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Abstract. Contemporary evolutionary multiobjective optimisation techniques 
are becoming increasingly focussed on the notions of archiving, explicit 
diversity maintenance and population-based Pareto ranking to achieve good 
approximations of the Pareto front.  While it is certainly true that these 
techniques have been effective, they come at a significant complexity cost that 
ultimately limits their application to complex problems.  This paper proposes a 
new model that moves away from explicit population-wide Pareto ranking, 
abandons both complex archiving and diversity measures and incorporates a 
continuous accretion-based approach that is divergent from the discretely 
generational nature of traditional evolutionary algorithms.  Results indicate that 
the new approach, the Combative Accretion Model (CAM), achieves markedly 
better approximations than NSGA across a range of well-recognised test 
functions.  Moreover, CAM is more efficient than NSGAII with respect to the 
number of comparisons (by an order of magnitude), while achieving 
comparable, and generally preferable, fronts.  

1   Introduction 

As the artificial intelligence community realises the importance of multiobjective 
optimisation in real-world problem domains, research attention continues to grow, 
with a majority of the effort being focussed on the development and investigation of 
Multi-Objective Evolutionary Algorithms (MOEA) [1].  At the core of much of this 
research rests Pareto-ranking – a concept that has been prevalent since Goldberg’s 
early work [2] and features in a host of techniques (such as NSGA [3], MOGA [4], 
NSGAII [5], SPEA [6] and SPEAII [7]).  Such popularity is grounded on the 
assumption that “Pareto ranking is the most appropriate way to generate an entire 
Pareto front” [1], and results investigating its use certainly support such a theory.  
However, despite garnering both popularity and legitimately impressive results, 
Pareto-ranking is not without considerable limitations.  The approach carries a 
significant complexity cost due to its reliance on population-wide comparisons and is 
typically accompanied by a diversity controlling parameter that is both difficult to 
tune and generally expensive to use.  Such is the level of computational burden that 
populations are fundamentally limited in size and the potential for MOEA use in high-
dimensional or difficult real-world problem domains is restricted.   



While a minority of contemporary algorithms endeavour to address the 
complexities introduced by the Pareto-ranking approach (see section 2.1), most 
second generation MOEA techniques extend the procedure through the inclusion of 
archiving, elitism and minor variations in the selection procedure (such as SPEA, 
SPEAII, PAES [8] and, to a lesser extent, PESA [9] and PESAII [10]).  The inference 
that can be drawn from such a trend is that archiving and elitism are beneficial 
inclusions for general MOEA design, though results supporting such a claim are 
limited and lacking theoretical rigour.  Moreover, given that the inclusion of an active 
secondary population generally incurs increased complexity, it is worth considering 
that such archiving need not be a pre-requisite for contemporary MOEA systems at all. 

Consequently, this paper presents a model that moves away from active-archiving, 
while adopting an adaptable, inexpensive and implicit Pareto-ranking scheme that is 
grounded in pair-wise comparisons and simple diversity control.  Furthermore, the 
population life-cycle is continuous rather than discrete (akin to Artificial Life 
systems) and agent generation is largely accretion – based on a consolidation of genes 
from an adaptive gene pool.  Thus, the Combative Accretion Model (CAM) proposed 
herein represents a particularly novel approach to MOEA design that focuses on 
reducing complexity whilst maintaining high levels of performance.  

2   Background 

2.1   Pareto Ranking 

Since the aim of all multiobjective optimisers is to develop an approximation of the 
Pareto optimal front, it is not particularly surprising that both contemporary and 
traditional efforts largely favour population-based Pareto dominance as a measure of 
fitness.  By promoting those solutions that are non-dominated with respect to the 
current population, selection pressure favours exploration of potentially promising 
areas of the search space and focuses investigation on the current non-dominated front. 

While it is apparent that measuring Pareto dominance is valuable in determining 
the direction of search, it is also significantly expensive.  Even in the simplest case, 
where the population is divided into just two classes, the complexity1 is O(n2) and 
infers a limiting bound on feasible population sizes.  Such expense is only 
exacerbated as ranking becomes more fine-grained and continuous subdivision of 
dominated fronts is required (as in NSGA and NSGAII). 

The complexities inherent in population-wide ranking have led to a number of 
algorithmic alternatives in the literature.  Perhaps the most obvious approach, and the 
one adopted by Horn and Nafpliotis [11], is to reduce the percentage of the population 
under consideration when assessing dominance.  In the Niched-Pareto Genetic 
Algorithm (NPGA), a tournament selection procedure is used, where the victor is 
determined by a single layer ranking process based on only ten percent of the total 
population (with ties broken through diversity estimation).  By limiting the size of the 
                                                           
1 This paper measures complexity in terms of the number of solution comparisons per evaluation (as per 

[1]) – objective comparisons are an equally valid measure and can be obtained by increasing comparison 
complexity by a factor of k, where k is the number of objectives. 



population used, NPGA can gain increases in efficiency of up to an order of 
magnitude, while still capitalising on the general features of simple ranking.  
However, since the ratio of the selected population is statically defined, the process is 
inflexible – unable to adapt when more fine-grained analysis is required and less 
likely to encourage the exploration of poorly populated, but highly beneficial fronts.  
Moreover, results indicate that the overall quality of NPGA produced fronts is 
considerably worse than those utilising complete population sets [12]. 

A differing, though similarly motivated, approach is offered in the Pareto Archived 
Evolution Strategy (PAES), which considers only pair-wise dominance between 
parent and offspring until incomparability forces single-layered ranking against an 
archived set.  While certainly promising, PAES suffers from its hill climbing 
characteristics – with the potential for significant performance degradation in 
problems featuring large local optima and disconnected fronts. 

More recently, work has commenced on improving the efficiency of Pareto ranking 
by analysing the naïve list-based storage and linear search methods used in 
conventional MOEA.  By incorporating modified versions of pre-existing efficient 
data structures and search algorithms, Jensen [13] outlines improvements for a host of 
MOEA and focuses particularly on the popular NSGAII.  Although promising, and 
certainly worthy of continued research focus, results are minimal and suggest that 
tangible improvements are most noticeable with a reasonably small number of 
objectives.  Moreover, irrespective of results, the development of more efficient 
structural representations and sorting methodologies should not preclude the 
refinement or extension of MOEA algorithms – efficiency gains in either area are 
likely to be of a complimentary nature and can only benefit the applicability of 
multiobjective optimisers in real world problem domains. 

Given that approaches which endeavour to reduce the impact of ranking have only 
met with limited success, it is surprising that more MOEA research has not 
endeavoured to abandon its use altogether.  The Artificial Life community has placed 
some focus on this concept, limiting comparisons in predator-prey systems to strictly 
pair-wise procedures [14, 15] and abandoning the use of dominance entirely in plant-
based algorithms [16].  While such approaches typically induce significant reductions 
in complexity, results are of a strictly preliminary nature and require further 
investigation before gaining widespread acceptance. 

Thus, Pareto ranking simultaneously represents the impetus for both performance 
efficacy and for efficiency degradation – it is the double-edged sword of multiobjective 
optimisation.  Until the corresponding performance issues are addressed and 
effectively dealt with – be it through structural representation, improved search 
techniques or algorithmic refinement – the cost of high complexity will inevitably 
loom large over multiobjective optimisers in practical domains.  It is not enough for 
researchers to focus simply on end results any longer – the utility of Pareto ranking 
has long since been known – the key now is to achieve those end results efficiently.   

2.2   Complex Diversity Preservation 

Where Pareto ranking explicitly guides the population towards the Pareto front, 
diversity preservation techniques are charged with ensuring that solutions remain well 



distributed along that front.  By capitalising on techniques such as fitness sharing, 
diversity preservation reduces the likelihood of genetic drift and aids in developing a 
better picture of the true shape of the Pareto optimal region. 

Although diversity preservation is generally a secondary operation, the complexity 
costs incurred through its inclusion can be as high as fitness assignment [13] and must 
therefore be considered prohibitively expensive.  Such efficiency degradation is 
particularly evident in those algorithms that are reliant on niching, where the use of 
nearest-neighbour and clustering style techniques can yield O(n2) processing times  
[13] (as in SPEA and SPEAII).  Moreover, in the general case, no optimisation of 
these niching procedures exists [13] and thus alternatives must be sought. 

Beyond run-time efficiency, the performance of traditional multiobjective 
optimisers (such as MOGA, NSGA and NPGA) is tightly bound and extremely 
sensitive to the bias assigned to diversity preservation [1].  A failure to correctly 
specify the weighting of diversity in fitness assignment (typically referred to as the 
sharing factor) can lead to systems that prematurely diverge or converge.  Thus, while 
guidelines exist for approximating appropriate sharing factors (see [4]), most practical 
systems will require significant tuning of this parameter to achieve optimal results. 

Partially to address the inherent complexities associated with existing techniques, 
NSGAII introduces a more cost-effective approach to diversity maintenance that 
avoids O(n2) processing time and excessive parameter tuning.  By utilising a simple 
crowding-distance metric, which exploits O(log n) objective-value sorting to enable 
low-cost nearest-neighbour measurements, NSGAII reduces diversity preservation 
complexity to O(n log n).  Moreover, since the crowding-distance is only considered 
when breaking fitness-ties during tournament selection, no fitness sharing parameter 
is required.  While the improvements made over existing techniques are impressive, 
complexity remains non-linear and evidence suggests ([1] citing [7]) that a notable 
search bias inhibits performance on higher objective problems. 

In contrast, both PAES and PESA employ diversity-maintenance strategies that 
incur only linear complexity.  These approaches divide the objective space into a 
hyper-grid and use the number of solutions occupying each cell to determine the 
relative crowding of that area.  Although the move towards linear complexity is an 
important practical improvement, both approaches require the definition of cell-sizes, 
which will inevitably lead to additional parameter tuning.  Furthermore, because the 
nature of grids is coarse, there is potential for the approach to miss or de-emphasise 
narrow regions of unexplored space. 

Irrespective of chosen approach though, diversity preservation remains a complex, 
and largely unsolved, problem.  Although existing techniques effectively distribute 
solutions across the objective-space, virtually all lead to optimisers that are 
susceptible to front deterioration due to the successive replacement of non-dominated 
solutions [17].  Such inability to maintain important solutions is significant and 
illustrates the complexities associated with balancing MOEA design – overly elitist 
approaches will lack the diversity to derive a successful spread along the Pareto 
optimal front, while diversity-preservation can slow and even prevent convergence 
onto the front.  The negotiation of such issues, in addition to a continued focus on 
technique development, is of significant importance and warrants further attention in 
the MOEA research community.   



2.3   Archive-Based Elitism 

The stochastic nature of multiobjective optimisers – where the final set of solutions 
may not be representative of the best set of solutions found – requires that most, if not 
all ([18] citing [19]), practical installations of MOEAs capitalise on some form of 
solution repository.  While traditional techniques use archiving purely as a 
background storage device, more contemporary approaches have included archival 
solutions as part of the selection process (SPEA, SPEAII and PAES) or as active 
members of the core population (PESA and NSGAII).  By incorporating the archive 
into the evolutionary process, contemporary algorithms employ explicit elitism to bias 
the search around areas that have previously yielded the best results. 

While empirical outcomes suggest that the incorporation of elitism into existing 
multiobjective algorithms can yield significant benefits [12], the use of archiving is 
not without limitations.  Since the archive is now an active participant in the 
evolutionary process, careful bounds must be placed on its size to limit the negative 
impact that population growth will have on run-time complexity.  Furthermore, since 
archives are typically composed of non-dominated solutions, archive maintenance can 
be complex and is largely based on diversity preservation principles – which, as seen 
earlier (Section 2.2), are both difficult to balance and potentially costly to execute.  
Moreover, as with any elitist approach, active-archiving infers a marked increase in 
selection pressure around promising solutions that can potentially lead to stagnation 
and premature convergence [1].  Thus, as with most core-concepts in MOEA design, 
archive-based elitism is as affected by complexity and balance limitations, as it is 
effective in achieving more rapid optimal convergence. 

3   The Combative Accretion Model 

The observations made in previous sections are not designed to cast popular pre-
existing methods under a negative light, but to illustrate that while core MOEA 
techniques have achieved impressive results, they are not without their flaws.  With 
this in mind, the development of unique approaches that aim to address existing 
problems can only aid in the continuing refinement and growth of multiobjective 
optimisers as a whole.  It is such motivation that has led to the burgeoning growth of 
multiobjective research in areas as diverse as Artificial Life, Ant Colony simulation, 
Simulated Annealing and Messy Genetic Algorithms.  It is also the primary 
motivation for this work: to develop a disparate, novel approach to multiobjective 
optimisation that explores new avenues for MOEA design while addressing the 
problems inherent in existing approaches. 

In particular, the Combative Accretion Model is focussed on the reduction of 
complexity through the incorporation of implicit ranking, the removal of expensive 
diversity measures and a departure from conventional elitist archive design.  
Moreover, this goal is achieved in a unique system that is grounded in pair-wise 
dominance-based confrontation and accretion agent generation. 



3.1   Agent Interaction 

Central to CAM is the notion of agents and agent interaction.  Borrowing terminology 
from the Artificial Life community, an agent is representative of a complete solution 
to the given multiobjective problem and carries an explicit mutable size that is 
representative of performance in the population2. 

Agent interaction is strictly pair-wise and the results are dictated by the dominance 
relationship between the two individuals (see Section 3.5).  Thus, combat in CAM is 
derivative of binary tournaments, though selection probabilities are based around 
agent size rather than an expensive Pareto rank.  Furthermore, the result of an 
interaction does not necessarily infer agent reproduction, as in conventional 
tournaments, but rather dictates agent survival and changes in agent size (see Section 
3.5).   

Since the size of an agent is the basis for selection and is subject to performance-
based change, it represents endogenous fitness and results in an implicit and adaptable 
ranking of importance within the population – the greater the size of an agent, the 
more influence it will have.  Such ordering is particularly significant when 
considering the efficiency of locating dominated solutions.  In a traditional Pareto-
ranking scheme, dominance is determined through an inherently expensive linear 
search of the current population – it does not fully capitalise on the performance of 
previously ranked solutions.  Contrastingly, in CAM, a solution will be biased 
towards comparisons against the more successful agents – facilitating more rapid 
determination of dominated solutions (since these will generally perform poorly 
against the large, non-dominated agents). 

3.2   The Gene Pool 

To drive agents towards the current Pareto front, CAM makes use of a unique elitist 
concept based around the temporary storage of genes sourced from successful agents.  
This gene accumulation, which is ultimately used in agent creation (see Section 3.3), 
is referred to as the gene pool and is a finitely sized collection of alleles for each gene 
position.  The pool is updated by any agent that passes a pre-specified size threshold 
(and is thus considered suitably fit) – with a random member of each gene-position 
collection (GPC) replaced by the corresponding agent allele (as outlined in the 
following equation and in Figure 1):       

� �0,1, .., 1 ,
� �� �� �

�� 	 

R Ai ii g GPC x  (1) 

where g is the number of genes per solution; x is the collection of agent genes; R is a 
random number between 0 and 1; GPCi is the gene-position collection for the ith gene 
position; and A is the array of alleles in the given GPC.  

It is tempting to find a correlation between the gene pool concept and the notion of 
building blocks seen in messy genetic algorithms (see [20, 21]) – however, the two 
approaches are quite significantly different.  Messy Genetic Algorithms are charged 

                                                           
2 Solution, agent and chromosome are considered synonymous in this work.  Alleles and genes will be used 

to refer to specific components of a solution.  



with establishing the best possible linkage of building blocks in order to generate 
good solutions.  In contrast, the gene pool concept utilises good solutions to identify 
important genes.  Thus, the two approaches both aim to build on apparently successful 
components to drive evolution towards the Pareto optimal front, but the way in which 
those components are identified is diametrically opposed. 

3.3   Recombination 

Though reproduction can be of an asexual nature, most agent generation is performed 
via accretion creation – whereby the gene pool is randomly harvested to create a new 
individual (see Figure 1 & Equation 2).  Specifically, for each GPC in the gene pool, a 
random member is selected and included as part of the new chromosome (with 
potential mutation dictated by mutation rate �, and the new agent represented by x): 

� � � � � �0,1, .., 1 , ; if then mutate�
� �� �� �

�� 	 
 
R Ai i ii g x GPC R x  (2) 

To ensure a static population size, agent creation only ever occurs upon the death 
of another agent.  Thus, the system is essentially a continuous poor-performer 
replacement scheme, whereby successful agents are retained simply by surviving. 

3.4   Agent Death and Elitism 

In CAM, agent death occurs under special conditions of domination or when an agent 
passes a pre-determined exhaustion threshold (see Section 3.5).  The exhaustion 
threshold, which dictates the maximum number of times a single agent can contribute 
to the gene pool, in association with the maximum size threshold, determines the level 
of system elitism.  Increasing the size and exhaustion thresholds infers greater 
pressure on high performance, while decreases improve the likelihood of diversity in 
the system by reducing the influence of dominant agents.  The relationship between 
these two parameters (in addition to gene pool size) and the development of 
corresponding heuristics and automated tuning techniques are important areas of 
future work that will maximise the simplicity and practical applicability of CAM. 
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3.5   The Algorithm 

Figure 2 illustrates a typical execution of the CAM system.  Note that unlike 
conventional approaches to MOEA design, the system is non-discrete (with respect to 
generations) and follows the more continuous approach adopted in contemporary 
Artificial Life systems (see [16]).  Such a departure facilitates the exclusion of an 
explicit active-archive, as the population will almost always be composed of a 
combination of recently generated solutions and previously successful agents.  
Furthermore, note that beyond the influence of thresholds and simple checks for 
equality3 and incomparability, there is no explicit diversity operator charged with 
keeping a well-spread distribution of solutions.  Results will indicate the effect of 
excluding such expensive techniques under the current CAM implementation, though 
the base model itself does not preclude their use. 

Also significant is the initialisation procedure – where both the agent set and gene 
pool are randomly filled.  While the effect is likely to be minimal and should only 
impede early recombinations, it is perhaps preferable to initialise the gene pool to the 
empty set and prevent agent generation until the pool is at least partially filled with 

                                                           
3 Currently, agent equality is assessed in objective-space, though this is not a requirement of the system. 

Fig. 2. The Execution Cycle of a CAM System 
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potentially successful genes.  Future work should consider this trivial amendment, 
though there does exist some potential for over-elitism if the pool is particularly 
sparse across a significant number of accretion creations. 

 Of the remaining processes, most are self-explanatory or have been discussed in 
previous sections, though both selection and combat may require further elucidation.  
The selection of agents for combat is as-per conventional binary roulette-wheel 
selection, though traditional fitness measures are replaced by a simple normalisation 
of agent size (using the corresponding size threshold).  In the case of combat, to 
maximise diversity of the population, equality always leads to the death of one agent 
and incomparability results in growth of both agents.  When an agent is dominated in 
combat it always dies, being replaced by a mutated clone of the dominant agent (when 
the size of the dominating agent is large and is thus likely to constitute a good 
solution) or an accretion creation (when the size of the dominating agent is small).  

4   Results 

Within the Multiobjective research community much debate exists as to which of a 
diverse set of performance metrics provide the most accurate representation of 
optimiser performance (see [22, 23] for a sample).  This paper does not seek to settle 
the debate, but uses a broad range of both complexity and front analysis metrics that 
provide a detailed picture of CAM efficiency and effectiveness (see Table 1).  To 
further elucidate CAM performance, and place it in a contemporary context, results 
are compared with both NSGA and NSGAII.  The choice of systems here is 
important: both are popular techniques, with the original NSGA providing 
comparison with a non-elitist approach and NSGAII illustrating performance against 
an elitist system that has yielded impressive results [12] and is explicitly charged with 
reducing complexity. 

All systems are tested on a broad range of well-recognised problems (see [12] for 
details) that emphasise the characteristics typically found in real world multiobjective 
optimisation – namely: convex (T1), concave (T2) and discontinuous fronts (T3); 
multi-modality (T4); and non-uniformly distributed fronts (T6).  Note that since this 
CAM implementation is designed for real-value use only, T5 is excluded.  The 
extension of CAM into binary problem domains lies as an important area of future 
work. 

The presented results are representative of runs using test parameters specified in 
Table 2, with duplicate objective-space values removed to negate unreasonable 
biasing of the distribution metric.  Parameter settings for NSGA and NSGAII are 
derived from system-defined defaults included in pre-existing implementations, or 
otherwise according to [5].  

CAM parameter values underwent only limited tuning and thus further refinement 
and the associated development of corresponding heuristics can only improve overall 
performance.  Note also that mutation in CAM is non-gaussian4 – this is largely an 

                                                           
4 Strictly, a distribution (with probabilities of 0.25, 0.375 and 0.375 respectively) between random (v' = 

R(max-min)+min), geometric (v' = v � 0.075v) and incremental (v' = v � 0.075(max-min)) mutation, where 
v is the initial value; v' is the new value; and max and min represent the range of allowed values.   



arbitrary choice, though it is inspired by its recent use in Artificial Life systems.  It 
may be beneficial to investigate the relative utility of this choice over more 
conventional operators in subsequent studies. 
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comparisons required per evaluation.  A single 
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averages per evaluation sourced 
from fifty distinct runs.   
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computational complexity of a given system.   
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Table 1. Description of metrics used for system analysis 

Table 2. System Settings 
 

NSGAII and NSGA CAM 

Uniform Crossover Rate 0.9 Gene Pool Collection Size n/10 

Gaussian Mutation Rate 1/g Max Agent Size (s) 10 

Crossover/Mutation Distribution Index 20 Initial/Reset Agent Size �s/2� 

NSGA Exhaustion Threshold (e) 30 

Param. Space Sigma Share 0.5*0.11/g Non-Gaussian Mutation Rate 1/g 

Common 

Population Size (n) 50 Termination Condition Number of Evals. 

   

 



4.1   Front Quality 

Figures 3-7 illustrate that for a broad range of problems, CAM is capable of finding 
both highly accurate and well-distributed approximations of the true Pareto optimal 
front.  Furthermore, the arrival and development of these fronts is particularly 
efficient, requiring at most 5000 evaluations for all but the complex and multi-modal 
T4 problem.  While there is degradation in overall efficiency for CAM in this 
instance, it still displays a marked improvement over NSGAII, which fails to 
converge to the true Pareto optimal front and stagnates in local optima.  Moreover, T4 
is generally recognised as the most difficult problem in the test-suite and existing 
studies have shown that systems such as SPEA and NPGA fail to locate the Pareto 
front even with larger populations [12].  Thus, results indicate that CAM can perform 
well on complex problem domains and is capable of moving through false local fronts 
with only minimal population sizes. 

Furthermore, CAM clearly outperforms NSGAII on T6 – a non-uniform problem 
that has again been shown to cause difficulties for existing techniques such as SPEA 
[12].  Such robustness of performance irrespective of domain characteristics is an 
important feature of the CAM system and suggests broad practical applicability. 

In addition to the superiority shown in the T4 and T6 graphs, coverage 
measurements (Figure 8) illustrate that CAM fronts are preferable to those produced 
by NSGAII on all remaining problems (excluding T3, where the systems are 
approximately equivalent).  Moreover, while not displayed, CAM fronts completely 
dominate those generated by NSGA on every test function excluding T6 (where CAM 
achieves 94% coverage).  Given that NSGA is a popular early system that forgoes 
archiving, such a comprehensive improvement by CAM is particularly significant. 

To further clarify the contributing factors that define a given front, Figure 9 
illustrates the average Euclidean distance, extent, distribution and non-dominated set 
size for each of the systems across the given test functions.  In all cases, CAM has 
improved accuracy compared to both NSGA and NSGAII, finding solutions that are 
more closely positioned to the Pareto optimal front.  Such a feature, in league with 
good extent values, illustrates the ability of CAM to rapidly develop highly accurate 
solutions, without converging onto a small region of objective-space.  Indeed, across 
the entirety of the five fifty-run tests, the resultant CAM fronts never converged onto 
a single non-dominated point.  Such avoidance of solution homogeny is particularly 
significant given the propensity for NSGA and NSGAII to become fixated on narrow 
areas of the objective-space (as in T4, where the resultant fronts of NSGAII and 
NSGA converged to a single non-dominated solution in 28% and 92% of runs 
respectively; and in T2, where NSGAII had such convergence in 42% of the runs). 

However, it is important to note that while CAM features acceptable distribution 
levels which exceed those of NSGA (excluding T3), it is comparatively worse than 
NSGAII (excluding T6 and single-member populations).  Such a difference is likely 
caused, and at least heavily influenced, by the increased frontal occupation of 
NSGAII (when it avoids single-point convergence), which reflects a more richly 
populated, though lower quality, approximation set than CAM.  Thus, future work 
should examine the use of diversity-guided reproduction (via the manipulation of 
gene pool mechanics) to aid in the development of higher-cardinality high-quality sets 
in CAM. 
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Figs. 3-9. Offline front analysis for runs of 5000 (T1-T3, T6) and 40000 evaluations (T4).  Figs. 
3-7. Non-dominated solutions produced during three distinct runs – NSGAII excluded when 
clarity of graph is lost; reference line indicates the optimal front; x-axis is objective one; y-axis is 
objective two.  Fig. 8. The average relative coverage of non-dominated sets across fifty distinct 
runs.  Fig. 9. Average performances on given metrics (standard deviations provided in brackets) 

 T1 T2* T3 

 NSGAII CAM NSGA NSGAII CAM NSGA NSGAII CAM NSGA 

Avg. Dist 0.0028(0.00) 0.0014(0.00) 2.2671(0.17) 0.0018(0.00) 0.0010(0.00) 3.0393(0.21) 0.0011(0.00) 0.0008(0.00) 2.0962(0.19) 

Extent 1.3191(0.16) 1.4064(0.03) 2.4880(0.42) 0.7850(0.69) 1.4128(0.01) 0.6893(0.31) 1.8165(0.27) 1.9326(0.04) 2.9583(0.43) 

Distribution 0.0038(0.00) 0.0174(0.00) 0.0267(0.01) �|0.0046(0.0) 0.0219(0.00) 0.0512(0.04) 0.0089(0.00) 0.0588(0.01) 0.0297(0.01) 

Population 221.44(33.3) 56.76(6.7) 87.62(12.6) 116.36(102.2) 46.92(5.8) 16.62(7.3) 192.56(29.2) 29.40(4.3) 91.08(11.6) 

 T4* T6 

Avg. Dist 4.3597(3.65) 0.0558(0.10) 18.7708(8.72) 0.1066(0.01) 0.0067(0.01) 6.0263(0.28) 

Extent 1.9163(1.35) 1.4436(0.06) 0.2138(0.97) 1.1347(0.03) 2.1787(2.02) 1.0434(0.32) 

Distribution �|0.0008(0.0) 0.0122(0.01) �|0.2260(0.3) 0.0097(0.00) 0.0203(0.02) 0.1138(0.08) 

Population 2028.02(1912) 149.76(77.0) 1.26(1.0) 

*Note that single member 
populations infer a distribution 
value of �.  In this case, an 
alternative average is included 
which reflects the distribution of 
the remaining, better 
populated, sets 73.3(10.8) 160.96(12.9) 13.52(3.9) 

T3 T4 

T6 

T1 T2 



4.2   Complexity Analysis 

While the quality of fronts produced by CAM is impressive, the performance of any 
system cannot stand on quality alone.  Indeed, for contemporary multiobjective 
optimisation, the utility of an algorithm is also contingent on the corresponding run-
time complexity.  With this in mind, the following section addresses the issue of 
complexity, utilising NSGAII to highlight relative performance improvements.  

Empirical evidence illustrates that CAM is consistently and significantly more 
efficient than NSGAII across all of the tested areas for a population size of fifty 
(Figures 10-13).  The poor performance of NSGAII can be attributed to the increased 
computational burden accrued from archiving, which essentially doubles the 
population size, sorting for fitness sharing and an explicit ranking scheme.  By 
avoiding these techniques, CAM achieves an average run-time complexity that is 
faster than NSGAII by an order of magnitude and tends towards O(ns). 

The shape of the complexity graphs is also significant and warrants some 
discussion.  CAM is most efficient early in the run where it can quickly identify 
dominated solutions via implicit size ordering (as discussed in Section 3.1).  In sharp 
contrast, NSGAII is generally extremely inefficient during this period, requiring 
numerous passes through the population to determine explicit ranking, whilst lacking 
any existing Pareto ordering of solutions to maximise efficiency.  Furthermore, the 
increase in the number of comparisons towards the completion of a CAM run 
indicates that dominance determination is flexible and adaptive, unlike the complexity 
reduction methods employed by NPGA.  As the number of good solutions grow, so 
too does the breadth of search to ensure accurate non-dominated front representation 

Figs. 10-13. Complexity Analysis.  Figs. 10-12. Average number of comparisons (y-axis) per 
evaluation (x-axis) over fifty runs.  Fig. 13. Summaries of the total number of comparisons and 
the overall average number of comparisons per evaluation across fifty runs of 10000 evaluations 

 

 Avg. Tot. Comparisons Avg. Comps/Eval 

 NSGAII CAM NSGAII CAM 

T1 1,473,027 127,551 147.3 12.8 

T2 1,738,467 105,946 173.8 10.6 

T3 1,454,811 115,337 145.5 11.5 

T4 1,795,247 43,197 179.5 4.3 

T6 1,537,239 121,551 153.7 12.2 
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– a capability that is beyond statically defined sub-population methods. 
In terms of complexity, CAM performs worst when the population is highly non-

dominated and incomparable – where solutions must generally wait until exhaustion 
to be removed.  In this case, CAM has O(nes) performance.  Since complexity 
becomes O(n2) when es�n, it is theoretically possible to have a worst case complexity 
equivalent to NSGAII.  Since such complexity occurs only on near-complete and 
persistent stagnation of a well distributed optimal or pseudo-optimal front, it is 
unlikely for such complexity to occur prior to completion of a typical run (as 
evidenced in Figures 10-13).  Moreover, since the complexity rise is directly tied to 
stagnation of well distributed fronts, at worst the performance of CAM degenerates to 
NSGAII levels when on potentially good fronts, and at best, this peak in complexity 
can be used as an additional termination condition (since it indicates either the 
generation of a good Pareto front approximation or premature front convergence). 

5   Conclusions and Future Work 

This paper has presented a novel approach to multiobjective optimisation that is 
driven by agent-based pair-wise dominance interactions and the development of an 
elitist gene pool for accretion agent creation.  By avoiding explicit ranking, complex 
diversity preservation and expensive active-archiving procedures, results have shown 
that the Combative Accretion Model demonstrates an order-of-magnitude 
improvement over the run-time complexity of NSGAII across a wide range of 
functions.  Moreover, CAM consistently produces good approximations of the Pareto 
optimal front irrespective of diverse problem characteristics, while achieving frontal 
quality that is typically beyond both NSGA and NSGAII – notions which are 
substantiated both graphically and through coverage and accuracy metrics.  Given the 
promising nature of the achieved results, future work is certainly merited and should 
focus on extensions to the CAM system, the refinement and potential automation of 
parameters, and the application of the approach to real-world problems.  In particular, 
work regarding the integration of diversity into the accretion process, or the use of a 
PAES-like hyper-grid for biasing pair-wise results, may aid in achieving more richly 
populated approximation sets. 
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