
Multiobjective Genetic Programming: Reducing Bloat Using SPEA2
Stefan Bleuler, Martin Brack, Lothar Thiele and Eckart Zitzler
Computer Engineering and Communication Networks Lab (TIK)

Swiss Federal Institute of Technology (ETH)
Gloriastr. 35

CH–8092 Zürich
Switzerland

fsbleuler / mbrackg@ee.ethz.ch,fthiele / zitzlerg@tik.ee.ethz.ch

Abstract- This study investigates the use of multiobjec-
tive techniques in Genetic Programming (GP) in order to
evolve compact programs and to reduce the effects caused
by bloating. The proposed approach considers the pro-
gram size as a second, independent objective besides the
program functionality. In combination with a recent mul-
tiobjective evolutionary technique, SPEA2, this method
outperforms four other strategies to reduce bloat with re-
gard to both convergence speed and size of the produced
programs on a even-parity problem.

1 Introduction

The tendency of tree sizes to grow rapidly during a Ge-
netic Programming (GP) run is well known [Koz92, SF99,
BFKN98, BT94]. There are several reasons why it is useful
to take some measures against this phenomenon ofbloating:

� The excessive use of CPU time and memory.

� Smaller solutions generalize the training data better
than bigger ones [BFKN98].

� When tree sizes start to grow rapidly a GP run almost
always stagnates. The fitness of the population is not
improving anymore [BFKN98].

For these reasons normally at least an upper limit for the
program size is set manually. Several other strategies have
been developed to address the problem of bloating, which can
roughly be divided into two classes:

� Methods that modify the program structure and/or the
genetic operators in order to remove or reduce the fac-
tors that cause bloat. Some examples are: Automati-
cally Defined Functions (ADF) [Koz94], Explicitly De-
fined Introns (EDI) [BFKN98] and Deleting Crossover
[Bli96].

� Techniques that incorporate the program size as an
additional, but hidden objective, e.g., as a constraint
(size limitation), as a penalty term (Parsimony Pressure
[SF99]), etc.

Combinations of different approaches are possible. Neverthe-
less, both types have certain disadvantages. For methods of

the first class usually knowledge on how the program struc-
ture and the genetic operators interact with the effect of bloat-
ing is required. A difficulty with the second class of meth-
ods is to optimally set the parameters associated with them,
e.g., choosing an appropriate parsimony factor when applying
Constant Parsimony Pressure [SF99].

With multiobjective optimization algorithms it is possible
to optimize towards several objectives at the same time by
searching the so-called Pareto-optimal solutions. There are
only a few studies which perform a multiobjective optimiza-
tion in the context of GP. For instance, in [Lan96] data struc-
tures were evolved by treating the different operations of a
list problem as separate objectives. In contrast to these stud-
ies, we here pursue the idea of reducing bloat by introducing
the program size as a second, independent objective besides
the program functionality. As we will show in the remain-
der of the paper, this approach in combination with a particu-
lar multiobjective optimization algorithm, SPEA2, is ableto
find more compact programs in fewer generations than ex-
isting approaches of this class (explicit incorporation ofthe
program size) such as Parsimony Pressure on the even-parity
problem.

This paper is organized as follows. Some background in-
formation about bloating and existing methods used to reduce
bloating is given in the Section 2. Afterwards, we discuss the
motivation for our approach and present some arguments why
this approach is promising. The multiobjective optimization
procedure, SPEA2, which forms the basis for our investiga-
tion is briefly sketched in Section 4, and Section 5 describes
the experiments results where SPEA2 is compared with four
other methods to reduce code growth. Finally, our conclu-
sions and potential future research directions are the subject
of Section 6.

2 Related Work

Several studies have examined possible reasons for bloating
[LP97, BT94, BFKN98]. The increase in code size is an
effect of so-calledintrons, parts of the tree that do not affect
the individual’s functionality. Towards the end of a GP
run introns grow rapidly and comprise almost all of the
code while the optimization process stagnates (no fitness
improvement anymore) [BFKN98]. Thus, the question is
why evolution favors programs with large section of non-
functional code over smaller solutions. One explanation is

that GP crossover is inhomologous, i.e., it does not exchange
code fragments that have the same functionality in both
parents. Therefore crossover most often reduces the fitnessof
offspring relative to their parents by disrupting valuablecode
segments or placing them in a different context. Because
crossover points are chosen randomly within an individual
the risk of disrupting blocks of functional code can be
reduced substantially by adding introns.

To hinder this effect from using too much machine re-
sources normally a limit on tree depth or number of nodes
is set manually. However, setting a reasonable limit is diffi-
cult. If the limit is too low, GP might not be able to find a
solution. If it is too high evolution will slow down because of
the immense resource usage and chances of finding small so-
lutions are very low. In the following this setup will be named
Standard GP. Here, the fitnessF

i

of individuali is defined as
the errorE

i

of an individual’s output compared to the correct
solution.

F

i

= E

i

Another obvious mechanism for limiting code size is to
penalize larger programs by adding a size dependent term
to their fitness. This is calledConstant Parsimony Pressure
[Bli96, SF99]. The fitness of an individuali is calculated by
adding the number of edgesN

i

, weighted with a parsimony
factor�, to the regular fitness:

F

i

= E

i

+ � �N

i

Soule and Foster [SF99] report that in some runs Parsimony
Pressure drives the entire population to the minimal possible
size. With a higher parsimony pressure the probability of a
run to suffer from this effect is increasing. This results ina
lower probability of finding good solutions.

Another alternative is to optimize the functionality first
and the size afterwards [KM99]. The formula for the fitness
of an individuali depends on its own performance. It is nec-
essary to set a maximal acceptable error�. For discrete prob-
lems� can be set to zero. The population is divided into two
groups:

1. The individuals that have not yet reached an error equal
to or smaller than�, get a fitness according to their error
E

i

without any pressure on the size:

F

i

= E

i

+ 1 if E
i

> �

2. The fitness of an individual has reached an error that is
equal to or smaller than�. The new fitness is calculated
using the sizeN

i

of individual i:

F

i

= 1�

1

N

i

if E
i

� �

An individual with a large tree size will get a fitness
near one while a small one will be much closer to zero.

One advantage of this method is that pressure on size will not
hinder GP from finding good solutions because no pressure is
applied unless the individual has already reached the aspired
performance. In runs where no acceptable solution is found
bloating will continue. Therefore it is useful to additionally
set an upper limit on tree size. In the following we will call
this setupTwo Stageaccording to the two stages of fitness
evaluation.

Similar to this is a strategy calledAdaptive Parsimony
Pressure. Zhang and Mühlenbein have proposed an algo-
rithm that varies the parsimony factor� during the evolution
[ZM95]:

F

i

(g) = E

i

(g) + �(g) � C

i

(g)

C

i

(g) stands for the complexity of individuali at generation
g. The complexity can be defined in several ways [ZM95].
For instance as the number of nodes in a tree or as normal-
ized size by dividing the individual’s size by the maximum
size in population [Bli96]. In contrast to the Two Stage strat-
egy the fitness function does not depend on the individual’s
performance but on the best performance in the population at
generationg. The parsimony pressure used to calculate the
fitness in generationg is increased substantially if the best in-
dividual in the generationg � 1 has reached an error below
the threshold�.

�(g) =

(

1

T

2

�

E

best

(g�1)

^

C

best

(g)

if E
best

(g � 1) > �

1

T

2

�

1

E

best

(g�1)�

^

C

best

(g)

otherwise

E

best

is the error of the best performing individual in the pop-
ulation.T denotes the size of the training set.^C

best

(g) is an
estimation of the complexity of the best program, estimated
at generation(g � 1) it is used to normalize the influence of
the parsimony pressure.C

best

stands for the complexity of
the best performing individual in the population.

^

C

best

(g + 1) = C

best

(g) + �C

sum

(g)

with a recursively defined�C
sum

(g)

�C

sum

(g) =

1

2

(C

best

(g)� C

best

(g � 1) + �C

sum

(g � 1))

and the following starting value

�C

sum

(0) = 0:

The only parameter that has to be set manually is�. Blickle
[Bli96] has reported superior results compared to Constant
Parsimony Pressure when applying Adaptive Parsimony Pres-
sure to a continuous regression problem and equal results as
with Constant Parsimony Pressure when using it on a discrete
problem.

3 Multiobjective Optimization: Tree Size as a
Second Objective

Naturally, most optimization problems involve multiple, con-
flicting objectives which cannot be optimized simultaneously.

This type of problem is often tackled by transforming the op-
timization criteria into a single objective which is then op-
timized using an appropriate single-objective method. The
same is usually done when trying to address the phenomenon
of bloat in GP by modifying the fitness evaluation or the se-
lection process. Actually, there are two objectives: i) the
functionality of a program and ii) the code size. While the
second objective is traditionally converted into a constraint
by limiting the size of a program, controlling the code size by
adding a penalty term (Parsimony Pressure) corresponds to
weighted-sum aggregation. Ranking the objectives, i.e., op-
timizing the functionality first and the size afterwards (Two
Stage strategy), is slightly different, but still requiresthe in-
corporation of preference information as with the other tech-
niques.

Alternatively, there exist methods which treat all objec-
tives equally. Instead of restricting the searcha priori to one
solution as with the aforementioned strategies, they try tofind
or approximate the so-calledPareto-optimal setconsisting of
solutions which cannot be improved in one objective without
degradation in another. In the last decade several evolution-
ary algorithms (EAs) have been developed for this optimiza-
tion scenario, and some studies [ZT99, ZDT00] showed for
a number of test problems that this type can be superior to,
e.g., weighted-sum aggregation in terms of computational ef-
fort and quality of the solutions found (when an elitist EA is
used). This was the motivation for applying a multiobjective
EA to the problem of bloat in GP by considering program
functionality and program size as independent objectives.In
this approach, small, but functionally poor program can coex-
ist with large, but good (in terms of functionality) programs,
which in turn maintains population diversity during the entire
run. We will give evidence for our assumption that thereby
more compact programs can be found in fewer generations in
Section 5.

4 SPEA2 for Multiobjective Optimization

In this paper we use an improved version of the Strength
Pareto Evolutionary Algorithm (SPEA) for multiobjective
optimization proposed in [ZT99]. Besides the population
SPEA maintains an external set of individuals (archive) which
contains the nondominated solutions among all solutions con-
sidered so far. In each generation the external set is up-
dated and if necessary pruned by means of a clustering proce-
dure. Afterwards, individuals in population and external set
are evaluated interdependently, such that external set mem-
bers have better fitness values than the population members.
Finally, selection is performed on the union of population
and external set and recombination and mutation operators
are applied as usual. As SPEA has shown very good perfor-
mance in different comparative studies [ZT99, ZDT00], it has
been a point of reference in various recent investigations,e.g.,
[CKO00]. Furthermore, it has been used in different applica-
tions, e.g., [LMBoZ01].

2

1

4 3

2

3

identical fitness F > F

1

identical fitness F > F

identical fitness F > F

identical fitness F

f1

f2

Figure 1: Illustration of SPEA’s fitness assignment scheme in
the case of a highly discretized objective space. The white
points represent members of the external set while the gray
points stand for individuals in the population.

SPEA2, which incorporates a close-grained fitness assign-
ment strategy and an adjustable elitism scheme, is described
in [ZLT01]. The variant implemented here differs from the
original SPEA only in the fitness assignment. In SPEA the
fitness of an individual in the population depends on the
“strengths” of the individual’s dominators in the externalset,
but is independent of the number of solutions this individ-
ual dominates or is dominated by within the population. The
potential problem arising with this scheme is illustrated in
Figure 1. The Pareto-optimal front consists of only four solu-
tions and the second dimension is highly discretized (as it is
the case for the application considered in Section 5, cf. Fig-
ure 11). As a consequence, the population is divided into
four fitness classes, i.e., clusters which contain solutions hav-
ing the same fitness. Only the fitness values among clusters
vary, but not within the clusters. Thereby the selection pres-
sure towards the Pareto-optimal front is reduced substantially
and may slow down the evolution process.

To avoid this situation, with SPEA2 for each individual
both dominating and dominated solutions are taken into ac-
count. In detail, each individuali in the external setP and
the populationP is assigned a real valueS(i), its strength,
representing the number of solutions it dominates:

S(i) = jfj j j 2 P + P ^ i � jgj

wherej�j denotes the cardinality of a set,+ stands for multiset
union and the symbol� corresponds to the relation of weak
Pareto dominance1. The strength of an individual is greater or
equal one as each individual weakly dominates itself. Finally,
the fitnessF (i) of individuali is calculated on the basis of the
following formula:

F (i) =

X

j�i

S(j)

That is the fitness is determined by the strengths of its dom-
inators. Note again that each individual weakly dominates

1A solution weakly dominates another solution if and only if it is not
worse in any objective.

itself and thusF (i) � S(i). In contrast to SPEA, there is no
distinction between members of the external set and popula-
tion members.

It is important to note that fitness is to be minimized here,
i.e., low fitness values correspond to high reproduction prob-
abilities. The best fitness value is one, which means that an
individual is neither (weakly) dominated by any other indi-
vidual nor (weakly) dominates another individual. A low fit-
ness value is assigned to those individuals which

i) dominate only few individuals and

ii) are dominated by only few individuals (which in turn
dominate only few individuals).

Thereby, not only the search is guided towards the Pareto-
optimal front but also a niching mechanism is incorporated
which is based on the concept of Pareto dominance.

For details of the SPEA implementation we refer to
[Zit99]. The clustering procedure is not needed in this study
because the size of the external set is unrestricted due to the
small number of nondominated solutions emerging with the
considered test problem.

5 Experiments

We compared the following five methods: Standard GP, Con-
stant Parsimony, Adaptive Parsimony, Two Stage and SPEA2
by evolving even-parity functions of different arities.

5.1 Methodology

Theeven-parityfunction was chosen because it is commonly
used as a GP test problem [Koz92, SF99] and the complexity
(arity = number of inputs) can be easily adapted to either
the available machine resources or the performance of an
algorithm.

The Booleaneven-k-parity functionof k Boolean ar-
guments returnsTRUE if an even number of its Boolean
arguments areTRUE, and otherwise returnsNIL.

Parity functions are often used to check the accuracy of
stored or transmitted binary data in computers because a
change in the value of any one of its arguments toggles the
value of the function. Because of this sensitivity to its inputs,
the parity function is difficult to learn [Koz94]. The training
set consist of all2k possible input combinations. The error
of an individual is measured as the number of input cases for
which it did not provide the correct output value. A correct
solution to the even-k-parity function is found when the error
equals zero. We will call a run successful if it found at least
one correct solution. For each setup 100 runs have been per-
formed. Given values are therefore normally averaged over
100 runs. If not stated differently the even-5-parity problem
was used. Additionally in a few runs even-parity functions of
higher arities have been evolved.

5.2 Parameter Settings

After some test runs with Standard GP we decided to use a
population size of 4000 and maximum number of 200 gen-
erations, this setup performed best of all that have been used
by keeping the productGenerations � Popsize = 800000

constant. All runs were processed up to generation 200 also if
they found a correct program before generation 200. We set
the initial depth for newly created trees to 5 and, in addition,
restricted the maximum allowed depth of trees to 20, which
is by far enough to generate correct solutions. It is important
to note that only Standard GP and Two Stage runs (if no pres-
sure is executed because no correct solution has been found)
are affected by this limit. The other methods manage to keep
the tree size so small that no significant part of the population
reaches tree depths close to the limit.

The terminal set consists of all inputsd
0

; d

1

; :::; d

k�1

to
the even-k-parity function. No numerical constants have been
used. The function set consists of the following four Boolean
functionsfAND;OR; IF;NOTg. Note that using the same
function set withoutIF makes the task of evolving an even-
parity function considerably more difficult. Preliminary tests
for Constant Parsimony with different parsimony pressuresof
0.001, 0.01, 0.1 and 0.2 showed the best results for� = 0:01.
This value has been used in all following Constant Parsimony
runs.

For Adaptive Parsimony several settings from [Bli96] have
been used: The maximal acceptable error� was set to 0.02.
E

i

(g) was normalized with the maximal possible error. The
best error that can be achieved isE

i

(g) = 0. C

i

(g) was
defined as the sizeN

i

(g) of an individuali normalized with
the maximum size in populationN

max

(g). In order to be able
to use the formula given in Section 2 a constant = 0:01 was
added to the error measure.

Table 1 summarizes the parameters used for all runs (if not
stated differently).

Table 1: Global parameter setting.

Population size 4000
Generations 200
Maximum depth D

max

= 20

Maximum initial depth D

initial

= 5

Probability of crossover p

= 0:9

Probability of mutation p

m

= 0:1

Tournamentsize T = 7

Reproduction method Tournament
Function set fAND;OR; IF;NOTg

Terminal set d

0

; d

1

; :::; d

k�1

Constant Parsimony Pressure � = 0:01

Threshold (for Adaptive Pars.) � = 0:02

5.3 Results

As expected all methods have been able to find correct solu-
tions in most of the 100 runs. Table 2 shows the percentage
of successful runs, i.e., runs that found at least one correct
solution within 200 generations. Two Stage and Standard GP
have the same probability of solving the test problem since
the fitness function is the same for both unless the concerned
individual in Two Stage already represents a correct solution.

Table 2: Results compared for Standard GP, Two Stage, Con-
stant Parsimony, Adaptive Parsimony and SPEA2.

Method Success Smallest Mean Largest
Rate Av. Av. Av.
[%] Size Size Size

Standard GP 84 324.0 643.2 1701.8
Constant Pars. 100 26.2 52.3 106.9
Adaptive Pars. 99 23.0 87.1 714.9
Two Stage 84 25.7 170.1 867.6
SPEA2 99 16.8 21.7 37.1

More information about how fast a method finds correct
solutions can be shown by calculating the probability of a
run to find a correct solution within the firstk generations.
It is attained by adding up the number of runs out of a to-
tal of 100 that have found a correct solution by generation
k. This probability is shown in Figure 2. Interesting is, that
all methods have found correct solutions before generation
20 in some runs. For all methods the probability of finding
the first correct solution in the second half of the run is low.
Increasing the arity of the even-parity function from 5 to 7
makes the problem much harder to solve. With even-7-parity
function Standard GP did not produce one correct solution
within 31 runs of 200 generations each. Parsimony was suc-
cessful in 10 and SPEA2 in 22 out of 31 runs. This shows that
keeping smaller trees in the population not only reduces the
computational effort but also improves chances of solving the
problem. For the even-9-parity function SPEA2 was success-
ful within 500 generations in 17 out of 31 runs and Constant
Parsimony in 4 out of 31. If Constant Parsimony would ben-
efit from setting another� for a higher arity is unclear. As
with SPEA2 we wanted see the performance on a higher arity
without any parameter change.

One of the main goals of reducing bloat is to keep the av-
erage tree size small in order to lower the computational ef-
fort required. Figure 3 shows the mean of average tree sizes
in population for 100 runs relative to the generation. Stan-
dard GP shows a rapid increase of average size until a signif-
icant part of the population reaches the maximum tree depth
at about generation 20. From this point on, the increase of
size is getting slower. This is clearly an effect of limitingthe
tree depth. Out of ten runs where the tree depth was unlim-
ited none showed this saturation pattern. In contrary tree size
grew faster and faster reaching an average size of 9764 edges
(average over 10 runs).

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

P
er

ce
nt

 o
f S

uc
ce

ss
es

SPEA2
Constant Parsimony
Adaptive Parsimony
Standard GP & Two Stage

Figure 2: Comparison of the success rates for the different
methods relative to the generations. 100% means that all of
the 100 runs found a solution before or in this generation.

All of the other methods show a common behavior. After
reaching a maximum between generation 20 and 30 the aver-
age size is reduced and stabilizes. Around the time when the
average size reaches a maximum the average error reaches
a minimum. We assume that it is the general behavior of
algorithms that somehow favor small solutions, at least for
discrete problems. An improvement in functionality is first
achieved by a large individual and is followed by smaller pro-
grams with the same error. At the beginning of a run when the
average error is high it is easy for evolution to improve func-
tionality and the reduction of the average error is fast. The
reduction in size mainly takes place when a lot of individuals
have the same fitness. While fitness is changing fast this is
not the case. Parsimony pressure with an� of 0.01 for exam-
ple mainly distinguishes between programs of equal perfor-
mance. A individual may be 100 nodes larger than another
and compensate this with only classifying one additional test
case correctly. Further investigations would be needed to jus-
tify the abovementioned assumption.

Of more practical relevance is the fact that although the
average size development shows a similar pattern for Two
Stage, Constant Parsimony, Adaptive Parsimony and SPEA2
the absolute values differ very much. As can be seen in Fig-
ure 3 SPEA2 has by far the smallest average size throughout
the whole run. In generation 200 the average number of edges
is down to 21.7, this is less than half of the second smallest
average size which was attained by Constant Parsimony. An-
other important aspect is the range between the highest and
lowest final average size within all runs for one method. Ta-
ble 2 lists the highest and the lowest final average size that
occurred in 100 runs. For SPEA2 the final average sizes vary
only very little. On the other extreme is Two Stage. Some of
the Two Stage runs never found a correct solution and there-
fore never experienced any pressure on tree size. These runs
are exactly like Standard GP runs. Adaptive Parsimony per-

formed considerably worse than Constant Parsimony and its
final average sizes fell into a large range. We have not been
able to get the good results reported in [Bli96] where equal
performance of Adaptive Parsimony and Constant Parsimony
has been found for a discrete problem .

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Generation

S
iz

e
(#

 o
f e

dg
es

)

SPEA2
Constant Parsimony
Adaptive Parsimony
Standard GP
Two Stage

Figure 3: Average tree size, mean of 100 runs per method

The second main goal when using methods against bloat
is to retrieve compact solutions. The question is whether
methods that keep the average tree size in the population low
also produce small correct solutions. Figures 4 to 8 show a
bar for each run. The height of the bar corresponds to the
size of the smallest correct solution that was found during
the whole run. If no correct solution was found there is no
corresponding bar. For calculating the mean and median
value only successful runs have been taken into account. It is
shown that methods with low average tree sizes like SPEA2
and Constant Parsimony were not only able to produce
correct solutions but also found more compact solutions
than methods with a larger average tree size. The average
size of the smallest solutions for SPEA2 is 21.1 which is
close to the minimal possible tree size (17) for a solution
to the even-5-parity function using the given function set.
This ideal solution was found in 22 runs. Every successful
run found compact solutions as even the worst run found
a solution of size 38. Although Constant Parsimony has
a high probability of finding correct solutions within 200
generations, the size of the smallest solutions varies in a
wide range. Once again the results of Adaptive Parsimony
are worse than those of Constant Parsimony. Especially the
range of the sizes of the smallest solutions is larger with
Adaptive Parsimony Pressure.

Some insight in why SPEA2 is more successful than Con-
stant Parsimony can be gained by looking at the distribution
of the population in the (size, error)-plane. Figures 9 to 12
show the distribution of the population at generation 30 and
200 both for one representative SPEA2 run and one Constant
Parsimony run. Each dot in the diagram represents one indi-

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Runs

S
iz

e
(#

 o
f e

dg
es

)

Mean = 219.0
Median = 204.5

Figure 4: Standard GP, size of the smallest correct solution.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Runs

S
iz

e
(#

 o
f e

dg
es

)

Mean = 37.5
Median = 32

Figure 5: Constant Pars., size of the smallest correct solution.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Runs

S
iz

e
(#

 o
f e

dg
es

)

Mean = 49.9
Median = 43.5

Figure 6: Two Stage, size of the smallest correct solution.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Runs

S
iz

e
(#

 o
f e

dg
es

)
← 252 edges

← 336 edges← 195 edges

Mean = 53.7
Median = 44

Figure 7: Adaptive Pars., size of the smallest correct solution.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Runs

S
iz

e
(#

 o
f e

dg
es

)

Mean = 21.1
Median = 20

Figure 8: SPEA2, size of the smallest correct solution.

vidual. The two runs for SPEA2 and Constant Parsimony
have been started with the same initial population. While
SPEA2 keeps a set of small individuals with different errors
in the population during the whole run, Constant Parsimony
moves the entire population towards lower errors and larger
sizes. Around generation 30, when the average size reaches a
maximum and the average error a minimum value, parsimony
pressure becomes effective and the population is moved back
towards smaller sizes. The only small programs that are con-
stantly kept in the population have an error of 16. Into this
category also falls the smallest possible program that results
from returning one input to the output. It is possible that in
the variety of small trees that can be found in SPEA2 popu-
lations at all stages of the evolution good building blocks for
correct solutions are present.

6 Conclusions

We have suggested the use of multiobjective optimization for
evolving compact GP programs by introducing the program
size as a second, independent objective. We have compared
a recent multiobjective optimization technique, SPEA2 (an
improved version of the Strength Pareto Evolutionary Algo-
rithm), to four other approaches to reduce bloat in GP: Stan-
dard GP with tree depth limitation, Constant Parsimony Pres-
sure, Adaptive Parsimony Pressure, and a ranking method
(Two Stage) where functionality is optimized first and pro-
gram size afterwards.

Comparing SPEA2 to the alternative methods we found
that:

� It keeps the average tree size lower than any of the other
methods.

� It evolves much more compact solutions than all the
other methods.

� It is slightly faster in finding solutions than any other
of the tested methods.

� Among the other methods Constant Parsimony per-
forms best.

� SPEA2 is well adaptable to problems of different arities
without changing any parameters.

� Adaptive Parsimony seems not to be well suited to dis-
crete problems.

We conclude that a Pareto-based multiobjective approach
is a promising way of reducing bloat in GP. It is probable
that also other Pareto-based multiobjective optimizational-
gorithms would have the observed effects.

Our next steps will focus on investigating this issue on dif-
ferent, discrete and continuous problems further. Moreover,
comparisons with other methods like explicitly defined in-
trons (EDI) or automatically defined functions (ADF) would
be interesting. Combining multiobjective optimization with
these techniques might be another promising direction for fu-
ture research.

Bibliography
[BFKN98] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and

Peter Nordin.Genetic Programming: An Introduction. Morgan
Kaufmann, San Francisco, CA, 1998.

[Bli96] Tobias Blickle. Evolving compact solutions in genetic pro-
gramming: A case study. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors,PPSN IV, pages
564–573. Springer-Verlag, 1996.

[BT94] Tobias Blickle and Lothar Thiele. Genetic programming and
redundancy. In J. Hopf, editor,Genetic Algorithms within the
Framework of Evolutionary Computation (Workshop at KI-94,
Saarbrücken), pages 33–38, 1994.

[CKO00] D. W. Corne, J. D. Knowles, and M. J. Oates. The pareto
envelope-based selection algorithm for multiobjective optimi-
sation. In Marc Schoenauer et al., editor,PPSN VI, pages 839–
848, Berlin, 2000. Springer.

0 50 100 150 200 250
0

5

10

15

20

25

30

Size(# of edges)

E
rr

or

Figure 9: SPEA2 population at generation 30.

0 50 100 150 200 250
0

5

10

15

20

25

30

Size(# of edges)

E
rr

or

Figure 10: Constant Parsimony population at generation 30.

0 50 100 150 200 250
0

5

10

15

20

25

30

Size(# of edges)

E
rr

or

Figure 11: SPEA2 population at generation 200.

0 50 100 150 200 250
0

5

10

15

20

25

30

Size(# of edges)

E
rr

or

Figure 12: Constant Parsimony population at generation 200.

[KM99] T. Kalganova and J. F. Miller. Evolving more efficientdig-
ital circuits by allowing circuit layout evolution and multi-
objective fitness. In A.Stoica, D. Keymeulen, and J. Lohn,
editors,Proceedings of the 1st NASA/DoD Workshop on Evolv-
able Hardware (EH’99), pages 54–63, Piscataway, NJ, 1999,
1999. IEEE Computer Society Press.

[Koz92] John R. Koza.Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cam-
bridge, Massachusetts, 1992.

[Koz94] John R. Koza.Genetic Programming II: Automatic Discovery
of Reusable Programs. MIT Press, Cambridge, Massachusetts,
1994.

[Lan96] William B. Langdon. Data structures and genetic program-
ming. InAdvances in Genetic Programming, volume 2, chap-
ter 20, pages 395–414. MIT Press, 1996.

[LMBoZ01] Michael Lahanas, Natasa Milickovic, Dimos Baltas, and Nik
olaos Zamboglou. Application of multiobjective evolutionary
algorithms for dose optimization problems in brachytherapy.
In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and
David W. Corne, editors,Proc. of the first int. conf. on evolu-
tionary multi-criterion optimization (EMO’01), volume 1993
of Lecture Notes in Computer Science, pages 575–588, Berlin,
2001. Springer-Verlag.

[LP97] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K.
Chawdhry, R. Roy, and R. K. Pant, editors,Soft Computing
in Engineering Design and Manufacturing, pages 13–22, Lon-
don, 1997. Springer-Verlag.

[SF99] Terence Soule and James A. Foster. Effects of code growth and
parsimony pressure on populations in genetic programming.
Evoluationary Computation, 6(4):293–309, 1999.

[ZDT00] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Compar-
ison of multiobjective evolutionary algorithms: Empirical re-
sults.Evolutionary Computation, 8(2):173–195, 2000.

[Zit99] Eckart Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. PhD thesis, ETH
Zurich, Switzerland, 1999. Shaker Verlag, Germany.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele.Spea2:
Improving the strength pareto evolutionary algorithm. Techni-
cal Report 103, Computer Engineering and Networks Labora-
tory (TIK), ETH Zurich, Switzerland, 2001.

[ZM95] Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accu-
racy and parsimony in genetic programming.Evoluationary
Computation, 3(1):17–38, 1995.

[ZT99] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the strength pareto
approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.

