
GENETIC ALGORITHMS APPLIED TO REAL TIME
MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Z. BINGUL, A. S. SEKMEN, S. PALANIAPPAN AND S. SABATTO
Tennessee State University, Nashville, TN, 37209

e-mail: sabatto@harpo.tnstate.edu

ABSTRACT

Genetic algorithms are often well suited for
multiobjective optimization problems. In this work, multiple
objectives pertaining to the THUNDER software were
concerned to optimize the war results obtained from the
software. It is a stochastic, two-sided, analytical simulation
of military operations. The simulation is subject to internal
unknown noises. Due to these noises and discreetness in the
simulation program, GA approach has been applied to this
multiobjective optimization problem. This method is
capable of searching for multiple solutions concurrently in a
single run. Transforming this multiobjective optimization
problem to a form suitable for direct implementation of GA
was the major challenge that was achieved. Three different
kinds of fitness assignment methods were implemented and
the best one was chosen. The THUNDER software may be
considered as a black box since very less information about
its internal dynamics was known. The problem with
THUNDER software is expensive running time. In order to
optimize the time involved with THUNDER software,
autocorrelation techniques were used to reduce the number
of THUNDER runs. Furthermore, the GA parameters were
set optimally to yield smoother and faster fitness
convergence. From these results, GA was shown to perform
well for this multi-objective optimization problem and was
effectively able to allocate force power for the THUNDER
software.

Keywords: Intelligent Systems, Soft Computing, Genetic
Algorithms, and Optimization.

INTRODUCTION

THUNDER software is a very large campaign
simulation model, which was built based on Monte-Carlo
simulation. This software is a stochastic, two-sided,
analytical simulation of military operations developed by
System Simulation Solutions Inc. (S3I) for the Air Force
Studies and Analyses Agency (AFSAA). This simulation
was designed in order to examine issues involving the utility
and effectiveness of air and ground power in a theater-level
joint warfare context. The Thunder software can define
approximately 25 air missions grouped under air-to-ground
missions, air-to-air missions, air defense suppression
missions, reconnaissance, anti–tactical ballistic missile, and
air refueling. This software automatically plans military

moves and actions in a rule-based manner. It also judges the
outcome of their interactions and then it dynamically
incorporates the results and uses this information into the
on-going perception, planning, and execution of military
operations. This software is capable of supporting campaign
analysis involving the integration of effects over time and
space. This means automatic distribution of threats and
targets, the number of target kills, ground movement and
deployments. This simulation also applies constraints to the
problems like defining the inventories, sortie rates, mission
allocations etc.

In most of the real world problems associated with
several objectives, it is needed to optimize them
simultaneously based on some given criteria. However,
there is no single optimal solution in many of these cases,
but a set of alternative solutions exists. These solutions are
called pareto-optimal solutions. Selecting one particular
pareto optimal solution requires using one optimization
method with some additional rules. To find solutions to this
kind of optimization problem, one of potential ways is to
use genetic algorithms because they process a set of
solutions in parallel, possibly exploiting similarities of
solutions by recombination.

A general multi-objective optimization problem with
inequality constraints can be stated as a vector function f
that maps a set of m parameters (decision variables) to a set
of n objectives. This can be formulated as

Y = f (x) = (f1 (x), f2 (x), f3 (x),……… f4 (x)) (1)

subject to x =(x1,x2…….xm) ∈ X
 y =(y1,y2…….yn) ∈ Y

where x is set of the decision vectors and X is the parameter
space, y is the objective vector, and Y is the objective space.
The set of solutions of a multiobjective optimization
problem consists of all decision parameters for which
corresponding objective vectors cannot be improved in any
dimension without degradation in another. Such solutions
are known as pareto-optimal solutions. A Pareto optimal
solution is not unique, but is a member of a set of such
points, which are considered equally good in terms of the
vector objective. This space may be viewed as a space of
compromise solutions in which each objective could be

improved, but at the expense of at least one other objective.
In other words these solutions are optimal in a way such that
no other solution in the search space are superior to them
when all objectives are concerned.

Genetic algorithms

Many practical optimization problems have mixed
(continuous and discrete) variables and discontinuities in
their search space. If standard non-linear programming
techniques were to be used in such cases, then they would
be computationally very expensive and inefficient. Genetic
algorithms are a good solution to such situations. They
were first introduced by Holland [12] who describes how to
apply the principles of natural evolution to optimization
problems. Holland's theory has been further developed and
now Genetic Algorithms (GAs) stand up as a powerful
adaptive method to solve search and optimization problems.

Genetic algorithms are search algorithms that come
under the range of techniques, collectively known as
“evolutionary computing “. They are based on the principles
of natural genetics and natural selection. The major benefits
of these algorithms is that they provide a robust search in
complex spaces and are usually less expensive, as far as
computation is concerned, when compared to most other
optimization solutions. They are also resistant to getting
trapped in local optima. This leads to a wide range of
applications in large-scale optimization problems of various
fields.

Genetic algorithms are different from more normal
optimization and search procedures in four ways:

1. GAs search with a population of points (candidate
solutions), not a single point. Thus, they are less likely to
be trapped in a local optimum

2. GAs use only the values of the payoff (objective
function) information, and not the derivatives or other
auxiliary knowledge.

3. GAs work with a coding (representation) of a parameter
set not the parameters themselves. Thus the search
method is naturally applicable for solving discrete and
integer programming problems.

4. GAs use randomized parents selection and crossover
from the old generation. Thus they efficiently explore
the new combinations with the available knowledge to
find a new generation with better fitness values.

Blackbox optimization and genetic algorithms

Black box optimization may be considered as the
presence of little or no knowledge about the existing domain
and such situations are becoming more and more popular in

the recent years. There are several algorithms to optimize a
black box and they may be classified as follows.

• Deterministic approaches
• Stochastic approaches

- Blind random search methods
- Adaptive sampling search methods.

 Deterministic enumeration methods become highly
impossible with the growth of the search spaces and
amongst the stochastic approaches, the adaptive sampling
search methods work well with black box optimization
techniques. Genetic algorithms are one of the most popular
and effective tools amongst the adaptive sampling search
methods. The mechanics of a simple genetic algorithm are
very simple, involving nothing more complex than copying
strings and swapping partial strings. GAs are very popular
due to their simplicity of operation and computational
efficiency. GAs use the representation to implicitly divide
the search space into several non-overlapping classes often
called as the schemata.

 Let us denote the input and output spaces as follows X
and Y respectively. Then the general blackbox optimization
may be defined as follows given a blackbox that computes
φ(x) for input x.

φ : X Y

The objective of a maximization problem is to find some
x * ∈ X, such that φ(x *) ≥ φ(x) for all x ∈ X.

Most of the simple genetic algorithms which yields good
results to many practical problems and are composed of
three main operators and they are:

1. Selection
2. Crossover
3. Mutation

Selection

Selection is one of the most fundamental genetic
operators. Selection operation may be modeled as follows:

 ∑
=

=
pop

k
select kfnfnP

1

)(/)()((2)

 Where n is nth string, pop is the population size and f (n)
is the fitness function. This first population must offer a
wide diversity of genetic materials. The gene pool should be
as large as possible so that any solution of the search space
can be engendered. Generally, the initial population is
generated randomly. Some of the most commonly used
selection operators are roulette wheel selection, tournament
selection, Ranking selection etc.

Crossover

This is the most powerful genetic operator, and may be
considered as the main engine for exploration in a GA. This
operator is responsible for the shuffling and recombination
of building blocks.

The simplest form of crossover is that, a single point is
chosen on two equal length chromosomes and they are
crossed at that particular point. It is possible to select two or
more points for cross over, to get more genetic mixing but
sometimes while using multipoint crossover it degrades the
performance. Crossover can be shown as follows.

1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

Crossover generally consists of forming a new solution
by taking some parameters from one solution and
exchanging it with another at the very same point. Thus we
get new offspring. Some crossover operators use complex
geometric methods to generate the off springs of two
parents.

Mutation

This is a common genetic manipulation operator, and it
involves, the random alteration of genes during the process
of copying a chromosome from one generation to the next.
Mutation simply involves the incorrect copying of some
parameters, which make up a solution. It may be illustrated
as follows.

1 1 1 1 1 1 1 1 0 1 1 1

Mutation is usually used to avoid premature
convergence, which is a common problem in GAs, which
use fixed length, binary codlings. When proportional
selection is used, all the individual chromosomes in the
population become very similar before a nearly optimal
solution is reached, thus preventing any further progress. In
such cases mutation is essential. Mutation acts against this,
by constantly generating new chromosomes, this helps in
preventing the population from getting trapped in a local
maximum in a search space. However, mutation sometimes
also result in loss of good individual, thus the need to
prevent premature convergence has to be balanced against
the loss of efficiency due to the damage of good genetic
material. Thus there is a payoff between exploitation and
exploration illustrated here.

Representation

This is an important aspect in determining the
success or failure of a GA. Representation is a way by
which the chromosome is generated, so as to reflect a
potential problem solution. A representation should have as
little epistasis as possible and should represent the solutions
in such a way so that the genetic operators could be used on
them. There is a strong link between the representation
scheme and the genetic operators to be used. The
representation may also be highly dependent on the problem
to be solved. The most suitable representation is based upon
the type of application .The two most common
representations, binary and real number coding differ in
how the recombination and mutation operators are
performed.

The main purpose of this research is to determine how to
effectively allocate force power using genetic algorithms
(GA). The reason why genetic algorithms is used to
determine the force allocations for war simulation is
because they provide robust search procedures for many
types of functions including those exhibiting discontinuities,

Creation of initial
population strings

START

Fitness function
evaluation

Generate new population of strings
1. Selection 2. Crossover 3. Mutation

STOPIf stopping
criteria is
satisfied

No

Yes

Genetic algorithm process (flow chart)

multi-modality, high dimensionality, huge search spaces
and noise.

The war allocations are made based on the capabilities
of the threat forces, conditions of the war, and capabilities
of the friendly forces, all simulated by THUNDER
software. The input war allocation file is generally given by
the user. Currently, these war allocation are being made by
an analyst judgement, and this is a very time consuming
task, and does not always produces consistent results. Each
mission requires an apportionment. In this research, only
four missions were used as inputs and 15 day war was used.
The missions were Offensive Counter Air (OCA), Strategic
Target Interdiction (STI), Long Range Air Interdiction
(INT), and Lethal Direct Air Defense Suppression
(DSEAD). OCA, STI and INT are air-to-ground missions.
OCA is against airbases and INT is against units moving on
the network and in garrison, logistics facilities,
transportation network transshipment points, checkpoints,
supply convoys, and air defense complexes. STI is against
strategic targets. DSEAD is a suppression of enemy air
defense missions and it is against air defense sites. The
THUNDER software can be viewed more like a two-player
game in which blue represents the friendly side and red is
the enemy side. According to these definitions, our
objectives for these scenarios would be to

1. Minimize the territory that blue side losses
2. Minimize the blue side aircraft lost
3. Maximize the number of red side strategic targets

killed
4. Maximize the number of red side armor killed

This is a typical multiobjective optimization problem
because it is desired to optimize all the four objectives
simultaneously. The procedure followed to solve the
allocation problem using GA and THUNDER Software is
illustrated in Figure 1.

RESULTS AND DISCUSSION

Thunder software is more like a black box. In order to
understand its behavior and to optimize its the running time,
optimum number of replication were to be determined. This
reduces the time considerably for the entire process. In this
regard, THUNDER runs were replicated several times and
the results were obtained by assigning random seeds, this
was stored in a separate output file. The maximum values of
the parameters (FLOT penetration, Red STI kills, A-G
armor + G-G armor and Blue aircraft losses) were taken
from its output file for further analysis. Using this data, time
series plots were drawn for all four parameters under
consideration. These plots are shown in the figure 2. It can
be noticed that there is a lot of noise, due to the random
behavior of THUNDER. .Differences in the set of data for
each parameter (FLOT penetration, Red STI kills, A-G

Armor + G-G Armor and Blue aircraft losses) were
calculated by subtracting from the previous value of the
corresponding set of data. These differences were used to
plot the trend analysis. The figure 3 show the amount of
variation in the data from the trend. Based on the trend
analysis, the data are fitted linearly and the linear regression
equation is defined as:

bxay += (3)

The coefficients of the linear regression are summarized
in table 1.

 Table 1: The coefficients of the linear regression
Thunder Output a b
Territory lost -5.99 0.826
Red strategic targets killed 5.19 -0.49
Red armor killed -5.19 0.77
Blue aircraft lost 3.56 -0.27

 Autocorrelation analysis was made to decide which
replication number would be more suitable to represent the
entire system behavior. The figure 4 shows the
autocorrelation between the set of data for each parameter.
These show that lag 3 and lag 4 give higher correlation then

Genetic
Algorithm

 0-100

P
A
R
A
M
E
T
E
R
S

THUNDER

Optimal
War
Results

Figure 1. Schematic representation of optimization
procedure.

others. This means that the replication number 3 and 4 is
much correlated with the general trend of the system. Using
these replication numbers (3 and 4) would optimize the
running time of THUNDER in an efficient way. The results
of the statistical analysis (mean, median, standard
deviation, the standard error of the mean, Se-mean,
minimum and maximum) are summarized in table 2. From
this table, it is found that, standard deviation is very less for
FLOT penetration when compared to others, whereas Red
armor is highest. It is also seen that the variation between
the maximum and minimum values is less for FLOT
penetration and high for red armor. These results indicate
that red armor is highly dependent on the number of
replications.

Table 2. Statistical analysis of the outputs of THUNDER
software.

Variable mean median
Terrlost 107.29 107.25
Redsti 484.93 486.3
Red armor 1987.4 1989.3
Bl-A-loss 153.25 155.7
Variable stdev Se-mean
Terrlost 3.86 1.22
Redsti 6.71 2.12
Red armor 21.9 6.9

Bl-A-loss 8.22 2.6

Variable max min
Terrlost 116.9 102.8
Redsti 494 472
Red armor 2025.5 1963.3
Bl-A-loss 162.6 143

Fitness assignment

These results were obtained, by using modified data in
the Thunder Software. In other words, new data set was
applied to Thunder Software. Thunder Software (territory
lost, aircraft lost, the number of strategic targets killed and
the number of red armor killed) were assigned a minimum
score and a maximum score. They were translated to a
minimum score = 1 and a maximum score=2. Scores
between the minimum and maximum were interpolated
based on the worst case and the best case. These cases were
determined by expert knowledge. In general, it is important
to improve only the high priority objectives, such as hard
constraints, until the corresponding design goals are met,
after which improvements may be sought in the lower
priority objectives. There are many ways to assign the
fitness value. In our case, three different fitness functions
were used to calculate the fitness values based on the above
results. The first method is that GA tries to improve the
worst score first, second worst next, and so forth. In other
words, the high priority objective is that, the GA is forced to

push up the lower scores. Based on this, fitness function is
defined as follows:

 4
2

3
3

2
4

11 ffffF +++= (4)

Where F1 is a fitness score, f1 is the smallest ordered
individual score, f2 is the second smallest ordered individual
score, f3 is the third smallest ordered individual score, and f4
is the largest ordered individual score. Second method is
square-based fitness assignment. In this method, individual
scores are squared and their summation gives the assigned
fitness values. This function can be written as:

 2
4

2
3

2
2

2
12 ffffF +++= (5)

Similarly, the third method is squared-error based fitness
assignment. This function is:

 ∑
=

−−=
4

1

2
maxmax3)(

i
iffEF (6)

where Emax (16 for this case) is the maximum value of total
fitness score and fmax (2 for this case) is maximum value of
each fitness score. In these experiments, the following GA
parameters were adopted and held constant:

 N =50 (population size)

cP =0.7 (crossover probability)

mP =0.02 (mutation probability)

The thunder runs were used online with the genetic
algorithm, with all the three different fitness function.
After50 generations were evaluated for a scenario, the
maximum function values obtained in each case are shown
below.

Table 3. Maximum fitness values using various fitness
functions

Method Max fitness values
F1 14.033
F2 11.893
F3 15.502

GA produces three allocation-input sets for each fitness
function correspondingly. These are:

Table 4. Optimum input allocations using various fitness
functions

Method OCA INT DSEAD STI
F1 20 27 53 0
F2 0 20 40 40
F3 14 0 80 6

Thunder Software was run, using these allocation inputs
for 15 days war, the results are:

Table 5: Thunder output values based on the best possible
allocation

Method Territory
lost

Red
strategic
targets
killed

red
armor
killed

blue
aircraft
lost

F1 87.1 482 1796 144
F2 96.3 500 2061 136
F3 108.9 491 2060 135

The fitness values have been plotted for all the three-
fitness functions and are shown in figure 5. It is seen that
after 20 generations, most of the learning is achieved in all
the three cases. After 40 generations again the learning
curve rises for fitness function F1, whereas it increases for
fitness function F2 after 50 generations. But in the case of
fitness function F3 the learning is achieved in 10
generations. It is evident that the learning curve for the GA
is not very smooth and has steps, which means that GA
often stagnates at some points for few generations until it
finds better solution, and when it finds the better solution, it
moves over. In order to remove the steps in the learning
curve or to optimize the step length so that we get smoother
curve, we need to optimize the parameters in the genetic
algorithm. This will improve the performance of the
existing genetic algorithms.

The genetic algorithm was then used with random seed
and the results are shown in the figure 5. The fitness
function F3 was not used with random seed because its
fitness performance is low when compared to other two
fitness functions, according to the following performance
analysis. The maximum and minimum values of F1, F2 and
F3 functions are 12-16, 4-16, and 4-30, respectively. In
order to compare performance of these fitness functions,
their fitness values were scaled based on the ranges of the
maximum and minimum. Based on this analysis, table 3 can
be rewritten in table 6. Only the fitness functions F1 and F2

were used with random seed and we find that the fitness
value has decreased for the same 50 generations because of
the randomness in the system. However the genetic
algorithm required more number of generations to achieve
same results. Figure 5 shows the plot of various fitness
functions with and without the random seed. In this plot, we
clearly see the difference in the value of fitness for the same
fitness function. Fitness_4 and fitness_5 are slightly less
than fitness_1 and fitness_2, respectively. This shows that
the GA has to put more efforts to achieve same results as it
is trying hard to figure out the randomness in the system.
Tables 7 and 8 show the best possible allocations and their
corresponding THUNDER output values.

Table 6:Performance analysis
Method Performance values

F1 14.033*0.87*0.53=6.51
F2 11.893*0.75=8.91
F3 15.502*0.25=3.87

Table 7: Optimum input allocations using various fitness
functions with random seed

Method OCA INT DSEAD STI
F1 20 7 53 20
F2 60 13 7 20

Table 8: Thunder output values based on the best possible
allocation with random seed

Method Territory
lost

Red
strategic
targets killed

Red
armor
killed

Blue
aircraft lost

F1 137.1 452.3 1948 168.7
F2 123.3 548.7 1885 152.7

10987654321

117

112

107

102

Index

TE
RR

LO
S

T

Figure 2. The blue side territory lost for changed
random seeds.

Actual

Fits

Actual

Fits

109876543210

0

-5

-10

C
5

Time

Yt = -5.99333 + 0.826667*t

MSD:
MAD:
MAPE:

 8.124
 2.347

131.323

Differences in territory lost
Linear Trend Model

Figure 3. Trend analysis for differences in territory lost

Setting of GA Parameters

Genetic algorithms work very efficiently, when good
values for parameters such as mutation rate, crossover rate
and population size, is chosen. There will be a wide range of
parameters, which produce GA performance, not
significantly different from the best possible performance. It
is very beneficial, when these parameters are set optimally,
because the GA will yield better or similar fitness values, in
comparatively lesser number of generations. It is generally
recognized that most GAs are fairly robust to the settings of
crossover rates and mutation rates.

 De Jong [7] has investigated the effect of varying the
GA paramaters over a range of problems, who comes to the

conclusion that a rule of thumb is that, the crossover rate
should be 0.6, and the mutation rate should be 0.005.
Setting of these GA parameters optimally would also yield a
smooth fitness convergence. In this work, one of these
three parameters was varied, while the others were kept
constant and their effects are shown in the corresponding
figures. By setting these parameters optimally we find a
considerable improvement in the performance of the GA.

Mutation Rate

In order to see the effect of mutation rate on the fitness
values of the GA, the crossover rate was set to 0.7. The
mutation rate was then varied between 0.001 to as high as
0.1.The figure 6, shows the settling values of the fitness
function for various mutation rates.

Despite the fact that mutation is often regarded as a
secondary operator to crossover, it can be seen here that it
can produce high rates of learning, if the mutation rate is
right. It can be observed that, when the mutation rate is
very high such as (0.1) the GA has a faster learning rate in
the earlier stage, but it settles down at a lower fitness value
indicating that we could have got a better optimum. When
the mutation rate is very low such as 0.001, the learning rate
itself is very slow and this could be computationally very
expensive. It is seen from the figures 1-2, that a mutation
rate of 0.1 gives fairly good results. Thus we can conclude
that, when the mutation rate is too low then the learning rate
is poor, and when the mutation rate is too high, the
probability of disruption is also high and the fitness function
would settle at a lower value. An intermediate value
however gives a high learning rate and better performance
for this problem, when crossover is fixed. Using a value of
0.02 gives a good learning rate and better fitness value, so
this value was used as a standard through out for further
analysis.

Crossover Rate

In order to see the effect of crossover rate on the fitness
values of the GA, the mutation rate was set to 0.2 (which
was considered to be ideal). The crossover rate was then
varied between 0.1 and to as high as 0.9.The figure 7, shows
the settling values of the fitness function for various
crossover rates.

It can be seen from Figure 7, that a value of 0.6–0.7
seem to be a good choice for this application. When the
crossover rate is set to low values like (0.1 or 0.3), the
learning rate is faster in the initial stages, but it eventually
settles down at a lower fitness value. When the crossover
rate is set to a high value of 0.9, the GA settles down in a
lower fitness value, indicating that too high or too low the
crossover rate will not yield optimal results. When the
crossover rate of 0.6 or 0.7 is used, the GA yields good
response and settles in a higher fitness value, in less number

987654321

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0

A
ut

oc
or

re
la

tio
n

LBQtCorrLagLBQtCorrLag

5.14
5.08

4.86
4.12
3.17
3.00
0.97
0.61
0.50

 0.06
 0.16

-0.36
-0.49
-0.23
-0.95
-0.44
 0.26
 0.61

 0.02
 0.06

-0.14
-0.18
-0.08
-0.32
-0.14
 0.08
 0.19

9
8

7
6
5
4
3
2
1

Autocorrelation in territory lost

Figure 4. Autocorrelation in territory lost

5040302010

14

13

12

11

10

Number of generations

F
itn

es
s

va
lu

es

Fitness_1

Fitness_2

Fitness_3

Fitness_4

Figure 5. Comparison of fitness values with and without the
random seed for the various fitness functions.

of generations. The crossover rate was thus set to 0.7 for
further analysis, as this gives higher fitness value when
compared to other values.

Population Size

Population is defined as an array of individual solutions.
Thus the size of the population is another important
parameter that is to be considered for the success of the GA.
If the population size is too small, then an insufficient
number of samples are sampled and would not yield in the
best possible solution. If the population size is too large, the
algorithm becomes inefficient as more number of tests is
performed than necessary for each generation.

To see the effect of the population size the crossover rate
(0.7) and mutation rate (0.2) remains constant. The number
of generation was set to be 50. As seen from the figure 8,
population size of 50 yields a lower fitness value and when
the population size was (100,150 and 200), we notice that

they all settle at the same function value except that larger
the population size the learning rate is faster but efficiency
is lost. So an optimal solution considered was a population
size of 100.

 It can be seen from these figures that an intermediate
value for the population size gives an increase in efficiency
and a higher converged score for the same number of
generations. Thus the best possible setting was considered
to be 100.

CONCLUSION

 The solution for this multiobjective optimization
problem was proposed and developed using GA. A search
procedure using the GA was used to provide an optimal or
near optimal solutions for this problem. Three different
methods for fitness evaluation were tested and the best one
was chosen. Autocorrelation techniques were used in order
to reduce the number of THUNDER runs and optimize the
time consumed. The parameters for the GA were carefully
set, by performing a number of trial runs. This increased the
efficiency and performance of the GA. But, it can be
concluded that, starting the GA with a relatively lower value
for crossover and higher value for mutation rate, and then
increasing the value of the crossover and decreasing the
mutation rate towards the end of the run would yield better
results.

ACKNOWLEDGEMENT

 Funds for this research effort was provided by Boeing
Company. The authors would like to thank Boeing for its

10 20 30 40 50

10.4

10.9

11.4

Generations

F
itn

e
ss

 v
a

lu
e

s
fo

r
d

iff
e

re
nt

 c
ro

ss
o

ve
r

ra
te

s

oo crossover rate=0.1
++ crossover rate=0.3
xx crossover rate=0.6
** crossover rate=0.9

Figure 7. Fitness values for different crossover rates

10 20 30 40 50

10.4

10.9

11.4

Generations

F
itn

es
s

va
lu

e
s

fo
r d

iff
e

re
nt

 m
ut

at
io

n
ra

te
s

oo mutation rate=0.001
++ mutation rate=0.01
xx mutation rate=0.1

Figure 6. Fitness values for different mutation rates

10 20 30 40 50

10.2

10.7

11.2

11.7

Generations

F
itn

es
s

va
lu

es
 fo

r d
iff

er
en

t p
op

ul
at

io
n

si
ze

s

oo population size=50
++ population size= 150
xx population size=200

Figure 8. Fitness values for different population size

constant support of this research and all previously funded
research efforts. The authors would also like to thank the
Air Force for providing an unclassified version of
THUNDER software.

REFERENCES

[1] L. Altenberg. The Schema Theorem and Price’s
Theorem. In Foundations of Genetic Algorithms
3, San Francisco, California, USA: Morgan
Kaufmann Publishers, 1995.

[2] Brindle, A., “Genetic Algorithms for Function
Optimization,” Ph.D. Dissertation, University of
Alberta, 1981.

[3] Bethke, A. D., “Genetic Algorithms as Function
Optimizers,” Ph.D. Dissertation, University of
Michigan, Ann Arbor, 1981.

[4] B.L. Miller and D.E. Goldberg. Genetic
Algorithms, Selection Schemes and the Varying
Effect of Noise. IlliGAL report No. 95009. 1995.

[5] Davis, L,. Handbook of Genetic Algorithms. Van
Nostrand Reinhold (New York), 1991.

[6] Davis, L, “Genetic Algorithms and Simulated
Annealing,” Morgan Kaufmann, San Francisco,
1987.

[7] De Jong, K. A., “Analysis of The Behavior of a
Class Of Genetic Adaptive Systems,” Ph.D.
Dissertation, University of Michigan, Ann Arbor,
1975.

[8] De Jong, K. A., “Genetic Algorithms: A 10 Year
Perspective,” Proc. Int. Conf. On Genetic
Algorithms, 1985.

[9] D.E Goldberg., “Genetic Algorithms in search,
optimization, and machine learning,” Addison-
Wesley, 1989.

[10] D.E. Goldberg. A comparative analysis of
selection schemes used in genetic algorithms. In
Gregory Rawlins, editor, Foundations of Genetic
Algorithms, San Mateo, CA: Morgan Kaufmann
Publishers. 1991.

[11] D.E. Goldberg and Segrest,P.;”Finite Markov Chain
Analysis of Genetic Algorithms”; Proc.2nd Conf. On
Genetic Algorithms, pp.1-8, 1987.

[12] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press (Ann
Arbor), 1975.

[13] J.H. Holland, “Genetic Algorithms and Classifier
Systems: Foundations and Future Directions,” Proc.
2nd Int. Conf. On Genetic Algorithms, pp. 82-89,
1987.

[14] Hillol Kargupta & David E.Goldberg, “Black box
Optimization: Implications of SEARCH”,
University of Illinois, Urbana-Champaign, 1995.

[15] Schaffer, J. D., “Some Experiments In Machine
Learning Using Vector Evaluated Genetic
Algorithms,” Ph.D. Dissertation, Vanderbilt
University, 1984.

[16] Schoen F.” stochastic techniques for global
optimization: a survey of recent advances.” Journal
of global optimization, 1991.

[17] Smith, S. F., “A Learning System Based On
Genetic Adaptive Algorithms,” Ph.D. Dissertation,
University Of Pittsburgh, 1980.

[18] Spears,W. M.; “Crossover or mutation?”,
Foundations of Genetic Algorithms 2, Ed.
Whitley,D., Morgan Kaufmann,1993.

[19] Singiresu S.Rao, “Engineering Optimization -
Theory and Practice”, third edition, A Wisley –
Interscience publication, 1996.

[20] Torn A. & Zilinskas A. global optimization, Berlin:
Springer-Verlag, 1991.

[21] Yuhui Shi, Russell Eberhart &Yaboin
Chen,”Implementation of Evolutionary Fuzzy
Systems”, IEEE publication, 1999.

