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Public policies with geographical consequences are often difficult to analyze because they affect multiple stake-
holders with competing objectives. While such problems fall conceptually into the domain of multiobjective
evaluation, associated analytical techniques often search for a single optimum solution. Within the context of
geographical problems, optimality often means different things to different stakeholders and, thus, an optimum
optimorum may not exist. In this article, we present a new technique based on an evolutionary algorithm (EA)
that produces a large number of optimal and near-optimal solutions to a large class of land management problems.
As implemented for this article, solutions represent landscape patterns that produce services that meet stake-
holder needs to varying degrees. The construction of curves that illustrate the trade-offs among various services
given limited resources is central to this approach. Decision makers can use these curves to help find solutions that
strike a balance among conflicting objectives and, thus, meet stakeholder needs. To provide context to this work
we consider the impact of the U.S. Department of Agriculture’s (USDA) Conservation Reserve Program on rural
landscapes. Three objectives are assumed: (1) maximize farm income, (2) maximize environmental quality, (3)
minimize public investment in conservation programs; the first two are viewed as services desired by stakeholders.
Analytical and visualization tools are developed to reduce the burden associated with exploring the large number
of solutions that are produced by this technique. The results illustrate that the EA-based approach can produce
results equal to and significantly more diverse than conventional integer programming techniques.
Key Words: spatial evolutionary algorithms, multiobjective optimization, decision support, agricultural policy.


Introduction


I
n the U. S., where private property rights are para-
mount, policymakers often must rely on the volun-
tary cooperation of a large number of independent


land managers to achieve public goals. Public policies
must be so crafted as to entice land managers into be-
having in a particular way while they simultaneously
strive to meet their own objectives. Agricultural policies,
for example, influence, but typically do not dictate,
farmers’ decisions about where to farm, what to grow,
and how to manage their land. Whether driven by vo-
cation or avocation, different groups of land managers
(stakeholders) are likely to disagree on the relative im-
portance of public and private objectives, and policy-
makers must create policies that meet the needs of this
diverse clientele.


To facilitate the evaluation of public policies we frame
them within three interrelated analytical spaces: (1)
solution, (2) geographic, and (3) objective (Figure 1).
The solution space is comprised of all feasible policy or
regulatory scenarios, each of which has intended, and
often unintended, consequences. These consequences
are often made manifest in geographical space. A new
policy, for example, could precipitate changes in land


cover and management or influence spatial patterns of
access and transport. Geographical and nongeographical
consequences alike can often be transformed into indices
that gauge how well particular polices meet stated ob-
jectives. The collective set of indices produced by the
solution space constitutes the objective space. Collec-
tively, we refer to this set of three linked spaces as the
decision space of public policies with geographical con-
sequences. The practice of searching for an optimal
policy, however, is often complicated because:


1. the objective space is multimodal,
2. geographical problems are combinatorially com-


plex,
3. decision makers represent competing stakeholder


groups with distinctly different objectives,
4. all objectives may not be quantifiable,
5. all stakeholders may not act in an optimal manner,


and
6. alternatives that are similar in one space can be


dissimilar in one (or both) of the other two spaces.


The search for an optimal public policy can, therefore, be
classed as a ‘‘wicked,’’ or semistructured, problem as not
all objectives can be represented in mathematical form
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(Rittel and Weber 1973; Sprague and Carlson 1982;
Densham 1991). Furthermore, it is likely that stake-
holders will disagree on the relative importance of these
objectives, and thus, optimality means different things to


different people. While an optimum optimorum may not
exist for such problems, policymakers must, nevertheless,
make decisions.


In this article we present a new methodology that is
designed to support the analysis of public policies with
geographical consequences. Our method employs an
evolutionary algorithm (described below) that operates
on a digital representation of geographic space. We
compare and ultimately integrate this approach with a
more conventional method based on integer program-
ming (Figure 2). This integration is accomplished by
using the output of the integer programming method to
seed the evolutionary algorithm. To motivate the pres-
entation and discussion of this new method we place our
work into the context of U.S. agricultural policy. In this
context, we view the landscape as an engine of pro-
duction capable of providing ecosystem services that
meet stakeholder objectives. These services include, but
are not limited to, agricultural income and environ-


Figure 1. The decision space for public policies with geographic
consequences is comprised of the solution space, geographic space,
and objective space.


Figure 2. Basic elements of the presented
approach.
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mental quality. Public and private decision makers must
decide how land and financial resources should be allo-
cated among such services. Our goal is to support this
decision-making process by producing: (1) alternative
solutions that lie along a production possibility frontier;
(2) visualization techniques that link the solution, ob-
jective, and geographic spaces; and (3) tools that help
policy analysts identify interesting solutions.


Evaluating Multiobjective Geographical
Problems


We begin with the assumption that most public pol-
icies are designed to meet multiple objectives and, as
such, multiobjective evaluation techniques provide a
logical methodological framework for policy evaluation.
There are, however, several complicating factors associ-
ated with traditional methods of multiobjective evalua-
tion (Cohon 1978; Miettinen 1999; Mimouni, Zekri, and
Flichman 2000). First, a technique must be found to
integrate incommensurable criteria. Multiobjective
evaluation techniques often collapse multiple objectives
into a single objective function to perform this integra-
tion, a process known as scalarization. To accomplish this
task, decision makers must know, and agree upon, the
relative importance of competing objectives (Malczewski
1999; Coello 2000). Though several methods have been
developed to assist in the process of scalarization (e.g.,
see Saaty 1980; Carver 1991; Jankowski 1995; Ma-
lczewski 1999), all of them have significant limitations.
Reaching a consensus on the relative importance of al-
ternative criteria is, for example, difficult when decision
makers possess distinctly different views of a problem.
Furthermore, scalarization requires that the values as-
sociated with specified objectives be standardized to
ensure that the analysis remains unbiased by objective-
specific units (e.g., dollars versus parts per million).
Standardization also requires a priori knowledge of the
maximum and minimum obtainable objective values,
and this knowledge is sometimes difficult to obtain.


Once scalarized, traditional optimization techniques
can be used to find an ‘‘optimal’’ solution. These tech-
niques, however, have several limitations. First, they are
often based on assumptions that may not hold true in
the context of geographical problems (e.g., a convex
objective space). Second, the computational complexity
of related algorithms often renders real-world problems
intractable. Third, these approaches converge toward a
single solution (which can be a local optimum). Tech-
niques designed to converge toward a single solution,
however, may fail to identify interesting alternatives


because, as we demonstrate in this article, positions close
together in objective space often have significantly dif-
ferent geographic manifestations. Furthermore, the semi-
structured nature of many spatial problems suggests the
need for techniques that produce a wide array of po-
tential solutions, as well as for tools that help decision
makers evaluate trade-offs among conflicting objectives
(Brill et al. 1990). Evolutionary algorithms can be
adapted to produce a diverse set of alternative solutions
that represent distinct trade-offs among objectives.


Evolutionary Algorithms


During the past decade, evolutionary algorithms (EA)
have gained widespread recognition for their role in
multiobjective optimization (see Deb 2001). EAs are
based on an evolutionary metaphor. At the start, a
population of solutions is created, and through selective
pressure and the manipulation of digital genetic material,
this population evolves over successive generations to-
ward optimal solutions. The genetic material of indi-
viduals in this population is defined by a set of
distinguishing characteristics (their genotype), which is
often implemented as a one-dimensional array of values
that acts as a chromosome. In the context of multiob-
jective optimization, the set of objectives used by deci-
sion makers to evaluate alternative solutions provides
the selective pressure. A solution’s evolutionary fitness is
measured by how well it meets these objectives (the
response of a phenotype to selective pressures) (Bäck
1996; Bäck, Hammel, and Schwelfel 1997). Several re-
searchers have found that EAs are robust and can suc-
cessfully evolve optimal and near-optimal solutions to
multiobjective problems (Deb 2001; Xiao, Bennett, and
Armstrong 2002; Armstrong, Xiao, and Bennett 2003).
They are, however, heuristic devices used to explore
large solution spaces and, thus, can become trapped in
local optima due to premature convergence. The results
of EAs are, therefore, often referred to as the ‘‘best so-
lution(s) found so far.’’


The genetic make-up that defines the initial popula-
tion is often created through a random process, although,
as we will demonstrate, prior knowledge about the
problem and heuristics can improve the performance of
the algorithm. New solutions are produced by an EA
through the application of genetic operators; the two
most common operators are recombination and mutation.
Recombination incorporates characteristics of two parent
solutions into one or more progeny. Individuals with high
fitness values typically have a higher probability of being
selected for recombination and, thus, a higher probability
of contributing to the next generation of solutions.
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Recombination, therefore, is an attempt to exploit suc-
cessful adaptations found in the known solution space.
Mutation operators, on the other hand, randomly modify
part of the genetic material of a single individual. These
operators are implemented to force the search process
into unexplored regions of the solution space. In some
implementations, a fixed percentage of fit individuals is
copied into the next generation without modification.
This procedure, referred to as elitism, ensures that the best
solutions found so far are not lost from the population.


Representational Form and Evolutionary Algorithms


EA is a generic term for a family of four archetypes,
derived from the basic evolutionary metaphor outlined
above, that are distinguished by representational form,
objective, and evolutionary strategy (e.g., an emphasis of
recombination versus mutation). These archetypical
forms are: genetic algorithms (Holland 1975; Goldberg
1989), evolutionary strategies (Rechenberg 1965), evo-
lutionary programming (Fogel 1962), and genetic pro-
gramming (Koza 1992). Genetic algorithms traditionally
limit the representation of the chromosome to a binary
vector and rely most heavily on recombination strategies
to evolve better solutions; it is an exploitive approach.
Evolutionary strategies (ES) and evolutionary program-
ming (EP) explicitly support integer and floating-point
representations. Adaptation in ES and EP is driven by
mutation; these are explorative approaches. Finally, ge-
netic programming techniques are used to produce sets
of rules or statements (e.g., a computer program) that
generate desired outcomes. In practice, it is often nec-
essary to fit the form of an EA to the problem being
addressed, and representations often borrow concepts
from more than one of the above archetypical forms.


Evolutionary Algorithms and Spatial Analysis


EA methodologies have been applied successfully to a
variety of geographical problems. Chambers and Taylor
(1996), Bennett, Wade, and Armstrong (1999), Ma-
thews, Sibbald, and Craw (1999), and Xiao, Bennett,
and Armstrong (2000), for example, have illustrated the
utility of EAs in the context of environmental analysis.
Hosage and Goodchild (1986), Dibble and Densham
(1993), Krzanowski and Raper (1999), Brookes (2001),
and Xiao, Bennett, and Armstrong (2002) have applied
EAs to locational problems and Balling et al. (1999) used
them to identify urban development patterns that min-
imized traffic congestion. Even in the context of geog-
raphy, however, evolutionary computation is often used
only as a heuristic to evaluate well-defined problems.


Less attention has been given to the representation of
semistructured problems and the elicitation of new
spatial solutions to such problems, although we suggest
that it is in this role that EAs will prove most beneficial
in geographical analysis.


The work presented in this article is an extension of
research described by Bennett, Wade, and Armstrong
(1999), which applied evolutionary computation to elicit
compromise solutions for a land resource allocation
problem. Their approach used the Morton indexing
scheme to ‘‘linearize’’ space (Samet 1990, 14) into a
chromosome that could be manipulated by traditional
EA operators. In particular, a two-point recombination
operator exchanged land cover within a randomly se-
lected region of two parent landscapes. Similarly, a mu-
tation operator placed a new land cover into a region of a
selected landscape (see Bennett, Wade, and Armstrong
1999 for details). The evolving population in this ap-
proach was comprised of 100 different landscapes, and
the objective was to maximize a scalarized multiobjective
evaluation function. The specified objectives were to
minimize soil erosion, maximize wildlife habitat poten-
tial, and maximize profit. Three software agents were
created to represent the interests of three stakeholder
groups (the farming community, conservation groups,
and wildlife enthusiasts), and the EA was used to search
for compromise solutions that would be acceptable to
these competing agents. A rank-based (mean agent-
specific rank) selection algorithm was implemented, and
the solution with the highest fitness value was propa-
gated into the next generation (i.e., elitism was used).


Because the relative spatial position of land cover
types is an important determinant of habitat quality, the
problem described by Bennett, Wade, and Armstrong
(1999) was computationally intractable using brute-
force methods. Their methodology, however, quickly
evolved land-use patterns that were logical at the
landscape scale and, thus, their results suggested that
EAs could help decision makers explore difficult geo-
graphical problems. That experiment also helped to
elucidate several avenues for future research that are
addressed in this article. First, the Morton indexing
scheme used to represent spatial pattern failed to iden-
tify and exploit fine-grained features in the landscape.
For example, it had difficulty finding narrow, meandering
stream corridors, which can have considerable environ-
mental significance. Second, the resulting population
was comprised of relatively homogeneous landscapes,
though maintaining a variety of distinctly different al-
ternatives that meet stated criteria is often deemed to be
more useful during decision-making processes (Brill et al.
1990). Third, the evolutionary algorithm was designed
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specifically to evolve toward a single point in the ob-
jective space. This was appropriate given the problem
presented by Bennett, Wade, and Armstrong (1999)
because their goal was to find compromise solutions in a
complex problem domain. In the broader context of
decision support, however, it may be more desirable to
search widely throughout the decision space and to in-
vestigate the trade-offs that can be made as finite re-
sources are used to produce desired outcomes.


The Production Possibility Frontier


A production possibility frontier (PPF) illustrates the
combinations of outputs that can be produced given a
finite set of resources, and is comprised of the set of
nondominated solutions. Given two solutions (x and y) x
dominates solution y if and only if:


x is at least as good as y for all objectives, and
x is strictly better than y for at least one objective.


More formally, for a problem of max(f1, f2,. . ., fk)
x dominates y () 8 i, fi(x) � fi(y) ^ 9 j, fj(x)4fj(y)
where:


fi5 objective function for criterion i,
i,j A {1,2,. . ..,k}, and
k5 total number of criteria.


In the problem investigated here, the resources are land
and tax dollars, which can be used to produce two forms
of ecosystem service, food crops (and thus agricultural
income), and environmental quality. The work of Arm-
strong, Xiao, and Bennett (2003), Deb (2000), Fonseca
and Fleming (1993, 1995), and Goldberg (1989) illus-
trates how EA strategies (typically GA/EP hybrids) can
be used to search widely throughout a solution space and
identify those solutions that lie at or near a PPF. Figure 3
illustrates the difference between an EA approach that
collapses many objectives into a single objective function
(scalarization) and one designed to produce a PPF. While
the population may start out diversified in both ap-
proaches, the goal of scalarization is to evolve toward a
single point along the frontier. This point represents a
particular trade-off between two or more services. If
decision makers know a priori the balance that they wish
to strike among services, then this can be a useful ap-
proach. In contrast, the goal of constructing a PPF is to
produce a diversified population of solutions that will
illustrate: (1) trade-offs among competing services and
(2) the domain of feasible and infeasible solutions. Note
that in this approach, unlike many optimization proce-
dures, dominated solutions near the front are deemed
useful and are purposefully maintained because:


1. they provide ‘‘genetic’’ diversity that may prove
useful as the evolutionary process proceeds, and


2. the semistructured nature of many geographical
problems precludes a deterministic solution to
‘‘optimality.’’


Study Context


We focus on the Big Creek watershed in the south-
ernmost region of Illinois to illustrate the utility of our
approach (Figure 4). The watershed covers approxi-
mately 13,400 hectares and is associated with two dis-
tinct physiographic features. The upper part of the
watershed is in the Central Lowland. This part of the
watershed is hilly and the land cover consists of grains
intermixed with forest and grassland. The lower part of
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Figure 3. 3a represents the evolutionary trajectory for scalarized
multiobjective fitness functions, 3b the trajectory for a production
possibility frontier.
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the watershed opens into the broad, flat Cache River
watershed. The Cache River lies along an abandoned
section of the Ohio River and is at the northern-most
edge of the Mississippi Alluvial Plain. This lower area is
farmed intensively. Big Creek empties into the Cache
River just downstream of Buttonland Swamp, which is
the centerpiece of a conservation effort being under-
taken by the U.S. Fish and Wildlife Service, U.S. Forest
Service, the Illinois Department of Conservation, and
the Nature Conservancy. Buttonland Swamp serves an
important ecological role within the region as a winter-
ing ground for migratory waterfowl, a migratory corridor
for neotropical songbirds, and as a haven for a variety of
threatened and endangered species. During periods of
peak discharge, water and entrained sediment flows back
into Buttonland Swamp from Big Creek and, therefore,
the management of the Big Creek watershed is of con-
siderable interest to a variety of stakeholders with
competing objectives (Bennett et al. 2001).


We consider here the impact of the conservation re-
serve program (CRP) on this watershed. The CRP pays
farmers to remove farm fields from agricultural produc-
tion and is administered by the U. S. Department of
Agriculture (USDA). Farmers interested in enrolling a
field into the CRP must enter into a bidding process. The
USDA selects a subset of all fields offered for enrollment
by farmers based on cost and perceived environmental


return. Embedded within the CRP legislation (P.L. 99–
198) are implementation-specific details regulating, for
example, the maximum acceptable area of land that can
be enrolled in a county (25 percent). However, a broader
set of regulatory rules could be used to define the CRP.
For example, decision makers may wish to establish pol-
icies that define acceptable thresholds for:


1. economic impact,
2. public investment, or
3. environmental return.


It is at this level of policymaking that we focus our
analysis.


Methodology


To illustrate our approach we explore the trade-offs
among three policy objectives: (1) maximize the gross
marginal return (total revenue minus variable costs) of
agricultural production; (2) maximize the environmental
benefit derived from public investment in the CRP; and
(3) minimize public investment in the conservation re-
serve program. Payments made to farmers as part of the
CRP are not considered when calculating marginal re-
turn; to do otherwise would underrepresent the trade-off
between environmental quality and agricultural pro-
duction. Given this formulation of the problem, we ex-
pect that as public investment in the CRP increases,
environmental benefit will increase and the gross mar-
ginal return associated with agricultural production will
decline as land is taken out of production and placed
under various forms of conservation management. We
explore the decision space associated with the CRP using
a standard integer programming (IP) approach and an
EA. As specified by current regulations, we also restrict
CRP enrollment to 25 percent of the landscape.


Maximize Gross Marginal Return


Gross marginal return for the Big Creek Watershed is
calculated as:


O1 ¼
X
j


X
k


xjkajðfjkpk � ckÞ; ð1Þ


where:


O15 objective 1,
j5 index of farm fields (0 � j � 961),
k5 index of crop cover types (0 � k � 4),


xjk ¼
1; if field j has cover type k
0; otherwise;


�


aj5 area of field j,


Union


Pulaski


Johnson


Alex-
ander


Big Creek
watershed


Figure 4. This study was conducted in the Big Creek watershed in
southern Illinois.
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fjk5 productivity of field j for cover type k (areally
weighted average of all soil types within field j),


pk5 price for cover type k, and
ck5 variable costs of production per unit area for


cover type k.


Agricultural commodity prices (pk) were set at the 1993
to 1997 five-year mean (Farmdoc 2003). These dates
were used so that model results can be compared to
cropping practices documented in the 1997 Census of
Agriculture. Data for the variable costs of crop produc-
tion in southern Illinois are available from 1998 to 2003;
these values, however, remained relatively constant. The
values used for prices and costs are shown in Table 1.


Maximize Environmental Benefit


Environmental benefit is estimated using USDA
guidelines for calculating the environmental benefit in-
dex (EBI) for Union County, Illinois (see Ribaudo et al.
2001 for a detailed discussion on the use of the EBI in
the CRP). The EBI is used to guide the CRP enrollment
process and is comprised of seven major elements that
are summed to calculate an overall index:


EBI ¼ N1þN2þN3þN4þN5þN6þN7; ð2Þ


where:


N15 benefit to wildlife habitat (0–100 points),
N25 benefit to water quality attributable to re-


duced erosion, runoff, and leaching (0–100
points),


N35 on-farm benefit attributable to reduced ero-
sion (0–100 points),


N45 enduring benefits (0–50 points),
N55 air quality benefits from reduced wind ero-


sion (0–35 points),
N65 benefits of enrollment in conservation prior-


ity areas (0–25 points), and
N75 cost of implementing CRP management ac-


tivity (point value not established by regu-
lation).


Many of these elements are decomposed into more
specific criteria. For example, the benefit to wildlife is
calculated as:


N1 ¼ ðN1a=50Þ � ðN1aþN1bþN1cþN1d
þN1eþN1fÞ; ð3Þ


where:


N1a5 cover (0 to 50 points),
N1b5 endangered species (0 to 15 points),
N1c5 proximity to permanent water (0, 5, or 10


points),
N1d5 adjacency to protected areas (0, 5, or 10


points),
N1e5wildlife enhancements—food plots, wetland


restoration (0 or 5 points), and
N1f5 restored wetland and upland cover (0 or 10


points).


In this research, EBI values were not estimated for N5
and N7 (N5 is not relevant to this study area and data for
N7 were not available). Figure 5 illustrates the pattern of
four spatial variables that are included in this analysis.


Eleven different CRP practices are modeled, and each
practice is associated with an EBI value (Table 2). The
watershed level EBI value is calculated as:


O2 ¼
X
j


X
l


ajxjlebil ð4Þ


where:


O25 objective 2,
j5 index of farm fields (0 � j � 961),
l5 index of CRP cover types (5 � l � 15),
aj5 area of field j,


xjl ¼
1; if field j has CRP cover type l
0; otherwise, and


�


ebil5EBI value for CRP cover type l.


Minimize Public Investment


The CRP rental rate is the cash payment made per
unit area to farmers for removing land from production.
This rate is a function of soil type, and for each farm field
it is calculated as the areally weighted average of the
rates associated with all soil types within that field. CRP
rental rates were provided by USDA district conserva-
tionists from the Illinois counties of Union, Johnson, and
Pulaski. Public investment is, therefore, calculated as:


O3 ¼
X
j


X
l


ajxjlinvj ð5Þ


Table 1. Cost and Revenue for Modeled Crop Types
(Farmdoc 2003)


Cover ID Crop Cost/ha Price


0 Corn $400.31 $2.74/bu
1 Soybean $259.46 $6.65/bu
2 Wheat $229.81 $3.59/bu
3 Hay $301.47 $68/ton
4 Double crop Function of


soybean and wheat
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where:


O35 objective 3,
j5 index of farm fields (0 � j � 961),
l5 index of CRP cover types (5 � l � 15),
aj5 area of field j,


xjl ¼
1; if field j has CRP cover type l
0; otherwise, and


�


invj5 Public investment needed to enroll farm
field j.


Integer Programming (IP)


An IP model was developed to produce a set of
baseline solutions that were used to test the efficacy of
the EA developed as part of this research. The three
objectives listed above are integrated into a single sca-
larized multiobjective function, which is maximized us-
ing the glpsol software in the GNU linear programming


kit (glpk). More formally, we attempt to:


Maximize:
X
m


wmOm=sm ð6Þ


Subject to:


X
j


X
n


xjn ¼ 1 ð7Þ
X
j


X
l


ajxjl � 0:25
X
j


aj ð8Þ


where:


j5 index of farm fields (0 � j � 961),
m5 index of objectives (1 � m � 3),
n5 index of all cover types (0 � n � 15),
l5 index of CRP cover types (5 � l � 15),
wm5weight of objective m,
Om5 the mth objective (Equations 1, 4, and 5),
sm5 normalization for the mth value,


Figure 5. The spatial pattern of four impor-
tant inputs: (a) soil productivity for crops,
input to marginal return; (b) hydric soils,
input to EBI parameters N1 and N2; (c)
distance to protected land, input to EBI para-
meter N1, (d) erodibility, input to EBI
parameters N2 and N3.
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xjn ¼
1; if field j has cover type n
0; otherwise, and


:


�


aj5 area of field j.


The first constraint (Equation 7) ensures that one and
only one cover type is associated with each field, the
second constraint (Equation 8) ensures that no more
than 25 percent of the landscape is placed into the CRP
as required by USDA guidelines. The value of sm is set
equal to the maximum value obtained from the EA and
single-objective IP runs.


Using this approach, we attempted to locate a number
of points that would define the PPF by manipulating the
objective weights associated with the three stated ob-
jectives (Table 3). The number of points required to
accomplish this task is difficult to estimate without a
priori knowledge of the PPF’s form. Seven points were
selected to explore the shape of the front. Since neither
the IP nor EA results suggested that discontinuities or


concavities existed in the PPF, the analysis of additional
points was not deemed necessary. Other problems,
however, might require a larger number of points to
define a PPF.


Evolutionary Algorithm


With this research we extend the work of Bennett,
Wade, and Armstrong (1999) and Armstrong, Xiao, and
Bennett (2003) to produce landscapes that fall along a
PPF that is defined by the trade-offs among competing
objectives. The decision to place a particular tract of
land into the CRP or to plant crops is influenced by soil
productivity, commodity prices, the CRP rental rates,
the costs of production, and expected environmental
return. The chromosome operated on by the EA is
represented as an integer array. The index value asso-
ciated with each element in this array links it to a spe-
cific farm field, and the value stored at this index
location refers to the associated land cover type (Figure
6). The decision variable used to optimize landscape
level indices, therefore, is land cover at the field level.
Conceptually, this approach is similar to that of Balling
et al. (1999). In each approach the chromosome con-
tains pointers to geographic regions (here agricultural
fields, land use zones in Balling et al. 1999). Further-
more, both techniques are designed to highlight trade-
offs among competing objectives. How the EA is im-
plemented, however, differs significantly between these
two approaches. For example, the Balling et al. (1999)
approach does not include techniques to: (1) promote
diversification along the PPF, (2) validate results, or (3)
visualize the decision space.


The Fitness Function. The fitness function must
move the solution process toward the PPF and promote
a diverse solution set to ensure that all portions of the
curve are fully developed (Deb 2001). Goldberg (1989)
developed a fitness evaluation method that assigns all
nondominated individuals in the current generation the
rank value of 1 (Figure 7). These individuals are re-
moved from the evaluation and a new set of nondom-
inated individuals is identified, which are assigned a rank
value of 2. This process continues until all individuals
are ranked or until a user-defined threshold is reached
(e.g., ignore all individuals below a rank of 4). Once each
individual is ranked, fitness is calculated as a function of
1/rank. While such a criterion effectively moves the
population toward the front, it does not explicitly ensure
diversity, and the algorithm can converge to subregions
along the front.


Table 2. CRP Practices


Cover ID Description EBI Pts.


5 Introduced grass 10
6 Mixed stand of 3 or more plant species, with at


least 1 introduced grass, and 1 forb or legume
species


30


7 Mixed stand of 4 or more plant species, with at
least 2 introduced grasses and 1 forb or legume


40


8 Solid stand of 1–3 native species 20
9 Mixed stand of 4 or more plant species, with at


least 2 native grasses and 1 shrub, forb, or legume
40


10 Mixed stand of 5 or more plant species, with at
least 2 native grasses and 1 shrub, forb, or legume


50


11 Solid stand of nonmast-producing hardwood
species


20


12 Solid stand of a single hard mast-producing
species


40


13 Mixed stand of hardwood species best suited for
wildlife


50


14 Two shrub or trees species and at least 2 native 40
15 Wetland restoration 50


Table 3. Objective Weights for Integer Programming Runs


Run Gross Margin Environmental Benefit Public Investment


1 0.8 0.1 0.1
2 0.6 0.2 0.2
3 0.4 0.3 0.3
4 0.334 0.333 0.333
5 0.3 0.4 0.3
6 0.2 0.6 0.2
7 0.1 0.8 0.1
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To overcome this problem we have implemented two
techniques that are designed to promote solution di-
versity in EAs. First, we implemented Srinivas and Deb’s
(1994) nondominated sorting algorithm. Central to this
algorithm is the concept of a niche count. The niche
count is designed to boost the fitness of those solutions
that lie along sparsely populated regions of the emerging
front:


ncp ¼
X
q


ShðdpqÞ; ð9Þ


ShðdpqÞ ¼
1� ðdpq=sshareÞa; if dpq < sshare
0; otherwise


�
ð10Þ


where:


ncp5niche count for landscape p,
Sh(d)5 sharing function,


dpq5 normalized distance in objective space be-
tween landscapes p and q in the population,


sshare5 neighborhood parameter, and
a5 exponent capturing the effect of distance on


the share function.


As implemented here, distance is defined as the number
of fields in landscape p that have a different cover type
than the same field in landscape q. Past research suggests
that the nondominated sorting algorithm is particularly
sensitive to sshare, the parameter that determines the
neighborhood within which fitness is apportioned (Deb
2001). In theory, a smaller neighborhood leads to more
diversified solutions and, thus, a more complete PPF. For
the runs presented in the Results section, sshare5 0.15
and a5 2. The sensitivity of the EA to these variables is
investigated below.


The nondominated sorting algorithm is implemented
by calculating, in sequence (adapted from Deb 2001,
203):


1. values for O1, O2, O3, as defined above for all
solutions q in population P,


2. initial fitness value F0q for all solutions q in popu-
lation P by implementing Goldberg’s nondomi-
nated sorting algorithm,


3. niche count, ncq, for all solutions q in population P,
and


4. shared fitness for all solutions q in population P as
F00q ¼ F0q=ncq.


Our second approach creates several subpopulations
(Bennett, Armstrong, and Wade 1996; Armstrong, Xiao,
and Bennett 2003; Xiao and Armstrong 2003), with the
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goal of evolving specialized subspecies of solutions that
are well adapted to overlapping segments of the PPF. To
accomplish this process of ‘‘allopatric speciation’’ each
subpopulation is subjected to somewhat different selec-
tive pressures and the exchange of genetic material
among subpopulations is regulated by user-specified mi-
gration rules (i.e., rules that determine the subset of
subpopulations to which an individual can ‘‘move’’). For
the results presented below, the following six sub-
populations are defined:


� Subpopulation 1 weights all objectives evenly,
� Subpopulation 2 attempts to maximize farm in-


come and EBI,
� Subpopulation 3 attempts to maximize farm in-


come and minimize public investment,
� Subpopulation 4 attempts to maximize EBI and


minimize public investment,
� Subpopulation 5 attempts to maximize farm in-


come, and
� Subpopulation 6 attempts to maximize EBI.


The objectives associated with these subpopulations
(e.g., maximize farm income and EBI) were defined in
this manner to encourage the evolution of a diverse
population that extends across the entire PPF. Repeated
runs of the system with various settings suggested that a
population of 100 individuals that was allowed to evolve
over 500 generations produced consistent results. Con-
sequently, each subpopulation was instantiated with
those values.


Initialization. We experimented with three different
techniques for initializing individuals in the population:
modified random, heuristic, and seeding the EA with IP
results. The initial population developed by the modified
random initialization procedure contains landscapes
with:


1. 20 percent probability that all fields have the same
randomly selected crop cover type,


2. 20 percent probability that all fields have the same
randomly selected CRP cover type, and


3. 60 percent probability that each field will contain a
randomly selected cover type.


Producing landscapes comprised of the same randomly
selected cover type (1 and 2 above) provides a reason-
able expectation that all cover types will be represented
in all fields, thus providing needed genetic diversity.


The above algorithm follows the EA tradition of
random initialization, but fails to exploit known prop-
erties of this particular problem. In an effort to produce a


more effective initial population (defined by time to
convergence and the degree to which the PPF is pro-
duced) we use field-level values for EBI and gross mar-
ginal return as heuristics for watershed-level per-
formance. This modified population contains:


1. eight individuals where all fields are set to the crop
type that returns the maximum gross marginal
return,


2. eight individuals where all fields are set to the CRP
type that returns the maximum EBI value,


3. thirty-four individuals where each field has an
equal probability of receiving the cover type that
returns the maximum value for gross marginal re-
turn or EBI, and


4. fifty individuals produced in the manner outlined
above for modified random initialization.


While the number of individuals in each of the four
classes is somewhat arbitrary, the inclusion of multiple
versions of the same individual increases the probability
that useful genes will survive to subsequent generations.


We would expect even greater efficacy if the IP runs
discussed above are used to initialize the population.
Consequently, an initial population was produced using
this EA/IP hybridized approach that contains:


1. five individuals produced by IP Run l,
2. five individuals produced by IP Run 2,
3. five individuals produced by IP Run 3,
4. five individuals produced by IP Run 4, and
5. eighty individuals produced in the manner


outlined above for random initialization.


Though the number of individuals in each of these five
classes is, again, somewhat arbitrary, there was no evi-
dence of an undeveloped PPF (e.g., premature conver-
gence, gaps, or concavities). If the results suggested that
the front was underdeveloped, then adjustments would
have been made to this initialization procedure.


Genetic Operator. The recombination procedure im-
plemented here selects two random integers from a uni-
form distribution (U[0, number of fields – 1]). These
integers correspond to index values in the chromosome
and, thus, farm fields in the study area. The recombina-
tion algorithm swaps the land cover of farm fields be-
tween these two indices (Figure 6).


The following three mutation operators were imple-
mented to encourage exploration within the solution
space:


1. randomly select n fields and change to a randomly
selected cover type,
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2. randomly select a block of contiguous fields and
change to a randomly selected cover type, or


3. randomly select n fields and swap crop type to CRP
land (or vice versa).


Each of these three mutation operators has an equal
probability of being selected for execution given a user-
defined mutation rate (set at 0.l for the runs presented in
the Results section).


Selection. A ranked-based, roulette-style selection
algorithm (Goldberg 1989) was implemented to deter-
mine which individuals in generation t would be used to
produce generation t11. Twenty-five percent of the best
individuals in generation t are copied into generation
t11 without modification, and the remaining 75 percent
of the population (the gap size) is produced through
recombination and mutation.


Visualizing the Decision Space


The PPF is designed to help decision makers under-
stand the trade-offs associated with competing objec-
tives. When the goal is to select a single solution on or
near the frontier, however, the volume of alternative
solutions associated with this approach can prove
daunting (e.g., see Schwartz 2004). We have developed a
set of tools to reduce the cognitive burden associated
with the evaluation and selection of solutions. First, an
interface was produced that links the three different
spaces associated with the decision space (Figure 8, see
also Xiao, Armstrong, and Bennett 2002). A table


contains information about the objective values associ-
ated with all landscapes, and it can be sorted by any
objective. The sorting function allows analysts and de-
cision makers to focus their attention on that subset of
landscapes that lies within actual or proposed policy
guidelines (i.e., the solution space can be constrained to
meet user goals). This table is linked to a graphical view
that presents the PPF (a representation of the objective
space). By interactively selecting a point in the graph,
the corresponding row in the table is highlighted (and
vice versa). Once a landscape is identified in either the
tabular or graphical view, a map can be produced (a
representation of geographic space). We have also im-
plemented two proximity indices that compare alterna-
tives in the geographic and objective spaces. The
Euclidean distance between two solutions in n-dimen-
sional objective space is calculated as:


cpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m


ðvpm � vqmÞ2
r


; ð11Þ


where:


m5 index of objective (1 � m � 3),
p,q5 index of a landscape,
cpq5 distance between landscape p and landscape q


in objective space, and
vpm5 value of landscape p for objective m.


The distance between two alternatives in geographic
space is calculated as:


spq ¼ Sjtj; ð12Þ


Figure 8. The user interface provides three
views of the decision space, tabular, graphical,
and geographical.
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where:


spq5 distance between landscape p and landscape q
in geographic space, and


tj ¼


0; if land cover at field j in landscape p
is the same as land cover at field j in
landscape q
1; otherwise


8>><
>>:


These two indices can be used to formulate queries
such as:


1. select all solutions that are ‘‘near’’ to landscape p
in the objective space, or


2. select all solutions that are ‘‘near’’ to landscape p
in the geographic space,


where ‘‘near’’ is a user-defined proximity value. Fur-
thermore, we can visualize ‘‘nearness to solution p’’ in
geographic space by symbolizing all q points along the
PPF as a function of spq.


These indices can be used to drive additional queries
of interest. For example, a user may want to find alter-
natives that are close to alternative p in the objective
space, but distinctly different in the geographic space. To
support such queries we first standardize spq and cpq:


sspq ¼
spq � smin


smax � smin
ð13Þ


ccpq ¼
cpq � cmin


cmax � cmin
ð14Þ


where:


smin5 the minimum s value between solution p and
all other solutions,


smax5 the maximum s value between solution
p and all other solutions,


cmin5 the minimum c value between solution
p and all other solutions, and


cmax5 the maximum c value between solution
p and all other solutions.


We then calculate the following index:


Sq ¼
X


ðwpqsspq=ccpqÞ=
X


wpq; ð15Þ


where:


wpq ¼
0; ccpq > cco
1; otherwise; and


�


cco5 user-specified proximity threshold in objec-
tive space.


Similarly, a user may want to find alternatives that are
close to alternative p in the geographic space but dis-
tinctly different in the objective space. To support this
class of query we calculate:


Cq ¼
X


ðwpqccpq=sspqÞ=
X


wpq; ð16Þ
where:


wpq ¼
0; sspq > sso
1; otherwise; and


�


sso5 user-specified proximity threshold in geo-
graphic space.


Results


Table 4 documents the results of the integer program-
ming base runs. Computation times for Runs l through 4
were quite fast, taking 6 seconds or less on a 2.4 Ghz
Pentium IV computer with 512 MB RAM. As more
weight is placed on environmental quality (Runs 5
through 7), however, the policy that limits total CRP land
to less than 25 percent of the landscape becomes an im-
portant spatial constraint. In this situation the glpsol soft-
ware failed to find a solution; the program terminated with
an out-of-memory error after running for approximately
three days. Though spatial constraints are commonly used


Table 4. Results of Integer Programming Runs


1997 Census of
Ag Union Co. IL IP Run 1 IP Run 2 IP Run 3 IP Run 4


Crops as % of total 97.1% 96.8% 82.7% 75.1%
as % of total crops
Corn 19% 11% 11% 11% 9%
Soybean 44% 62% 61% 58% 57%
Wheat 6% 4% 4% 5% 5%
Hay 31% 24% 24% 27% 28%
CRP as % of total 2.9% 3.2% 17.3% 24.9%
as % of total CRP
10 NA 0% 0% 0% 25%
13 NA 52% 27% 40% 24%
15 NA 48% 73% 60% 51%
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to create equity and manage costs in public policies, they
often introduce considerable computational complexity,
and the inability of IP algorithms to find a solution to such
problems limits their utility in geographic analysis.


It is also worth noting that the landscapes produced
by Runs 1 through 5 are comprised of CRP practices that
return high EBI values. Practices rewarded with high EBI
values, however, often require a high capital investment
and produce a land cover that is difficult to revert to
agricultural production (e.g., woodlands and wetlands).
Experience shows that many farmers are reluctant to
make such commitments and often opt for CRP prac-
tices that may have lower financial return but greater
long-term flexibility. Furthermore, the IP approach pro-
duced landscapes that contain more soybean, and less
corn than is suggested by the 1997 data. One reason for
this situation is that the IP model did not consider the
need to rotate soybeans with other crops in this region as
a defense against soybean sudden death syndrome
(Rupe, Robbins, and Gbur 1997). If corn and soybeans
are aggregated into a single category, the percent dis-
tribution for all land cover categories is within 10 per-
cent of the 1997 landscape. Given the uncertainties of
agricultural production, we conclude that these land-
scapes provide a realistic benchmark against which the
results of the EA approach can be compared.


Results From EA


Figure 9 illustrates the results of the evolutionary al-
gorithm developed here. Each black dot in these graphics
represents a landscape produced by the EA. Open circles
are landscapes produced by IP Runs 1 through 4 and,
thus, represent points along part of the PPF (note that IP
Runs 5 through 7 failed to produce results and, thus,
there are no open circles in the lower portions of the
frontier). Each run of 500 generations required approx-
imately 88 minutes to execute on a 2.4 Ghz Pentium IV
computer with 512 MB RAM and produced 225,150
alternative landscapes. The 30 most-fit landscapes from
each subpopulation in each generation are stored and
presented in objective space (e.g., 45,000 landscapes are
represented in Figures 9a, c, and e).


All three initialization algorithms produced fronts that
are fully formed with solutions well diversified along the
front. However, the population produced using the
modified random initialization algorithm converged pre-
maturely and, thus, failed to reach the PPF. In contrast,
the populations produced by the heuristic and hybridized
IP initialization algorithms produced fronts that reached
the PPF (i.e., included the IP solutions). From the
shading of the points (light representing earlier genera-


tions, dark representing later generations) we see that,
generally speaking, the algorithm made steady progress
toward the frontier. Note, however, that this progress is
not necessarily monotonic. During the creation of each
new generation, the processes of recombination and
mutation can, and do, produce individuals that are less fit
than those in previous generations. In fact, selecting a
termination condition for EAs (e.g., stop after 500 gen-
erations) can prove challenging, and one indication that
the evolution has run too long is that the population
begins to devolve away from the front. In Figure 9e, for
example, there is evidence that the hybrid IP algorithm
operated too long. Note that in the lower portion of this
graph light gray points (individuals from early genera-
tions) extend out beyond darker points (individuals from
later generations). Figure 9f shows that the hybridized
solution was, in fact, able to reach the front in 100
generations, while the heuristic initialization algorithm
was not (Figure 9e). This result suggests that efficiencies
can be gained by implementing a hybrid algorithm.


The landscapes associated with three points along the
PPF are presented in Figure 10. Points toward the top of
the curve are associated with landscapes that are heavily
agricultural and, thus, performed well on the gross
marginal return objective. Those points toward the
bottom of the curve have 25 percent of the landscape in
CRP practices that return relatively high EBI values.


Exploring the Solution Space


One benefit of using landscape pattern to calculate
the niche count (see Equation 9) is that it promotes
geographic diversity within localized regions of the ob-
jective space. Two solutions that are close in objective
space can represent notably different landscapes, and
this spatial diversity provides decision makers with op-
tions. An example of such a situation is provided in
Figure 11. Though the two solutions shown here lie near
one another in objective space, they exhibit different
landscape patterns. Solution 10a has fewer hectares in
CRP than Solution 10b, but has approximately the same
total EBI and income values. The EBI/hectare value for
Solution 10a is higher than that of 10b because a larger
percentage of its CRP hectares are close to the protected
lands of Buttonland Swamp (N1d in the EBI calculation)
and a greater percentage of the CRP is enrolled into
wetland restoration projects. The land associated with
the restored wetlands, however, possesses the most
productive soils in the watershed. Solution 10b has more
land in crop production than 10a, but since the soil
productivity of the tilled land is, on average, lower, it
does not generate additional income. Individuals may
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disagree on which solution is preferable, and a final de-
cision may result from compromise.


Finding Compromise Solutions


Because the resolution of semistructured spatial
problems often requires compromise and consensus
building, tools are needed to expedite the search for
alternatives that are satisfactory to all decision makers.


Consider, for example, the following scenario. Decision
maker A prefers the alternative represented by Point 1 in
Figure 12, perhaps because the spatial pattern of land use
is similar to the current situation and because the re-
quired level of public investment is relatively low. To
reach consensus with other decision makers, however,
this individual knows that a compromise alternative that
promotes a higher level of environmental quality must
be found. How does one go about finding such an
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Figure 9. Objective space diagrams produced
by the EA. The production possibility frontier
was reached using the heuristic initialization
algorithm with a population size of 500 and
the EA/IP hybrid initialization algorithm with
a population size of 100 and 500.
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alternative from among the more than 45,000 alterna-
tives presented in the objective space? For the sake of
discussion, assume that a compromise solution must
increase EBI scores by at least 20 percent, but not reduce
gross marginal return by more than 10 percent. Software
was written to support such queries and symbolize the
qualifying landscapes as a function of Equation 12
(Figure 12). Using this graphic as a guide, the attention
of the decision maker might be led to the solution rep-
resented by Point 2, the highest-income producing land-
scape that meets this criterion. Alternatively, this
individual may be curious about the solution represented
by Point 3. This point is at the limit of the decision
makers’ willingness to compromise, but still has a spatial
pattern similar to that of Point 1. This situation repre-
sents one type of search procedure that may be of in-
terest to decision makers: a search for solutions similar in
geographic space to a selected solution, but dissimilar in
objective space. The decision makers can just as easily
search for solutions similar in objective space, but dis-
similar in geographic space.


Reaching for the Frontier


One of the greatest challenges associated with mul-
tiobjective evolutionary algorithms is the production of a
full and diversified PPF. While many methodologies have
been developed to help meet this challenge (see Deb
2000 for a more complete review), none has been im-
plemented in a geographic context. In the earlier sec-
tion, Fitness Function, we discussed the implementation


of two procedures that are designed to help promote a
fully formed curve: niche counting and the use of sub-
populations. In this section we investigate the relative
impact that these approaches, and associated parame-
ters, have on the development of the front.


The results of this investigation are presented in
Figure 13, which shows the effects of using different
strategies to produce the PPF. From these illustrations,
we see the importance of using both diversification
strategies to explore the solution space fully. Figure 13a
presents the original solution produced by the heuristic
initialization algorithm. Subpopulations alone (Figure
13b) produce a continuous ‘‘front’’ but fail to reach the
PPF, devolving back to inferior solutions in the lower
portion of the objective space. Niche count alone tends
to emphasize compromise solutions in the middle of the
PPF (Figure 13c). The use of subpopulations without
migration produces specialized phenotypes, and, thus,
individuals are clustered into six regions (one for each
subpopulation) of the objective space (Figure 13d). High
share functions and low population levels can produce
reasonable results, but neither quite reaches the frontier
(Figures 13e and f). In summary, to reach the PPF it is
necessary to:


1. begin with a properly initialized population of
sufficient size,


2. instantiate subpopulations and implement inter-
population migration, and


3. provide incentives for diversification along the
frontier (e.g., implement niche count).


Figure 10. Three representative landscapes
illustrating how trade-offs between gross
marginal return and EBI become manifest in
geographical space.
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Discussion


We began this article with the supposition that tradi-
tional multiobjective evaluation techniques often can-
not present public policymakers with a sufficiently large
set of alternative solutions to facilitate well-informed
decisions or capture trade-offs among competing objec-
tives. Furthermore, solutions to many real-world geo-
graphic problems often prove to be intractable with these
techniques. We implemented an EA-based approach
that presented to the user 45,000 alternatives distributed
within a feasible solution space and across a PPF. Trade-
offs, implicit in the form of this graph, can be quantified
by fitting a curve through all nondominated points.
While few would argue that this approach fails to pro-
duce a sufficiently large set of alternative solutions, the
size of this set places a significant cognitive burden on
policymakers (and analysts) as they try to evaluate the


geographic consequences of alternative polices. We at-
tempt to reduce this burden by providing tools to help
individuals identify desirable solutions.


Computational intractability often results from the
application of spatial constraints to geographic problems.
Selecting a subset of sites in a location-allocation prob-
lem, searching for an optimal juxtaposition of cover types
to support wildlife, and restricting the maximum amount
of CRP land in a county, all represent common forms of
spatial constraints that lead to intractable problems. As
illustrated here, an EA can provide a robust heuristic
approach to solving such problems. Though our results
indicate that the EA approach shows considerable
promise as an analytical method for public policies with
geographic consequences, several additional research
areas await further examination.


Alternative Objectives


The objectives analyzed as part of this research in-
clude agricultural income, environmental quality, and
public investment. The EA operates directly on
the cover type of farm fields to optimize these three
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Figure 11. Alternatives close in objective space can have distinctly
different spatial patterns.


Most similar


Most dissimilar


1


1


2


3


Figure 12. Visualization tools have been developed to help locate
interesting or compromise solutions. A decision-maker who prefers
Alternative 1, for example, may need to find a compromise solution
that has an EBI value at least 20% higher, but does not reduce gross
marginal return by more than 10%. The inset illustrates solutions
that meet these criteria; darkly shaded points (e.g., Alternative 2)
represent solutions that are most like the decision-maker’s preferred
solution (Alternative 1).
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objectives at the watershed level. While this was viewed
as appropriate in the context of public policy, real land-
use decisions are usually made at the farm level, and
optimizing at the farm level may generate different
spatial patterns. Ongoing work that employs multi-agent
technology is intended to explore this issue more fully.
Furthermore, the EBI was used as a surrogate for
environmental quality to mimic existing real-world
practice. However, the EBI is in essence a scalarized


multiobjective index that is weighted by point value
(e.g., N6 carries 1/4th the weight of N2). Though the
relative weight of individual objectives (not all of which
are quantitative) is predetermined by law, this index
could be ‘‘unpacked’’ to evaluate the effect that the
embedded objective weights have on land-use patterns.
Alternatively, other indices of environmental quality
could be developed and incorporated into this analysis
with relative ease.
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Figure 13. To reach the production possibility
frontier using evolutionary algorithms it is
important that: (1) the population is properly
initialized; (2) the population has a sufficient
number of individuals; (3) subpopulations are
instantiated; (4) interpopulation migration is
allowed; and (5) diversification along the
frontier is facilitated (e.g., through imple-
mentation of a niche count algorithm).
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Enhancements to the Software System


The developed system is an initial effort designed to
support future enhancements that would facilitate
analyses in other problem domains. Logical extensions
include, but are not limited to, modelbase management
tools (Bennett 1997) that would allow the user to easily
change objectives or EA parameters (e.g., population
size, recombination rate, number of generations) and
database management tools that would make it easier for
users to select only those portions of the decision space
that meet their needs.


Validation


While our approach offers considerable promise as a
tool that supports the analysis of multiobjective public
policies with geographic consequences, we would be
remiss if we did not offer some words of caution about
validation. Without an independent means of verifying
that at least some points on the PPF are found, uncer-
tainty about whether or not the frontier was reached will
remain. The graph in Figure 9a, for example, has the
appearance of a well-formed PPF, and it is only when we
compare these results to those of the IP solutions that we
realized that the EA converged prematurely. Once val-
idation points are produced, they can be used to seed the
EA and thus promote fast and reliable convergence to
the frontier.


Conclusions


A landscape can be managed as a resource that is
capable of producing a variety of valuable services. Some
of these services can be quantified easily (e.g., crop
production), while others are more qualitative (e.g.,
maintaining a scenic view or type of lifestyle). Decision
makers must attempt to produce policies that promote a
delicate balance of competing services that meet com-
peting stakeholder needs. Furthermore, decision makers
often must meet this complex challenge with limited
knowledge about how alternative policies will affect the
landscape and the associated trade-offs among compet-
ing services. Gaining an understanding about the trade-
offs associated with potentially competing services has
proven to be difficult because the goal of multiobjective
geographic problem solving has often been to identify a
small set of plausible solutions. Indeed, the product of
such analyses is often a single ‘‘best’’ solution. These
approaches may be useful when decision makers can


agree on the relative importance of competing services
or when the number of spatial configurations (landscape
patterns) that can provide these services is small. When
these conditions are not met, however, a more explora-
tory approach is needed.


In this article we have developed a technique that is
designed to produce production possibility frontiers using
an EA. These frontiers illustrate the trade-offs that exist
among competing services. Each individual in the
evolving population represents a landscape tessellated,
in this case, into farm fields. The EA modifies land use at
the farm field level to optimize three objectives at the
watershed level (maximize gross marginal return, maxi-
mize environmental benefit, minimize public invest-
ment). While the goal is to develop a set of
nondominated solutions that define the PPF, the process
also produces a large set of near-optimal solutions that
might prove useful to decision makers given the semi-
structured nature of many geographic problems. The
exploration of this solution set and the ultimate selection
of a specific solution is facilitated through a user inter-
face that presents the problem from three interrelated
perspectives (solution space, objective space, and geo-
graphic space).


As we developed this approach, we experimented
with three different methods for creating the initial EA
population. In the first method, following in the tradi-
tion of EA, we created landscapes with random land
cover patterns. The second method used farm-field-
level indices as heuristics for system level (e.g., water-
shed level) objectives. Finally, a hybrid EA/IP approach
was implemented that used a small number of IP results
to ‘‘seed’’ the EA. The results produced by these
methods were compared to those obtained using a
conventional IP approach. For the presented problem,
the populations that were initialized using the heuristic
and EA/IP hybrid approaches developed fully formed
PPFs. Furthermore, the EA was able to find solutions
along portions of the PPF that the IP approach did not.
The hybrid EA/IP technique, in particular, seems to
have significant potential for the analysis of public
policies with geographic consequences. The EA pro-
vides the diversity of optimal and near-optimal solutions
needed to support semistructured problem solving and
the ability to extend analyses into otherwise intractable
regions of the decision space, while the IP analysis
provides validation and enhanced performance. More
generally, this approach makes a significant contribution
to geographic information science and public policy
analysis because it elucidates a wide range of geographic
consequences associated with alternative formulations
of public policy.
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