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ABSTRACT 
In real-world multiobjective optimisation, where 
problem complexity is typically high, systems are 
increasingly reliant on distributed computation to 
reduce processing times.  While a number of successful 
distributed techniques have been proposed, they are 
dependent on high degrees of commonality between 
communicating processes – requiring homogeneity with 
respect to platform, environment or implementation 
language. Such constraints seriously restrict the 
applicability of distributed optimisers. Consequently, it 
is important to define a standard independent language 
for the transmission and storage of agent data in 
disparate interacting systems. Based on XML, MOO_ML 
represents such a language. 

1. INTRODUCTION 

Since real-world problems are typically composed of 
multiple and often conflicting objectives [1], the 
conceptual value of multiobjective optimisation (MOO) 
to decision makers is considerable.  However, the 
practical reality of optimisation is that performance is 
contingent not just on quality, but also the efficiency of 
the process.  This is a burden for general optimisation 
since real-world problems are inherently complex, 
particularly with respect to problem evaluation [2].  Such 
issues are intensified in multiobjective optimisation, 
where the number of objectives affects both the 
processing time required for evaluation and the size and 
dimensionality of the Pareto front [2].  The net effect is 
that multiobjective optimisers can slow to such an extent 
that the utility of the approach is drawn into question. 

The pressure to improve time performance has led to an 
increased focus on distributed computing in the field 
(see Section 3).  Such burgeoning attention is merited - 
by sharing calculations across multiple processors, the 
overall execution time must fall (given low intra-
processor interaction). 

While current implementations of the distributed 
paradigm do offer significant performance gains, they 
impose unreasonable commonality requirements: where 
systems must be homogeneous in platform, environment, 
algorithm and/or implementation language.  Since real-
world networks are often ad-hoc and contain disparate 
components, such a requirement is excessively 
restrictive – particularly given the costs associated with 
aligning system elements.  Moreover, it is inflexible: a 
Linux C++ implementation of one optimiser cannot 
communicate with a Windows C# implementation of 
another algorithm without significant recoding. 

An alternative to requiring commonality is to define a 
standard, platform-independent format for the storage 
and transmission of agents. This will accord increased 
flexibility to distributed systems while reducing 
realignment costs. Such a format would allow 
contrasting optimisers, using different algorithms, 
written in disparate languages, and running on varied 
hardware and environments to communicate and interact. 

The Multi-Objective Optimisation Markup Language 
(MOO_ML) represents such a format. It is based on the 
widely adopted XML standard, so creating and parsing 
MOO_ML documents should be trivial given the 
plethora of available XML tools, while the text-based 
XML format also grants the platform independence 
required.  Moreover, MOO_ML itself is generic with 
respect to all multiobjective optimisation algorithms. 

2. MULTIOBJECTIVE OPTIMISATION 

The goal of all multiobjective optimisers is to develop an 
approximation of the Pareto optimal front for a problem 
that has multiple, potentially conflicting, objectives.  In a 
minimisation problem with n objectives, a is Pareto 
optimal if, for all possible population members P: 
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Equation 1 – Pareto Optimality 

where f is an objective function that maps a multi-variate 
solution to a result; a is incomparable with p if it is 
better than a in one objective but worse in another; and 
the Pareto front is formed by all Pareto optimal members. 

The specifics of generating the approximation front vary 
between algorithms, but all systems invariably include a 
representation of a multi-variate solution that is 
evaluated against the objectives.  Therefore the core 
knowledge of a generic multiobjective agent consists of 
a set of variable solutions.  Given that the majority of 
multiobjective fronts will always contain more than one 
solution, it is necessary for any standard, broad-use, 
storage format to store a set of generic agents. 

3. DISTRIBUTED MOO SYSTEMS 

The distributed paradigm has only recently drawn 
attention from the multiobjective research community, 
despite “extensive research” [3] in single objective 
evolutionary algorithms (EAs).  The early work in the 
area has largely been focussed around extending the 
concepts found in the more traditional EAs – namely, the 
master-slave, island and diffusion (cellular) models [4].    



3.1. THE MASTER-SLAVE MODEL 

In the master-slave model [5], a host (master) divides the 
population into smaller clusters that are evaluated on 
secondary processors (slaves) and then returned to the 
master for optimisation (although some master-slave 
models also allow slaves to perform some evolutionary 
computation prior to coalescence [6, 7]).  This approach 
aims to reduce time requirements while maintaining the 
same results as in a single-processor environment (since 
the optimisation algorithm operates on the whole 
population). The primary drawback is that the entire 
population must be repeatedly transported between the 
master and slaves, thus limiting the practical population 
size and reducing the speed advantages gained by using 
such an approach.  Moreover, such systems are only as 
fast as their least efficient slave, since the master must 
typically wait for all slaves before commencing execution.  

3.2. THE ISLAND AND DIFFUSION MODELS 

To avoid the communication bottleneck of the master-
slave model, the island model [2, 8] assigns an 
independent self-evaluating population to each processor 
(island) with genetic diversity maintained via small 
island migrations. Since this model does not operate on 
the entire population, it cannot guarantee the 
performance quality seen in the master-slave algorithm.  
However, recent preliminary results [2] have indicated 
that by focussing each sub-population on particular areas 
of the objective-space, the quality of solutions can be 
substantially improved. 

Diffusion [9] is a more finely grained version of the 
island model, achieved by increasing the number and 
connectedness of the islands.  It offers a middle ground 
between the island and master-slave approaches, 
requiring more communication than the island approach, 
but better approximating a single cohesive population 
due to its high connectivity.  Thus far research into the 
application of diffusion to distributed multiobjective 
optimisers has been limited due to its concordance with 
parallel, shared-memory machines where the significant 
communication overhead is of a lower concern [4].   

3.3. HOMOGENEITY LIMITATIONS 

Irrespective of approach, one key issue has been omitted 
from discussion in most distributed multiobjective 
processing literature: homogeneity requirements.  This is 
surprising given the heterogeneous nature of most larger 
real-world distributed systems [10] and ad-hoc 
workstation environments [11], where demands for 
homogeneity impose severe restrictions. It is 
unreasonable to expect that organisations should be 
required to make significant software and hardware 
changes simply to allow system-wide commonality.  
Moreover, enabling distributed multiobjective systems in 
heterogeneous environments grants powerful flexibility: 
each island can operate a unique algorithm, written in 
the most appropriate language; very-large scale 
problems, requiring significant computing resources, can 
operate across the Internet; and small businesses that do 
not have the funding to purchase hardware or convert 

software can capitalise on the powers of distributed 
computing. 

4. XML 

The virtues of XML have been extolled throughout 
recent literature and do not require thorough analysis 
here.  However, a brief discussion of the language is 
necessary, given that it forms the basis of MOO_ML. 

The strength of XML lies in its inherent simplicity, 
flexibility and independence.  For all the hyperbole 
surrounding it, XML does little more than provide a 
standard format for storing and describing data through 
the application of user-defined tags.  This simplicity, 
however, means that XML files can be stored in a 
platform independent manner within a simple text file.  
Such independence makes XML suitable for distributed 
multiobjective communication, as systems do not require 
homogeneity to share information.  Furthermore, given 
the significant support afforded XML, parsing and 
generating XML documents has become common 
practice in most major programming languages. XML 
processing libraries are included as standard within Java 
1.4, and a host of freely available, well recognised, 
parsers exist for other languages (Xerces2 for C++, Perl, 
COM and Java; Expat for C; and Chilkat XML for C#).  
Additionally, numerous stand-alone XML applications 
offer authoring utilities and facilitate the generation of 
reliable and instantly useable code from standard W3C 
schemas.  As a consequence, any implementation 
realignment required for the use of MOO_ML should be 
straightforward and both cost and time effective. 

5. INTRODUCING MOO_ML 

MOO_ML is a proposed standard language for the 
storage and communication of data between distributed 
multiobjective systems.  Derived from XML, MOO_ML 
is a simple, flexible and platform independent language 
that is designed to store the core content of any 
multiobjective optimiser.  While the focus of MOO_ML 
is to provide a common medium for communication, it 
can also be used for the storage of information produced 
by non-distributed multiobjective systems for use in 
archiving, population imaging or post processing.  

5.1. BREVITY 

A danger of basing a language in XML is the potential 
for document bloat due to the nested nature of tags. This 
can inhibit the readability of the document, and also 
slow the writing and parsing of files.  Thus, a central 
focus of MOO_ML is maintaining brevity in content 
description.  Only the core components of a 
multiobjective system must be stored in a MOO_ML 
document – consisting of a collection of generic agents, 
which contain variable solutions to the proposed 
multiobjective problem.  Consequently, the minimum 
number of tag pairs (base-tags) required for a valid 
MOO_ML document is defined in Equation 2: 

( )min( ) 1 1= + ∗ +tagPairs P S  
Equation 2 – Minimum Base-Tags in MOO_ML 



where |P| is the population size; and |S| is the total 
number of unique variable solutions for all objectives. 

This represents the smallest possible well-structured 
combination of tag pairs for an XML representation of a 
multiobjective population. 

5.2. VALIDATION 

The MOO_ML schema document specifies the order, 
structure and type of components used in the language, 
thereby simplifying the validation of MOO_ML files. 
According to the W3C specification of XML [12], a 
validation-parser will report any malformed syntax or 
invalid content. Thus MOO_ML documents with 
incorrect solution typing, empty agents or poorly defined 
problem statements can instantly be rejected based 
simply on schema document validation. 

5.3. SELF-DESCRIPTIVENESS 

All tags within the proposed MOO_ML standard require, 
at most, limited documentation to describe their 
meaning. Tags and attributes have names consistent with 
the multiobjective literature and their purpose should be 
apparent to those familiar with the field.  This self-
descriptiveness increases simplicity and makes the 
movement from pre-existing, typically ad-hoc, formats 
less daunting. 

5.4. FLEXIBILITY 

Though MOO_ML strives for brevity, it is important that 
flexibility and power is not disregarded.  MOO_ML 
therefore provides a number of optional attributes and 
tags that are designed to provide further content 
description when it becomes necessary. 

The succinct base-tags are appropriate when certain 
assumptions can be made about the operation of the 
distributed system, such as a shared definition of both 
problem and agent construction. Although these 
assumptions are largely true for small-scale 
implementations, they are likely to be invalid when 
systems are of a larger scale and components are not 
developed in-house. Thus, MOO_ML facilitates 
syntactically correct mathematical objective definitions 
via the application of the Mathematical Markup 
Language (MathML [13]) and allows the labelling of 
solutions with variable names.   

Beyond their immediate value, objective definitions 
provide significant scope for future work.  By including 
well-structured, XML-based objective definitions in 
transmitted documents, implemented algorithms can 
become generic – parsing the definition into evaluating 
code, with no need for manual encoding of the problem.  
The power of such malleability is significant: subtle 
variations of definitions can be examined with no need 
to manipulate algorithm code; consistency of definitions 
can be guaranteed between disparate systems; and 
generic distributed optimisation services can be made 
available via the Internet to allow anyone, anywhere, to 
perform multiobjective optimisation on any 
mathematically definable problem.  Additionally, 
MathML provides presentation markup that facilitates 

high quality documentation of problem definitions in 
TeX and Internet browsers.  Thus, the potential 
application of incorporating both problem and solution 
into a communicable standard language is large and the 
development of MathML tools, parsers and evaluators 
(see [14]) can only build upon such potential.     

It is important to note that while the base-tags are well 
suited to describing components relevant to the generic 
communication of agents between systems, they are of 
little practical value to the master-slave model.  In this 
case, it is not the solutions stored by agents that are of 
primary interest in the communication process, but 
rather the results that applying those solutions will bring.  
Consequently, MOO_ML includes the facility for storing 
objective results in each agent.  In addition to the 
benefits seen in the master-slave model, this feature can 
reduce potential computation in general by using the 
MOO_ML document as a result cache. 

The final selection of optional MOO_ML components 
are concerned with documentation and identification.  
Given that in practice it is likely that many MOO_ML 
documents will be produced, it is important that outputs 
can be uniquely identified.  As such, the language 
includes ID and creation-date attributes, which can be 
used to both track and identify documents through time.  
Whilst these features will primarily see benefits in post-
processing or result-retrieval, they may also find utility 
in distributed optimisation where receipt of duplicate 
documents can indicate system errors (such as 
unnecessary retransmission).    

6. FORMALLY DEFINING MOO_ML 

This section defines MOO_ML through the use of the 
W3C XML Schema Document language (XSD) [15].  It 
is assumed that the reader is familiar with XSD, though 
accompanying figures and descriptions should lessen the 
burden for those less accustomed to the technique.  Also 
note that extensive examples and guides for MOO_ML 
are available online [16]. 

6.1. THE POPULATION ELEMENT.   

The Population element (Figure 1) represents the root 
node of any MOO_ML document. Note that the 
Population, Archive and World tags are synonymous and 
can be used interchangeably in the root node to further 
clarify the purpose of the document.  Thus, the content 
of any MOO_ML document can be broadly classified 
without needing to resort to external documentation.  
The inclusion of Variables and Objectives attributes 
facilitate further in-parser agent and objective validation.  

6.2. THE AGENT ELEMENT.   

The Agent element (Figure 2) defines a generic 
multiobjective agent that can contain solutions and 
results (see Section 6.3).  If the document need only 
contain a single agent then this element can theoretically 
act as the root, though it is preferable to use a single 
member population, as the Agent element has no facility 
for additional documentation or objective definitions.   

  



Diagram 
Population 

Archive 

World 

Agent 

ProblemDefinition 

A collection of generic multiobjective 
optimisation agents tasked with solving a
particular problem 
 

A Population synonym used to specify that this 
document represents an archive 
 
 

A Population synonym used to specify that this document is 
composed entirely of agents from an active population 

A generic, algorithm independent, 
multiobjective optimisation agent 
 

A mathematical definition of a 
particular objective that the 
population is trying to optimise.  
Defined using the W3C MathML 
standard 
 

 

Children Agent*; ObjectiveDefinition* 

Attributes Name  Type   Description 
ID  xs:string   An identifier for this population 
Variables  xs:positiveInteger  The number of unique variables to be solved 
Objectives  xs:positiveInteger  The number of objectives to be optimised 
Creation  xs:dateTime  The creation date of this particular document 

Source <xs:element name="Population">   
  <xs:complexType> 
    <xs:choice minOccurs="0" maxOccurs="unbounded"> 
      <xs:element ref="Agent"/>   
      <xs:element ref="ObjectiveDefinition"/> 
    </xs:choice> 
    <xs:attribute name="ID" type="xs:string"/> 
    <xs:attribute name="Variables" type="xs:positiveInteger"/> 
    <xs:attribute name="Objectives" type="xs:positiveInteger"/> 
    <xs:attribute name="Creation" type="xs:dateTime"/>   
  </xs:complexType> 
</xs:element> 
<xs:element name="Archive" substitutionGroup="Population"/> 
<xs:element name="World" substitutionGroup="Population"/> 

Figure 1 – Defining the Population Element and Population Synonyms 

Diagram 
Agent AgentGroup 

 

Used By Element: Population 

Source <xs:element name="Agent"> 
  <xs:complexType>   <xs:group ref="AgentGroup"/>  </xs:complexType> 
</xs:element> 

Figure 2 – Defining the Agent Element 

Diagram 

 
Note Though complex in appearance, the structure of the AgentGroup is simply an unordered collection of 

Results and Solutions, requiring at least one Solution element.  

Children Result*; RealSolution+ Used By Element: Agent 

Source <xs:group name="AgentGroup">   
  <xs:choice> 
    <xs:sequence>  
      <xs:element ref="RealSolution"/> 
      <xs:element ref="Result" minOccurs="0" maxOccurs="unbounded"/> 
    </xs:sequence> 
    <xs:sequence> 
      <xs:element ref="Result" minOccurs="0" maxOccurs="unbounded"/> 
      <xs:element ref="RealSolution"/>   
    </xs:sequence> 
  </xs:choice> 
</xs:group> 

Figure 3 – Defining the AgentGroup 

Result 

Result 

RealSolution 

RealSolution 

AgentGroup 

The result of applying the solutions from this agent to 
one of the objectives 

A solution for a particular variable 



Type xs:decimal Used By Group: AgentGroup 

Attributes Name  Type  Description 
ObjName  xs:string  The name of the objective for the corresponding result 

Source <xs:element name="Result">   
  <xs:complexType>   
    <xs:simpleContent>   
      <xs:extension base="xs:decimal"> <xs:attribute name="ObjName" type="xs:string"/> </xs:extension>  
     </xs:simpleContent>   
   </xs:complexType>   
</xs:element> 

Figure 4 – Defining the Result Element 

Diagram  
RealSolution BinarySolution IntegerSolution 

A real-valued solution for a  
particular variable 

A binary solution value for a 
particular variable 

An integer valued solution for 
a particular variable 

 
Type RealSolutionType; BinarySolutionType; IntegerSolutionType Used By Group: AgentGroup 

Attributes Name  Type  Description 
VarName  xs:string  The name of the variable being solved 

Source <xs:element name="RealSolution" type="RealSolutionType"/> 
<xs:element name="BinarySolution" type="BinarySolutionType" substitutionGroup="RealSolution"/> 
<xs:element name="IntegerSolution" type="IntegerSolutionType" substitutionGroup="RealSolution"/> 
<xs:complexType name="RealSolutionType">   
  <xs:simpleContent> 
    <xs:extension base="xs:decimal">  <xs:attribute name="VarName" type="xs:string"/>  </xs:extension>  
  </xs:simpleContent>   
</xs:complexType> 
<xs:complexType name="BinarySolutionType">   
  <xs:simpleContent> 
    <xs:restriction base=" RealSolutionType ">  <xs:pattern value="[01]+"/>  </xs:restriction> 
   </xs:simpleContent>   
</xs:complexType> 
<xs:complexType name="IntegerSolutionType">   
  <xs:simpleContent> 
    <xs:restriction base=" RealSolutionType ">  <xs:pattern value="[+-]?[0-9]+"/>  </xs:restriction>       
  </xs:simpleContent>   
</xs:complexType> 

Figure 5 – Defining Solutions 

Diagram 
ObjectiveDefinition math:math 

 

Children Element: math (refer to MathML XSD) Used By Element: Population 

Attributes Name Type Description 
ObjName xs:string The name of the objective that the definition describes 
ObjType xs:enumeration Specifies if the objective is a “Constraint”, “Min” or “Max” problem 

Source <xs:element name="ObjectiveDefinition"> 
  <xs:complexType> 
    <xs:sequence>  <xs:element ref="math:math"/>  </xs:sequence> 
    <xs:attribute name="ObjName" type="xs:string"/> 
    <xs:attribute name="ObjType" type="ObjectiveType" use="required"/> 
  </xs:complexType> 
</xs:element> 
<xs:simpleType name="ObjectiveType">  
  <xs:restriction base="xs:string"> 
    <xs:enumeration value="Min"/> <xs:enumeration value="Max"/> <xs:enumeration value="Constraint"/> 
  </xs:restriction> 
</xs:simpleType> 

Figure 6 – Defining the ObjectiveDefinition Element 

Source <xs:schema targetNamespace="http://www.comp.utas.edu.au/moo"  
  xmlns:xs="http://www.w3.org/2001/XMLSchema"  
  xmlns:math=http://www.w3.org/1998/Math/MathML 
  xmlns="http://www.comp.utas.edu.au/moo"  
  elementFormDefault="qualified" attributeFormDefault="unqualified"> 

<xs:import namespace=http://www.w3.org/1998/Math/MathML 
  schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/> 

Figure 7 – The Namespace Declaration 

6.3. THE AGENTGROUP.   

The AgentGroup (Figure 3) represents the set of results 
and solutions that define an Agent.  Note that an Agent is 
only well formed if it contains at least one solution and 
is invalid if the number and type of solutions and results 
do not correspond to the Variables and Objectives root 
attributes or the ObjectiveDefinition (should they exist).  

If all results or solutions lack labelling attributes 
(ObjName or VarName) then it is assumed that the 
ordering of the elements correspond to the ordering of 
the objectives or variables in the ObjectiveDefinition or, 
if no ObjectiveDefinition is provided, the optimiser. 
Duplicate attribute values or partial inclusion of naming 
labels within a single Agent are invalid and will cause 
the document to fail during parsing. 



6.4. THE RESULT ELEMENT 

The optional Result element (Figure 4) contains the 
numeric result of applying the solutions stored within the 
agent to a single objective. 

6.5. SOLUTION ELEMENTS 

In MOO_ML, a solution to a problem variable can be a 
RealSolution, IntegerSolution, or BinarySolution (Figure 
5). A RealSolution can contain any real valued number; 
an IntegerSolution is restricted to integers; and the 
BinarySolution is capable only of housing binary digits. 

6.6. THE OBJECTIVE DEFINITION ELEMENT 

An ObjectiveDefinition (Figure 6) represents a unique 
objective in the optimisation problem, with syntax 
derived from MathML (inclusive of both content and 
presentation layers).  Thus MOO_ML can represent 
almost any mathematically definable problem. 

6.7. DEFINING NAMESPACES   

Figure 7 illustrates the namespace declarations for 
MOO_ML. While most are standard, the 
targetNamespace is significant as it specifies the 
location of the MOO_ML schema for third-party use.  

7. FUTURE WORK 

The most pressing future work lies in applying 
MOO_ML to pre-existing distributed MOO systems.  It 
is only once such integration is made that the utility of 
the language can be gauged, while it presents the best 
avenue for highlighting possible areas of extension and 
refinement. Upcoming papers will examine the 
performance of MOO_ML-based highly heterogeneous 
distributed systems – where there is divergence in 
platform, environment and optimisation algorithm. Later 
work will be focussed on the use of MOO_ML to enable 
shared archiving as an alternative to pre-existing 
distributed models and the development of MOO_ML 
parser libraries for Java, C++ and C# [16].   

8. CONCLUSION 

MOO_ML represents a movement from ad-hoc storage 
methods to a platform-independent standard for generic 
multiobjective optimisation.  The importance of this 
approach is most evident in distributed systems, where it 
will grant considerable flexibility by removing the need 
for restrictive system homogeneity.  Furthermore, by 
grounding MOO_ML in XML, the complexities of 
document parsing and validation are reduced, while 
lessening language migration burdens.  To validate such 
claims, upcoming work should examine the use of 
MOO_ML in areas where distributed computing is of 
advantage. 

9. ACKNOWLEDGEMENTS 

The authors would like to acknowledge: Trixie Berry, 
Michael Berry, Pauline Mak, Ian Lewis, Chloe Skilbeck, 
the School of Computing and the makers of XMLSpy. 

REFERENCES 

[1] Coello Coello, C.A., “A Comprehensive Survey 
of Evolutionary-Based Multiobjective 
Optimization Techniques”. Knowledge and 
Information Systems, 1999. 1(3): p. 129-156. 

[2] Deb, K., Zope, P., and Jain, A. “Distributed 
Computing of Pareto-Optimal Solutions with 
Evolutionary Algorithms”. In Evolutionary 
Multi-Criterion Optimisation, Second 
International Conference. 2003. 

[3] Cantu-Paz, E., “A Survey of Parallel Genetic 
Algorithms” (Tech Report). 1997, Illinois GA Lab. 

[4] Zydallis, J., Van Veldhuizen, D., and Lamont, 
G. “Using Parallel Concepts in Multiobjective 
Evolutionary Algorithms”. In The Second 
Workshop on Multiobjective Problem Solving 
from Nature. 2002. Granada, Spain. 

[5] Makinen, R., et al. “Parallel Genetic Solution for 
Multiobjective MDO”. In Parallel CFD. 1996. 

[6] Toscano Pulido, G. and Coello Coello, C. “The 
Micro Genetic Algorithm 2: Towards On-Line 
Adaptation in Evolutionary Multiobjective 
Optimization”. In Evolutionary Multiobjective 
Optimisation. 2003. Faro, Portugal. 

[7] Toro, D., Ortega, J., and Diaz, A., “PSFGA: A 
Parallel Genetic Algorithm for Multiobjective 
Optimization”. In Euromicro Workshop on 
Parallel, Distributed and Network-based 
Processing, 2002. 

[8] Horii, H., Miki, M., Koizumi, T. and Tsujiuchi, 
N., “Asynchronous Migration of Island Parallel 
GA for Multi-Objective Optimization Problem”. 
In 4th Asia-Pacific Conference on Simulated 
Evolution and Learning. 2002. 

[9] Rowe, J., Vinsen, K., and Marvin, N. “Parallel 
GAs for Multiobjective Functions”. In Second 
Nordic Workshop on Genetic Algorithms and 
their Applications. 1996. Vassa, Finland. 

[10] Vorapanya, A., “Large-Scale Distributed 
Services” (PhD). University of Florida. 2000. 

[11] Al-Yamani, A., Sait, S., and Youssef, H., 
“Parallelizing Tabu Search on a Cluster of 
Heterogeneous Workstations”. Journal of 
Heuristics, 2002. 8(3): p. 277-304. 

[12] Bray, T., et al. (Eds), “Extensible Markup 
Language (XML) 1.0” (Third Edition), 
http://www.w3.org/TR/REC-xml, 2001 

[13] Carlisle, D., et al., “Mathematical Markup 
Language (MathML) Version 2.0”, 
http://www.w3.org/TR/MathML2, 2001 

[14] Ion, P.E., “MathML 2.0 Implementation and 
Interoperability Report (Draft)”, 
http://www.w3.org/Math/iandi, 2001 

[15] Thompson, H., et al. (Eds), “XML Schema 
Recommendation (Parts 1 and 2)”, 
http://www.w3.org/TR/xmlschema-1 and 
http://www.w3.org/TR/xmlschema-2, 2001 

[16] Berry, A. and Vamplew, P., “MOOnline”, 
http://www.comp.utas.edu.au/moo, 2004 


