
Genetic Optimization of the Multi-Location  
Transshipment Problem with Limited Storage Capacity  

Nabil Belgasmi and Lamjed Ben Saïd and Khaled Ghédira1  

                                                          

 

1 Ecole Nationale des Sciences de l’Informatique,    
Email : khaled.ghedira@isg.rnu.tn 

Abstract. Lateral Transshipments afford a valuable mechanism 
for compensating unmet demands only with on-hand inventory. 
In this paper we investigate the case where locations have a 
limited storage capacity. The problem is to determine how much 
to replenish each period to minimize the expected global cost 
while satisfying storage capacity constraints. We propose a Real-
Coded Genetic Algorithm (RCGA) with a new crossover operator 
to approximate the optimal solution. We analyze the impact of 
different structures of storage capacities on the system behaviour. 
We find that Transshipments are able to correct the discrepancies 
between the constrained and the unconstrained locations while 
ensuring low costs and system-wide inventories. Our genetic 
algorithm proves its ability to solve instances of the problem with 
high accuracy. 

1 INTRODUCTION   
Practical optimization problems especially supply chain 

optimization problems, usually have a complex structure. That is 
the same in a lot of transport or production related fields [1]. 
Physical pooling of inventories has been widely used in practice 
to reduce cost and improve customer service [2]. Transshipments 
are recognized as the monitored movement of material among 
locations at the same echelon. It affords a valuable mechanism for 
correcting the discrepancies between the locations’ observed 
demand and their on-hand inventory. Subsequently, 
Transshipments may reduce costs and improve service without 
increasing the system-wide inventories.  

The study of multi-location models with Transshipments is an 
important contribution for mathematical inventory theory as well 
as for inventory practice. The idea of lateral Transshipments is 
not new. The first study dates back to the sixties. The two-
location-one-period case with linear cost functions was 
considered by [3]. [4] studied with N-location-one-period model 
where the cost parameters are the same for all locations. [5] 
incorporated non-negligible replenishment lead times and 
Transshipment lead times among stocking locations to the multi-
location model. The effect of lateral Transshipment on the service  
levels in a two-location-one-period model was studied by [6]. The 
common problem tackled by these models is the determination of 
the optimal replenishment decision which minimizes the 
aggregate cost of the system. Most of the studies lead to optimal 
solutions since they investigate simple models easily solved by 
mathematical techniques (see [4]], [7]). However, an optimal 
replenishment decision for a general multi-location inventory 
system cannot be solved in analytical way. Few operational 
research methods were applied to find out near-optimal solutions. 
The gradient-based IPA method was successfully used for both 
capacitated Transshipment and production problems [8]. The use 
of IPA to solve real-world problems is not always possible since 

many conditions should be satisfied to ensure the unbiasedness of 
its estimator [9]. Evolutionary optimization may provide a 
powerful methodology for solving such complex problems 
without need of prior knowledge about their analytical properties. 
The contribution of this paper is twofold. We, first, incorporate 
storage capacity constraints to the traditional Transshipment 
model which leads to a better modelling of real-world situations. 
Second, we investigate the applicability of real-coded 
evolutionary algorithms to the optimization of inventory levels 
and costs. This provides insights to tackle other extensions of the 
basic Transshipment problem with evolutionary optimization 
methods. 

The remainder of this paper is organized as follows. In Section 2, 
we formulate the proposed Transshipment model. In Section 3, 
we present the main concepts of the evolutionary optimization; 
we describe the new crossover operator and our evolutionary 
modelling of the problem. In Section 4, we show our 
experimental results. In Section 5, we state our concluding 
remarks.  

2 THE PROBLEM 

2.1 Model description  

We consider the following real life problem where we have 
n stores selling a single product. The stores may differ in their 
cost and demand parameters. The system inventory is reviewed 
periodically. At the beginning of the period and long before the 
demands realization, replenishments take place in store i to 
increase the stock level up to Si. The storage capacity of each 
location is limited to Smax,i. In other way, the replenishment 
quantities should not exceed Smax,i inventory units. This may be 
due to expensive fixed holding costs, or to the limited physical 
space of the stores. Thus, the inventory level of store i will be 
always less or equal to min(Si, Smax,i). After the replenishment, the 
observed demands Di which represents the only uncertain event in 
the period are totally or partially satisfied depending on the on-
hand inventory of local stores. However, some stores may be run 
out of stock while others still have unsold goods. In such 
situation, it will be possible to move these goods from stores with 
surplus inventory to stores with still unmet demands. This is 
called lateral Transshipment within the same echelon level. It 
means that stores in some sense share the stocks. The set of stores 
holding inventory I+ can be considered as temporary suppliers 
since they may provide other stores at the same echelon level with 
stock units. Let t ij be the Transshipment cost of each unit sent by 
store i to satisfy a one-unit unmet demand at store j. In this paper, 
the Transshipment lead time is considered negligible. After the 
end of the Transshipment process, if store i still has a surplus 
inventory, it will be penalized by a per-unit holding cost of hi. If 
store j still has unmet demands, it will be penalized by a per-unit 



shortage cost of pj. Fixed cost Transshipment costs are assumed to 
be negligible in our model. [2] proved that, in the absence of fixed 
costs, if Transshipments are made to compensate for an actual 
shortage and not to build up inventory at another store, there 
exists an optimal base stock policy S* for all possible stationary 
policies. To see the effect of the fixed costs on a two-location 
model formulation, see [10]. The following notation is used in our 
model formulation: 

n Number of stores 

Si Order quantities for store i 

S 
Vector of order quantities, S = (S1, S2, …, Sn) (Decision 
variable) 

Smax, Maximum storage capacity of store i 

Smax 
Vector of storage capacities,  
Smax = (Smax 1, Smax,2, …, Smax n) 

Di Demand realized at i 

D Vector of demands, D = (D1, D2, …, Dn) 

hi Unit inventory holding cost at i 

pj Unit penalty cost for shortage at j 

t ij Unit cost of Transshipment from i to j 

Tij Amount transshipped from i to j 

I+ Set of stores with surplus inventory  
(before Transshipment) 

I- Set of stores with unmet demands  
(before Transshipment) 

2.2 Modelling assumptions  
Several assumptions are made in this study to avoid 

pathological cases: 

 

Assumption 1 (Transshipment policy): The 
Transshipment policy is stationary, that is, the 
Transshipment quantities are independent of the period 
in which they are made; they depend only on the 
available inventory after demand observation. In this 
study, we will employ a Transshipment policy known as 
complete pooling. This Transshipment policy is 
described as follow [11]: “the amount transshipped from 
one location to another will be the minimum between 
(a) the surplus inventory of sending location and (b) the 
shortage inventory at receiving location”. The 
optimality of the complete pooling policy is ensured 
under some reasonable assumptions [6]. 

 

Assumption 2 (Lead time):  Transshipment lead times 
are negligible. At the end of every period, optimal 
Transshipment quantities are computed. We assume that 
they are immediately shipped to their destination 
without making customers wait for long time. 

 

Assumption 3 (Replenishment policy): At the 
beginning of every period, replenishments take place to 
increase inventory position of store i up to min(Si, Smax,i) 
taking into account the remaining inventory of the 

previous period. The optimality of the order-up-to 
policy in the absence of fixed costs is proven in [2]. 

2.3 Model formulation 
Cost function: Since inventory choices in each store are centrally 
coordinated, it would be a common interest among the stores to 
minimize aggregate cost. At the end of the period, the system cost 
is given by: 

Ii Ij
jjjiii DSKSDpDShDSC ,,

(1) 

The first and the second term on the right hand side of (1) can be 
respectively recognized as the total holding cost and shortage cost 
before the Transshipment. However, the third term is recognized 
as the aggregate Transshipment profit since every unit shipped 
from i to j decreases the holding cost at i by hi and the shortage 
cost at j by pj. However, the total cost is increased by t ij because 
of the Transshipment cost. Due to the complete pooling policy, 
the optimal Transshipment quantities Tij can be determined by 
solving the following linear programming problem:  
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In (2), problem K can be recognized as the maximum aggregate 
income due to the Transshipment. Tij denotes the optimal quantity 
that should be shipped from i to fill unmet demands at j. 
Constraints (3) and (4) say that the shipped quantities cannot 
exceed the available quantities at store i and the unmet demand at 
store j. Since demand is stochastic, the aggregate cost function is 
built as a stochastic programming model which is formulated in 
(6). The objective is to minimize the expected aggregate cost per 
period. 
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where the first two terms denotes the expected cost before the 
Transshipment, called Newsvendor2 cost, and the third term 

                                                          

 

2 The newsvendor model is the basis of most existing 
Transshipment literature. It addresses the case where 
Transshipments are not allowed. 



denotes the expected aggregate income due to the Transshipment. 
This proves the important relationship between the newsvendor 
and the Transshipment problem. By setting very high 
Transshipment costs, i.e. t ij > hi + pj , no Transshipments will 
occur. Problem K will then return zero. Thus, our model can deal 
with both Transshipment and newsvendor cases. 

Cost function properties: The cost function is stochastic because 
of the demand randomness modelled by the continuous random 
variables Di with known joint distributions. Thus we must 
compute the expected value of the cost function. An analytical 
tractable expression for problem K given in (2) exists only in the 
case of a generalized two-location problem or N-location with 
identical cost structures [4]. In both cases, the open linear 
programming problem K has an analytical solution. But in the 
general case (many locations with different cost structures), we 
can use any linear programming method to solve problem K. In 
this study, we used the Simplex Method. The mentioned 
properties of our problem are sufficient to conclude that it is not 
possible to compute the exact expected values of the stochastic 
function given in (6). The most common method to deal with 
noise or randomness is re-sampling or re-evaluation of objective 
values [12]. With the re-sampling method, if we evaluate a 
solution S for N times, the estimated objective value is obtained as 

in equation (8) and the noise is reduced by a factor of N . For 
this purpose, draw N random scenarios D1,…,DN independently 
from each other (in our problem, a scenario Dk  is equivalent to a 
vector demand Dk=(D1

1 ,…,DN
N). A sample estimate of f(S), noted 

E(f(S,D)), is given by 
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3 EVOLUTIONARY OPTIMIZATION 

3.1 Main concepts  

We refer to evolutionary algorithms as methods that handle 
a population of solutions, iteratively evolve the population by 
applying phases of self-adaptation and co-operation and employ a 
coded representation of the solutions. The most suitable 
evolutionary algorithm to solve optimization problems in 
continuous domains are Evolutionary Strategies (ES) [13], 
Genetic Algorithms (GA) [14] with real coding and evolutionary 
programming [15]. GAs are search methodology invented by 
Holland [15], which is inspired by the natural genetic theory. 
They are regarded as methods that are suited for exploring large 
solution spaces. It is a very effective method for solving real-
world problems this success is its simplicity and performance. 
The main idea of this technique is to generate diverse 
chromosomes and select the most appropriates to continue. We 
have an initial population of chromosomes which are produced 
randomly or by a particular scheme. Then, iteratively, we 
generate new generations of population out of the previous ones 
using mutation, crossover and selection. Mutation is designed to 
generate a new chromosome out of an existing one by 
randomly changing it. In the crossover two existing 
chromosomes are combined to generate new chromosomes. 
Selection will ensure the formation of the new population from 
the previous population. By applying the mentioned operations, 
the average fitness of the population will tend to increase over the 
algorithm lifetime. In many practical problems, chromosomes are 
coded as real numbers. We call the GA working with real 

parameters in its chromosome RCGA (Real Coded Genetic 
Algorithm). The general structure of a GA is: 

Genetic algorithm 
Begin 
t:=0 
Initialize P(t) 
Evaluate P(t) 
while (not Stop-criterion) do  
t := t + 1  
Select POP(t) from P(t-1)  
Crossover P(t)  
Mutate P(t)  
Evaluate P(t) 

End-While 
End. 
Where t is the current generation, and P(t) is the current 
population. 

3.2 Solution methodology  

In our study, a real-coded GA is used to search for optimal 
replenishment decisions S*, with respect to the storage capacity 
constraints. In this section, we describe our evolutionary 
modelling of the constrained multi-location Transshipment 
problem. 

Structure of the Individual and population size: Each 
individual consists of a vector of n genes. It encodes a 
replenishment decision S. A gene is a positive real parameter 
representing an order quantity Si. It is easy to see that a 
population represents a set of replenishment decisions that moves 
toward regions of the search space that have better fitness values 
(lower costs). The population size is less than 30 individuals.  

Fitness evaluation: With respect to the re-sampling method 
given in (8), we should evaluate each individual N times in order 
to compute its fitness value. However, this may lead to 
individuals with different variances, which makes the selection of 
good individuals not accurate. Thus, in order to get a population 
with a common estimation Error Rate ER, we repeat the 
evaluation of each individual until its error estimation rate would 
be less than ER. We define the error estimation rate as the fraction 
of the estimated standard deviation and the expected mean of the 
sampled function at the given design S,  

Sf

S
SER

       

(9) 

Recall that ER(S) is null when the approximated standard 
deviation is null. This is the case when the sample size is too large 
(9). Using the ER measure facilitates the supervision of the 
accuracy of explored regions of the search space, since neither the 
standard deviation nor the expected cost is known in advance. We 
will use ER varying between 0.01 and 2. 

Initialization: In most of the search algorithms, the initialization 
method is very important. We have opted for two initialization 
procedures. The first consists of generating uniformly distributed 
values for each gene within the domain [0, min(Si, Smax,i)]. The 
second consists of analytical solving of the newsvendor version of 
our problem. Then, we initialize each gene with a random value 
close to the optimal computed solution with respect to the storage 
capacities. 



Selection: After evaluating the fitness of each individual, we 
must select the fittest ones to reproduce and form the population 
of the next generation. In our case, the best individuals represent 
the set of replenishment decisions {S*} that ensure low aggregate 
costs. Many selection methods were studied and used for solving 
problems. We have chosen a deterministic selection procedure 
which consists of sorting the individuals and copying the best 
10% of them to the mating pool. This protects the best individuals 
and let them survive until the birth of stronger offspring. 

Crossover: Mating is performed using crossover to combine 
genes from different parents to produce new children. We have 
chosen the binary tournament selection to pick out parents for 
reproduction. Tournament selection runs a tournament between 
two randomly chosen individuals and selects the winner 
(individual with best fitness value). Many crossover techniques 
were studied in evolutionary optimization. We tested 3 existing 
crossover operators. Let A and B be two selected parents, and a a 
real number uniformly generated between 0 and 1; 

 

Single-point crossover: the chromosomes of the 
parents are cut at a randomly chosen point and the 
resulting fragments are swapped. 

 

Uniform crossover: each gene of the offspring X is 
selected randomly from the corresponding genes of the 
parents. 

 

Convex crossovers: offspring X = a.A + (1-a).B

 

Moreover, we proposed a new crossover operator called 
Gradient-descent crossover (GRD-Crossover) since it creates an 
offspring following a quasi-descent direction. The first new 
offspring X is obtained by applying a convex crossover (X is 
inside the segment [AB]). The second offspring Y depends on the 
fitness values of the parents. Let CA and CB be fitness values of A 
and B and assume that CB = CA.. We can suppose that if Y will be 
in the same direction of the path linking solution A to B, then it 
may be better than its parents. More properly, X and Y are created 
as below:  

 

X = a.A + (1 – a).B  

 

Y = B – ? .(B – A)  
Where a is a real number uniformly generated between 0 and 1; ?

 

is a positive uniform random variable that has the same sign as 
(CB – CA). We implemented all these crossovers and showed that 
the GRD-Crossover performs well in term of convergence and 
accuracy. 

Mutation: Mutation is realized by adding to each gene Si a 
normally distributed random number centred on 0. This operator 
alters genes of the selected individuals with a given mutation 
probability. Because we are dealing with real-valued definition 
domains (e.g. [0, min(Si, Smax,i)]), all offspring genes that are out 
of its domains are scaled down as follow: Si := min(Si, Smax,i). 

4 OPTIMIZATION RESULTS  

In this section, we report on our numerical study. We first 
analyze the shape of the constrained cost function for a given 
system setting. We illustrate the spread of the individuals in the 
first and the tenth generations of the GA. We compare our GRD-
Crossover with other crossovers and show its ability to perform 
well and to provide near-optimal solutions. Finally, we analyze 
the impact of the incorporation of storage capacity in the basic 
Transshipment model. 

4.1 Case study 
Our first exemplary inventory model consists of 2 locations with 
the following parameters: hi=$1, pi=$4, t ij=$0.5 and 
Di=N(100,20). Location (2) has no storage capacity constraints 
(Smax,2=8). However, location (1) storage capacity is limited to 
Smax,1 = 80. We generated 30.000 samples of the cost function with 
a fixed error rate ER=1%. The average number of evaluations is 
450.000. Obviously, an individual consists of 2 genes only, each 
for one location. The evolutionary optimization process was 
started with the following parameters: 

 

Population size = 30 

 

Number of generations = 40 

 

Crossover rate = 85% 

 

Mutation rate = 15% 

 

Error rate = 1% 

4.2 Experimental design 
To show the flexibility of our model, we have studied a 4-location 
Transshipment system with 7 storage capacities. In all designs, 
holding costs are equal to $1, shortage costs are equal to $4, 
Transshipment costs are equal to $0.5 and demands are normally 
distributed: N (100, 20). Table 1 summarizes the designs 
characteristics. 

Table1. RCGA parameters 

Sys C-0 C-1 C-2 C-3 C-4 C-5 C-6 C-7 

Smax,1 8 8 100 80 60 40 20 0 

In system C-0, no material movement is allowed among locations. 
It represents 4 independent newsvendor problems. System C-1 
refers to the basic Transshipment problem with no storage limits. 
In systems C2-7, only location (1) faces different storage 
constraints. All the other locations have no such storage 
constraints. 
System-wide inventories considerably decrease in comparison to 
independent newsvendors system. Figure 1 reveals also an 
important property of multi-location systems with storage capacity 
constraints, that is the ability of the locations to face heavy storage 
constraints (Smax,1 = 0). Solidarity and cooperation of some system 
locations significantly fix the aggregate cost. When analyzing the 
optimal costs of all settings, we remark that whatever the hardness 
of the storage capacity (varying from 8 to 0), costs and system-
wide inventories in systems where Transshipments are allowed 
(C-1-7) are less then newsvendor.  
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Figure 1. Cost under different systems 



4.3 Validation with a benchmark 

We validate our RCGA using an illustrative example from [4] 
where optimal solutions are available. Recall that the system 
consists of 4 locations having identical cost structures with a 
holding cost of $1 per unit, a shortage cost of $4 per unit, and 
Transshipment cost of $0.10 per unit. There are no storage 
capacity constraints. Thus, our purpose is to compare the solution 
given by our RCGA using different crossovers to the optimal 
solution computed analytically. This can be done by setting 
infinite storage capacity limits (Smax,i = 8).  
In figure 2, we found that GRD-Crossover is better than all the 
other experimented crossovers. It has an important role in fine-
tuning the individuals at the last generations. It performs better 
than the Convex-crossover though it is partially based on a convex 
exploitation of the selected parents. Figure 3 shows that best 
solutions given by the RCGA has a big variance (94<S1<130, 
209<S2<274, 155<S3<198 and 148<S4<218) whereas the 
resulting costs are approximately equal (C = {113.51, 113.90, 
113.80, 115.42}). Recall the optimal solution is S*=(109, 222.5, 
163.5, 192.5) with a minimal cost of C* = 113.49. This leads to 
the conclusion that the approximation of the optimal cost value 
with our RCGA is satisfactory even though the approximation of 
the optimal order quantities has a great variance. 
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Figure 2. Best fitness of the last generation individuals under 
multiple crossovers 
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Figure 3. Optimal and near-optimal solutions under multiple 
crossovers  

5  CONCLUSION 

In this paper, we considered a multi-location Transshipment 
model with limited storage capacity. The objective is to minimize 
the aggregate cost function where decision variables are the 

constrained order-up-to quantities. We modelled the optimal 
redistribution of inventory in an arbitrary period as a linear 
programming problem based on the complete pooling policy. We 
employed a real-coded GA to solve the problem. A new crossover 
operator based on a simple approximation of the gradient descent 
is proposed and tested under multiple problem instances. 
Experiments showed that it outperforms many existent crossovers. 
An interesting conclusion is that Transshipments offer an 
important flexibility to systems that faces embarrassing storage 
capacity limits. The observed results confirm the success of 
evolutionary algorithms in solving inventory problems. Future 
studies will be concentrated on two directions: 

 

The multi-objective optimization of multi-location 
systems with storage capacity, where costs, lead times 
and service level should be optimized. 

 

The amelioration of real-coded evolutionary algorithms 
by incorporating effective search and sensitivity 
estimation techniques in crossover or mutation 
operators.  
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