
A Language for Platform Independent Communication
and Storage in Multiobjective Optimisation

Adam Berry
School of Computing

University of Tasmania
Sandy Bay, Tasmania, Australia

Adam.Berry@utas.edu.au

Peter Vamplew
School of Computing

University of Tasmania
Sandy Bay, Tasmania, Australia

Peter.Vamplew@utas.edu.au

ABSTRACT
In real-world multiobjective optimisation, where
problem complexity is typically high, systems are
increasingly reliant on distributed computation to
reduce processing times. While a number of successful
distributed techniques have been proposed, they are
dependent on high degrees of commonality between
communicating processes – requiring homogeneity with
respect to platform, environment or implementation
language. Such constraints seriously restrict the
applicability of distributed optimisers. Consequently, it
is important to define a standard independent language
for the transmission and storage of agent data in
disparate interacting systems. Based on XML, MOO_ML
represents such a language.

1. INTRODUCTION

Since real-world problems are typically composed of
multiple and often conflicting objectives [1], the
conceptual value of multiobjective optimisation (MOO)
to decision makers is considerable. However, the
practical reality of optimisation is that performance is
contingent not just on quality, but also the efficiency of
the process. This is a burden for general optimisation
since real-world problems are inherently complex,
particularly with respect to problem evaluation [2]. Such
issues are intensified in multiobjective optimisation,
where the number of objectives affects both the
processing time required for evaluation and the size and
dimensionality of the Pareto front [2]. The net effect is
that multiobjective optimisers can slow to such an extent
that the utility of the approach is drawn into question.

The pressure to improve time performance has led to an
increased focus on distributed computing in the field
(see Section 3). Such burgeoning attention is merited -
by sharing calculations across multiple processors, the
overall execution time must fall (given low intra-
processor interaction).

While current implementations of the distributed
paradigm do offer significant performance gains, they
impose unreasonable commonality requirements: where
systems must be homogeneous in platform, environment,
algorithm and/or implementation language. Since real-
world networks are often ad-hoc and contain disparate
components, such a requirement is excessively
restrictive – particularly given the costs associated with
aligning system elements. Moreover, it is inflexible: a
Linux C++ implementation of one optimiser cannot
communicate with a Windows C# implementation of
another algorithm without significant recoding.

An alternative to requiring commonality is to define a
standard, platform-independent format for the storage
and transmission of agents. This will accord increased
flexibility to distributed systems while reducing
realignment costs. Such a format would allow
contrasting optimisers, using different algorithms,
written in disparate languages, and running on varied
hardware and environments to communicate and interact.

The Multi-Objective Optimisation Markup Language
(MOO_ML) represents such a format. It is based on the
widely adopted XML standard, so creating and parsing
MOO_ML documents should be trivial given the
plethora of available XML tools, while the text-based
XML format also grants the platform independence
required. Moreover, MOO_ML itself is generic with
respect to all multiobjective optimisation algorithms.

2. MULTIOBJECTIVE OPTIMISATION

The goal of all multiobjective optimisers is to develop an
approximation of the Pareto optimal front for a problem
that has multiple, potentially conflicting, objectives. In a
minimisation problem with n objectives, a is Pareto
optimal if, for all possible population members P:

{ } () () (), 1, 2, .., : incomparable
i i

p P i n f a f p a p∀ ∈ ∀ ∈ ≤ ∪

Equation 1 – Pareto Optimality

where f is an objective function that maps a multi-variate
solution to a result; a is incomparable with p if it is
better than a in one objective but worse in another; and
the Pareto front is formed by all Pareto optimal members.

The specifics of generating the approximation front vary
between algorithms, but all systems invariably include a
representation of a multi-variate solution that is
evaluated against the objectives. Therefore the core
knowledge of a generic multiobjective agent consists of
a set of variable solutions. Given that the majority of
multiobjective fronts will always contain more than one
solution, it is necessary for any standard, broad-use,
storage format to store a set of generic agents.

3. DISTRIBUTED MOO SYSTEMS

The distributed paradigm has only recently drawn
attention from the multiobjective research community,
despite “extensive research” [3] in single objective
evolutionary algorithms (EAs). The early work in the
area has largely been focussed around extending the
concepts found in the more traditional EAs – namely, the
master-slave, island and diffusion (cellular) models [4].

3.1. THE MASTER-SLAVE MODEL

In the master-slave model [5], a host (master) divides the
population into smaller clusters that are evaluated on
secondary processors (slaves) and then returned to the
master for optimisation (although some master-slave
models also allow slaves to perform some evolutionary
computation prior to coalescence [6, 7]). This approach
aims to reduce time requirements while maintaining the
same results as in a single-processor environment (since
the optimisation algorithm operates on the whole
population). The primary drawback is that the entire
population must be repeatedly transported between the
master and slaves, thus limiting the practical population
size and reducing the speed advantages gained by using
such an approach. Moreover, such systems are only as
fast as their least efficient slave, since the master must
typically wait for all slaves before commencing execution.

3.2. THE ISLAND AND DIFFUSION MODELS

To avoid the communication bottleneck of the master-
slave model, the island model [2, 8] assigns an
independent self-evaluating population to each processor
(island) with genetic diversity maintained via small
island migrations. Since this model does not operate on
the entire population, it cannot guarantee the
performance quality seen in the master-slave algorithm.
However, recent preliminary results [2] have indicated
that by focussing each sub-population on particular areas
of the objective-space, the quality of solutions can be
substantially improved.

Diffusion [9] is a more finely grained version of the
island model, achieved by increasing the number and
connectedness of the islands. It offers a middle ground
between the island and master-slave approaches,
requiring more communication than the island approach,
but better approximating a single cohesive population
due to its high connectivity. Thus far research into the
application of diffusion to distributed multiobjective
optimisers has been limited due to its concordance with
parallel, shared-memory machines where the significant
communication overhead is of a lower concern [4].

3.3. HOMOGENEITY LIMITATIONS

Irrespective of approach, one key issue has been omitted
from discussion in most distributed multiobjective
processing literature: homogeneity requirements. This is
surprising given the heterogeneous nature of most larger
real-world distributed systems [10] and ad-hoc
workstation environments [11], where demands for
homogeneity impose severe restrictions. It is
unreasonable to expect that organisations should be
required to make significant software and hardware
changes simply to allow system-wide commonality.
Moreover, enabling distributed multiobjective systems in
heterogeneous environments grants powerful flexibility:
each island can operate a unique algorithm, written in
the most appropriate language; very-large scale
problems, requiring significant computing resources, can
operate across the Internet; and small businesses that do
not have the funding to purchase hardware or convert

software can capitalise on the powers of distributed
computing.

4. XML

The virtues of XML have been extolled throughout
recent literature and do not require thorough analysis
here. However, a brief discussion of the language is
necessary, given that it forms the basis of MOO_ML.

The strength of XML lies in its inherent simplicity,
flexibility and independence. For all the hyperbole
surrounding it, XML does little more than provide a
standard format for storing and describing data through
the application of user-defined tags. This simplicity,
however, means that XML files can be stored in a
platform independent manner within a simple text file.
Such independence makes XML suitable for distributed
multiobjective communication, as systems do not require
homogeneity to share information. Furthermore, given
the significant support afforded XML, parsing and
generating XML documents has become common
practice in most major programming languages. XML
processing libraries are included as standard within Java
1.4, and a host of freely available, well recognised,
parsers exist for other languages (Xerces2 for C++, Perl,
COM and Java; Expat for C; and Chilkat XML for C#).
Additionally, numerous stand-alone XML applications
offer authoring utilities and facilitate the generation of
reliable and instantly useable code from standard W3C
schemas. As a consequence, any implementation
realignment required for the use of MOO_ML should be
straightforward and both cost and time effective.

5. INTRODUCING MOO_ML

MOO_ML is a proposed standard language for the
storage and communication of data between distributed
multiobjective systems. Derived from XML, MOO_ML
is a simple, flexible and platform independent language
that is designed to store the core content of any
multiobjective optimiser. While the focus of MOO_ML
is to provide a common medium for communication, it
can also be used for the storage of information produced
by non-distributed multiobjective systems for use in
archiving, population imaging or post processing.

5.1. BREVITY

A danger of basing a language in XML is the potential
for document bloat due to the nested nature of tags. This
can inhibit the readability of the document, and also
slow the writing and parsing of files. Thus, a central
focus of MOO_ML is maintaining brevity in content
description. Only the core components of a
multiobjective system must be stored in a MOO_ML
document – consisting of a collection of generic agents,
which contain variable solutions to the proposed
multiobjective problem. Consequently, the minimum
number of tag pairs (base-tags) required for a valid
MOO_ML document is defined in Equation 2:

()min() 1 1= + ∗ +tagPairs P S
Equation 2 – Minimum Base-Tags in MOO_ML

where |P| is the population size; and |S| is the total
number of unique variable solutions for all objectives.

This represents the smallest possible well-structured
combination of tag pairs for an XML representation of a
multiobjective population.

5.2. VALIDATION

The MOO_ML schema document specifies the order,
structure and type of components used in the language,
thereby simplifying the validation of MOO_ML files.
According to the W3C specification of XML [12], a
validation-parser will report any malformed syntax or
invalid content. Thus MOO_ML documents with
incorrect solution typing, empty agents or poorly defined
problem statements can instantly be rejected based
simply on schema document validation.

5.3. SELF-DESCRIPTIVENESS

All tags within the proposed MOO_ML standard require,
at most, limited documentation to describe their
meaning. Tags and attributes have names consistent with
the multiobjective literature and their purpose should be
apparent to those familiar with the field. This self-
descriptiveness increases simplicity and makes the
movement from pre-existing, typically ad-hoc, formats
less daunting.

5.4. FLEXIBILITY

Though MOO_ML strives for brevity, it is important that
flexibility and power is not disregarded. MOO_ML
therefore provides a number of optional attributes and
tags that are designed to provide further content
description when it becomes necessary.

The succinct base-tags are appropriate when certain
assumptions can be made about the operation of the
distributed system, such as a shared definition of both
problem and agent construction. Although these
assumptions are largely true for small-scale
implementations, they are likely to be invalid when
systems are of a larger scale and components are not
developed in-house. Thus, MOO_ML facilitates
syntactically correct mathematical objective definitions
via the application of the Mathematical Markup
Language (MathML [13]) and allows the labelling of
solutions with variable names.

Beyond their immediate value, objective definitions
provide significant scope for future work. By including
well-structured, XML-based objective definitions in
transmitted documents, implemented algorithms can
become generic – parsing the definition into evaluating
code, with no need for manual encoding of the problem.
The power of such malleability is significant: subtle
variations of definitions can be examined with no need
to manipulate algorithm code; consistency of definitions
can be guaranteed between disparate systems; and
generic distributed optimisation services can be made
available via the Internet to allow anyone, anywhere, to
perform multiobjective optimisation on any
mathematically definable problem. Additionally,
MathML provides presentation markup that facilitates

high quality documentation of problem definitions in
TeX and Internet browsers. Thus, the potential
application of incorporating both problem and solution
into a communicable standard language is large and the
development of MathML tools, parsers and evaluators
(see [14]) can only build upon such potential.

It is important to note that while the base-tags are well
suited to describing components relevant to the generic
communication of agents between systems, they are of
little practical value to the master-slave model. In this
case, it is not the solutions stored by agents that are of
primary interest in the communication process, but
rather the results that applying those solutions will bring.
Consequently, MOO_ML includes the facility for storing
objective results in each agent. In addition to the
benefits seen in the master-slave model, this feature can
reduce potential computation in general by using the
MOO_ML document as a result cache.

The final selection of optional MOO_ML components
are concerned with documentation and identification.
Given that in practice it is likely that many MOO_ML
documents will be produced, it is important that outputs
can be uniquely identified. As such, the language
includes ID and creation-date attributes, which can be
used to both track and identify documents through time.
Whilst these features will primarily see benefits in post-
processing or result-retrieval, they may also find utility
in distributed optimisation where receipt of duplicate
documents can indicate system errors (such as
unnecessary retransmission).

6. FORMALLY DEFINING MOO_ML

This section defines MOO_ML through the use of the
W3C XML Schema Document language (XSD) [15]. It
is assumed that the reader is familiar with XSD, though
accompanying figures and descriptions should lessen the
burden for those less accustomed to the technique. Also
note that extensive examples and guides for MOO_ML
are available online [16].

6.1. THE POPULATION ELEMENT.

The Population element (Figure 1) represents the root
node of any MOO_ML document. Note that the
Population, Archive and World tags are synonymous and
can be used interchangeably in the root node to further
clarify the purpose of the document. Thus, the content
of any MOO_ML document can be broadly classified
without needing to resort to external documentation.
The inclusion of Variables and Objectives attributes
facilitate further in-parser agent and objective validation.

6.2. THE AGENT ELEMENT.

The Agent element (Figure 2) defines a generic
multiobjective agent that can contain solutions and
results (see Section 6.3). If the document need only
contain a single agent then this element can theoretically
act as the root, though it is preferable to use a single
member population, as the Agent element has no facility
for additional documentation or objective definitions.

Diagram
Population

Archive

World

Agent

ProblemDefinition

A collection of generic multiobjective
optimisation agents tasked with solving a
particular problem

A Population synonym used to specify that this
document represents an archive

A Population synonym used to specify that this document is
composed entirely of agents from an active population

A generic, algorithm independent,
multiobjective optimisation agent

A mathematical definition of a
particular objective that the
population is trying to optimise.
Defined using the W3C MathML
standard

Children Agent*; ObjectiveDefinition*

Attributes Name Type Description
ID xs:string An identifier for this population
Variables xs:positiveInteger The number of unique variables to be solved
Objectives xs:positiveInteger The number of objectives to be optimised
Creation xs:dateTime The creation date of this particular document

Source <xs:element name="Population">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="Agent"/>
 <xs:element ref="ObjectiveDefinition"/>
 </xs:choice>
 <xs:attribute name="ID" type="xs:string"/>
 <xs:attribute name="Variables" type="xs:positiveInteger"/>
 <xs:attribute name="Objectives" type="xs:positiveInteger"/>
 <xs:attribute name="Creation" type="xs:dateTime"/>
 </xs:complexType>
</xs:element>
<xs:element name="Archive" substitutionGroup="Population"/>
<xs:element name="World" substitutionGroup="Population"/>

Figure 1 – Defining the Population Element and Population Synonyms

Diagram
Agent AgentGroup

Used By Element: Population

Source <xs:element name="Agent">
 <xs:complexType> <xs:group ref="AgentGroup"/> </xs:complexType>
</xs:element>

Figure 2 – Defining the Agent Element

Diagram

Note Though complex in appearance, the structure of the AgentGroup is simply an unordered collection of

Results and Solutions, requiring at least one Solution element.

Children Result*; RealSolution+ Used By Element: Agent

Source <xs:group name="AgentGroup">
 <xs:choice>
 <xs:sequence>
 <xs:element ref="RealSolution"/>
 <xs:element ref="Result" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element ref="Result" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="RealSolution"/>
 </xs:sequence>
 </xs:choice>
</xs:group>

Figure 3 – Defining the AgentGroup

Result

Result

RealSolution

RealSolution

AgentGroup

The result of applying the solutions from this agent to
one of the objectives

A solution for a particular variable

Type xs:decimal Used By Group: AgentGroup

Attributes Name Type Description
ObjName xs:string The name of the objective for the corresponding result

Source <xs:element name="Result">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:decimal"> <xs:attribute name="ObjName" type="xs:string"/> </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

Figure 4 – Defining the Result Element

Diagram
RealSolution BinarySolution IntegerSolution

A real-valued solution for a
particular variable

A binary solution value for a
particular variable

An integer valued solution for
a particular variable

Type RealSolutionType; BinarySolutionType; IntegerSolutionType Used By Group: AgentGroup

Attributes Name Type Description
VarName xs:string The name of the variable being solved

Source <xs:element name="RealSolution" type="RealSolutionType"/>
<xs:element name="BinarySolution" type="BinarySolutionType" substitutionGroup="RealSolution"/>
<xs:element name="IntegerSolution" type="IntegerSolutionType" substitutionGroup="RealSolution"/>
<xs:complexType name="RealSolutionType">
 <xs:simpleContent>
 <xs:extension base="xs:decimal"> <xs:attribute name="VarName" type="xs:string"/> </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="BinarySolutionType">
 <xs:simpleContent>
 <xs:restriction base=" RealSolutionType "> <xs:pattern value="[01]+"/> </xs:restriction>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="IntegerSolutionType">
 <xs:simpleContent>
 <xs:restriction base=" RealSolutionType "> <xs:pattern value="[+-]?[0-9]+"/> </xs:restriction>
 </xs:simpleContent>
</xs:complexType>

Figure 5 – Defining Solutions

Diagram
ObjectiveDefinition math:math

Children Element: math (refer to MathML XSD) Used By Element: Population

Attributes Name Type Description
ObjName xs:string The name of the objective that the definition describes
ObjType xs:enumeration Specifies if the objective is a “Constraint”, “Min” or “Max” problem

Source <xs:element name="ObjectiveDefinition">
 <xs:complexType>
 <xs:sequence> <xs:element ref="math:math"/> </xs:sequence>
 <xs:attribute name="ObjName" type="xs:string"/>
 <xs:attribute name="ObjType" type="ObjectiveType" use="required"/>
 </xs:complexType>
</xs:element>
<xs:simpleType name="ObjectiveType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Min"/> <xs:enumeration value="Max"/> <xs:enumeration value="Constraint"/>
 </xs:restriction>
</xs:simpleType>

Figure 6 – Defining the ObjectiveDefinition Element

Source <xs:schema targetNamespace="http://www.comp.utas.edu.au/moo"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math=http://www.w3.org/1998/Math/MathML
 xmlns="http://www.comp.utas.edu.au/moo"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace=http://www.w3.org/1998/Math/MathML
 schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/>

Figure 7 – The Namespace Declaration

6.3. THE AGENTGROUP.

The AgentGroup (Figure 3) represents the set of results
and solutions that define an Agent. Note that an Agent is
only well formed if it contains at least one solution and
is invalid if the number and type of solutions and results
do not correspond to the Variables and Objectives root
attributes or the ObjectiveDefinition (should they exist).

If all results or solutions lack labelling attributes
(ObjName or VarName) then it is assumed that the
ordering of the elements correspond to the ordering of
the objectives or variables in the ObjectiveDefinition or,
if no ObjectiveDefinition is provided, the optimiser.
Duplicate attribute values or partial inclusion of naming
labels within a single Agent are invalid and will cause
the document to fail during parsing.

6.4. THE RESULT ELEMENT

The optional Result element (Figure 4) contains the
numeric result of applying the solutions stored within the
agent to a single objective.

6.5. SOLUTION ELEMENTS

In MOO_ML, a solution to a problem variable can be a
RealSolution, IntegerSolution, or BinarySolution (Figure
5). A RealSolution can contain any real valued number;
an IntegerSolution is restricted to integers; and the
BinarySolution is capable only of housing binary digits.

6.6. THE OBJECTIVE DEFINITION ELEMENT

An ObjectiveDefinition (Figure 6) represents a unique
objective in the optimisation problem, with syntax
derived from MathML (inclusive of both content and
presentation layers). Thus MOO_ML can represent
almost any mathematically definable problem.

6.7. DEFINING NAMESPACES

Figure 7 illustrates the namespace declarations for
MOO_ML. While most are standard, the
targetNamespace is significant as it specifies the
location of the MOO_ML schema for third-party use.

7. FUTURE WORK

The most pressing future work lies in applying
MOO_ML to pre-existing distributed MOO systems. It
is only once such integration is made that the utility of
the language can be gauged, while it presents the best
avenue for highlighting possible areas of extension and
refinement. Upcoming papers will examine the
performance of MOO_ML-based highly heterogeneous
distributed systems – where there is divergence in
platform, environment and optimisation algorithm. Later
work will be focussed on the use of MOO_ML to enable
shared archiving as an alternative to pre-existing
distributed models and the development of MOO_ML
parser libraries for Java, C++ and C# [16].

8. CONCLUSION

MOO_ML represents a movement from ad-hoc storage
methods to a platform-independent standard for generic
multiobjective optimisation. The importance of this
approach is most evident in distributed systems, where it
will grant considerable flexibility by removing the need
for restrictive system homogeneity. Furthermore, by
grounding MOO_ML in XML, the complexities of
document parsing and validation are reduced, while
lessening language migration burdens. To validate such
claims, upcoming work should examine the use of
MOO_ML in areas where distributed computing is of
advantage.

9. ACKNOWLEDGEMENTS

The authors would like to acknowledge: Trixie Berry,
Michael Berry, Pauline Mak, Ian Lewis, Chloe Skilbeck,
the School of Computing and the makers of XMLSpy.

REFERENCES

[1] Coello Coello, C.A., “A Comprehensive Survey
of Evolutionary-Based Multiobjective
Optimization Techniques”. Knowledge and
Information Systems, 1999. 1(3): p. 129-156.

[2] Deb, K., Zope, P., and Jain, A. “Distributed
Computing of Pareto-Optimal Solutions with
Evolutionary Algorithms”. In Evolutionary
Multi-Criterion Optimisation, Second
International Conference. 2003.

[3] Cantu-Paz, E., “A Survey of Parallel Genetic
Algorithms” (Tech Report). 1997, Illinois GA Lab.

[4] Zydallis, J., Van Veldhuizen, D., and Lamont,
G. “Using Parallel Concepts in Multiobjective
Evolutionary Algorithms”. In The Second
Workshop on Multiobjective Problem Solving
from Nature. 2002. Granada, Spain.

[5] Makinen, R., et al. “Parallel Genetic Solution for
Multiobjective MDO”. In Parallel CFD. 1996.

[6] Toscano Pulido, G. and Coello Coello, C. “The
Micro Genetic Algorithm 2: Towards On-Line
Adaptation in Evolutionary Multiobjective
Optimization”. In Evolutionary Multiobjective
Optimisation. 2003. Faro, Portugal.

[7] Toro, D., Ortega, J., and Diaz, A., “PSFGA: A
Parallel Genetic Algorithm for Multiobjective
Optimization”. In Euromicro Workshop on
Parallel, Distributed and Network-based
Processing, 2002.

[8] Horii, H., Miki, M., Koizumi, T. and Tsujiuchi,
N., “Asynchronous Migration of Island Parallel
GA for Multi-Objective Optimization Problem”.
In 4th Asia-Pacific Conference on Simulated
Evolution and Learning. 2002.

[9] Rowe, J., Vinsen, K., and Marvin, N. “Parallel
GAs for Multiobjective Functions”. In Second
Nordic Workshop on Genetic Algorithms and
their Applications. 1996. Vassa, Finland.

[10] Vorapanya, A., “Large-Scale Distributed
Services” (PhD). University of Florida. 2000.

[11] Al-Yamani, A., Sait, S., and Youssef, H.,
“Parallelizing Tabu Search on a Cluster of
Heterogeneous Workstations”. Journal of
Heuristics, 2002. 8(3): p. 277-304.

[12] Bray, T., et al. (Eds), “Extensible Markup
Language (XML) 1.0” (Third Edition),
http://www.w3.org/TR/REC-xml, 2001

[13] Carlisle, D., et al., “Mathematical Markup
Language (MathML) Version 2.0”,
http://www.w3.org/TR/MathML2, 2001

[14] Ion, P.E., “MathML 2.0 Implementation and
Interoperability Report (Draft)”,
http://www.w3.org/Math/iandi, 2001

[15] Thompson, H., et al. (Eds), “XML Schema
Recommendation (Parts 1 and 2)”,
http://www.w3.org/TR/xmlschema-1 and
http://www.w3.org/TR/xmlschema-2, 2001

[16] Berry, A. and Vamplew, P., “MOOnline”,
http://www.comp.utas.edu.au/moo, 2004

