Multiobjective Genetic Programming: Reducing Bloat Using SPEA?2

Stefan Bleuler, Martin Brack, Lothar Thiele and Eckart Zitzler
Computer Engineering and Communication Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)

Gloriastr. 35
CH-8092 Zirich
Switzerland
{sbleuler / mbrack@ee.ethz.chithiele / zitzlef @tik.ee.ethz.ch

Abstract- This study investigates the use of multiobjec-
tive techniquesin Genetic Programming (GP) in order to
evolve compact programsand to reducethe effects caused
by bloating. The proposed approach considers the pro-
gram size as a second, independent objective besides the
program functionality. In combination with a recent mul-
tiobjective evolutionary technique, SPEA2, this method
outperformsfour other strategiesto reduce bloat with re-
gard to both convergence speed and size of the produced
programson a even-parity problem.

1 Introduction

the first class usually knowledge on how the program struc-
ture and the genetic operators interact with the effectaditsl
ing is required. A difficulty with the second class of meth-
ods is to optimally set the parameters associated with them,
e.g., choosing an appropriate parsimony factor when apglyi
Constant Parsimony Pressure [SF99].

With multiobjective optimization algorithms it is possibl
to optimize towards several objectives at the same time by
searching the so-called Pareto-optimal solutions. Theze a
only a few studies which perform a multiobjective optimiza-
tion in the context of GP. For instance, in [Lan96] data struc
tures were evolved by treating the different operations of a
list problem as separate objectives. In contrast to thesk st

The tendency of tree sizes to grow rapidly during a Ge-es, we here pursue the idea of reducing bloat by introducing
netic Programming (GP) run is well known [Koz92, SF99, the program size as a second, independent objective besides
BFKN98, BT94]. There are several reasons why it is usefuthe program functionality. As we will show in the remain-

to take some measures against this phenomenbloafing

e The excessive use of CPU time and memory.

der of the paper, this approach in combination with a particu
lar multiobjective optimization algorithm, SPEAZ2, is alite
find more compact programs in fewer generations than ex-

e Smaller solutions generalize the training data betteriSting approaches of this class (explicit incorporatiortie

than bigger ones [BFKN93].

program size) such as Parsimony Pressure on the even-parity
problem.

e When tree sizes start to grow rapidly a GP run almost This paper is organized as follows. Some background in-
always stagnates. The fitness of the population is notormation about bloating and existing methods used to reduc

improving anymore [BFKN98].

bloating is given in the Section 2. Afterwards, we discuss th
motivation for our approach and present some arguments why

For these reasons normally at least an upper limit for thens approach is promising. The multiobjective optimiaati
program size is set manually. Several other strategies havgocedure, SPEA2, which forms the basis for our investiga-
been developed to address the problem of bloating, which cafy, is priefly sketched in Section 4, and Section 5 describes

roughly be divided into two classes:

e Methods that modify the program structure and/or th
genetic operators in order to remove or reduce the fa
tors that cause bloat. Some examples are: Automati*
cally Defined Functions (ADF) [Koz94], Explicitly De-

the experiments results where SPEA2 is compared with four
eother methods to reduce code growth. Finally, our conclu-
C§ions and potential future research directions are theestibj
.of Section 6.

fined Introns (EDI) [BFKN98] and Deleting Crossover 2 Related Work

[BIi96].

Several studies have examined possible reasons for kjoatin

e Techniques that incorporate the program size as afLP97, BT94, BFKN98]. The increase in code size is an
additional, but hidden objective, e.g., as a constraineffect of so-calledntrons parts of the tree that do not affect
(size limitation), as a penalty term (Parsimony Pressurghe individual’s functionality. Towards the end of a GP

[SF99)), etc.

Combinations of different approaches are possible. Negert

run introns grow rapidly and comprise almost all of the
code while the optimization process stagnates (no fitness
improvement anymore) [BFKN98]. Thus, the question is

less, both types have certain disadvantages. For methods \%y evolution favors programs with large section of non-

functional code over smaller solutions. One explanation is

that GP crossover is inhomologous, i.e., it does not exalangOne advantage of this method is that pressure on size will not
code fragments that have the same functionality in botthinder GP from finding good solutions because no pressure is
parents. Therefore crossover most often reduces the fisiess applied unless the individual has already reached theeaspir
offspring relative to their parents by disrupting valuabxdele performance. In runs where no acceptable solution is found
segments or placing them in a different context. Becauséloating will continue. Therefore it is useful to additidiya
crossover points are chosen randomly within an individuaket an upper limit on tree size. In the following we will call
the risk of disrupting blocks of functional code can bethis setupTwo Stageaccording to the two stages of fitness
reduced substantially by adding introns. evaluation.
Similar to this is a strategy calleddaptive Parsimony

To hinder this effect from using too much machine re-Pressure Zhang and Muhlenbein have proposed an algo-
sources normally a limit on tree depth or number of nodesithm that varies the parsimony factarduring the evolution
is set manually. However, setting a reasonable limit is-diffi [ZM95]:
cult. If the limit is too low, GP might not be able to find a Fi(9) = Ei(9) + a(g) - Ci(g)

solution. Ifitis too high evolution will slow down becaust o Ci(g) stands for the complexity of individualat generation

thg immense resource usage aqd Cha%”ces of fir_1ding small Sg?.z The complexity can be defined in several ways [ZM95].
lutions are very low. In the following this setup will be nadhe For instance as the number of nodes in a tree or as normal-
Standard GPHere, the fitnes$; of individual: is defined as ized size by dividing the individual’s size by the maximum

the errorE; of an individual’s output compared to the correct size in population [Bli96]. In contrast to the Two Stage stra

solution. egy the fitness function does not depend on the individual's
Fi=E; performance but on the best performance in the population at
Another obvious mechanism for limiting code size is to generatiory. The parsimony pressure used to calculate the
penalize larger programs by adding a size dependent terfiiness in generatiogis increased substantially if the best in-
to their fitness. This is calleG@onstant Parsimony Pressure dividual in the generatiop — 1 has reached an error below
[Bli96, SF99]. The fitness of an individuals calculated by the threshold.

adding the number of edge$;, weighted with a parsimony 1 Eyeai(g—1) .
: _ g peet o] if Epest(9—1) > €
factorq, to the regular fitness: alg) = Crest(9))
4 ————L_—— otherwise
Epest(9—1) Chest(9)

Fi = EZ' + - NZ'
Ey.s: is the error of the best performing indiv[dual in the pop-
Soule and Foster [SF99] report that in some runs Parsimonylation. 7" denotes the size of the training séb..; (g) is an
Pressure drives the entire population to the minimal péssib estimation of the complexity of the best program, estimated
size. With a higher parsimony pressure the probability of aat generatiorig — 1) it is used to normalize the influence of
run to suffer from this effect is increasing. This resultsain the parsimony pressur&ly.,; stands for the complexity of

lower probability of finding good solutions. the best performing individual in the population.
Another alternative is to optimize the functionality first N
and the size afterwards [KM99]. The formula for the fitness Crest (9 + 1) = Cest (9) + Alsum(g)

of an individual; depends on its own performance. Itis nec-ith a recursively definec\C ... (g)
essary to set a maximal acceptable eerdfor discrete prob-)
lemse can be set to zero. The population is divided into two 5 - 2(C C 1

sum — es - es - + AC’sum -1
groups. (9) = 5 (Crest(9) = Crese(g — 1) (9-1))

1. Theindividuals that have not yet reached an error equaﬁmd the following starting value
to or.smaller tham, get a fitness agcordmg to their error ACum (0) = 0.
E; without any pressure on the size:
The only parameter that has to be set manually iBlickle
F,=E+1 ifE;,>¢ [BIi96] has reported superior results compared to Constant
Parsimony Pressure when applying Adaptive Parsimony Pres-
2. The fitness of an individual has reached an error that i§ure to a continuous regression problem and equal results as
equal to or smaller than The new fitness is calculated With Constant Parsimony Pressure when using it on a discrete

using the sizéV; of individuali: problem.

Fi=1-g ifEi<e 3 Multiobjective Optimization: Tree Size as a
An individual with a large tree size will get a fitness Second Objective

near one while a small one will be much closer to Z€T0.\aturally, most optimization problems involve multiplere
flicting objectives which cannot be optimized simultandgpus

This type of problem is often tackled by transforming the op- f2
timization criteria into a single objective which is then-op
timized using an appropriate single-objective method. The
same is usually done when trying to address the phenomenon
of bloat in GP by modifying the fitness evaluation or the se-
lection process. Actually, there are two objectives: i) the
functionality of a program and ii) the code size. While the
second objective is traditionally converted into a coristra

by limiting the size of a program, controlling the code sige b

adding a penalty term (Parsimony Pressure) corresponds to
weighted-sum aggregation. Ranking the objectives, ig-., 0 1
timizing the functionality first and the size afterwards @w
Stage strategy), is slightly different, but still requites in- Figure 1: lllustration of SPEA's fithess assignment schame i

corporation of preference information as with the othehiec the case of a highly discretized objective space. The white

niques. points represent members of the external set while the gray
Alternatively, there exist methods which treat all objec- points stand for individuals in the population.

tives equally. Instead of restricting the seaecpriori to one
solution as with the aforementioned strategies, they tfintb o .) .
g ym SPEA2, which incorporates a close-grained fithess assign-

or approximate the so-calld®hreto-optimal setonsisting of ! " .)
: . . . L . ment strategy and an adjustable elitism scheme, is desdcribe
solutions which cannot be improved in one objective without,

degradation in another. In the last decade several evohlutio In [ZLTO1]. The variant implemented here differs from the

ary algorithms (EAs) have been developed for this optimiza-lfi)trggsl ;P;Air?gi%ér&;??nﬁiﬂiss:Sjl'gt?;]]eg; Iennc?spifl‘ mg
tion scenario, and some studies [ZT99, ZDT00] showed for, Y S , pop . P
strengths” of the individual's dominators in the extersat,

g nur\:wvl;?rh(z;;e_:iE}rgblerrgs;t?::‘ :Elfe:)rfseoﬁigrzejt:%g:g é%ut is independent of the number of solutions this individ-
9. Weld ggreg P ual dominates or is dominated by within the population. The

fort and quality of the solutions found (when an elitist EA is) s : : o .
used). This was the motivation for applying a multiobjeetiv pptenual problem arising with this SCh?me s illustrated i
EA to the problem of bloat in GP by considering program E|gure 1. The Pareto-optlmal froqt cqn5|sts .Of only fouuso! .
functionality and program size as independent objectilres. tions and the second' d'menS'on IS hlghly d|scr§t|zed (& 't. :
this approach, small, but functionally poor program carxeoe Lhree Clis)e f,g\;tgeciazgci[:aonncgo?ﬁ(ladez)eduigtiicit?gi\?i’ d(;f:j li:r:?o
ist with large, but good (in terms of functionality) program e €a ’ oD .

four fitness classes, i.e., clusters which contain solsti@av-

which in turn maintains population diversity during theiemt ing the same fitness. Only the fitness values among clusters
run. We will give evidence for our assumption that thereby 9 o y 9

. . vary, but not within the clusters. Thereby the selectiorspre
more compact programs can be found in fewer generations in : ; .
Section 5 sure towards the Pareto-optimal front is reduced subsifnti

' and may slow down the evolution process.
o L To avoid this situation, with SPEA2 for each individual

4 SPEA2 for Multiobjective Optimization both dominating and dominated solutions are taken into ac-

. . . count. In detail, each individualin the external seP and
In this paper we use an improved version of the Strength

Pareto Evolutionary Algorithm (SPEA) for multiobjective igerggzzﬁlotn:;Irsluz:sigrn;dsglL:Eg:q\ﬁtlufé?{":;st:gength’
optimization proposed in [ZT99]. Besides the population P g - '
SPEA maintains an external set of individuals (archive)olwhi S@E) =HjlieP+PAnirj}

contains the nondominated solutions among all solutions co where|.| denotes the cardinality of a setstands for multiset

zgjti:jegnzqff:er'cegns;ad; %i%egatﬁgat::ofgtg n:tlers'(ra]t 'Srgg]pion and the symbot corresponds to the relation of weak
! >ary pruned by . USTerng Procky et dominande The strength of an individual is greater or
dure. Afterwards, individuals in population and exterretl s

. equal one as each individual weakly dominates itself. Rinal
are evaluated interdependently, such that external set-me d y Bin

The fitness(i) of individuali is calculated on the basis of the
bers have better fithess values than the population member; (@) !

Finally, selection is performed on the union of populationl%ﬂowIng formula:

and external set and recombination and mutation operators F(i) = ZS(]‘)

are applied as usual. As SPEA has shown very good perfor- jei

mance in different comparative studies [ZT99, ZDT00], s ha That is the fitness is determined by the strengths of its dom-

been a point of referencg n varlousrecenynv.esngat_@s,. inators. Note again that each individual weakly dominates
[CKOOQ]. Furthermore, it has been used in different applica

tions, e.g., [LMB0Z01]. 1A solution weakly dominates another solution if and onlytifsi not
worse in any objective.

> identical fitness F >F

identical fitness [> F

= identical fitness F > F

identical fitness |

itself and thusF'(i) > S(¢). In contrast to SPEA, there is no 5.2 Parameter Settings

distinction between members of the external set and pOplJlalb_\fter some test runs with Standard GP we decided to use a

tion members. population size of 4000 and maximum number of 200 gen-

It is important to note that fitness is to be minimized here,” " ;
i.e., low fitness values correspond to high reproductiotpro erations, this setup performed best of all that have beeth use
e lﬁy keeping the produd¥enerations x Popsize = 800000

abilities. The best fitness value is one, which means that aconstant All runs were processed b to aeneration 200flso i
individual is neither (weakly) dominated by any other indi- ' P ptog

vidual nor (weakly) dominates another individual. A low fit- they f.o.und a correct program before generation .200' We set
ness value is assigned to those individuals which the ||j|t|al depth for. newly created trees to 5 and, in addmg
restricted the maximum allowed depth of trees to 20, which
i) dominate only few individuals and is by far enough to generate correct solutions. It is impurta
to note that only Standard GP and Two Stage runs (if no pres-
if) are dominated by only few individuals (which in turn syre is executed because no correct solution has been found)
dominate only few individuals). are affected by this limit. The other methods manage to keep

Thereby, not only the search is guided towards the Paretot-hetree size so small that no significant part of the popdati

optimal front but also a niching mechanism is incorporateJ ea?ﬂssiérrfnﬁ:;pstgfgmeisﬁ tgfe all'"”:'r: uls, d de s 1O
which is based on the concept of Pareto dominance. the even-k-parity function. No numerigal cbnls’tgl:ltskﬁ;\mbe
For details of the SPEA implementation we refer to parity '

. . : S used. The function set consists of the following four Boalea
[Zit99]. The clustering procedure is not needed in this ytud functions{ AN D, OR, IF, NOT}. Note that using the same

because the size of the external set is unrestricted dueto tl?unction set withoutT F makes the task of evolving an even-

small number of nondominated solutions emerging with the . . . o Y
considered test problem ging parity function considerably more difficult. Preliminassts

for Constant Parsimony with different parsimony pressaofes
. 0.001, 0.01, 0.1 and 0.2 showed the best results fer0.01.
S Experiments This value has been used in all following Constant Parsimony

N . runs.
We compared the following five methods: Standard GP, Con- For Adaptive Parsimony several settings from [Bli96] have

stant Parsimony, Adaptive Parsimony, Two Stage and SPEAgeen used: The maximal acceptable etroras set to 0.02.

by evolving even-parity functions of different arities. E;(g) was normalized with the maximal possible error. The
best error that can be achievedAs(g) = 0. C;(g) was
5.1 Methodology defined as the siz#/;(g) of an individuali normalized with
Theeven-parityfunction was chosen because it is commonlythe maximum size in populatiaN,,,...(g). In order to be able
used as a GP test problem [K0z92, SF99] and the complexitp use the formula given in Section 2 a constart 0.01 was
(arity = number of inputs) can be easily adapted to eithedded to the error measure.

the available machine resources or the performance of an Table 1 summarizes the parameters used for all runs (if not
algorithm. stated differently).

The Booleaneven-k-parity functionof k Boolean ar-

) . Table 1: Global parameter setting.
guments return§RUE if an even number of its Boolean able 1: Global parameter setting

arguments ar@RUE, and otherwise returndl L. Population size 2000
Generations 200

Parity functions are often used to check the accuracy af \aximum depth Dyyow = 20
stored or transmitted binary data in computers because |a8\jaximum initial depth Dinivial = 5
change in the value of any one of its arguments toggles the propability of crossover pe=0.9
value of the function. Because of this sensitivity to itsutg Probability of mutation Pm = 0.1
the parity function is difficult to learn [Koz94]. The trairg Tournamentsize T="7
set consist of alk* possible input combinations. The error Reproduction method Tournament
of an individual is measured as the number of input cases far g nction set {AND,OR,IF,NOT}
which it did not provide the correct output value. A correct| Terminal set do,dy, ey di 1
solution to the even-k-parity function is found when theoerr ~=qonstant Parsimony Pressureé a = 0.01
equals zero. We will call a run successful if it found at least Threshold (for Adaptive Pars)) e = 0.02

one correct solution. For each setup 100 runs have been per-
formed. Given values are therefore normally averaged over
100 runs. If not stated differently the even-5-parity peshl
was used. Additionally in a few runs even-parity functiofis o
higher arities have been evolved.

5.3 Results 100
90r

ffffffffffffffffff

As expected all methods have been able to find correct solu
tions in most of the 100 runs. Table 2 shows the percentag: sof
of successful runs, i.e., runs that found at least one correc
solution within 200 generations. Two Stage and Standard GF
have the same probability of solving the test problem since§
the fitness function is the same for both unless the concerne 50
individual in Two Stage already represents a correct smiulti

40r

Percent of

30r
Table 2: Results compared for Standard GP, Two Stage, Cor |
stant Parsimony, Adaptive Parsimony and SPEA2.

— SPEA2
—— Constant Parsimony

101 --- Adaptive Parsimony

Method Success Smallest Mean Largest o ‘ .., ., |- StndardGP&TwoStage |

Rate AV. AV. AV. 0 20 40 60 80 e n1(§)r(2m0nlzo 140 160 180 200

[%] Size Size Size .])
Standard GP 84 3240 6432 1701.8 Figure 2: Comparison of the success rates for the different
Constant Pars. 100 26.2 523 106.9 Methods relative to the generations. 100% means that all of
Adaptive Pars. 99 230 87.1 714.9 the 100 runs found a solution before or in this generation.
Two Stage 84 257 170.1 867.6
SPEA2 99 16.8 21.7 37.1

All of the other methods show a common behavior. After
reaching a maximum between generation 20 and 30 the aver-

More information about how fast a method finds correctage sjze is reduced and stabilizes. Around the time when the
solutions can be shown by calculating the probability of agyerage size reaches a maximum the average error reaches
run to find a correct solution within the firét generations. 3 minimum. We assume that it is the general behavior of
It is attained by adding up the number of runs out of a to-a|gorithms that somehow favor small solutions, at least for
tal of 100 that have found a correct solution by generationyiscrete problems. An improvement in functionality is first
k. This probability is shown in Figure 2. Interesting is, that achieved by a large individual and is followed by smaller-pro
all methods have found correct solutions before generatiograms with the same error. At the beginning of a run when the
20 in some runs. For all methods the probability of findingaverage error is high it is easy for evolution to improve func
the first correct solution in the second half of the run is |0W-tiona|ity and the reduction of the average error is fast. The
Increasing the arity of the even-parity function from 5 to 7 reduction in size mainly takes place when a lot of indivigual
makes the problem much harder to solve. With even-7-parithaye the same fitness. While fitness is changing fast this is
function Standard GP did not produce one correct solutiofy ot the case. Parsimony pressure withaof 0.01 for exam-
within 31 runs of 200 generations each. ParSimony was SU(b|e main]y distinguishes between programs of equa| perfor_
cessfulin 10 and SPEA2 in 22 out of 31 runs. This shows thaﬁqance_ A individual may be 100 nodes |arger than another
keeping smaller trees in the population not only reduces thgnd compensate this with only classifying one additionstl te
computational effort but also improves chances of soMieg t case correctly. Further investigations would be needeaito |
problem. For the even-9-parity function SPEA2 was successify the abovementioned assumption.
ful within 500 generations in 17 out of 31 runs and Constant Of more practica| relevance is the fact that a|though the
Parsimony in 4 out of 31. If Constant Parsimony would ben-ayerage size development shows a similar pattern for Two
efit from setting anothew for a higher arity is unclear. As stage, Constant Parsimony, Adaptive Parsimony and SPEA2
W|th SPEA2 we Wanted see the performance ona h|gher aritme abso'ute Va'ues differ Very much_ As can be seen in F|g_
without any parameter change. ure 3 SPEA2 has by far the smallest average size throughout

One of the main goals of reducing bloat is to keep the avthe whole run. In generation 200 the average number of edges
erage tree size small in order to lower the computational efys down to 21.7, this is less than half of the second smallest
fort required. Figure 3 shows the mean of average tree sizeg/erage size which was attained by Constant Parsimony. An-
in population for 100 runs relative to the generation. Stanyther important aspect is the range between the highest and
dard GP shows a rapid increase of average size until a signifowest final average size within all runs for one method. Ta-
icant part of the population reaches the maximum tree deptje 2 |ists the highest and the lowest final average size that
at about generation 20. From this point on, the increase o§ccurred in 100 runs. For SPEA2 the final average sizes vary
size is getting slower. This is clearly an effect of limitititee only very little. On the other extreme is Two Stage. Some of
tree depth. Out of ten runs where the tree depth was unlimne Two Stage runs never found a correct solution and there-
ited none showed this saturation pattern. In contrary i s fore never experienced any pressure on tree size. These runs

grew faster and faster reaching an average size of 9764 edggge exactly like Standard GP runs. Adaptive Parsimony per-
(average over 10 runs).

formed considerably worse than Constant Parsimony and its
final average sizes fell into a large range. We have not beel

700 T T
— Mean = 219.0

able to get the good results reported in [Bli96] where equal - - Median = 204.5
. . . 600 ¥
performance of Adaptive Parsimony and Constant Parsimon
has been found for a discrete problem . so0l I |
400 T T 2
— SPEA2 %400* 4
—— Constant Parsimony 2
3501 : - - - Adaptive Parsimony | 5
- - Standard GP "0 3001 1
N
300 ! Two Stage 3 7 1
/ 0o B e R e 4 e 5 B == R
‘@250 i 1 | I
2 LN 1001 b
NN U L A
& ! /’ \\
9 l’ ! \\ 0 H HH i i
»1507 [RN : k 10 20 30 40 50 60 70 80 90 100
i Runs
100 . . .
, Figure 4: Standard GP, size of the smallest correct solution
50()

0 i i i i i i i i i
0 20 40 60 80 100 120 140 160 180 200 90
Generation

Figure 3: Average tree size, mean of 100 runs per method]
701 - 4
The second main goal when using methods against bloa o
is to retrieve compact solutions. The question is whetherg]))
methods that keep the average tree size in the population Iov§50* I il 1
also produce small correct solutions. Figures 4 to 8 show a§4 | I I |
bar for each run. The height of the bar corresponds to the& [T] Q| 00000 OO0 O L B
size of the smallest correct solution that was found during 301 i I I
the whole run. If no correct solution was found there is no ! i I
corresponding bar. For calculating the mean and mediar
value only successful runs have been taken into accoust. Iti 1°
shown that methods with low average tree sizes like SPEA2
and Constant Parsimony were not only able to produce L
correct solutions but also found more compact solutions , ,
than methods with a larger average tree size. The averad:égure 5: Constant Pars., size of the smallest correctisalut
size of the smallest solutions for SPEA2 is 21.1 which is
close to the minimal possible tree size (17) for a solution
to the even-5-parity function using the given function set. 180 — s
This ideal solution was found in 22 runs. Every successful | I - - Median = 435
run found compact solutions as even the worst run founc
a solution of size 38. Although Constant Parsimony has 49)
a high probability of finding correct solutions within 200 5| i
generations, the size of the smallest solutions varies in ¢§ I
wide range. Once again the results of Adaptive Parsimonygloo’) i)
are worse than those of Constant Parsimony. Especially th g | [i I ,
range of the sizes of the smallest solutions is larger with &
Adaptive Parsimony Pressure. 60

oF - n - 4

40
Some insight in why SPEA2 is more successful than Con- A
stant Parsimony can be gained by looking at the distributior { w w { H
of the population in the (size, error)-plane. Figures 9 to 12 o A A e 0 70 80 90 100
show the distribution of the population at generation 30 and Runs
200 both for one representative SPEA2 run and one ConstantFigure 6: Two Stage, size of the smallest correct solution
Parsimony run. Each dot in the diagram represents one indi- ' '

T T
~ 336 edges
252 edges

T i
~ 195 edges
120f

1

100+ : g o . k |

@©
o
T
1

(o))
o
T
I

Size (# of edges)

IN
o
T

NI

10 20 30 40 50 60 70 80 90 100

40

w
o
T

w
o
T
I

N
a
T
i

Size (# of edges)
= = N
s_o S
T

o

10 20 30 40 50 60 70 80 90 100
Runs

Figure 8: SPEAZ2, size of the smallest correct solution.

6 Conclusions

We have suggested the use of multiobjective optimization fo
evolving compact GP programs by introducing the program
size as a second, independent objective. We have compared
a recent multiobjective optimization technique, SPEA2 (an
improved version of the Strength Pareto Evolutionary Algo-
rithm), to four other approaches to reduce bloat in GP: Stan-
dard GP with tree depth limitation, Constant Parsimony-Pres
sure, Adaptive Parsimony Pressure, and a ranking method
(Two Stage) where functionality is optimized first and pro-
gram size afterwards.

Comparing SPEA2 to the alternative methods we found
that:

o Itkeepsthe average tree size lower than any of the other
methods.

¢ It evolves much more compact solutions than all the
other methods.

e |t is slightly faster in finding solutions than any other
of the tested methods.

e Among the other methods Constant Parsimony per-
forms best.

e SPEA2is well adaptable to problems of different arities
without changing any parameters.

e Adaptive Parsimony seems not to be well suited to dis-
crete problems.

We conclude that a Pareto-based multiobjective approach
is a promising way of reducing bloat in GP. It is probable
that also other Pareto-based multiobjective optimizasibn
gorithms would have the observed effects.

Our next steps will focus on investigating this issue on dif-
ferent, discrete and continuous problems further. Morgove
comparisons with other methods like explicitly defined in-

vidual. The two runs for SPEA2 and Constant Parsimonytrons (EDI) or automatically defined functions (ADF) would
have been started with the same initial population. Whilebe interesting. Combining multiobjective optimizatiortfwi
SPEAZ2 keeps a set of small individuals with different errorsthese techniques might be another promising directiondfor f
in the population during the whole run, Constant Parsimonyure research.

moves the entire population towards lower errors and larger

sizes. Around generation 30, when the average size reache&ébnogr aphy

maximum and the average error a minimum value, parsimo
pressure becomes effective and the population is moved ba
towards smaller sizes. The only small programs that are con-
stantly kept in the population have an error of 16. Into this(gjige]
category also falls the smallest possible program thafteesu

from returning one input to the output. It is possible that in

the variety of small trees that can be found in SPEA2 popu-
lations at all stages of the evolution good building bloaks f

correct solutions are present.

n

i/lﬁFKNQS]

Wolfgang Banzhaf, Frank D. Francone, Robert E.l&land
Peter NordinGenetic Programming: An Introductioiviorgan
Kaufmann, San Francisco, CA, 1998.

Tobias Blickle. Evolving compact solutions in geiwepro-
gramming: A case study. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editdPfSN I\ pages
564-573. Springer-Verlag, 1996.

Tobias Blickle and Lothar Thiele. Genetic programmiand
redundancy. In J. Hopf, editoGenetic Algorithms within the
Framework of Evolutionary Computation (Workshop at KI-94,
Saarbriicken)pages 33-38, 1994.

D. W. Corne, J. D. Knowles, and M. J. Oates. The pareto
envelope-based selection algorithm for multiobjectivéirop
sation. In Marc Schoenauer et al., edi®PSN V] pages 839—
848, Berlin, 2000. Springer.

[BT94]

[CKOO0]

50 100 150 200
Size(# of edges)

Constant Parsimony population at generation 30.

301 1 301
25¢ 1 25¢
201 1 201
S S L
LTJ 15¢ 4 Lﬁ 15¢f
101 1 101
5 1 5
o 1 1 1 1 o
0 50 100 150 200 250 0
Size(# of edges)
Figure 9: SPEA2 population at generation 30. Figure 10:
30+ 1 30
25r 1 25¢
20¢ 1 20y
S S
LTJ 15- 4 Llj 15F
101 1 101
5r 1 5r
0 IR ‘ ‘ 0
0 50 100 150 200 250 0
Size(# of edges)
Figure 11: SPEA2 population at generation 200. Figure 12:
[KM99] T. Kalganova and J. F. Miller. Evolving more efficiedig- [LPO7]
ital circuits by allowing circuit layout evolution and miilt
objective fitness. In A.Stoica, D. Keymeulen, and J. Lohn,
editors,Proceedings of the 1st NASA/DoD Workshop on Evolv-
able Hardware (EH'99) pages 54—-63, Piscataway, NJ, 1999, [SF99]
1999. IEEE Computer Society Press.
[Koz92] John R. KozaGenetic Programming: On the Programming of
Computers by Means of Natural SelectioMIT Press, Cam- [ZDTO00]
bridge, Massachusetts, 1992.
[Koz94] John R. KozaGenetic Programming Il: Automatic Discovery)
of Reusable Program$/IT Press, Cambridge, Massachusetts, [Zit99]
1994.
[Lan96] William B. Langdon. Data structures and geneticgpam-
ming. InAdvances in Genetic Programmingplume 2, chap- [ZLTO1]
ter 20, pages 395-414. MIT Press, 1996.
[LMBoz01] Michael Lahanas, Natasa Milickovic, Dimos Bataand Nik
olaos Zamboglou. Application of multiobjective evolutag [ZM95]
algorithms for dose optimization problems in brachythgrap
In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and
David W. Corne, editorsProc. of the first int. conf. on evolu-
[2T99]

tionary multi-criterion optimization (EMO’01)volume 1993
of Lecture Notes in Computer Scienpages 575-588, Berlin,
2001. Springer-Verlag.

50 100 150 200
Size(# of edges)

250

Constant Parsimony population at generation 200

W. B. Langdon and R. Poli. Fitness causes bloat. In.P. K
Chawdhry, R. Roy, and R. K. Pant, editoSoft Computing

in Engineering Design and Manufacturingages 13-22, Lon-
don, 1997. Springer-Verlag.

Terence Soule and James A. Foster. Effects of codetlyend
parsimony pressure on populations in genetic programming.
Evoluationary Computatiqré(4):293-309, 1999.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thieleoi@par-
ison of multiobjective evolutionary algorithms: Empirica-
sults. Evolutionary Computation8(2):173-195, 2000.
Eckart Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and ApplicationsPhD thesis, ETH
Zurich, Switzerland, 1999. Shaker Verlag, Germany.

Eckart Zitzler, Marco Laumanns, and Lothar Thiel8pea2:
Improving the strength pareto evolutionary algorithm. Hirée

cal Report 103, Computer Engineering and Networks Labora-
tory (TIK), ETH Zurich, Switzerland, 2001.

Byoung-Tak Zhang and Heinz Mihlenbein. Balanciragwa
racy and parsimony in genetic programmingvoluationary
Computation 3(1):17-38, 1995.

Eckart Zitzler and Lothar Thiele. Multiobjective @wutionary
algorithms: A comparative case study and the strength garet
approach. IEEE Transactions on Evolutionary Computatjon
3(4):257-271, 1999.

