

Evolutionary Many-objective Optimization


based on Kuhn-Munkres’ Algorithm
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Abstract. In this paper, we propose a new multi-objective evolution-
ary algorithm (MOEA), which transforms a multi-objective optimization
problem into a linear assignment problem using a set of weight vectors
uniformly scattered. Our approach adopts uniform design to obtain the
set of weights and Kuhn-Munkres’ (Hungarian) algorithm to solve the
assignment problem. Differential evolution is used as our search engine,
giving rise to the so-called Hungarian Differential Evolution algorithm
(HDE). Our proposed approach is compared with respect to a MOEA
based on decomposition (MOEA/D) and with respect to an indicator-
based MOEA (the S metric selection Evolutionary Multi-Objective Algo-
rithm, SMS-EMOA) using several test problems (taken from the special-
ized literature) having from two to ten objective functions. Our prelimi-
nary experimental results indicate that our proposed HDE outperforms
MOEA/D and is competitive with respect to SMS-EMOA, but at a sig-
nificantly lower computational cost.


Keywords: Many-objective optimization, Multi-objective evolutioanry
algorithms, Kuhn-Munkres algorithm


1 Introduction


A large number of problems that arise in academic and industrial areas have
several conflicting objectives that need to be optimized simultaneously [7]; they
are called multi-objective optimization problems (MOPs). The most commonly
adopted notion of optimum in multi-objective optimization is Pareto optimal-
ity, which refers to finding the best possible trade-offs among the objectives
of a multi-objective problem. These trade-off solutions constitute the so-called
Pareto optimal set. The image of the Pareto optimal set is called the Pareto
front. Among the different techniques available to solve MOPs, multi-objective
evolutionary algorithms (MOEAs) have become very popular, mainly because of
their flexibility and ease of use. Modern MOEAs normally aim at producing, in
a single run, several different solutions, which are as close as possible to the true
Pareto front [7]. For several years, MOEAs adopted a selection mechanism based
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on Pareto optimality. However, in recent years, it was found that Pareto-based
MOEAs cannot properly differentiate individuals when dealing with problems
having four or more objectives (the so-called many-objective optimization prob-
lems [13]). This has motivated the development of alternative selection schemes
from which the use of performance indicators has been (until now) the most
popular choice [26]. When using indicator-based selection, the idea is to identify
the solutions that contribute the most to the improvement of the performance
indicator adopted in the selection mechanism.


From the several performance indicators currently available, the hypervol-
ume [24] has become the most popular choice for implementing indicator-based
MOEAs, mainly because of its good theoretical properties [5]. The hypervolume
is the only unary indicator that is known to be Pareto compliant and it has
been proved that its maximization is equivalent to finding the Pareto optimal
set [11]. However, the main disadvantage of adopting this indicator is that the
best algorithms known to compute the hypervolume have a computational cost
which grows exponentially on the number of objectives [4]. Although some re-
searchers have proposed schemes to approximate the hypervolume contributions
at an affordable computational cost (see for example [1]), the performance of
such approaches seems to degrade very quickly in high dimensionality at the
expense of reducing their computational cost. This has motivated the develop-
ment of other selection schemes based on different performance indicators (see
for example [6]).


On the other hand, MOEAs based on decomposition have also become pop-
ular in recent years. Perhaps, MOEA/D is the most popular MOEA based on
decomposition. This algorithm decomposes the MOP into N scalar optimization
subproblems and it solves these subproblems simultaneously using an evolution-
ary algorithm. MOEA/D has shown to be a good alternative to solve MOPs
with low or high dimensionality (regarding objetive function space). However,
MOEA/D has two important disadvantages. The first is that it generates a new
solution from an unique neighborhood, i.e., the new solution cannot be gener-
ated from individuals of different neighborhoods. And, the second is that a new
solution with a high fitness can replace several solutions, and then, the popula-
tion can lose diversity, see Figure 1. Li and Zhang proposed in [16] a variant of
MOEA/D and they called it “MOEA/D-DE”. This proposal allows that a new
individual will be generated from individuals of different neighborhoods. Also,
it restricts the number of solutions that can be replaced by the same individual.
However, both proposals MOEA/D and MOEA/D-DE generate a new solution,
and then, they look in which subproblem the new solution is better than the
current solution but they do not consider the case where the solution which was
replaced could improve the solution of another subproblem, i.e, both algorithms
assign the best individual to each subproblem in an independent way, without
considering the best assignment globally. Figure 2 shows the assignment made by
MOEA/D and MOEA/D-DE and Figure 3 shows the global optimal assignment.


In this paper, we propose the use of an approach that is conceptually closer
to MOEA/D, but that, instead of doing a scalarization, it transforms the original
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Fig. 1: Disadvantage of MOEA/D when it replaces the solutions. For each weight vector
wi, i = 1, 2, 3, 4, the solution x5 has the highest utility value. Therefore, x5 is the best


solution of the four subproblems.
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Fig. 2: The new solution x5 is assigned to the subproblem w2, therefore, the solution
x2 is replaced by x5. It is important to note that the solution x2 is better than solution
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Fig. 3: The new solution x5 is assigned to the subproblem w2 and the solution x2 is
assigned to the subproblem w1. Therefore, the solution x1 is eliminated.


MOP into an assignment problem. Uniform design is adopted to obtain the set
of weights, and the Kuhn-Munkres (Hungarian) algorithm [15] is used to solve
the resulting assignment problem. The search engine of our proposed approach is
differential evolution [19], which has been found to be a competitive search engine
for single-objective optimization. As we will see later on, our results indicate that
our proposed approach is very promising, particularly for solving many-objective
optimization problems.


The remainder of this paper is organized as follows. The Kuhn-Munkres
algorithm is described in Section 2 and in Section 3 we describe in detail our
proposed approach. The experiments performed and the results obtained are
described and discussed in Section 4. Finally, our conclusions and some possible
paths for future work are briefly discussed in Section 5.


2 Kuhn-Munkres Algorithm


The matching or assignment problem is a fundamental class of combinatorial
optimization problems. In its most general form, an assignment problem can be
stated as follows: a number n of agents and a number m of tasks are given,
possibly with some restrictions on which agents can perform each particular
task. A cost is incurred for each agent performing some task, and the goal is
to perform all tasks in such a way that the total cost of the assignment is
minimized [15]. The Linear Assignment Problem (LAP) is the simplest of the
assignment problems. In the canonical LAP, the number of agents and tasks is
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the same, and any agent can be assigned to perform any task. Formally, LAP
can be formulated as follows.


Definition 1. Given a set of agents A = {a1, ..., an}, a set with the same num-


ber of tasks T = {t1, ..., tn} and the cost function C : A × T → R, and let


Φ : A → T the set of all possible bijections between A and T


minimize
φ∈Φ


∑


a∈A


C(a, φ(a)) (1)


Usually, the cost function is also viewed as a squared real-valued matrix C
with elements Cij = C(ai, tj), and the set Φ of all possible bijections between
A and T as a set of assignment matrices X . The LAP can be expressed as an
integer linear program:


minimize
x∈X


n
∑


i=1


n
∑


j=1


Cijxij


subject to:


n
∑


i=1


xij = 1, ∀j ∈ {1, .., n},


n
∑


j=1


xij ≤ 1, ∀i ∈ {1, ..., n},


xij ∈ {0, 1}, ∀i, j ∈ {1, ..., n}


(2)


In 1955, Harold W. Kuhn [15] proposed an algorithm for constructing a
maximum weight perfect matching in a bipartite graph. His pioneering work in
this area, is a combinatorial optimization algorithm that solves the assignment
problem in polynomial time. Kuhn explained how the works of two Hungarian
mathematicians, D. König and E. Egerváry, had contributed to the invention of
his algorithm, which is the reason why he called it the Hungarian Method. James
Munkres [17] reviewed Kuhn’s work in 1957 and made several important con-
tributions to the theoretical aspects of the algorithm. Munkres found that the
algorithm is (strongly) polynomial and proposed an improved version of O(n3).
The contribution of Munkres to the development of the Hungarian algorithm has
led to the algorithm which is being referred to as the Kuhn-Munkres algorithm.
An extension of this algorithm for rectangular matrices was introduced by Bour-
geois and Lassalle in 1971 [3]. The extension to rectangular matrices allows the
algorithm to operate in assignment problems where the numbers of agents and
tasks are unequal.


3 Our proposed approach


We propose here an alternative selection mechanism for MOEAs which is not
based on Pareto dominance or on any performance indicator. The main motiva-
tion of this work is to avoid the scalability problems of Pareto-based selection
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schemes as well as the excessive computational cost of adopting the hypervolume
contribution for selecting solutions. The algorithm presented here transforms the
selection process into a linear assignment problem, which is solved using Kuhn-
Munkres algorithm. As we will see, the solution of this LAP allows convergence
towards the true Pareto front and, at the same time, a good distribution of so-
lutions along the Pareto front. The proposed MOEA adopts the recombination
operators of differential evolution to create new individuals at each generation
and the Hungarian algorithm in its selection scheme. Because of this, our pro-
posed approach is called Hungarian Differential Evolution (HDE).


At each gth generation of the HDE algorithm we have a parent population
Pg of n individuals and a population P ∗


g of n offspring obtained from Pg. Let


Qg = Pg ∪ P ∗
g be the set of 2n solutions in the gth generation. Then, a linear


assignment problem is created using the k-dimensional objective vectors from Qg


and n weight vectors uniformly spread in objective function space. In the context
of a selection mechanism for MOEAs, a LAP can be understood as follows: we
have 2n individuals and n vectors well-distributed in the (k−1)-dimensional unit
simplex of the objective space. A cost is incurred for each individual representing
some vector in the Pareto Front approximation. The goal is to describe all regions
covered by the n vectors using only n individuals in such a way that the total
cost of the assignment is minimized. The main task is how to construct a cost
matrix such that it minimizes the total cost involved in retaining the solutions
which are a good approximation of the Pareto Front. This procedure is described
next.


First, the 2n vectors of objective values in Qg are normalized to reduce the
current objective space to a unit hypercube, so that we can deal with non-
commensurable objective functions. The maximum z


max and minimal z
min


vectors are calculated for this purpose.


z
max = [zmax


1 , ..., zmax
k ]T , zmax


i = max
j=1,...,2n


fi(xj), i = 1, ..., k,


z
min = [zmin


1 , ..., zmin
k ]T , zmin


i = min
j=1,...,2n


fi(xj), i = 1, ..., k,
(3)


where fi(xj) is the ith objective value of the jth individual in Qg, and its nor-
malized value fi(xj) is calculated as:


f̃i(xj) =
fi(xj)− zmin


i


zmax
i − zmin


i


, j = 1, ..., 2n, i = 1, ..., k. (4)


Let W be a set of n weight vectors uniformly scattered in objective space.


W ⊂ W = {w | w ∈ [0, 1]k,


k
∑


i=1


wi = 1}, |W | = n, (5)


The cost Crj of assigning the individual xj to the weight vector wr is given by:


Crj = max
i=1,...,k


wri × f̃i(xj), r = 1, ..., n, j = 1, ..., 2n. (6)
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Algorithm 1: Hungarian Differential Evolution (HDE)


Input : MOP, population size (n), maximum number of generations (gmax),
parameters Cr and F for DE/rand/1/bin


Output: Pgmax (approximation of the P∗ and PF∗)
1 Generate initial population P1 randomly;
2 Evaluate each individual in P1;
3 W ← Generate n weight vectors using Algorithm 2;
4 for g = 1 to gmax do


5 P ∗


g ← Generate offspring using Pg and DE/rand/1/bin;
6 Evaluate each individual in P ∗


g ;
7 Qg ← Pg ∪ P ∗


g ;


8 Calculate z
max and z


min by (3) Normalize objectives of each individual in
Qg by (4);


9 Generate the cost matrix C by (6) using Qg and W ;
10 I ← Obtain the best assignment in C using the Hungarian Method;
11 Pg+1 ← {xi | i ∈ I , xi ∈ Qg};


12 end


The matrix C indicates how each individual is suitable to represent each re-
gion of the Pareto Front approximation. The solution to our assignment problem
is found by identifying the combination of values in C resulting in the smallest
sum, subject to certain constraints. These conditions are:


1. Exactly one value must be chosen in each row; this ensures that only one
individual is assigned to each position on the Pareto Front.


2. At most one value can be selected in each column; this ensures that no
individual is assigned to more than one position.


The matrix C and the two above constraints are formally represented by (2)
as a linear programming problem. The solution to this problem is obtained by
the extended Kuhn-Munkres algorithm for rectangular matrices, presented in
Section 2. The matrix that solves (2) represents the individuals assigned to each
weight vector such that it minimizes the total cost of the assignment, allowing to
retain the best n individuals to approximate the Pareto Front. The pseudo-code
of our proposed approach is depicted in Algorithm 1.


3.1 Generation of weight vectors using Uniform Design


There exist several MOEAs [23, 18, 8] that require a set of weight vectors uni-
formly scattered on the (k− 1)-unit simplex to obtain solutions along the entire
Pareto Front in a k-objective optimization problem. A variety of methods to
obtain an evenly distributed subset of weights in a simplex are available in the
specialized literature [10]. The simplex-lattice design method [20] is the approach
that has been the most commonly adopted in MOEAs. However, at least three
problems can be identified in this method [10]. First, the weight vectors are not
very uniformly distributed. Second, there are too many vectors at the boundary
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of the domain. Furthermore, the number of vectors generated increases non-
linearly with the number of objectives. That is, if H divisions are considered
along each objective, the total number of weight vectors (hence the population
size) in a k-objective problem is given by:


(


H+k−1
k−1


)


. Due to this, some MOEAs
have used other methods to generate an arbitrary number of weight vectors well-
distributed over a simplex. In [18] a hypervolume-based weight vector generation
is proposed. This method produces well-distributed vectors maximizing the hy-
pervolume covered by them in objective space. A different idea was proposed
in [21], where the uniform design (UD) [10] and good lattice point (glp) [14]
methods are combined to set the weight vectors. Nevertheless, both the hyper-
volume and the glp method have a high computational cost when the number of
objectives grows.


Uniform design is a space filling design method that seeks experimental points
to be uniformly scattered on the domain [10]. In uniform design, a set of points
is considered uniformly spread throughout the entire domain if it has a small
discrepancy, where discrepancy is a numerical measure of scatter. Fang and
Wang [10] presented different methods for generating points that can be ap-
plied to the generation of a set of space-filling design points. Among them, we
have the good lattice point (glp) method and Hammersley method [12], both of
which are efficient quasi Monte-Carlo methods.


We propose to generate weight vectors using uniform design combined with
Hammersley method. This algorithm allows a more uniform distribution of the
weight vectors over the space than the simplex-lattice method, and the popula-
tion size neither increases nonlinearly with the number of objectives nor considers
a formulaic setting. Additionally, Hammersley method provides a set of design
points with low discrepancy similar to the glp method, but at a much lower
computational cost [10].


The Hammersley method is based on the p-adic representation of natural
numbers: Any positive integer m can be uniquely expressed using a prime base
p ≥ 2 as


m =
r


∑


i=0


bi × pi, 0 ≤ bi ≤ p− 1, i = 0, . . . , r, (7)


where pr ≤ m < pr+1. Then, for any integer m ≥ 1 with representation (7), let


yp(m) =


r
∑


i=0


bi × p−(i+1), (8)


where yp(m) ∈ (0, 1) and is known as the radical inverse of m base p. Let k ≥ 2
and p1, . . . , pk−1 be k−1 distinct prime numbers, the Hammersley set consisting
of n points uniformly scattered on [0, 1]k is given by


xi =


[


2i− 1


2n
, yp1


(i), . . . , ypk−1
(i)


]T


, i = 1, . . . , n. (9)


In [22], it was proposed to use uniform design for experiments with mix-
ture (UDEM) that seek points to be uniformly scattered in the domain W
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Algorithm 2: Generation of weight vectors


Input : number of objectives (k), number of weights (n)
Output: W (set of weight vectors with low-discrepancy)


1 p← array with the first k − 2 prime numbers;
2 U ← ∅;
3 for i = 1 to n do


4 ui1 ← (2i− 1)/2n;
5 for j = 2 to k − 1 do


6 uij ← 0;
7 f ← 1/pj−1;
8 d← i;
9 while d > 0 do


10 uij ← uij + f × (d mod pj−1);
11 d← ⌊d/pj−1⌋;
12 f ← f/pj−1;


13 end


14 end


15 U ← U ∪ {u};


16 end


17 W ← Apply the transformation (10) to U ;


defined by (5). They employed the transformation method for the construc-
tion of such uniform design. This method requires a set of vectors U = {ui =
[ui1, ..., ui(k−1)]


T , i = 1, ..., n} ⊂ [0, 1]k−1 with small discrepancy. In our proposal,
the Hammersley method is used to obtain U and then to apply the transforma-
tion


wti = (1− u
1


k−i


ti )


i−1
∏


j=1


u
1


k−j


tj , i = 1, ..., k − 1,


wtk =


k−1
∏


j=1


u
1


k−j


tj , t = 1, ..., n.


(10)


Then {wt = [wti, ..., wtk]
T , t = 1, ..., n} is a uniform design on W. The pseu-


docode of the algorithm used to generate weight vectors is presented in Algo-
rithm 2.


4 Experimental Results


We validated our proposed HDE comparing its performance with respect to two
MOEAs representative of the state-of-the-art in the area: the multi-objective
evolutionary algorithm based on decomposition [23] (MOEA/D) and the S met-
ric selection Evolutionary Multi-Objective Algorithm [2] (SMS-EMOA). Since
the SMS-EMOA requires a considerably large amount of computational time in
problems with more than five objectives, we also include in this comparative
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study a version of this MOEA (called appSMS-EMOA) that uses the algorithm
proposed in [1] to approximate the hypervolume contributions using Monte Carlo
sampling.


In our experiments, we adopted 12 test problems, consisting of five bi-objective
problems taken from the Zitzler-Deb-Thiele (ZDT) test suite [25] and seven test
problems having from two to ten objective functions taken from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [9]. In the problems ZDT1-3 the number
of decision variables is 30; ZDT4 and ZDT6 have 10 variables. In the DTLZ
test problems, the total number of variables is given by n = m + k − 1, where
m = 2, ..., 10 is the number of objectives and k was set to 10 for DTLZ1-6 and
20 for DTLZ7.


In order to assess the performance of each MOEA, we selected the hyper-
volume indicator as a performance measure. The hypervolume is the size of the
space covered by the Pareto optimal solutions, thus capturing both convergence
and diversity in a single value [24]. The hypervolume can differentiate between
degrees of complete outperformance of two sets [5]. To calculate the hypervolume
indicator, we used the reference points yref = [y1, · · · , ym] such that: yi = 1.1
for all the ZDT problems, and for DTLZ1, DTLZ2 and DTLZ4; yi = 3 for
DTLZ3, DTLZ5 and DTLZ6; and yi = 7 for DTLZ7. We also considered the
running time of each algorithm. Running times as a measure of computational
cost are particularly relevant when increasing the number of objectives. In order
to achieve more confident results, each MOEA was executed 30 times for each
problem instance, and we report here their average hypervolume values and their
average running times.


Our proposed HDE uses the variation operators of differential evolution
and, therefore, it uses its same parameters. The parameters adopted in our
experiments were: F = 1.0 and Cr = 0.4. The recombination operators of
MOEA/D, SMS-EMOA and appSMS-EMOA are simulated binary crossover and
polynomial-based mutation. Their corresponding parameters were set as follows:
crossover probability pc = 1.0, mutation probability pm = 1/n, where n is the
number of decision variables; the distribution indexes were set as: ηc = 20 and
ηm = 20. MOEA/D used the Tchebycheff approach with a neighborhood size of
20. The number of samples for the Monte Carlo estimation in appSMS-EMOA
was set to 104. The algorithms HDE, SMS-EMOA and appSMS-EMOA can
use an arbitrary population size, but in MOEA/D the population size increases
nonlinearly with the number of objectives. For this reason, we used different
population sizes. In the ZDT bi-objective problems the population size was set
to 100. For the DTLZ problems with 2, 3, 4 and 8 objectives, the population
size was set to 120. For problems having 5 and 6 objectives, the population size
was set to 126. Finally, for problems having 7, 9 and 10 objectives, the popu-
lation size was set to 210, 165 and 220, respectively. The maximum number of
generations adopted in the ZDT test problems was 200, and we used 300 for the
DTLZ test problems. It is important to note that SMS-EMOA was not applied
to problems with more than 5 objectives due to its high computational cost.
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4.1 Discussion of Results


First, we will review our results in the ZDT test problems. Table 1 provides
the average hypervolume of each compared MOEA for each test problem. The
best results are presented in boldface. From these results, we can see that our
proposed HDE outperformed all the other MOEAs in all the test problems,
except for ZDT3, where SMS-EMOA achieved a slightly higher hypervolume
value.


Table 1: Results obtained in the ZDT test problems. We show the average hypervolume
values obtained over 30 independent runs.


Problem HDE MOEA/D appSMS-EMOA SMS-EMOA
ZDT1 0.871748 0.863668 0.868213 0.871514
ZDT2 0.538383 0.517640 0.528167 0.537282
ZDT3 1.327721 1.298709 1.296754 1.328633


ZDT4 0.833392 0.602010 0.804054 0.822489
ZDT6 0.504490 0.496180 0.487527 0.493889


In Table 2 we present the average hypervolume for the DTLZ test problems.
Figure 4 shows the average runtime for each instance of the DTLZ problems
having from two to ten objective functions. In the DTLZ1 and DTLZ3 problems,
HDE outperforms the other MOEAs for every number of objective functions.
The search space in these two problems contains (11k − 1) and (3k − 1) local
Pareto fronts, respectively (k = 10 in our experiments). This makes difficult to
converge to the true Pareto front. SMS-EMOA and appSMS-EMOA are unable
to converge to the true Pareto front in any instance of the DTLZ3 problem.
Additionally, appSMS-EMOA does not perform well in DTLZ1.


For DTLZ2 and DTLZ4, SMS-EMOA performs better than the other MOEAs
in instances having from two to five objectives, but its runtime is of up to 20 hours
in DTLZ2 with five objectives and it reaches up to four days in DTLZ4. appSMS-
EMOA obtains the best results in the instances with six and seven objectives,
but requires several minutes per run. In DTLZ2 and DTLZ4 with more than
seven objectives, HDE outperforms all the other algorithms and requires only
seconds per run. A similar observation can be made for the problem DTLZ5,
where SMS-EMOA obtains the best results in the instances having from two to
five objectives, whereas for more than five objectives HDE performs better than
the other MOEAs except for eight objectives.


The main feature of DTLZ5 and DTLZ6 is that the Pareto front is a curve (it
loses dimensionality). However, DTLZ6 is considered to be harder to solve than
DTLZ5, because MOEAs tend to have more difficulties to reach the true Pareto
front with this problem. In DTLZ6, HDE outperforms the other MOEAs for all
the instances having from two to ten objectives, and appSMS-EMOA presented
a poor performance. HDE also obtained the best results in DTLZ7, which has
a disconnected Pareto front. For all instances with three objectives or more,
HDE outperformed the other algorithms; only for two objectives SMS-EMOA
achieved a slightly higher hypervolume value.
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Table 2: Results obtained in the DTLZ test problems. We show the average hypervol-
ume values obtained over 30 independent runs.


No Obj. HDE MOEA/D appSMS-EMOA SMS-EMOA


DTLZ1


2 1.0833e+0 1.0662e+0 1.0286e+0 1.0487e+0
3 1.3022e+0 1.2650e+0 8.6233e–1 1.1704e+0
4 1.4565e+0 1.2713e+0 2.9529e–2 1.4536e+0
5 1.6084e+0 1.3297e+0 0.0000e+0 1.6041e+0
6 1.7605e+0 1.5175e+0 1.1103e–4 -
7 1.9466e+0 1.9416e+0 0.0000e+0 -
8 2.1435e+0 1.9369e+0 0.0000e+0 -
9 2.3579e+0 2.2682e+0 0.0000e+0 -
10 2.5937e+0 2.5592e+0 0.0000e+0 -


DTLZ2


2 4.2060e–1 4.2087e–1 4.2013e–1 4.2161e–1


3 7.3603e–1 7.1504e–1 7.4889e–1 7.6251e–1


4 9.8341e–1 8.8689e–1 1.0195e+0 1.0526e+0


5 1.2229e+0 1.1406e+0 1.2570e+0 1.3090e+0


6 1.4462e+0 1.2123e+0 1.4700e+0 -
7 1.7219e+0 1.2972e+0 1.7339e+0 -
8 1.9028e+0 1.2018e+0 1.8572e+0 -
9 2.1706e+0 1.3226e+0 2.1051e+0 -
10 2.4603e+0 1.4329e+0 2.3859e+0 -


DTLZ3


2 8.2085e+0 8.1148e+0 0.0000e+0 0.0000e+0
3 2.6404e+1 2.6067e+1 0.0000e+0 0.0000e+0
4 8.0515e+1 7.6359e+1 0.0000e+0 0.0000e+0
5 2.4260e+2 2.2909e+2 0.0000e+0 3.9658e–1
6 7.2861e+2 6.8984e+2 0.0000e+0 -
7 2.1854e+3 2.1643e+3 0.0000e+0 -
8 6.5606e+3 6.2456e+3 0.0000e+0 -
9 1.9683e+4 1.9186e+4 0.0000e+0 -
10 5.9049e+4 5.7783e+4 0.0000e+0 -


DTLZ4


2 4.2050e–1 4.2087e–1 4.2026e–1 4.2161e–1


3 7.3349e–1 7.1758e–1 7.4999e–1 7.6254e–1


4 9.8347e–1 8.8985e–1 1.0249e+0 1.0527e+0


5 1.2290e+0 1.1440e+0 1.2660e+0 1.3094e+0


6 1.4518e+0 1.3216e+0 1.4880e+0 -
7 1.7290e+0 1.4835e+0 1.7467e+0 -
8 1.9065e+0 1.3559e+0 1.8973e+0 -
9 2.1773e+0 1.4883e+0 2.1206e+0 -
10 2.4646e+0 1.5820e+0 2.4016e+0 -


DTLZ5


2 8.2106e+0 8.2108e+0 8.2102e+0 8.2116e+0


3 2.3979e+1 2.3967e+1 2.3985e+1 2.3990e+1


4 7.1549e+1 7.1247e+1 7.1497e+1 7.1856e+1


5 2.1419e+2 2.0875e+2 2.1385e+2 2.1567e+2


6 6.4008e+2 6.1645e+2 6.3956e+2 -
7 1.9271e+3 1.8336e+3 1.9188e+3 -
8 5.6978e+3 5.4432e+3 5.7225e+3 -
9 1.7197e+4 1.6307e+4 1.7171e+4 -
10 5.1725e+4 4.8723e+4 5.1545e+4 -


DTLZ6


2 8.2108e+0 8.0197e+0 1.1719e+0 3.1194e+0
3 2.3982e+1 2.3487e+1 2.1721e+1 2.3745e+1
4 7.1345e+1 6.9232e+1 3.7674e+1 6.7598e+1
5 2.1324e+2 1.9631e+2 3.2082e+1 1.9830e+2
6 6.3859e+2 5.7393e+2 4.7076e+0 -
7 1.9204e+3 1.7051e+3 3.5091e–1 -
8 5.6590e+3 4.9692e+3 1.0260e+0 -
9 1.7070e+4 1.5059e+4 0.0000e+0 -
10 5.1444e+4 4.4826e+4 0.0000e+0 -


Continued on next page
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Table 2: – Continued from previous page


No Obj. HDE MOEA/D appSMS-EMOA SMS-EMOA


DTLZ7


2 3.1881e+1 3.0554e+1 3.1881e+1 3.1884e+1


3 2.0053e+2 1.8413e+2 1.9708e+2 1.9931e+2
4 1.2267e+3 8.8240e+2 1.1081e+3 1.1598e+3
5 7.2516e+3 3.9693e+3 4.5253e+3 6.2818e+3
6 3.9558e+4 1.7243e+4 1.4071e+4 -
7 2.0094e+5 5.0926e+4 5.2148e+4 -
8 7.2712e+5 8.4243e+4 4.6362e+5 -
9 3.1360e+6 2.8190e+5 1.6500e+6 -
10 9.1999e+6 1.2141e+6 4.5446e+6 -


5 Conclusions and Future Work


We have proposed a novel selection scheme for MOEAs. Our approach transforms
the selection mechanism of a MOEA into an assignment problem using a set of
well-distributed points on a unit simplex. The obtained assignment problem is
solved with the Kuhn-Munkres algorithm. We have also suggested an algorithm
based on uniform design to generate a set of weight vectors more uniformly
scattered than those obtained by the simplex-lattice method. Our experimental
results indicate that our proposed HDE outperforms MOEA/D in several test
problems, and is competitive (outperforming it in several instances) with respect
to SMS-EMOA, while requiring a significantly lower computational time.


As part of our future work, we intend to study other (computationally in-
expensive) uniform design methods to generate a set of points more uniformly
distributed. We also plan to analyze other methods for solving assignment prob-
lems at a lower computational cost.
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