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Abstract - Planning military courses of action is a very 

complex and difficult activity. Planners should take 

into consideration environmental information, 

predictions, the end state targeted and resource 

constraints. Development of courses of action involves 

solving simultaneously planning and scheduling 

problems. In this work, a new approach based on 

genetic algorithms (GA) and multi-objective 

optimisation is proposed to support resource-

constrained courses of action development where both 

cardinal and ordinal objectives are considered. A 

vector of fitness evaluations is proposed to control the 

proportion of the infeasible solutions. Crossover and 

mutation operators are designed to diversify the 

search space and improve solutions on all objectives 

from one generation to another. In the replacement 

strategy, a selection procedure, based on the 

dominance concept and a multi-criteria filtering 

method, is proposed. Such a strategy is applied when 

the population reaches a critical size. Different GA 

schemes are compared and their strengths and 

weaknesses are discussed. The multi-criteria filtering 

procedure used in the replacement strategy proved 

very efficient in the diversification of the Pareto front. 

1 Introduction

The Course of Action (COA) Development step of the 
Military Operational Planning Process (OPP) involves the 
entire staff. The Commander�s guidance and intent helps 
the staff to focus on the development of comprehensive 
and flexible plans within the time available. These COAs 
�should answer the fundamental questions of when, who, 
what, where, why and how� [CFC Toronto, 2000, US 
Army, 1997]. Each COA should be suitable, feasible, 
acceptable, exclusive and complete. A good COA 
positions the force for the future operations and provides 
flexibility to meet unforeseen events during its execution. 
The �who� in a COA does not specify individual units, 
but rather uses generic assets and capabilities. During the 
development step, the staff analyses the relative combat 
power of friendly and enemy forces, and generates 
comprehensive COAs.  

During the mission analysis, the staff should identify 
the assigned and implied tasks to perform the mission. 

These tasks can be decomposed into sub-tasks. Tasks and 
sub-tasks can be represented by means of a hierarchical 
structure called work break-down structure. Leafs of this 
hierarchical structure are called elementary tasks. 
Synchronization analyses lead to identify temporal and 
spatial relationships between elementary tasks (e.g. End-
Start, Start-Start, End-End, Time Laps, Same Spatial 
Zone�). Staff should then consider all available 
resources and capabilities and assign them to the tasks. 
Synchronizing COA requires scheduling starting and 
ending times of all tasks according to resource 
availability, deployment constraints and task 
relationships. Any resource or capability has an 
availability calendar, in-use costing, required 
preparations, required staffing, etc� 

In summary, the challenge for the planning managers 
is to generate complex, spatially and temporally 
interdependent activities with precedence relationships, 
subject to resource constraints, and satisfying multiple 
incommensurable and often conflicting criteria. 

Guitouni et al. (2000, 2002) proposed to model a COA 
planning as a multiple mode resource-constrained project-
scheduling problem (MRCPS) since, from a 
methodological point of view, planning and scheduling 
are not much different. The model consists of 
representing generic activities (tasks with specific 
combinations of resources) into elementary (or primitive) 
actions interrelated to accomplish the mission objectives. 
This process implies the identification of the tasks (when 
and where) as well as their precedence relationships, the 
pool of available resources with their localization, and 
finally the objectives of the mission. A COA is then 
represented as an oriented time-space graph (see Fig. 1). 
Depending on the combination of resources allocated and 
the action�s position in the schedule, different COA 
networks could be obtained. They constitute variants (or 
alternatives) of a mission with different evaluations on 
objectives.

 Solving COA planning problems is NP-Hard. To 
obtain promising feasible alternatives with respect to 
multiple objectives, we thought to explore the potential of 
evolutionary algorithms (EA), a meta-heuristic that has 
proven reliable for solving combinatorial NP-hard 
problems. 



Figure 1: COA graph representation. 

Several approaches have been proposed to deal with 
the multi-objective aspect of resource-constrained project-
scheduling (RCPS) problems, and the most common one 
combines all objectives into one single scalar value by 
using weighted aggregating functions according to the 
preferences set by the decision makers. The search is then 
performed several times to find a compromise solution 
that reflects these preferences. Another approach is to 
generate the set of compromise solutions in a single 
execution of the algorithm such as done by EA. This has 
increased the interest for the Pareto optimisation and 
multi-objective EAs. However, applications to scheduling 
problems are still scarce (Landa Silva and Burke, 2002). 

In this work, different COA variants are generated 
using a specific evolutionary algorithm: the genetic 
algorithms (GA). GA are able to deal simultaneously with 
multiple solutions for solving multi-objective optimisation 
problems. This allows a set of potential Pareto optimal 
solutions to be found in the same iteration without any 
sensitivity on the shape or the continuity of the Pareto 
front (Coello Coello, 1999). 

The set of potential compromise solutions (Pareto 
solutions) is obtained here by investigating different 
procedures based on dominance concept combined with a 
new approach referred to as a first order multi-criteria 
filtering method. 

This paper is organised as follows. In section 2, 
Pareto-optimality is summarised. Section 3 is devoted to 
the multi-objective GA (mGA) features being developed. 
Section 4 presents the indicators for performance 
assessment used to evaluate our algorithm. In section 5, 
computational results of the proposed approach and a 
comparison with a method from the literature are analysed 
leading to some conclusions in section 6.  

2 Pareto-based multi-objective genetic 

algorithms

2.1 Pareto optimality 

Research on multi-objective optimisation goes back to the 
XIX century with Vilfredo Pareto (1896) who introduced 
the concept of Pareto optimum. A vector solution x* is 

called Pareto optimal if and only if x* is as good as all 
the other feasible solutions with respect to all objectives, 
and there exists at least one objective for which x* is 
strictly better than all other feasible solutions. Pareto

optimum is generally not a single solution but a set of 
solutions called efficient or non-dominated solutions. The 
set of these efficient solutions in the decision space is 
denoted as the Pareto set and in the objective space as the 
Pareto front.

Generally, in combinatorial optimisation, weak 
dominance is applied because it permits more solutions to 
be reached from the existing ones with regard to the 
connectedness of the search space. Moreover, it is 
impossible to characterise a priori the set of efficient 
solutions in NP-hard problems. Therefore, we will use the 
potential or approximation efficient set to represent the 
Pareto optimal solutions. In the �search and then decision 
making� approach used here, the goal is to find the largest 
number of efficient solutions to allow the decision makers 
(DM) to choose the most appropriate. 

2.2 Multi-objective genetic algorithms 

Several approaches are used in mGA to improve the 
generation of solutions. Some of them are non-Pareto 
approaches such as the vector evaluated genetic algorithm 
(VEGA) first proposed by Schaffer (1984, 1985), and the 
lexicographic GA of Fourmen (1985). Others, based on 
the concept of non-dominance, use the Pareto optimality 
in their search procedures (e.g. Fonseca and Flemming, 
1993; Srinivas and Deb, 1995). The Pareto approaches 
have two goals: the convergence towards the Pareto 
frontier and the diversification of the solutions spread all 
over the Pareto frontier. The selection step in the mGA 
represents the key of success for convergence. Several 
ranking methods were proposed to rank solutions 
according to their suitability in order to determine their 
chance of selection for procreation. The pioneering 
algorithms are the non-dominated sorting genetic 
algorithm (NSGA) proposed by Srinivas and Deb (1995) 
based on the original idea of Goldberg (1989) and the 
multi-objective optimisation genetic algorithm (MOGA) 
developed by Fonseca and Fleming (1993). The selection 
is done using different operations such as the niched 
Pareto genetic algorithm (NPGA) developed by Horn et 
al. (1994) based on Pareto domination tournaments, and 
the elite preserve strategy proposed by Tamaki et al. 
(1996). Elitism is a particular form of selection used to 
insure that the best solutions are preserved in the next 
generation (De Jong, 1975; Goldberg, 1989). In their 
strength Pareto EA (SPEA), Zitzler et al. (1999) use an 
external population to store non-dominated solutions that 
also participate in the selection procedure for 
reproduction. The diversification can be achieved by 
artificial niche formation and speciation found by Deb 
and Goldberg (1989) to avoid �genetic drift�. As pointed 
out by Bosman and Thierens (2003) there is a trade-off to 
make between a diversified approximation set (diversity) 
and an approximation set close to the Pareto front 
(proximity) The different strategies used by the current 
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state-of-the-art evolutionary methods such as NSGA-II 
(Deb, 2001), NPGA2 (Erickson et al., 2001) and SPEA2 
(Zitzler et al., 2001), based on dominance, elitism and 
niching or crowding, aim to achieve this two-sided goal. 
The approach proposed in this work includes these two 
aspects (convergence towards Pareto frontier and 
diversification of efficient solutions) by using a first order 
multi-criteria filter (MFP) to select solutions making the 
next generation. 

3 Construction of a GA-based multiple 

objectives RCPS

Multi-objective COAs could be characterised by a set of 
tasks, a set of resources, precedence relationships, 
resources availability constraints and global performance 
functions (criteria) F.

The problem formulation states as follows: 
Optimize Fz, z = 1,�Z   (1)
s.t.  t  D           (2) 

 s.t.  R  C     (3) 
with the vector of tasks t = { t1,t2,�.tn} having the 
following attributes for each task ti : 

Starting and ending time [td(i),tf(i)] considered as 
integer variables. The earliest and latest starting and 
ending time, respectively. [ s(i), e(i)] are used to 
generate different initial solutions. 
A localization spatial coordinate (x,y,z) 
Type and quantity of resources required, represented 
by a set R composed of renewable and non-
renewable resources available in limited quantities. 
Rk(ti) = {r1i, r2i,�.rmi} is the kth set (or combination) 
of resources required to accomplish the task ti . 
Set of predecessors {PR} characterized by the tasks 
that temporally and/or spatially precede ti.

Resources with the following attributes: 
Starting and ending time of availability  [trs(k), tre(k)] 
(resource�s timetable) 
Quantity available during this interval of time 
Localization of the resources (depot) (x, y, z) 
Type of resource 
Other specific characteristics such as in-use cost, 
mean speed (for mobile resources), reliability, etc. 

Equation (2) concerns the constraints that ensure that 
each task is processed once in its time interval and 
precedence conditions are fulfilled (feasible tasks). 
Equation (3) express the resource constraints (e.g.

availability). 
The mGA is used to find different task-resource 

combination networks where all activities are completed, 
the resources and precedence constraints satisfied, and the 
best compromise between criteria reached. The 
optimisation is carried out using a randomly initialised 
population for a low size problem (COAs with less than 
10 actions). For large size problems (COAs with more 
than 10 actions), a heuristic method based on the network 
approach and CPlex is used (Urli et al., 2003). Crossover 
and mutation are used for the exploration and exploitation 
of the search space. The principle of the variable 

neighbourhood search (VNS) method is used during the 
optimisation. This is achieved by introducing three binary 
(crossover, mutation) and one unary (mutation) operators 
in order to explore a great number of neighbourhoods. 
Unlike classical GA procedures, the population size is not 
kept constant from generation to generation but increases 
by reproduction and mutation until it reaches a critical 
value determined empirically as explained in section 5.1. 
A replacement strategy is then applied to select the best 
candidates for the next generation (survivals). The 
selection is achieved based on dominance and/or a first 
order multi-criteria filtering procedure (MFP) detailed in 
section 3.4 and summarised in Figure 2. 

Figure 2. Evolution of the population from generation to 

generation

3.1 Encoding variables

Each solution, representing a COA network, is encoded in 
the following form: x(i) =  [(t1, R1,1), (t2, R2,4)..., (tn, Rn,l)], 
for i =1,�.popsize, where popsize is the population size. 
tj is the jth task to be scheduled and Rj,k= Rk(tj) is one of 
the sets of resources available to accomplish this task. 

3.2 Evaluation of a solution  

As it is difficult to apply genetic algorithms to a multi-
objective constrained problem, one of the options 
proposed in the literature is to integrate the constraints 
into the objective functions using penalty functions. 
However, the aggregation of penalty functions to the 
objectives in a highly constrained problem may lead to a 
large proportion of unfeasible solutions and there is no 
control of this number. In this work, the constraints are 
considered as functions to be optimised as the objectives 
and the solutions generated will be retained regarding 
both their objectives and constraint violation. Thus, to 
each solution is assigned a fitness vector. 

3.2.1 Constraint functions 

Resource availability 

Each resource, rkj, used by task tj must be available, in the 
desired quantity, during the period [trs(j), tre(j)]. 

A penalty coefficient DP(j) associated to each task is 
introduced and defined by: 
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j

For each solution, it follows: 

fitn1(i) =
n

1j

)j(PP  (4) 

This function is to be maximised (arg [max fitn1(i)] = 
n) to force the search into in the feasible region. 
Precedence

Some tasks have successors and predecessors. Other 
tasks are free. For each task j, if all its predecessors have 
been correctly scheduled, we set tPP(j) =1 otherwise 
tPP(j) = 0. The precedence penalty is defined as:

fitn2(i) = PP(i) =
n

1j

)j(tPP  (4a) 

As with fitn1(i), fitn2(i) is to be maximised. 

3.2.2 Objective functions 

The objectives considered here could be cardinal 
(quantitative) such as cost, reliability, make-span, or 
ordinal (qualitative) such as the impact of a COA. For a 
uniform optimisation (maximisation), the objectives to be 
minimised are reformulated and denoted fitnj(i),j =3,.., Z. 

3.3 Genetic operators 

Crossover(or recombination) 

Selection of two parents for the crossover is done using 
the roulette wheel selection. Two candidates are selected 
using the following procedure repeated popsize times: 

Choose randomly two fitness components fitnk and 
fitnl (objectives or constraints)
Evaluate selection probabilities of the population 
according to these two fitness components: 

popsize

1i
k

k
k

)i(fitn

)i(fitn
)i(ps ,

popsize

1i
l

l
l

)i(fitn

)i(fitn
)i(ps  (5) 

Select randomly one candidate per fitness component 
according to its selection probability. 

This selection procedure, favouring one criterion per 
candidate, aims to produce offspring characterised by the 
best features present in their parents, and ultimately 
induces higher population diversity. 

Two crossover procedures are proposed, to be used 
alternatively, in order to explore a greater number of 
search spaces. The first one is the uniform crossover 
operator (Syswerda, 1989) which has been shown to be 
superior to traditional crossover strategies for 
combinatorial problems. When two chromosomes are 
selected for crossover, a random mask is generated and 
their genes are exchanged according to the mask. This 
mask is simply a binary string with the same length as a 
COA vector (Sec. 3.1). The parity of each bit determines 
which genes will be exchanged. The gene in this 
procedure is represented by an action, (tj,Rj,k).

The second operator is the partial mapped crossover 
(PMX) proposed by Goldberg and Lingle (1985) and is an 

extension of two-point crossover to permutation 
representation. 

A repairing procedure is used, in both operators, to 
resolve illegitimacy of the offspring if some activities are 
missing or duplicated. This procedure is achieved by 
simply transferring these activities from one child to the 
other one. 
Mutation 

Mutation is applied randomly on the population and the 
probability of mutation is inversely proportional to the 
population size as recommended by De Jong (1975). The 
two operators used for the mutation consist of: 

Exchanging, with a probability p  a randomly 
selected combination of resources between two 
COAs. The offspring, which received the 
combination with the best criterion, is retained. 
Switching the quantity of two resources in a 
combination of resources associated to a randomly 
selected task j. This option is used every four 
generations. 

The probability of mutation p  of a set of resources Ri,j

in a chromosome is based on a criterion related to the 
resource characteristics such as cost or reliability. In this 
way, only the best resource combination is exchanged, 
concerning the selected criteria. These probabilities are 
used alternatively from one generation to the other to 
produce COAs with improved combinations of resources. 

3.4 Replacement strategy

The solutions generated from the crossover and the 
mutation operations are evaluated. When the population 
size attains or exceeds a critical value Pc, Pf individuals 
are selected, based on their fitness vector, among the 
parents and the offspring using a replacement procedure. 
Otherwise, new offspring are generated (see Fig. 2). 
Three strategies are tested for the replacement: 

The multi-criteria filtering procedure (MFP), 
proposed by Guitouni et al. (2001), returns (a user-
defined) Pf non-dominated diversified individuals. 
MFP is based on multi-criteria dynamic conjunctive 
and disjunctive procedures. The retained solutions are 
characterised by at least one best-scored objective or 
by all objectives achieving minimal threshold values, 
the non-dominated sorting approach (NDS), as 
proposed by Srinivas and Deb (1995), but used only 
to rank the best Pf individuals, 
the mixed approach: NDS+MFP procedure. 

3.4.1 Strategy 1: MFP method 

The filtering procedure is performed in two steps using a 
disjunctive procedure then a conjunctive procedure. Let A 
be the set of parents and offspring to be filtered and Â the 
set of individuals retained for the replacement. Let 
Card(A) = Pc and Card(Â) = Pf. Let e0 be a threshold 
vector representing the lower limits (lower thresholds) of 
the objectives imposed to the selection: e0 = (e01, e02�,
e0Z). Let e1 be a threshold vector representing the upper 
limits (higher thresholds) of the objectives imposed to the 
selection: e1=(e01, e02,�, e0Z). S1: {fitn1min, fitn2min...,



fitnZmin} the set of anti-ideal points of A, fitnz,min =
Pci ,1

min

{fitnz(i)}, z = 1� Z, S2:{ fitn1max, fitn2max,�., fitnZmax} the 
set of ideal points of A, fitnz,max= Pci ,1

max {fitnz(i)}, z=1� Z. 

Disjunctive procedure 

This procedure selects individuals characterised by at 
least one objective having a maximal value. Let Âd be the 
set of individuals selected by the disjunctive method. The 
following steps could describe it: 

Âd = Ø 
Compute e1z for each objective (e1z = S2z = fitnz,max, z 
=1,�Z)
Select individuals i that z  {1,�,Z}, fitnz(i) e1z,
i = 1�Pc

Add these individuals in Âd.

Conjunctive procedure 

Candidates characterised by objective values less than 
the thresholds are discarded. The thresholds are 
automatically computed using a dichotomist method 
between S1 and S2. The procedure has the following steps: 

Compute the threshold value e0z for each objective 
Select individual i so that z, fitnz(i) e0z, i = 1�Pc

Add this individual in the set Âd until Card(Âd) = 
Card(Â).

This multi-objective filtering procedure allows the 
selection of a diversified population of individuals 
characterised by the fittest objective or all objectives 
higher than a threshold value. 

3.4.2 Strategy 2: NDS method 

The solutions are ranked on the basis of non-domination. 
All non-dominated individuals in the current population 
are placed at the top of a list and assigned a rank of 1. 
These solutions are removed from the remaining 
population and the next set of non-dominated solutions is 
identified and assigned rank 2. The process is repeated 
until the entire population is ranked. The top Pf

individuals in the list are then selected for the next 
generation. 

3.4.3 Strategy 3: NDS+MFP method 

This procedure combines the features of the two previous 
ones. First, the population is ranked using the NDS 
method. The set identified with rank 1, i.e., the non-
dominated solutions, is selected. Let A1 be this set. 

If card(A1) = Pf , then these solutions are individuals 
of the new generation 
If card(A1) > Pf, use the MFP method to return Pf

solutions 
If card(A1) < Pf, select the set of solutions identified 
with rank 2. Let A2 be this set 
If card (A1  A2) >Pf, use the MFP method to return 
Pf solutions 
If card (A1  A2) < Pf,, select the set of solutions 
identified with rank 3, and repeat the process until Pf

solutions are selected. 
This strategy differs from NDS because it selects the 

solutions based on their evaluations besides being non-
dominated. The efficiency of these three replacement 
strategies is examined in section 5. 

4 Indicators for performance assessment

Different investigations to evaluate the performance of 
evolutionary algorithms have been proposed, taking into 
account the optimisers� stochastic characteristics (see for 
example: da Fonseca et al., 2001) or not (see for example 
Zitzler et al., 2003) and often assuming that the Pareto 
front is known. As pointed out by Bosman and Thierens 
(2003), comparing the performances of multi-objective 
evolutionary techniques is not an easy task. There are 
several criteria of finding a good approximation of the 
Pareto front and most current methods do not outperform 
each other but work better regarding different 
performance indicators. In this work, we examine the 
performance of the proposed mGA strategies using three 
indicators, assuming that no a priori information is 
available on the Pareto set, and taking into account the 
stochastic aspect of the methods. These indicators are the 
cardinality of the Pareto set S (Van Veldhuizen, 1999), 
Ns, the diversity of solutions in the decision space, Ds, and 
the spread of solutions on the Pareto front, COV.
Cardinality of the Pareto set, Ns

The non-dominated solutions are stored in an external list 
updated at each iteration. Thus, the approximation Pareto 
set S is represented by this population when the stopping 
criterion is reached and Ns = |S|. 
Diversity of the Pareto set, Ds

When designing a GA algorithm, the diversification of the 
population (solutions) is often the major goal through the 
exploration and exploitation operators. Ultimately, the 
diversity of the solution in the Pareto set represents a 
desirable result as it gives to the decision maker a larger 
range of options. The diversity of a population used here 
is inspired from the Shannon theory to evaluate the value 
of information based on the entropy H. If the entropy of a 
message (0  H 1) is high, then the redundancy of the 
information will be low and the value of this message will 
be high. 

Here, the diversity of the solutions is based on the 
number of alternatives of resource combinations that 
could be allocated for each task i in the population. So the 
total number of COA variants is given by the number of 
different resource combinations available for all the tasks. 

n

1i
is H

n

1
D   (8) 

and
sizepop

nij
log

sizepop

nij

)qlog(

1
Hi

iq

1ji

 (9) 

where Ds is the diversity of the population, Hi the 
entropy of a task i, n the number of tasks in the COA, qi

the number of resource� combinations per task found in 
the population, and nij the number of solutions (COAs) 
with different combinations of resources for task i. The 
higher the number of COAs with different resource 
configurations per task, the higher the diversity of the 
approximation set.
Diversity of the Pareto front COV 

We propose to express the diversification of the solutions 
spread all over the Pareto front by the extent of coverage, 



Figure 3. Spread of solutions over the Pareto front 

in multidimensional space 

in each objective�s dimension separately as illustrated in 
Figure 3. This indicates the size of the objective space 
covered by the Pareto set. The extent of coverage relative 
to each objective fi is defined as follows: 

Covi = 

*

*

,
)()(max

ii

ii
Syx

ff

yfxf
    (10) 

where the numerator expresses the maximum distance 
among solutions of the approximated Pareto set S in the 
dimension i, and fi*

 and fi
* are, respectively, the anti-ideal 

and ideal values of fi (true extremes of the objectives or 
its worst and best values by comparing simultaneously all 
the approximation sets). 

Zitzler and Thiele (1998) have proposed a similar 
indicator, but aggregating the Covi for i=1,�, Z, by 
considering the union of all bounding-boxes covered by 
the Pareto set is misleading. A single, global score for the 
coverage does not reflect how the diversification is with 
respect to a given criteria. For a better appreciation of the 
dispersion, it is more appropriate to consider the coverage 
array on all the objectives: 
COV = (Cov1, Cov2, �CovZ)   (11) 

Comparing these coverage vectors could be achieved 
using dominance analysis, multiple criteria decision 
analysis or statistical techniques. 

5 Planning a course of action: computational 

results

In order to evaluate the relative performance of the 
methods, we first check if an approximation Pareto set 
dominates another set. This set domination is defined as: 
S1 strictly dominates S2 if 2Sx , 1Sy ,

Zi1,i , )x(f)y(f ii and k, fk(y)> fk(x).

We, then compare the difference between their 
performance indicators and test their significance by 
using the Wilcoxon signed-rank statistical test since the 
data distributions are not necessarily symmetrical. 

If no conclusion can be drawn, we can examine which 
method puts more emphasis on diversity or on getting a 
high number of efficient solutions. 

The efficiency of the method proposed here is 
investigated using the example of courses of action with 
four objectives: the cost and the make-span to be 
minimised (cardinal and linear objectives), the resource 
reliability and the impact on the enemy, to be maximised. 
The impact is measured on a qualitative scale (ordinal 

objective). Resource availability and tasks precedence 
constraints are considered. Three examples are studied to 
examine the effect of the problem size. The performance 
indicators of an algorithm are compiled from 5 to 10 runs 
of each test application. Comparison between algorithms 
is done based on the means of these indicators. Since the 
objectives are the cost, the make-span, the reliability, and 
the impact, the diversity COV of the approximated Pareto 
set is defined as (Eq. 11): COV = (covcost, covreliabilty,
covimpact, covmakespan).

In the first example, we consider 6 tasks and 5 generic 
(types) resources, combined in different sets, to generate 
randomly 10 initial COAs. This example is denoted by 6t-

problem. The resources are defined by their cost (fixed 
and in-use cost) and their reliability used to compute the 
cost and reliability of the COA (Guitouni et al,. 2002). 
The impact of a COA is calculated as the median value of 
the actions� impact, which are ordinal values given by the 
decision makers (Guitouni et al., 2002). In this study, 
these data are randomly generated. The make-span 
considered here is the total delay between all the actions 
in the COA network. In the second example, we consider 
COAs defined by 50 tasks and 3 generic resources 
denoted by 50t-problem and a third example with 100 
tasks and 3 generic resources denoted by 100t-problem.
Initial populations of 15 and 22 COAs, for respectively 
the second and third examples, are created using a 
heuristic based on the network approach and CPlex (Urli 
et al., 2003).  

For the sake of comparison, we have coded the elitist 
non-dominated sorting genetic algorithm method (ENGA) 
proposed by Bagchi (1999) which has been found more 
efficient to discover the Pareto front compared to the 
well-known NSGA (Srinivas and Deb, 1995). We have 
chosen this method because it uses non-dominated sorting 
as in our approach and the diversification is based on 
niche formation and sharing fitness based on Pareto 
ranking. Moreover, in regard to the highly constrained 
problem treated here, ENGA was found to be easy to 
implement and less CPU time consuming compared to 
other efficient algorithms such as SPEA2 or NSGA-II.  

The GA algorithm was implemented in C++. The 
parameters used in the procedure are: 

probability of crossover  pc = 0.6, 
probability of mutation  pm = 1/popsize which gives a 
better result compared to a fixed value, 
critical population size to apply the replacement 
procedure Pc,
population size returned by the filtration procedure 
Pf,
stopping criteria genmax = 500 generations (6t-
problem), 250 generations (50t-problem), 150 
generations (100t-problem). 

5.1 Effect of population size on the method�s 

performance

In this section, we examine the effect, on the algorithm�s 
performance, of the parameters Pc and Pf used in the 
replacement procedure (Sec. 3.4). The values of the 

f 1
*

f 1 *

f 2 * f 2
*

a 1

a 2

b 1

b 2

f z *
f z

*a z  b z



performance indicators Ns, Ds and COV, summarised in 
Table 1, are calculated for the test application (five runs 
for each test) where the NDS procedure is used for the 6t-
problem. 

Table 1. Population size effect on the quality of the 

final results 

Pc Pf Ns Ds COV 

30 10

40 20

60 30

P* = 30 

1.8

2.2

4.7

3.5

0.73

0.60

0.70

0.73

(7.4; 2.6; 0; 9 ) 

(4.6; 6.6; 5; 10) 

(20; 10.5; 7; 22) 

(13; 11.5; 30; 11.3) 

P*: constant size at each generation. 

The results show that larger and diversified 
approximation sets (high Ns, Ds and COV) are obtained 
when Pf = 30. This corresponds to the size of the problem 
with 6 tasks 5 combinations of resources. Applying the 
replacement procedure when the population size reaches 
60 (Pc = 60) appears to be more adequate. Similar 
conclusions are derived with the two other replacement 
strategies (MFP and NDS+MFP). 

5.2 Comparison between methods 

First, performance of the three replacement strategies 
proposed for mGA (mGA-MFP, mGA-NDS, mGA-
NDS+MFP) are compared. The results are for Pc = 60 and 
Pf = 30. This choice is based on the empirical results 
presented in Table 1. The mean values of the performance 
indicators are tabulated on Table 2. Replacement strategy 
3 (MFP+NDS) clearly outperforms the MFP and the NDS 
procedures regarding the number of non-dominated 
solutions Ns as well as the extent of coverage COV. The 
multi-criteria-filtering procedure does not generate all 
non-dominated solutions because some of these solutions 
are eliminated by the conjunctive procedure. In the NDS 
replacement method, among the Pf solutions filtered, 
those, which have the same rank, thus not dominated, are 
selected randomly with respect to their position in the list. 
In the MFP+NDS replacement strategy, these solutions 
are selected in accordance with their objectives by the 
conjunctive and disjunctive methods even if, globally, 
they are incomparable (not dominated). Such a strategy 
leads to a population of better quality, as their evaluations 
are greater than the threshold values. 

Table 2. mGA performance using the three replacement 

strategies in the 6t-problem  

Method Ns Ds COV 

mGA- MFP 

mGA- NDS 

mGA- 
MFP+NDS

3.6

4.7

6.8

0.33

0.70

0.79

(18.7; 18.4; 0; 19) 

(20; 10.5; 7; 21.7) 

(26.3; 30; 25; 39) 

We have also compared the features of mGA-
DNS+MFP to the ENGA algorithm of Bagchi (1999) for 
the 6t-problem. For ENGA, the population size is fixed at 

30 (such as the Pf value in our method) and the niche size, 

share, is set to 5 which gives the best results after several 
trials between 1 and 5. As stated by the author, the 
sharing distance is computed in the phenotype space and 
the coefficient of the sharing function  =2. Five runs are 
compiled as well for each test application. 

mGA- MFP+NDS is also better than ENGA as shown 
in Figures 4a-c. ENGA is not able to maintain a high 
number of feasible non-dominated solutions, from one 
generation to the other, for such a highly constrained 
problem. Only one run in five generated an interesting 
solutions set. The constraints in the fitness vector are not 
always fulfilled: they do not reach their maximum value 
(Eqs. 4, 4a) even if the solutions are non-dominated 
having the best-scored dummy fitness. In our method, 
feasible non-dominated solutions are archived and 
updated at each generation. This prevents the loss of 
interesting solutions during GA processing. 

Figure 4. Progress in finding non-dominated 

solutions on the 6t-problem. 5 runs are compiled 

for each method. 

5.3 Effect of problem size 

The efficiency of these methods is also examined large 
size problems, which are more constrained. For the 50t-
problem, Pc = 150 and Pf = 50 were found to represent the 
best compromise considering the quality of results and 
CPU time. For the 100t-problem, Pc = 150 and Pf = 50 
yield the best compromise in terms of CPU time even if 
higher Pf values generate higher NS. ENGA, as for the 6t-
problem, failed to maintain the non-dominated solutions 
up to the end of the GA processing. To compare the 
sharing fitness approach used in ENGA to the MFP 
procedure, we have modified the former by archiving and 
updating the approximation Pareto set S discovered at 
each generation. Mean values for the performance 
indicators compiled from 10 runs are tabulated in Table 3. 

The extent of the coverage on the third objective (the 
impact) is nil (covimpact = 0) for these large-size problems. 



This result is the consequence that all non-dominated 
solutions always score the median value for this objective.  

The mGA-NDS+MFP generates a larger number of 
efficient solutions for both problems and in the 50t-
problem a better diversity in the decision and the 
objective spaces. For the 100t-problem, even if the COV 
is similar for all the methods, the simulations depicted in 
Figure 5 illustrate how mGA-NDS+MFP outperforms the 
modified ENGA in its ability to find better extremes. Data 
correspond to the 10 processed runs results. Its superiority 
comes from the multi-criteria filter based on the 
disjunctive and dynamic conjunctive methods. 

Table 3. Algorithm comparison on different problem size 

 Ns Ds COV 

Algorithm 50t-problem 

mGA- NDS 

mGA- MFP+NDS  

modified ENGA 

13

16

10

0.75

0.76

0.71

(44; 77; 0; 50) 

(68; 94; 0; 34) 

(43; 51; 0; 30) 

Algorithm 100t-problem 

mGA- NDS 

mGA- MFP+NDS  

modified ENGA 

16.7

22.6

12.1

0.62

0.61

0.64

(20.7; 13; 0; 18) 

(17; 11.2; 0; 13) 

(18; 9; 0; 12) 

6 Conclusion

A new approach is proposed to optimise muli-
objective, large-size, highly constrained problem such as 
COAs planning. This approach, based on genetic 
algorithms, uses non-dominance and a first order multi-
criteria filtering method in the replacement procedure. 
This approach was compared to the classical one, based 
on niche formation and sharing function. This is done by 
analysing the approximation Pareto sets generated by the 
new algorithm, mGA-NDS+MFP, and by the elitist non-
sorting dominated algorithm, ENGA (Bagchi, 1999). 
Regarding the cardinality and the diversity of these 
approximation sets, it was possible to conclude that 
mGA-NDS+MFP is more efficient that ENGA. Moreover, 
mGA-NDS+MFP does not present the drawbacks 
inherent to the classical approach such as fine-tuning hard 
parameters (e.g. niche size and distance sharing). By 
embedding the dynamic conjunctive and disjunctive 
methods in the replacement procedure, mGA-NDS+MFP 
was shown to be able to find solutions that are more 
consistently closer to the Pareto front.  

It is also important to undeline the limitations of 
performance metrics (indicators) used in this paper. In 
fact, we think that future works should propose new 
metrics to characterise the Pareto frontier. This 
charcaterisation could include for example, the dispersion, 
the shape, and the lower and upper bounds of the frontier. 
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