. Let sj = p denote the statement
”job j is assigned to position p”, NoS(sj = p the number of times the attribute sj = p resides in the
solution of S, where S is a full solution. We use a matrix freqconfg where the entries of this matrix are the
number of times that the jobs occupies the positions in a full solution sequence (in our algorithm the full
solution sequence is a set of solutions that was admitted in the S), that is, freqconfig(j, p) = No S(sj =
p). Let max No S(sj∈J = p) denote ”the job that more time has occupied a particular position p”. Let
s-to[p] denote a to-attribute of a move that change one job to a position p. To obtain a diversification
scheme we classifies a move tabu if it contains sj − to[p] = j : max No S(sj∈J = p) ∩ sbestj 	= ∅, where
sbestj ∈ bestsolution. An additive utility function defined by Utility(s) = λ1Fwf(s) +λ2Twt(s) is used
in order to measure the quality of the solution.


4 Combination Method with Path Relinking


Path Relinking has been suggested as an approach to integrate intensification and diversification
strategies[4]. This approach generates new solutions by exploring trajectories that ”connect ”high-
quality solutions - by starting from one of the solutions, called an initiating solution, and generating
a path in neighborhood space that leads toward the other solutions, called guiding solutions. In our
implementation, the path relinking strategy is used in conjunction with extrapolated path relinking
[see [4]] in order to integrate intensification and diversification strategies. The relinking process im-
plemented in our search may be summarized as follows: Let, s be a permutation of numbers of jobs,
that is, s = (s1, s2, . . . , sn) then, we define Insert(sj , i) to consist of deleting sj from its current po-
sition j to be inserted in position i. s


′
= (s1, . . . , si−1, sj , si, . . . , sj−1, sj+1, . . . , sn) for i < j, =


(s1, . . . , sj−1, sj+1, . . . , si, sj, si+1, . . . , sn) for i > j. and Exchange(si, sj) as was described in pair-
wise interchange, that is: s


′
= (s1, . . . , si−1, sj , si+1, . . . , sj−1, , si, sj+1, . . . , sn). .. Neighborhood


for Path Relinking: two neighborhoods were considered in our path relinking approach, if i is the
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position that sj occupies in the guide solution, then N1 = {s′ : Insert(sj , i), i, j ∈ {1, 2, . . . , n}}
N2 = {s′ : Exchange(si, sj), i, j ∈ {1, 2, . . . , n}}.In conjunction with these neighborhoods, an oscilla-
tion strategy that alternates among these neighborhoods is used to obtain news points, extrapolated
relinking is applied and then, the guide points are inverted and this process is repeated.


4.1 Measure of dissimilarity ”D”


For more than three objective we can use a variant of Kemen-Snell measure [2] in order to find a diverse
elements to complement the subset of high quality solutions . We propose to apply this measure to
permutation problems and define the distance between two solutions as follows:
d(A,B) = 1/2


∑n
i,j=1 | aij − bij |


where A,B are matrices defined in the following form A = (aij) = 1 ⇔ si > sj
= 0 ⇔ si = sj
= −1 ⇔ sj = si
additionally aii = 0, si is a component of s then, we selecting strategies with A0, such that A0(s) ∈
argmaxs∈RefSet2{


∑|RefSet2|
i=1 d(A(s), Ai(si)}


5 Conclusion


We conclude that, in our experiment the first TS phase was useful to generate an initial good Pareto fron-
tier. The combined method using path relinking and extrapolated path relinking as an intensification-
diversification method seem a good mechanism to generate newly Pareto points.A good approximation
Pareto frontier was obtained in a few iteration. A Kramer Choice Function seem a good optimality
principle to obtain a first reference set of high quality current Pareto solutions. Further, we will investi-
gate with more than three objective function and the utility of the Kemen-Snell function in the search.
In the figure 1 we show the evolution to obtain the Pareto frontier of our experiment, one can see in
it, that in the first iteration a few points distributed throughout the frontier were obtained. These
solutions were generated with our TS in a very short computational time. In a few runs the algorithm
obtained an improved approximation to pareto frontier compared with the initial points. The diversity
was maintained over the apparent front.
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Figure 1: Evolution to pareto frontier
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