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Abstract

The thesis is focussed on designing a robust nonlinear autopilot design for a highly
nonlinear missile system in the presence of parametric uncertainties. First, Feedback
Linearization is applied to the nominal missile model which produces an equivalent
linear system. Applying linear control techniques, an outer loop is designed to drive
the controlled variables to reach the required demand, hence the missile can follow
a desired trajectory. Unfortunately the control law produced by the feedback lin-
earization is not robust in the presence of uncertainties and hence in a real flight
scenario will not be valid, and will exhibit nonlinear behavior for small changes in
system parameters. Fuzzy logic trajectory control is then used in the outer loop
to improve the robustness of the feedback linearization technique. An evolutionary
genetic algorithm is then used to optimise the fuzzy control parameters. Multiple
solutions (alternative fuzzy controllers) are obtained by using a Pareto based ap-
proach with non-dominated sorting. This has been combined with the reference
point approach to incorporate preference information into the genetic algorithm to
direct the search towards feasible areas which satisfy specified ranges on each objec-
tive. The design meets objectives defined on the closed loop performance: steady
state error, rise time settling time and maximum percentage overshoot. From the
multiple solutions the designer can choose the one which satisfies specified require-
ments. Fuzzy scheduled controllers are also used to control side-slip velocity for a
large range of multiple demands. The design has been exercised for multi-model
airframe dynamics at vertex points defined by 16 variables.
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Chapter 1

Introduction

1.1 Problem definition

The development of new technology in aerospace application suggest some novel
shapes of flying objects which are becoming faster and faster with flexible and unex-
pected changes of their motion. In a typical guidance scenario, as shown in fig. 1.1,
the guidance system is required to detect and defeat such dangerous targets.

STEERING
ORDERS TARGET
SENSOR

MISSILE
SENSOR

GUIDANCE
’ COMPUTER *

Figure 1.1: Guidance scenario

The guidance system produces commands in the form of lateral acceleration that the
missile autopilot must follow accurately and fast. The performance of the guidance
system relies on this performance to maintain its effectiveness. The autopilot must
control the missile airframe response to this required speed and accuracy despite
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large uncertainty and variability in the aerodynamic characteristics that are mea-
sured by wind tunnel tests on scaled models. As a consequence, their aerodynamic
data are not accurate. There will be significant differences between the measured
data and any airframe that the autopilot is required to control. Not only that, but
each airframe will have its own uncertainty due to manufacturing tolerances. Hence
there will be a large amount of uncertainty associated with any model of the air-
frame. There is also great variability in the performance of the airframe as speed
and altitude vary. As the Mach number of the airframe can vary by a factor of 3 or
4 and the altitude can vary from sea level to 10Km (see fig. 1.2), a large change in
dynamic pressure is present in the flight envelope. This has dramatic effects on the
dynamics as the effectiveness of the wings and the control surfaces are determined
by the dynamic pressure

1 2
—pv 1.1

There are other factors that change the dynamics significantly, the greatest being the
incidence at which the airframe is flying. Large changes in dynamic performance are
evident as incidence changes, and the demand for large scale manoeuvres means that
the missile can exhibit up to 30° of incidence for large acceleration demands. The
usual way to maintain speed and accuracy is to produce a scheduled controller with
altitude and Mach number and try to limit the incidence changes. This produces a
set of linear controllers designs using a set of linear models. The challenge for the
designer is to produce a single controller for all parts of the flight envelope. This
entails dealing with a nonlinear model of the airframe and in producing a nonlinear
controller. As it must also take account of the uncertainty in the aerodynamic data,
it must also be robust to these uncertainties in the nonlinear model.

Figure 1.2: Nonlinear manoeuvre
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1.2 Literature review on existing control techniques

In the analysis of non-linear control systems there is no general method for designing
non-linear controllers. Several existing conventional as well as intelligent control
techniques can be potential candidates for solving the problem stated in this thesis.
Few of them are listed below:

1.2.1 Conventional methods

Gain-scheduling

A technique for transforming original system models into equivalent models of a sim-
pler form is the so called Jacobian linearization or linearization about an equilibrium
point. In this case it can be said that the linearization may not be a good approx-
imation to the system for arbitrary configurations. Since the system is linearized
about a single point, trajectory tracking can only be guaranteed in a sufficiently
small ball of states about that point. There are several methods for circumventing
this problem; one of the most common is gain scheduling as analysed by Shamma
and Athans [1]. It was originally developed for the trajectory control of an aircraft.
The idea of gain scheduling is to select a number of operating points which cover
the range of the system operation. Then at each of these points, the designer makes
a linear time invariant approximation to the plant dynamics and designs a linear
controller for each linearized plant. Between operating points, the parameters of the
compensators are then interpolated, or scheduled, thus resulting in a global compen-
sator. To use gain scheduling, tracking controllers are designed for many different
equilibrium points and gains are chosen based on the equilibrium points to which
the system is nearest. Gain-scheduling is simple, and, practically successful for a
number of applications. The main problem is that it has only limited theoretical
guarantees of stability in non-linear operation, but it uses some loose practical guide-
lines such as “the scheduling variables should change slowly” and “the scheduling
variables should capture the plant’s non-linearities”. Another problem is the com-
putational load in a gain-scheduling design, due to the necessity of computing many
linear controllers.

Feedback Linearization

An alternative technique is Feedback Linearization, known as non-linear dynamic
inversion. Feedback linearization (FL) deals with techniques for transforming orig-
inal system models into equivalent models of a simpler form. FL can be used as a
non-linear design methodology. The main idea is to algebraically transform a non-
linear system into a linear form using state feedback like in Isidori et al [2], Hunt and
Sue [3], and Su [4], and then to use the well known linear design techniques to com-
plete the control design. The purpose of dynamic inversion is to develop a feedback
control law that linearizes the plant response to commands, then a non-linear con-
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trol law is designed which globally reduces the dynamics of the selected controlled
variables to integrators. A closed loop system is then designed to make the con-
trolled variables exhibit specified command response and robustness requirements
to the overall system. The approach can be used for both stability and tracking
control problems and has been applied to a number of practical non-linear control
problems. These include the control of helicopter, high performance aircraft and
industrial robots by Marino and Spong [5], Wang and Vidyasagar [6]. There are
few examples in the literature of the practical application of feedback linearization,
electro servo-hydraulic actuator by Hahn et al [7]. Applications to aerospace sys-
tems are rare in the literature Bezick et al [8], Tahk et al [9] and Wee [10]. In their
research work, the side-slip angle and the angle of attack are taken as outputs to
design the control law. Then the accelerations are controlled using linear relations
between body rates and accelerations at steady state.

Feedback Linearization technique requires full state measurement and desired track-
ing performance is only valid for exact knowledge of model parameters, however can
be useful as model-simplifying device for robust non-linear control such as sliding
or fuzzy logic control which are capable to provide robustness of the closed loop
system.

Variable structure control techniques

Variable structure control systems (VSCS) evolved from the work in Russia of
Emel’yanov and Barbashin in the early 1960s. The ideas appeared outside Russia
after the mid 1970s when a book by Itkis (1976) and a survey paper by Utkin [11]
were published in English. Later on they were followed by many other researchers
White and Silson [12], Zinober [13], Slotine and Li [14], Edwards and Spurgeon[15].
Concepts of VSCS have been utilised in the design of robust regulators, model-
reference systems, adaptive schemes, tracking systems, state observers and fault
detection schemes. The ideas have successfully been applied to problems such as
automatic flight control, control of electric motors, helicopter stability augmenta-
tion systems, space systems and robots. The essential feature of a variable structure
controller is that is uses non-linear feedback control with discontinuities on one or
more manifolds (sliding hyper-planes) in the state space or error space. This method
is attractive in the design of controls for non-linear uncertain dynamic systems with
uncertainties and non-linearities of unknown structure as long as they are bounded
and occurring within a subspace of the state space.

Sliding Mode Control

The aim of the Sliding Controller (SMC) is to design a non-linear feedback con-
troller for a class of non-linear systems given the extent of parametric uncertainty,
disturbances and the frequency range of unmodelled dynamics. The technique has



CHAPTER 1. INTRODUCTION 3

been applied to a variety of plants with highly non-linear dynamics similar to a
missile system: aircraft systems by Singh [16], ships by McGookin et al [17], un-
derwater vehicles by Trebi-Ollennu and White [18] and space systems by Singh and
Iyer [19] and has proved the ability to achieve good tracking performance in the
presence of an uncertain environment. The closed loop dynamic behaviour obtained
from using a variable structure control law comprises two distinct types of motion.
The initial phase, occurring whilst the states are being driven towards the surface
(referred to as reaching phase), which is in general affected by any matched distur-
bances present. When the states reach the surface and the sliding motion (referred
to as sliding phase) takes place, then the system becomes insensitive to all matched
uncertainty as shown by Singh and Iyer [19]. The question of control for a class of
nonlinear systems which can be decoupled by state-variable feedback has been con-
sidered by Singh [16, 19] for an aircraft and spacecraft system. The control law for
asymptotically decoupled control of roll angle, angle of attack and side-slip in rapid,
non-linear manoeuvres has been derived and large simultaneous lateral and longitu-
dinal manoeuvres were performed in spite of uncertainty in the stability derivatives.
The synthesis of longitudinal autopilots for missiles flying at high angle of attack
regimes has been presented by Thukral and Innocenti [20]. The autopilot has been
tested on a small section of the flight envelope (pitch channel) consisting of a fast
180° heading reversal in the vertical plane, which required robustness with respect
to uncertainties in the systems dynamics induced by large variations in dynamic
pressure and aerodynamic coefficients. Weil and Wise [21] have demonstrated the
use of variable structured system control to design the longitudinal autopilot for a
missile under combined aerodynamic surface (fin) and reaction jet control. High
gain feedback using singular perturbation analysis is used to design the reaction jet
switching surfaces and fin control law. Sliding control technique has been applied
to design a pitch-axis control system for high performance aircraft by Hedrick and
Gopalswamy in [22]. The control objectives were to track pilot g commands, while
satisfying flying quality specifications. In the pitch axis problem, the dominant
non-linearities are the aerodynamic coefficient variation with angle of attack and
saturation of the actuator’s position and rate response. In addition to that Fos-
sen and Sagatun [23] have described the use of multi-variable sliding mode control
in dynamic positioning of underwater vehicle (ROV). Trebi-Ollennu [24] has also
shown that this method has great potential for controlling the ROV attitude and
position with excellent robustness properties against parametric uncertainties and
unmodelled dynamics.

Few advantages of this technique can be mentioned here: Only single design is
required over the entire operating range of the vehicle so there is no need for a
series of linearized controllers. Stability is maintained in Lyapunov sense. SMC
has excellent robustness properties against parametric uncertainties when matching
conditions are satisfied. In practice the switching, chattering control law should
be replaced by a smooth approximation which can be very inconvenient. Another
drawback can be pointed as the need of complete state information which may not
always be available. SMC is a successful technique for controlling missiles, however
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most researchers have only considered controlling angle of attack or angular veloci-
ties.

Back-stepping approach

Another technique defined as a different version of variable structure control is the
back-stepping approach. This technique has been approached by Kanellakopoulos,
Kristic and Kokotovic in [25] working at Berkeley California University USA, lately
followed by other researchers like Fossen and Svein [26], Rios-Bolivar et al [27], Song
and Kim [28]. The output tracking problem of a class of observable minimum-
phase uncertain non-linear systems has been considered by Rios-Bolivar et al [29],
and a solution based on a suitable combination of input-output linearization and
the adaptive back-stepping control design procedure has been proposed. This ap-
proach can be applied to a large class of non-linear systems, including those that are
not transformable into the parametric-pure and parametric-strict feedback formes,
typically considered in the applications of the back-stepping procedure. The con-
trolled smooth transition of the angular velocity of a non-linear DC-motor has been
presented as an application example. A non-linear vectorial backstepping control
law for commercial ships has been considered by Fossen and Svein [26]. Vectorial
back-stepping is done in three steps corresponding to the state vectors of the ship dy-
namics, kinematics and actuator dynamics. Emphasis is placed on compensation of
the actuator dynamics since the bandwidth of the propellers, thrusters and rudders
is often close to the bandwidth of the ship dynamics. Global exponential tracking of
the (x and y) positions and the yaw angle of a surface ship has been proven by ap-
plying Lyapunov stability analysis. Also a globally, uniformly asymptotically stable
non-linear control law for dynamic positioning of ships has been derived by Aslaug
and Fossen [30]. They have avoided linearization and gain-scheduling techniques.
However a non-linear observer was used to produce noise-free estimates of velocity
and position from noisy position measurements. Global uniformly asymptotic stabil-
ity was proven by using the Lyapunov stability theory. Also an adaptive non-linear
control design was applied by Song and Kim [28] to the pitch acceleration controller
for a missile model. Missile motion is modelled to be non-linear with unknown pa-
rameters and uncertainties. Based on the model, an adaptive back-stepping method
has been adopted which guaranteed uniform boundedness despite model uncertain-
ties. This design has been exercised on a very simplified missile model.

Back-stepping approach is a very promising technique for an autopilot design of
missiles which are highly non-linear in aerodynamics with unknown parameters.
This approach is very robust to parametric uncertainties. By properly chosen Lya-
punov function a global asymptotic stability can be proved. Conversely to Sliding
Mode Control no chattering effect is involved. However, there is a need of an ob-
server for the estimation procedure which is definitely not very appreciated by real
engineers especially when a fast response is required from the missile autopilot de-
sign. Also this technique is an adaptive procedure and is a question of reliability to
be implemented on a missile board.
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1.2.2 Artificial intelligence

Since 1989 the Japanese have built the so called LIFE association for research and
development of processing intellectual information. The president at that time,
Katsushige Mita stated in few words the importance of the direction in such fields:
“Operations of present computers depend on simple yes-no logic namely binary
logic, which is different from the information processing inherent in human thinking.
Therefore, evaluation based on common sense and flexible judgement is considered
difficult to achieve by computers, hence intensive research is now aimed at the real-
ization of artificial intelligence”. Katsushige Mita (President of LIFE association).
Ten years later the advanced technology in Japan has proved worthwhile.

An intelligent system should be able to cope with a variety of unexpected changes
and environments which requires learning and adaptation ability. Such a system can
be referred to as an intelligent control system where technology plays a major role in
modern flight control design and implementation. One goal of the intelligent control
approach is to make advanced control systems easier to design. Another goal is to
make them less vulnerable to uncertainties in system parameters and to unknown
environment. Two very popular approaches for performing non-linear control based
on fuzzy logic and neural networks are reviewed in detail. In addition, the opportu-
nities to combine the useful features of each and to improve their performance using
evolutionary algorithms are also considered. Fundamental concepts of these three
techniques have been found by Linkens and Nyongesa [31].

Fuzzy Logic

Control systems should have the capability to gain increasing knowledge of the sys-
tem through operational experience, without the interference of human operators.
The knowledge-based control techniques use reasoning mechanisms to determine the
control action from the knowledge stored in the system and from the available mea-
surements. These systems can improve the robustness of current control systems
by incorporating knowledge that cannot be accommodated in analytic models upon
which conventional control algorithms are based. A common type of knowledge-
based control is the rule-based control, for which the control actions are described
in terms of if-then rules. The principle of designing a fuzzy logic controller is to
integrate an empirical knowledge and operator experience into the controllers by
using fuzzy sets and fuzzy rules. The theory was developed by Zadeh [32] and then
invented for control purpose by Lee [33]. Much of the expert’s knowledge contains
linguistic terms such as small, negative, positive, etc., which can be represented by
fuzzy sets. Using fuzzy sets and fuzzy operations it is possible to design a fuzzy
reasoning system which can act as a controller. The control strategy is stored in
the form of if-then rules in a rule base structure. The rules represent an approxi-
mate static mapping from inputs (e.g. errors) to outputs (control actions) and are
determined by using expert knowledge of the process. The first industrial applica-



CHAPTER 1. INTRODUCTION 8

tion of fuzzy logic control was in a cement kiln control designed by Holmblad and
Ostergaard [34]. The rules representing the controller actions were derived from the
cement kiln operator’s handbook. Since then, fuzzy logic control has been applied
to various systems in the chemical process industry, consumer electronics, automatic
train operation, and many other fields listed in Driankov et al [35]. For example the
RCAM problem, as formulated in [36], investigated the use of knowledge-based con-
trol techniques for a realistic flight control problem. The hybrid controller structure
was proposed by Schram [37] in which the inner loop consisted of classical attitude
controllers and the outer loop was developed by using pilot heuristics of flying an
aircraft. The fuzzy logic has provided a transparent interface between the low-level
attitude control of aircraft and high-level reasoning of human pilots. A compro-
mise was found in which performance and robustness properties were good with the
penalty of excessive vertical and lateral acceleration. In addition Schram et al [38]
introduced multiple fuzzy controllers in an adaptive control scheme to a failure tol-
erant control. Smooth transition between the control modes, of possibly different
structure, has been automatically achieved in the case of a gradual degradation of
control system components. This approach has been demonstrated on a non-linear,
six degrees of freedom model of a transport aircraft under realistic assumptions
about actuator dynamics and the results have shown that good performance has
been achieved in case of severe actuator failures. An application of FLC to a su-
personic missile has been investigated by Schroeder and Liu [39], but assuming the
pitch plane autopilot is a linear-time invariant system. A fuzzy logic based MIMO
roll rate controller has been designed by Chiu et al [40] for Rockwell International’s
advanced technology wing aircraft model. The FLC has produced commands to six
surface deflections to control roll rate and four torsion moments. FLC has also been
applied to angle, elevation and azimuth rates at Nasa Jonson Space Centre.

FLC has been useful when applied to control uncertain non-linear systems. Fuzzy
reasoning builds the understanding of imprecision into the process which could be
either parametric uncertainty, unmodelled dynamics or imprecise measurement val-
ues, hence can provide the ability to control a system in uncertainty or unknown
environments which is one of the most important characteristics of an intelligent
control system. Fuzzy logic control is a knowledge-based system that derives con-
trol actions based on input-output relationship, therefore, estimation of the system
parameters is not required. FLC can model complex non-linear functions and de-
rive smooth control action for uncertain system behaviour. However, if the initially
chosen control parameters such as membership functions and rule base structure
are not satisfactory in terms of closed loop performance, then it is necessary to use
“trial and error” design philosophy, which may not always be convenient. It may
be an expensive process computationally speaking. In such a case, an appropriate
technique is required to optimise the fuzzy logic control parameters. Although fuzzy
strategies suffer from some limitations, they can produce robust control design in
the presence of parametric uncertainties and we suggest fuzzy logic based control as
an appropriate technique to be used further in this study.
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Neural Networks

Neural Networks (NNs) have shown great promise in solving non-linear control
problems because of their universal approximation capability, as detailed by Hunt et
al [41]. This powerful property has inspired the development of many neural-network
based controllers without significant prior knowledge of the system dynamics. Ar-
tificial NNs are based on the attempt to mimic the brains operation in a particular
way with a move away from hard, exact mathematical calculations towards general-
ising fuzzy computation, as given by Greenfield [42]. The brain’s powerful thinking,
remembering and problem solving capabilities have inspired many scientists to at-
tempt computer modelling of its operation. There are several categories of neural
controllers in the published literature such as: supervised control, neural adaptive
control by Sanner and Slotine [43], back-propagation through time by Collins and
Dror [44], adaptive critic architecture also known as learning control. An interesting
approach is learning with critic algorithm given by Widrow et al [45]. The learning
controller is described in terms of two-component combination. These components
are the controller and the trainer. One perform tasks of a pattern recognition and
control parameter selection, and the other to work as a teacher, which observes
system performance and adjusts category boundaries in the controller. Neural net-
works have been used by McKelvey [46] to model the unknown feedback control law
of an optimal flight control problem. The network uses ”black box” structure and
it is trained with the back-propagation learning method. In addition an adaptive
critic based Neural network architecture has been applied to an autopilot by Bal-
akrishnan and Biega [47]. Their approach has adapted two networks: a supervisor
(critic) that assesses the outputs of the controller network and an action neural
network controller for modelling the control law. Napolitano and Kincheloe [48]
have proposed the implementation of on-line learning neural controllers in the au-
topilot control laws of a modern high-performance military aircraft. One advantage
of their design is avoiding the precomputation, storing, and interpolation between
thousands of feedback gains of a typical flight control system. Another advantage
is the ability to compensate for non-linearities and model uncertainties. The tradi-
tional gain-scheduling-based-control laws for typical autopilot functions are replaced
by on-line learning neural architectures, trained with the extended back-propagation
algorithm. This algorithm has shown significant improvements over the conventional
back-propagation method in learning, speed and accuracy. On-line local learning ca-
pabilities of the neural controllers have been demonstrated. Finally most relevant to
our research is the work by McDowell et al [49] for hybrid neural-adaptive bank-to-
turn lateral autopilot, described for a short-range command-to-line-of-sight (CLOS)
surface-to-air missile. In order to achieve consistent tracking performance over the
flight envelope, a multi-input/multi-output (MIMO) Gaussian radial basis function
network has been employed. The hybrid neural autopilot was evaluated in three
dimensional (six-degree of freedom) simulation studies against realistic pitch accel-
eration and roll rate profiles generated from a typical CLOS guidance scenario.
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Few important advantages in using neural networks for controlling non-linear sys-
tems can be mentioned here: Firstly, the dynamics of the controlled system does
not need to be completely known for the design of the controllers or for the mod-
elling of the system. Secondly, the potential of on-line learning is a very powerful
feature for controlling any process in real time. In addition NNs have the ability for
adaptation and interpolation as well as the ability of parallel computation and an
universal approximation capability, which altoghether make them an attractive and
useful technique for solving a variety of non-linear control problems. Finally neural
networks have very useful properties such as the associative storage and retrieval
of knowledge. They can be trained to approximate any function sufficiently well.
Conversely to such attractive characteristics, the applications of neural networks as
elements of real-time control systems could be very limited for the following reasons:
The closed loop system behaviour does not have formal mathematical characterisa-
tion; NNs have unstructured nature of black-box learning, hence cannot be certified.
Also large numbers of iterations over the desired mapping are required before the
network adequately reproduces the required responses. In conclusion from an aca-
demic point of view NNs are a very promising technique which can improve the
performance and the robustness of the missile system. However from an engineering
point of view this technique is not an appropriate control method to be implemented
on a missile board as they cannot be certified.

Neuro-Fuzzy Control

Fuzzy logic controllers have several important benefits in that they do not require
a complete analytical model of a dynamic system. They provide knowledge-based
heuristic controllers for complex systems, and they can be analytically validated.
However they are not well suited to learning. This means that fuzzy logic systems
cannot meet the goals of adaptation to changes in system dynamics or to unmod-
elled dynamic characteristics, and they cannot gain increased performance through
learning. On the other hand artificial neural networks have been successfully used
to model and approximate various non-linear relationships and systems. Neural
networks can be trained to learn the mapping between the input and the output
domains based on observations without requiring knowledge of the structure of the
underlying systems. They can exploit the inherent parallelism associated with fuzzy
algorithms because of the lack of dependencies on control rules. Once the network is
trained it can process the rules in parallel. They have shown to possess the ability to
adapt to dynamic environmental changes through continuous training. The applica-
tion of knowledge-based control techniques for flight control by Steinberg [50, 51] has
indicated that techniques like neural networks and fuzzy systems can provide appro-
priate tools for non-linear identification by Linse and Stengel [52], control of aircraft
by Napolitano and Kincheloe [48], helicopters by Sugeno et al [53] and spacecraft
by Berenji et al [54], or flight control reconfiguration by Napolitano et al [55]. In
these applications, neural networks generally serve as non-linear, sometimes adap-
tive, models while fuzzy systems are often used as supervisory, expert systems. Few
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relevant research activities are enumerated as follows: An interesting combination of
artificial neural networks and fuzzy logic controllers have been addressed by Hariri
and Malik [56] to power system stabilizer, where the method retains all the ad-
vantages of adaptability, rapidity and robustness. By using neural network as a
structure for the fuzzy logic controller, the design time of conventional FL.C can be
significantly reduced, membership functions and fuzzy rules of the controller can be
generated automatically to meet the prespecified performance, i.e. tuning of the FL.C
control parameters has been solved. Compared to a conventional neural network,
the training time was decreased, since a priori knowledge in the form of fuzzy if-then
rules was employed. Shin and Vishnupad [57] have applied neuro-fuzzy techniques
to a complex manufacturing processes. The underlying non-linear process has been
modelled by NNs and the process control has been performed by FLC. The fuzzy
rules have been automatically generated from the trained NN and fuzzy control has
been performed by Mamdani implication. The simulation results have provided a
robust and accurate way of controlling complex processes without knowledge about
the model. Even when the process has changed dynamically, the NNs have learnt
the functional relationships between input and output domains through continuous
training and the fuzzy controller has derived the control actions. A different type of
NNs have been used by Geng and McCullough in [58] called cerebellar model arith-
metic computer NNs (CMAC) with a faster learning rate than conventional NNs
and a limited amount of computation required at any point in the learning process.
The researchers have used the strengths of CMAC and Fuzzy control schemes and
applied for the use in the design of advanced missile control systems. The fuzzy
CMAC has the capability of incorporating human knowledge into the system and
processing information based on fuzzy inference rules. The flight control system has
been evaluated using a series of non-linear simulations driven by the mathematical
models of HAVE DASH II Bank to turn missile, to examine the stability, high angle
of attack and flight path angle tracking.

In the conventional fuzzy design, the user must tune the membership functions
of fuzzy sets defined in the input and output universe of discourse by trial and
error. This drawback has been eliminated with neuro-fuzzy networks. Due to the
supervised learning methods it is possible to optimise the antecedent and consequent
parts of a linguistic rule based fuzzy system. The neuro-fuzzy systems are universal
approximators of any non-linear functions, as proved by Buckley and Hayashi [59].
There is no need of trial and error procedure to tune the control parameters of the
fuzzy logic controller as self learning inherently exist. These systems can be certified,
can have high learning speed and be able to process the rules in parallel. By combin-
ing fuzzy logic and neural network the controller becomes more robust to imprecise
information and external disturbances and an improvement of the performance can
be guaranteed. However a major drawback is the design complexity. They may be
very expensive and the question of being implemented on a missile board is still an
open one for engineers.
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Fuzzy-Genetic Algorithms

As pointed out earlier the membership functions of a fuzzy logic controller can be
defined by trial and error or by an experts knowledge. The use of a neural network
depends highly on the availability of sufficient data representing the input-output
mapping, but in a situation where such data cannot be obtained an alternative
approach would be necessary. One such approach is to test hypothetical trial solu-
tions on the system and generate better solutions on the basis of the performances
using evolutionary techniques. Genetic algorithms, which are modelled on natural
evolutionary strategies, is methodology that has been introduced as a learning and
optimisation technique under such conditions. They use operations found in natural
genetics to guide them through the paths in the search space, can provide means to
search poorly understood and irregular spaces and has been successfully applied to
variety of function optimisations, self-adaptive and learning systems. By using GAs
a randomised global search in a solution space is possible. In this space a population
of candidate solutions, encoded as chromosomes is evaluated by a fitness function
in terms of its performance. The best candidates ’evolve’ and pass some of their
characteristics to their ’offsprings’. A group of researchers, KrishnaKumar et al [60]
have investigated a hybrid technique for synthesising fuzzy logic controllers as a
stability augmentation system. This technique combines the control capabilities of
fuzzy logic with the learning capabilities of genetic algorithms, to yield a fuzzy logic
controller optimised to satisfy desired handling quality requirements. An optimal
control model is used to provide the closed-loop handling quality metrics. Genetic
algorithms are used to optimise the attributes of the fuzzy logic controller. These
attributes include the control parameters such as membership functions and the rule
base structure. The hybrid technique was implemented and tested off-line using a
wide envelope FA/18 longitudinal model. The results proved the following: first,
robustness of the hybrid technique in finding suitable FLC for different operating
points with minimal user interaction; second, robustness of the optimised FLC to
operate at different operating conditions with no gain scheduling; third, the ability
of the GA in finding a suitable FL.C with as few as 10 rules in the rule base. An-
other successful application of optimising control parameters but of a Sliding Mode
controller has been investigated by McGookin et al [17]. It involves the performance
of a control system for course changing manoeuvres of an oil tanker non-linear sys-
tem. SMC theory has been used to define the structure of the controller where the
GAs have been used to optimise key control parameters in order to obtain satisfac-
tory performance. Trebi-Ollennu and White [18] have applied multi-objective fuzzy
genetic algorithm optimisation approach to non-linear control system design. The
technique has shown to provide an effective, efficient and intuitive framework for
selecting parameters of a modern non-linear robust controller applied to remotely-
operated underwater vehicles.

GAs have been recognised to be a powerful tool for learning in many control ap-
plications and especially with fuzzy logic where they have applied to the process
of learning control rules, also selecting of rules and tuning of their membership
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functions. An important notice to be made here is that a good solution depends
on setting the objective function correctly. A major drawback of the technique is
that GAs are computationally inefficient as many trials are necessary until finding
the right solution. New high technology is able to produce still faster solutions.
The implementation of these algorithms is made possible by the recent advances in
technology along with the progress in parallel microprocessors equipment which can
provide the availability of efficient and fast learning algorithms. As a conclusion
we can highly recommend that this technique can guarantee reliability and can be
useful for optimising missile trajectory control parameters.

1.2.3 Hybrid techniques
Neuro-Sliding Control

In a hybrid design both techniques will contribute in the following way: neural
networks can model the complex dynamics of the non-linear function, while SMC
can overcome some model residual terms and increase the robustness of the closed
loop system. A neural network approach has been proposed by Cao et al [61] to de-
termine the sliding mode equation and the control inputs. The approach involves the
application of the single layer perceptron model and the Lyapunov stability theory.
The advantage is that it can overcome the difficulty of determining the sliding mode
equations. Another research group Qin et al [62] tackled the problem of robust-
ness for a MIMO affine non-linear control system in which uncertainties are only
bounded. A state feedback controller has been constructed where the non-linear
closed loop system has been finitely attracted by a given neighbourhood of equilib-
rium state. The controller consists of two parts: the first one is a static nominal
controller obtained by the variable structure control; the second one is a dynamic
compensator obtained by the learning approach of an artificial neural network. The
role of nominal controller is to make the non-linear nominal system arrive quickly
in the neighbourhood of the sliding surface. The role of the dynamic compensator
is to attenuate the influence of uncertainties on the system stability. Another ro-
bust controller design of non-linear dynamic systems has been proposed by Chiou
et al [63] by combining SMC and Productive Networks. An attitude control prob-
lem of a spacecraft has been used to demonstrate the effectiveness of the proposed
method. Essentially, the SMC utilizes a high-speed switching control action to drive
the non-linear plant’s state trajectories towards a specific hyper-plane in the state
space. It will also maintain the state trajectories sliding on the specific hyper-plane
for all time. Most relevant to our problem, Fu et al [64] have achieved an adaptive
robust neural-network-based control approach for bank-to-turn missile autopilot de-
sign. The Lyapunov theory has been used to complete the closed loop stability
proof. This scheme is a combination of neural networks and sliding mode control
techniques. The former has modelled some unknown non-linear functions, whereas
the latter has been used to overcome some modelling residual terms. To summarise,
the technique does not require a priori training phase, the sliding parameters can
be updated on-line gradually and continuously. Chattering and high gain can be
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avoided, good accuracy and robustness can be achieved. There is a question-mark
about Neural Networks being implemented on a board, but from an academic point
a view the combination of these techniques is quite a powerful tool for designing a
non-linear robust control for a missile system.

Fuzzy-Sliding Control

As for the sliding mode control, the bounds of uncertainties must be estimated
in order to guarantee the stability of the closed-loop system and also its engineering
application requires a chatter-free sliding mode control. Fuzzy control, as one of
the most effective methods using expert knowledge, cannot be used for inference
but also approximate any real continuous function over a compact set to arbitrary
accuracy. There is similarity when comparing the SMC with boundary layer to an
FLC whose rules have been derived from the phase plane as explained in Palm [65].
Since it is possible to define the dynamics of the error along a switching line by
choosing the dynamical equation defining the sliding mode, it is straight forward to
construct the control rules along the switching line and this can be done by sim-
ulating the error dynamics independent of the plant. Once the control rules are
established along the switching line, the rules can be defined in the two semi-planes
on either side of the switching one. The concept of fuzzy sliding mode controller
was first suggested by Palm [65]. An adaptive fuzzy sliding mode control method
has been applied to the control of the vertical motion of a mine hunting ROV by
Trebi-Ollennu et al [66]. The effects of parameter variation of the ROV has been
considered, and performance and robustness to uncertainty has been assessed. The
effectiveness of the technique has been demonstrated by its ability to decouple pitch
and heave of the ROV subjected to parameter variations. An adaptive fuzzy system
has been used by Sun et al [67] as an adaptive approximator for the non-linear robot
dynamics. They have proved that the fuzzy system is using the switching function
and its derivative of the sliding mode as inputs, hence it can approximate the plant
non-linear dynamics in the neighbourhood of the switching hyper-plane. Thus the
fuzzy controller design has been simplified, and at the same time the fuzzy control
rules have been obtained easily by the reaching condition due to the sliding mode
control. The fuzzy adaptive control scheme based on sliding mode can maintain
the invariant property of the sliding mode control and alleviate chattering without
the sacrifice of robustness. The best features of self-organizing fuzzy control and
sliding mode control have been combined by Lu and Chen [68] to achieve rapid and
accurate tracking control. The chatter encountered by most sliding-mode control
schemes was alleviated without sacrificing invariant properties. For verification of
the scheme they have performed experiments on a magnetic leviation system where
regulation and tracking was performed for validation. The fuzzy controller has been
designed to learn and compensate for non-linearities and uncertainties, thus allowing
a reduction of the sliding-mode controller switching gains. The final control system
design is very robust to modelling imprecision and external disturbances. Due to
the limitations of the techniques, the tuning of the fuzzy logic parameters is required
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and there is a need of a suitable learning medium in order to increase the robustness
and adaptability.

1.2.4 Summary

The hybrid techniques, based on conventional and artificial intelligent nature, are
quite powerful and useful for solving non-linear control design problems. We propose
that a combination of feedback linearization method and a fuzzy trajectory controller
would be an interesting useful and new approach to solve the problem stated earlier
in the thesis. The former would cancel the plant non-linearities and the latter would
exercise the robustness of the closed loop system when a multiple model description
of the airframe aerodynamics is used. An optimisation algorithm would then be
required to determine the fuzzy control parameters. We suggest genetic algorithms
based on evolutionary nature to be examined as they are useful when applied to
multi-modal noisy search spaces. Finally in order to meet closed loop performance
criteria such as: steady state error, overshoot, settling and rise time, the optimisation
problem can be addressed from multi-objective point of view.

1.3 Aims of the thesis and its structure

This thesis has been driven by the following two aims:

1. To design an autopilot system for lateral acceleration and velocity control of
a highly non-linear missile. The control system should be robust in the presence of
parametric uncertainties and should be valid for a large range of multiple demands
up to 15g pull of lateral acceleration.

2. To obtain multiple solutions - the alternative trajectory controllers which will
allow the designer the freedom to choose the one which satisfy specified require-
ments. This would require the use of multi-objective optimisation to determine the
trajectory control parameters.

Thesis structure
The structure of the thesis has been outlined in four stages as shown in figure (1.3):

Stage 1 is detailed in Chapter 2, which describes the complexity of the highly
non-linear missile system. It is a real research model developed by Matra BA Co,
which is described by look up tables that define the non-linear characteristics of
the aerodynamics. It describes a full 5 degree of freedom model in parametric for-
mat with severe cross-coupling and non-linear behaviour. A polynomial model has
been produced to match the parametric model as close as possible in a least squares
sense. This polynomial model is in the form of polynomial relationships that are
then used for control synthesis. Autopilot design requirements are specified. A set
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of convex models is produced that map the vertex points in a high order parameter
space (of the order of 16 variables). The multiple model description of the airframe
aerodynamics is tested for sensitivity on the aerodynamic coefficients. In order to
examine manoeuvrability the model is described in Cartesian and Polar coordinates.

Stage 2 is detailed in Chapter 3, which uses Feedback Linearization to transform
the non-linear system dynamics into a linear form by using state feedback and a
simple linear control technique can be used in the outer loop. An Approximate
Feedback Linearization is used for lateral motion control. The main difference from
other research work is that instead of using angles or body rates as outputs for the
linearization process, lateral velocities and body accelerations are used. The design
retains the order and the relative degree of the system in the linearization process,
hence produces a linearized system with no internal or zero dynamics. Both SISO
(the reduced 4" order system, without interaction between lateral motion and roll)
and MIMO (full 5" order) systems are considered. Desired tracking performance
is achieved assuming an exact knowledge of the nominal model parameters such as:
aerodynamic coefficients and missile configuration parameters (i.e., reference area,
Mach number, mass, moment of inertia).

Stage 3 is detailed in Chapter 4, which deals with a design of robust trajectory
control in presence of parametric uncertainties. Unfortunately Feedback Lineariza-
tion cannot guarantee desired performance in a real flight scenario when there are
either parameter variations or external disturbances. Conversely fuzzy logic theory
is useful when dealing with vague and imprecise information, hence it is used here
to build a fuzzy logic trajectory controller to improve the robustness of the closed
loop system. Then an evolutionary optimisation approach such as genetic algorithm
is used to determine the membership function distribution and the rule base struc-
ture of the fuzzy logic controller. The robust design is tested on the multiple model
description of the airframe aerodynamics with significant parametric uncertainties.
Also fuzzy logic scheduled controllers for a missile autopilot design have been exam-
ined. The fuzzy logic input output scaling factors have been determined by using
polynomial fit for a large range of multiple acceleration demands and a magnitude
of 1g up to 15g has been examined.

Stage 4 is detailed in Chapter 5. A multi-objective evolutionary optimisation of
the trajectory control parameters is used. The design meets objectives related to
closed loop performance such as: steady state error, overshoot, settling and rise
time. The last three objectives are also treated as fuzzy constraints (i.e. penalties),
so the designer can analyse the behaviour of the optimiasation process depending on
the way objectives have been handled. Multiple solutions are obtained simultane-
ously by using non-dominated sorting for forming the Pareto front, combined with a
reference point approach to incorporate preference information into the genetic algo-
rithm to direct the search towards feasible areas which satisfy specific values of the
objectives. This allow the designer the freedom to choose solutions and investigate
the properties of the system.
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1.4 Contributions

Main contributions

e A Fuzzy-Feedback Linearization non-linear autopilot is designed for highly non-
linear manoeuvrable missile to cover a large range of parametric uncertainties of
the multi-model description of the airframe dynamics, Chapter 4. A set of convex
models is produced that map the vertex points in a high order parameter space (of
the order of 16 variables). A detailed sensitivity analysis of the missile behaviour
for each aerodynamic coefficient is examined, Chapter 2.

e Multi-criteria genetic algorithm optimisation is used to determine the member-
ship functions and rule base structure of the fuzzy logic trajectory controller. This
produces a design that meets objectives related to closed loop performance such
as: steady state error, overshoot, rise and settling time. Both side-slip velocity and
lateral acceleration control are considered. An unique way to incorporate prefer-
ence information for each objective into the genetic algorithm is proposed to direct
the search towards feasible area for finding solutions which satisfy specified require-
ments. An optimistic reference point approach is applied in a combination with a
Pareto based non-dominating sorting technique, Chapter 5. The Pareto based non-
dominating sorting algorithm is used from external source.

e Multi-objective optimisation of the fuzzy logic scheduled controllers is applied
to the missile autopilot design. The fuzzy logic input output scaling factors are de-
termined by using polynomial fit for a large range of multiple acceleration demands.
A magnitude of 1g up to 15g is examined, Chapter 4.

e Lateral acceleration is controlled through side-slip velocity demand for the au-
topilot system considering the nominal model, Chapter 3.

Joint contributions

e Side-slip velocity autopilot design is achieved using Approximate Feedback Lin-
earization for nominal model case. Both SISO and MIMO systems are examined.
Lateral acceleration is controlled through side-slip velocity demand, Chapter 3.

e Applying Feedback Linearization to control directly lateral acceleration produces
relative degree zero, which means all the states are unobservable and the system
would be uncontrollable. Hence the augmented acceleration is defined as an out-
put for the linearization process to produce relative degree equal with the order
of the system to avoid internal dynamics. Lateral acceleration control is achieved
through augmented acceleration using Approximate Feedback Linearization for the
non-linear control design of the SISO system (i.e. yaw plane), Chapter 3.

e Both, roll and lateral acceleration are controlled by using Polar control for the
MIMO system, Chapter 3.



Chapter 2

Non-linear system. An aerospace
application

The research considered in the thesis is based on a fast, 1000 m/sec, highly non-
linear manoeuvrable missile, developed by Matra BA Co. It is a real research model
which is described by look up tables that define non-linear characteristics of the
aerodynamics. It describes a full 5 degree of freedom model in parametric format
with severe cross-coupling and non-linear behaviour. From the polynomials for 0°
and 45° roll angle a linear interpolation has been done for the aerodynamic coeffi-
cients, hence rendered as a model in polynomial form.

2.1 The Missile Motion Dynamics

In this Section 2.1 the missile motion dynamics are described in general. The equa-
tions of motion, describing the angular and translational dynamics, are derived from
Newton’s Second Law of Motion expressed in the following form:

> Forces = d > (Translational Momentum,) /dt

> Moments = d> (Angular Momentum)/dt (2.1)

where the translational and angular dynamics are described in details in the Horton
report [69]. The aerodynamic forces and moments acting on the airframe are non-
linear functions of longitudinal and lateral velocities, control surface deflection, body
rates, etc, and they can be evaluated from empirical techniques, computational flow
dynamics or wind tunnel test. In general, aerodynamic forces in body axes conform
to the relationship (2.2), and similarly aerodynamic moments in body axes conform
to (2.3).

1
Force = EpVOQSC (2.2)

1
Moment = §pVOQSCd (2.3)

where C' is the aerodynamic force or moment coefficient, V, - total velocity of the
airframe, d- reference diameter, p the air density and S -reference area. A detailed

19
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aerodynamic representation breaks the forces and moments down into a number
of independent influences and defines derivatives, which have been adopted in the
aerospace community and are used here. The suffix N, indicates the influence giving
rise to the derivative thus (2.4), Cly, is a yaw moment derivative dependent on yaw
velocity v.

ac,
On. = (2.4)

As the missile manoeuvres it will generate lateral velocities v,w. The angles that

these velocity vectors form are termed incidence angles, and these are illustrated in
fig. 2.1.

Figure 2.1: Definition of incidence angles

Where V,, o, 3,0, A are detailed in the following table:

H Meaning ‘ Formula H
Total velocity | V, = VU? + v2 + w?
Pitch incidence o= tan”'%
Yaw incidence B =tan™"'L
Total incidence o= cos‘l‘%
Aerodynamic roll A= tan™'2
H Lateral velocities ‘ v, W H

With no control surface deflection the effect of lateral velocity is to generate a lat-
eral force which is distributed along the body/wing/tail assembly. However, this
distributed force can be considered as a single force acting at a single resultant po-
sition which is termed the centre of pressure. The distance between the centre of
pressure and the centre of gravity is termed the static margin. The lateral force,
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acting through the static margin x,, forms a lateral moment. Variations of z,, are
associated with the airframe stability. If the centre of pressure is behind the cen-
tre of gravity then the static margin is negative, the reverse arrangement produces
a positive static margin. With a lateral force which increases it will be seen that
the negative static margin produces a moment which tends to reduce the incidence
and the airframe, is thus, statically stable. The positive static margin, however,
produces a moment which tends to increase the incidence and the airframe is, thus,
statically unstable. Since the centre of pressure varies with aerodynamic conditions
and the centre of gravity varies with the fuel burnt then the airframe might be stable
or unstable at different times in its flight. One role of the autopilot is to produce a
stable, controllable missile in situations where the airframe is statically unstable.

The angular and translational dynamics of the model are cross-coupled and de-
scribed by the full set of equations 6DOF:

_ L 1
p="7 I—(Iy — L)gr
M 1
q = —+ _(Iz - ]x)pr
1, 1,
N 1
= —+ =, -1
. X
u = — —wq+or
m
_ Y
v = — —ur-+wp
m
_ Z
w = — —pv—+uq
m
(2.5)
where the forces (X,Y,Z) and the moments (L,M,N) are defined as:
L = Lp+IcC+lymn+Ig
M = myq+ myw +myn 4+ meg
N = nr+n,0+neC+nek
X = zu+zpp+ v
Y = yvv+yrr+y§<
Z = zZyw+ 24q + 2yN
(2.6)

where (,n, & are the inputs to the system. ( is the rudder angle, n is the elevator
angle and £ is the aileron angle.

The definition of the axis systems (see fig. 2.2) in which the linear and angular
motions are derived, is necessary, if the equations of motion and response charac-
teristics of a homing missile are to be obtained.
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Figure 2.2: Airframe axis and nomenclature

The body axis set is, by definition, located at the centre of gravity of the mis-
sile and fixed to the body, so rotates and translates with it. The ‘x’ axis is taken
forward, the ‘y’ axis out of the right hand wing and the ‘7’ axis downward forming
a right hand set.

2.2 Horton Model Dynamics

The linearized airframe characteristics have been considered by Horton [69] and are
used as a benchmark model for this study. The nonlinear model which is most likely
to be the real scenario case has been developed and described in this section. The
lateral motion is derived from the model defined in the report by Horton, while the
roll model is derived from graphical relationships relating the moments generated
by aileron, rudder and elevator action of the cruciform fin configuration. These re-
lationships are used to generate a parametric model that is used for simulation and
analysis. From this model a polynomial model is produced to match the parametric
model as closely as possible in a least-squares sense. This polynomial model is in the
form of polynomial relationships that are then used for control synthesis and which
is also defined in this section.

Some assumptions for the Horton model have been made that lead to some sim-
plifications such as:

e A rigid body of the missile is assumed for all flight conditions.

e A constant forward velocity U = 1000 m/sec with an approximate Mach ~ 3
value is considered, so # = 0. Only lateral motions are of interest hence a reduced
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5 degree of freedom model is examined through this study.

e The skid-to-turn airframe of this missile has got symmetry about both y and
2 axes which leads to some simplification. Hence all products of inertia are zero and
qr,pr,pq terms are discarded, also the moments of lateral inertias in the y and z
axes are equal (I, = 1,).

e The motion of the missile is roll-controlled and wp, vp are not included here.

According to the above mentioned assumptions the equations for the model are
defined with the corresponding simplifications in (2.7),(2.8) and (2.9). As both hor-
izontal and vertical lateral motions are symmetric in format, both will be dealt with
together, taking into account the appropriate sign changes in derivatives for each
lateral direction.

The vertical motion is defined by:

¢ = myq+myw+me& +myn
1 1 1 1
= Iy’l(ZpV;SdZCmqq + ipVoSdC’mww + ipVOQSdeéﬁ + §PVOQSden77)

1 __ 1
— 5]y 1pVOSd(§dC’mqq + Crw + VoCrn & + VoCpy 1)
W = mT (2w + 2,9 + 2:€ + 2ym) + uq
1 1 1
= m_l(ipVOSCzww + 5/)1/0256’255 + EpVOQSCZnn) + ug

= %m_lpVoS(C’zww + VoC. &+ V,Com) + ug (2.7)
The horizontal motion is defined by:
7= nT +nyv 4+ ng& + neC
— [;1(ip1/;5d20mr + %pVoSdC’nvv + %pVOQSangf + %prSanCC)

1 1
- 512 1pv;Sd(§anrr + Cnyv 4+ VoCn & + V50, €)
v o= m N (yv + yr + yel + yeC) — ur
1 1 1
= W7 (GpVeSCy + SpVESCy + S pVESCyC) — ur

= T VS (Cou + VO Vil Q) — ur (2.8)

and the roll motion by:
p = Lp+IlC+n+I1g
1 1 1 1
— [;1(Zp1/;5d201pp + EprSdClCC + EpVOQSdC’lnn + §pVOQSdCl§§)

1
= §Ix_1p‘/;5d(dclpp + VOCZCC + VOC’lnn + VOC’lgf) (29)
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where the axes (z,y, 2), rates (r,q,p) and velocities (u, v, w) are defined in fig. 2.2
and where (,n, & are the inputs to the system and are defined in the Appendix A.
Equations (2.7), (2.8) and (2.9) describe the dynamics of the body rates and ve-
locities under the influence of external forces (C,,) and moments (C,,) acting on
the frame. These forces and moments derived from a wind-tunnel measurements
are non-linear functions of Mach number, longitudinal and lateral velocities, con-
trol surface deflection, aerodynamic roll angle and body rates. The aerodynamic
coefficients, (Cy,, Cy., X¢ and Cy, ), are presented by polynomials shown in the next
section. The physical parameters of the Horton Missile are shown in the Appendix B:

2.3 Aerodynamic coefficients for different flight
conditions

The aerodynamic coefficients (Cy,, Cy,, X, and C,,) are presented by polynomials
for 0° and 45° roll angles. These polynomials are fitted to the set of curves taken
from look-up tables for different flight conditions. The look-up tables are a set of

curves in the plane of total incidence, o, and Mach number, M.
Centre of Gravity X, and Centre of Pressure X,

The centre of gravity is given by the formula:
m

=13
e * 500

(2.10)

where m is the mass of the missile. The polynomial for the Centre of Pressure for
different roll angles is given by:

Tepo = 1.3+0.1M +0.2|0|
1.3+ 0.1M +0.3/0]| (2.11)

xcms

Side-slip Normal Force Coefficient - C, ,C,,

A set of normal force curves due to side-slip velocity in the plane of incidence for
aerodynamic roll angles of 0° and 45° are given by the polynomial (2.12), where M
is the Mach number and o is the total incidence.

c,, C.,
Cao —25+1.0M — 60|0]|

Cops = —26+1.5M — 300 (2.12)

Zw4s
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Missile Rate Normal Force Coefficient - C),

This coefficient is normally small [70], as given by Blakelock, and does not effect the
dynamic response of the missile significantly. It is assumed to be zero in this study.
Hence:

C

Yr

=0 (2.13)

Fin Normal Force Coefficient - C, ,C.,

The rudder and elevator control forces are proportional to fin angle, and are ex-
pressed as derivatives which are functions of incidence,o, Mach number, M, and
aerodynamic roll angle, A. A set of derivatives for roll angle of A = 0° and A\ = 45°
are given by the polynomials in (2.14).

Cp = C.,
Coo = —10—1.6M +2.0|0|
Copis = —10—1.4M +1.5/0] (2.14)

Side-slip and Control Moments C,, , C,,,

The yawing and pitching moment coefficients are derived from the normal force
coefficients (C,,, Cy,,Cy,). The static margin (), fin moment arm (zy) for lat-
eral motion and roll moment arm (z,) for roll motion are as follows:

Cn, = 5mCy,
Cng = SnyC
Cre = 5,C, (2.15)

The static margin, xg,, is defined as the difference between the centre of gravity
position, z.,, and the centre of pressure position, X,,, measured from the nose of
the missile. Similarly the fin moment arm, ,, is defined as the difference between
the centre of gravity position, z.4, and the centre of pressure of the fin, 2, again
measured from the nose of the missile. Hence:

S = d 'Tem

Sp = d_ll‘Sf

s, = d 'z (2.16)

where
Tsm = (xcg_XCP)
Tsp = (Tf = Teg)
d
Ty = 1.5= (2.17)

2
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and z; = 2.6m and the missile reference diameter is given by d = 0.2m. The roll
moment arm, x,, is assumed to be about 1.5 times the radius of the missile.

Damping Moment Coefficients - C, ,C,, ,C,

The yawing and pitching damping moments are proportional to body rate and are
also expressed as a derivative. This moment contribution is small compared to
other sources and is modelled as independent of aerodynamic roll angle. It displays
variation with Mach number, M, and incidence, o, and is defined by the polynomial:

Cn, = Cn,
Cm, = —500—30M +200|c| (2.18)
The roll damping moment is undefined from BADL data. For this study it has been

arbitrarily set at:
Cy, = =500 (2.19)

Incidence Incidence
Mach Number 6 %0 Mach Number 6 3

a)Rudder/Aileron Roll Coupling b)Aileron/Rudder Yaw Coupling

Figure 2.3: Fin Coupling Moment coefficients

Fin Coupling Moment Coefficients - C; , C,,

These are derived from BADL data supplied in the form of simple relationships
relating aileron, rudder and elevator moments. They are given as a ratio of rud-
der/aileron roll coupling:

ln Cln

- == 2.20

L= (2.20)
and a ratio of aileron/rudder yaw coupling:

’ng Cng

— = — 2.21

n G, (2.21)

These are shown in fig. 2.3, left and right respectively. Both coupling moments are
functions of Mach Number and incidence.
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2.4 Polynomial form

The equations defined in the parametric model in the previous section can be rep-
resented in polynomial form by the following set of equations using the dynamic
parameters, incidence angle, o, Mach number, M, and aerodynamic roll angle, .

Aerodynamic Roll Angle Interpolation

Several of the coefficients are functions of aerodynamic roll angle. The paramet-
ric relationships are given at roll angles of 0° and 45°. Horton uses a sinusoidal
interpolation technique which can be modelled by the relationship:

Cij = 0.5(CoN° + CPA™) (2.22)
where:

A = (1 +cos(4)))
M = (1 —cos(4))) (2.23)

and the coefficients CJ; and C;} are the parametric equations at 0° and 45° re-
spectively. This interpolation is used in the polynomial fit for aerodynamic roll
dependent coefficients.

Centre of Pressure and Centre of Gravity

The centre of gravity is modelled by the polynomial equation:
Teg = Tegg (2.24)

where:

Coefficient | Value

Tego 1.3+ =05

This is a copy of the parametric relationship and does not involve any polynomial
fitting. The centre of pressure is a function of the aerodynamic roll angle, A. Us-
ing the aerodynamic roll angle interpolation technique, it can be modelled by the
polynomial equation:

ch(M, A) = Xepo + Xepyy M + Xep, (Ml
Xep,(A) = X0 A+ X2 A® (2.25)

or:
Xep(M, ) = Xepy + Xepy M + X0, Nlo| + X0 Ao (2.26)

where:
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Coefficient | Value
Xepo 1.3
Xepu 0.1
X gpa 0.2
X 211?0 0.3

The carpet plot for this function is shown in fig. 2.4a, plotted as a function of in-
cidence and roll angle for different mach numbers, with 2.4b plotted as a function
of Mach number and roll angle for different incidence angles, and 2.4c plotted as a
function of Mach number and incidence against different roll angles.

The static margin and the fin moment arm can thus be modelled in polynomial
form as:

Sm(M, ) =
S =

N Xepo + Xepy M + X3 XNo|+ X0 AFo| — x,,)

e
dzy — 20y) (2.27)

where:

Coefficient | Value
J?f 2.6
d 0.2

Side-slip Normal Force Coefficients - C, ,C,,

The polynomial equations defining the side-slip normal force are given by:

C.. = 0.5(C2 N0 + 19 p8)
ng = ngo + CSwMM + nga ‘O-|
C = CP +CP M+CP o (2.28)
where:
Coefficient | Value
C’%wo -25
g%)wM 1
. -60
Cﬁo 26
C’Z“)M 1.5
o 30

The carpet plot for this function is shown in figures 2.5a, 2.5b, and 2.5¢ in the same
format as the centre of pressure coefficient.
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Mach Number 0.6 Mach Number 2

Roll Angle 00 Incidence Angle Roll Angle 00 Incidence Angle

Mach Number 4 Mach Number 6

Roll Angle 0o Incidence Angle Roll Angle 0o Incidence Angle

a) for different Mach Numbers

Incidence angle 3 (deg) Incidence angle 10 (deg)

cw » O

Mach Number 10 50  Roll Angle Mach Number 10 50  Roll Angle

Incidence angle 20 (deg) Incidence angle 30 (deg)

Mach Number 10 50  Roll Angle Mach Number 10 50  Roll Angle

b) for different incidence angles o

Roll angle 4.5 (deg) Roll angle 15 (deg)

20

Mach Number 10 40 Incidence Mach Number 10 40  Incidence

Roll angle 30 (deg) Roll angle 45 (deg)

Mach Number 10 40  Incidence Mach Number 10 40  Incidence

c) for different roll angles A

Figure 2.4: Set of four Centre of pressure coefficients X,

29
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Mach Number 0.6 Mach Number 2

Roll Angle 00 Incidence Angle Roll Angle 00 Incidence Angle

Mach Number 4 Mach Number 6

Roll Angle oo Incidence Angle Roll Angle oo Incidence Angle

a) for different Mach Numbers

Incidence angle 3 (deg) Incidence angle 10 (deg)

>
>
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e
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Mach Number 10 50  Roll Angle Mach Number 10 50  Roll Angle

Incidence angle 20 (deg) Incidence angle 30 (deg)

Mach Number 10 50 Roll Angle Mach Number 10 50  Roll Angle

b) for different incidence angles (o)

Roll angle 4.5 (deg) Roll angle 15 (deg)

Mach Number 10 40 Incidence Mach Number 10 40  Incidence

Roll angle 30 (deg) Roll angle 45 (deg)

Mach Number 10 40 Incidence Mach Number 10 40  Incidence

c) for different Roll Angles A

Figure 2.5: Set of four Normal Force coefficients C,
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Fin Normal Force Coefficients - C, , C,,

The fin normal force coefficient is modelled in a similar way to give:

Czn = Czno + 05(an )\0 + C;ls))\45)
€O = 8 M +Cl ol
45 45 45
C’Z?7 = CanM + C’ZW ed (2.29)
where:
Coefficient | Value
C’ZT70 10
anM -1.6
CSW 2
o 14
cy 1.5

The carpet plot for this function is shown by White [71], in the same format as the
centre of pressure and side-slip normal force coefficient.

Damping Moment Coefficients - C,, ,C,, , C),

The lateral moments can be modelled directly in polynomial form as:

Cmg = Cmyo + Congry M + Cin,, |0 (2.30)
where:
Coefficient | Value
Crngo -500
C’mq My -30
Crmgo 200

The carpet plot for this function is shown in fig. 2.6. The roll damping coefficient
is:

G, = Cl, (2.31)

where:

Coefficient | Value
Ci, -500
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6 30 Incidence

Mach Number

Figure 2.6: Roll damping coefficient C,,,

2.5 Open-Loop Stability Analysis

The open-loop stability analysis of the system is divided into two steps. In the first
one we consider the lateral flight control design, i.e. we study the single-input single-
output system. The spectrum of the poles and zeros for the open-loop single-input
single-output system (SISO) is shown in figures 2.7, 2.8 for different flight conditions.
In this case all the aerodynamic coefficients are described by affine polynomials of
incidence, o, and Mach number, M. In order to examine the effect on the system of
those two variables, a spectrum of poles and zeros for constant Mach number (Mach
number = 3) and varying o (up to 30°) is considered. Then a spectrum of poles and
zeros for Mach number varying from 2 to 4 is examined, while a constant value of
o = 0.1° is maintained.

Fig. 2.7 shows the open-loop stability for large variations of total incidence. For
most of the regime the missile is statically stable, as given by Horton [69]. For
low values of speed, less than Mach 2, the airframe becomes statically unstable see
fig. 2.8. Also fig. 2.8 shows the operating envelope of large variations in Mach num-
ber, which is the indication for forward speed of the missile. The incidence is used as
a state variable so it is important to show the open loop stability for the operating
range. The control law of the autopilot design is derived for variations in incidence
of 0.1° to 1° and fixed Mach number = 3, as is detailed in Chapter 3 and Chapter 4.
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Poles for Constant Mach=3 and variations in & Zeros for Constant Mach=3 and variations in o
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Figure 2.7: Pole and Zero Spectrum for constant Mach = 3 and varying incidence

Poles for Constanto = 0.1 ° and variations in Mach number
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Figure 2.8: Pole and Zero Spectrum for constant incidence = 0.1° and varying Mach
number



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 34

2.6 Cross-coupling effect

It is necessary to determine how strong the coupling effect is between the different
channels (yaw, pitch and roll). The simulation results for a step input demand only
on fin angle £ are shown in fig. 2.9. If the system is not coupled, an input demand
on fin angle ¢ should have no effect on pitch (w, ) or yaw (0, 7) channel, which is
not the case here. The other case for a step input demand only on fin angle (, is
examined too. The simulation results for all inputs and state variables are shown in
fig. 2.10 (e.g. the system is again excited through a single channel - yaw). Again if
the system is not coupled demand in fin angle ¢ should have no effect on the other
two channels. However we can well see the coupling effect distributed along the other
two channels. The responses for symmetrical velocities side-slip, v, and vertical, w,
again prove the symmetry of both channels. A strong, severe cross-coupling between
all three channels has been demonstrated.

wwwwwwww

ppppppppp

‘‘‘‘‘‘‘‘‘

Figure 2.9: Side-slip velocities and rates responses for a demand in fin angle &
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Figure 2.10: Side-slip velocities and rates responses for a demand in fin angle ¢
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2.7 Nonlinearity

The nonlinear behaviour of the system is inherent for a highly manoeuvrable missile.
It is caused by the complex dynamics of its motion. Attention has been paid to how
a certain fin angles  or £ can affect the side-slip velocity or lateral acceleration re-
sponses and demonstrated in fig. 2.11. Let us now consider the open loop dynamics

Lateral aceeleration

%

Vd wwwwwwwwwwwwwwww

aaaaaaaaaaaaaaaaaaa

e |
m/\ g
accel ey
14 I i V !
I’ vel . iy
i I
S -
oy
,,,, |V
I
accel )
f vel e vy

Figure 2.11: 1g, 5g, 20g demand

for a SISO system in the yaw channel. The non-linear differential equations for
and 7 are described earlier in (2.8). If a constant input demand is required, then
the missile will accelerate at 10 m/sec? with the corresponding side-slip velocity of
2.5 m/sec shown in fig. 2.11-top. Increasing the input demand to the rudder by
10 or 100 times does not produce a proportionate response in the acceleration and
velocity as it would in a linear system. These simulations are also a demonstration
for two types of nonlinearities: input to state ( to v) and state to controlled output
(v to a,). The latter relationship is given by the following dynamic equation:
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a = v+Ur
a = V(Cyuv+V,Cy() —Ur+Ur
= V[(Cyoy + Cpopy M + Cy, [ 0 )0+ Vo(Cyey + Cye,, M+ Cye, | 0 [)(]
= VO[(Cyov + Cp, | v v+ VoCyC + VoCyq, [v | (]
(2.32)

and is also an indication that it is possible to achieve lateral acceleration control
indirectly through the side-slip velocity which is further addressed in Chapter 3.
Also the responses of the open loop system are settled within 1.2s and much faster
0.5s for higher demands, whereas the closed loop requirement for settling time of
the response is around 0.12s.

It is important to understand and effectively control the nonlinear behaviour of
the system as the missile manoeuvres in a large dynamic range and changes speed
continually.

2.8 Multi-modelling airframe dynamics

2.8.1 Parametric uncertainties

The modelling errors can be separated into two types: parametric and unstructured.
Parametric uncertainty refers to modelling errors, under the assumption that the
actual plant is of the same order as the model, where the numerical values of the
coefficients to the differential equation, which are related to the physical parameters
of the system, between the actual plant and the model are different. In the case
of unstructured uncertainty, the modelling errors refer to the difference in the dy-
namics between the finite dimensional model and the unknown and possibly infinite
dimensional actual process.

The uncertainties we are dealing with are parametric and structured, but we cannot
measure them. We know where they may come from but we are not certain which
ones are causing the model parameters variations. For example, in a real flight sce-
nario, for every instance of this missile type, the aerodynamic functions taken in
wind tunnel measurements may deviate from their nominal values. The variations
are parametric uncertainties of the non-linear system. In the presence of paramet-
ric uncertainties the state-space form of the non-linear system can be written in a
compact format as:

&= flx)+Af @)+ (9(r) + Dg(r))u (2.33)
= h(z)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 38

The reduced order system for yaw plane without roll coupling has been considered:

_ for () + A fo, () 9o, (2) + Aoy (z) O

[ s ] __l far () + D foy () ] *’l dor(2) + Agur(x) 0 ] +{w ] (239

A set of convex models is produced that map the vertex points in a high order
parameter space (of the order of 16 variables) shown in detail in equations: (2.35)
and (2.36). The multiple model description of the airframe aerodynamics can be
further expressed in a parametric form as:

&1 = (a1 + Aar)zr + (a2 + Aag)z? + (a3 + Aas)zs + ((ag + Dag)zy + as + Aas)ug
g9 = (b1 + Aby)x} 4 (by + Abg)xt + (bg + Abz)zy + (ba + Abs)zi2a + (bs + Abs)zo
+  ((bg + Abg)z1 + b7 + Abr)uy
For the equations of lateral velocities v and w, the parameters Aay,..., Aas are
shown in equation (2.35). For the equations of yaw 7 and pitch ¢ rates, the param-
eters Aby, ..., Ab; are shown in equation (2.36). Both a; and b; are functions of
the aerodynamic coefficients: a;, b; = f(Cy,, Xep, Cy, Cp,) and can take any values

randomly generated within the vertex points. Hence more than 1000 models can be
exercised and the control system tested for robustness.

1 _ _
aq + Aal = %p%S(Cyvo + AC'yUO)

1 _ _
as + Nay = %p%S(Cyva + ACy,,)

a3+Aa3 = Uf
1

ags+ Nay = ZmPVfS(C’yCa + Acyéa)
a5+ Das = o pV2S(Cpey + ACK,) (2.35)
b+ Ab = —(Q;yz)pvos@cpa + AK) Gy + AC)
by+ Aby — —(;yz)pVOS((cho 4 AX ) (Con + AC) + (Xaps + DX ) (Cous + ACyu0)
by + Aby = —( Q;yz)pVoS(cho + AXepo) (Cyop + ACy4,)
b+ Aby = (46;;)pVOS(C_'mG + ACo)
bs + Abs = ( ﬁzz)pVoS(Cmo + ACy,)
b+ Abs = (2zz)pvfssf(éygo +AC,)
by 4+ Ab; = ( a )pV2SS(Cyo + ACy,) (2.36)

21,
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The tables shown below represent the polynomials for the aerodynamic coefficients
in the supersonic range for different roll angles 0° and 45°. They are a set of curves
in the plane of total incidence, 0 and Mach number, M. In these tables the C,,
polynomials present the normal force curves, the X, present the centre of pressure
curves, Cy. present the rudder and elevator control forces curves, and finally the
C,, present the damping yawing and pitching moments curves which are reasonably
proportional to body rates.

Normal force Cy, = =25+ 1.0M — 600
Control surfaces Cy. = —10—-1.6M +2.00
Centre of pressure | X, = 1.3+ 0.1M +0.20

Damping moment | C},, = —500 — 30M + 2000

Table 2.1: Roll angle = 0°

Normal force Cy, = =26 +1.5M — 300
Control surfaces Cy. = —10—-1.4M + 1.50
Centre of pressure | X, = 1.3+ 0.1M + 0.30

Damping moment | C,,, = —500 — 30M + 2000

Table 2.2: Roll angle = 45°

where:
Cyv = Cyvo +éyva

éyvo = Cyvo + Cva So S
180

Cyva — Cyvg ﬂ (237)

- Vs

CyCo = CyCo + CyCM 505

~ 180

Cnr — Cnro + C’nrg

= Vs

Cm"o = Cnro + Cm"M%
Cpo = C 180 (2.39)

nr
Vo
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(2.40)

00000000
000000
T ¥y % % = =

A large excursion on perturbations of the aerodynamic coefficients (C,,, Cy., Xcp, Cp, )
has been introduced into the system within the range of 0° to 45° aerodynamic roll

angles.
1

ain [deg]

G in [deg]

ain [deg]

ain [deg]

Figure 2.12: Aerodynamic coefficients ranges
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2.8.2 Sensitivity Analysis

The variations in aerodynamic coefficients (Cy,, Cy,., Xop, Cy,) have introduced para-
metric uncertainties into the non-linear system. They are shown in fig. 2.12 and the
polynomials are presented in tables 2.1 and 2.2. In order to explore the complexity
of the problem we have assessed the open and closed loop system performance for
different autopilot demands (1g, 5g, 10g, 15g) and we have examined the amount of
perturbations allowed in each coefficient before the system’s behaviour goes unsta-
ble or exceeds 10% steady state error on side-slip velocity. For simplicity we have
studied the single plane ( lateral or vertical motion ) when the roll angle is 0°. A set
of models of vertex points is shown on fig. 2.13 for 10 combinations of the four aero-
dynamic coefficients. Since we have determined that changes in the coefficient, C,,,
does not affect missile stability, only eight combinations of (min/max) ranges are
considered, one random set and one with the nominal coefficients. So a 1000 models
can be generated randomly within the (min/max) ranges and tested for robustness.
Also the side-slip velocity and acceleration responses of the open loop system are
shown in fig. 2.13. Up to 40% deviation from the nominal value of side-slip velocity
response and up to 55% deviation from the nominal value of lateral acceleration re-
sponse has been found for a large range of unit step demands on rudder or elevator

(e.g. 1g, g, 10g, 15g).

It has been found that some coefficients can allow larger percentage variation from
the nominal case than others. Within the system we are able to tolerate +£50%
uncertainty in each of Cy , C, €y, before the system dynamics goes unstable. Also,
the aerodynamic coefficient C,, can vary by up to £25% before the side-slip veloc-
ity exceeds 10% steady state error within the feedback linearized loop. For similar
performance, C,. can vary by up to +15%, and the most sensitive coefficient, X,
can vary by +1.5%. These are all found by extensive simulations. The centre of
pressure coefficient X, and the control surface coefficient C. have most significant
effect on the closed loop performance (the system is very sensitive to small changes),
while the damping moment contribution in C,, is small and the system is almost
insensitive to it and can be assumed independent of the aerodynamic roll angle.

The sign of the static margin z,, = z, — X, can tell us whether the system is
stable or not. The centre of gravity point is at 1.55m measured from the nose. For
a minimum side-slip velocity demand of 2.7 m/sec, the missile is heading at very
little incidence, o = 0.1°. For that value of o, the centre of pressure coefficient is
X¢p = 1.62m measured from the nose and the static margin z,,, = —0.07 is negative,
hence the airframe is statically stable. A change of —130% in the X,,, term of the
X, coefficient (X, = X, + Xp,) is critical for the stability of the missile. This
change will move the centre of pressure point to 1.53m which will produce a posi-
tive static margin of x,, = 0.02. Hence when the X,,, term of X, is varying, the
sign of the static margin changes from negative to positive and the missile becomes
unstable.



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 42

Cyv| Cy;| Cnr| Xcp
1| max | max | max | max
2 | min min min | min
3 | max max max min | A min
4 | max min max max Vmin
5 | min max max max
6 | min min max max | A max
7 | max min max min
8 | min max max min Vmax
9| ran ran ran ran
10| nom | nom | nom | nom
min max
~25% | Cyv | +25%
min max
Cy
~15% | ¢ | +15%
min max
~1.5%| Xcp | +1.5%
min max
~50% | Cnr | +50%

ec?]

[m/ss

Af +Agu
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Figure 2.13: Vertex points models
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2.9 Cartesian to Polar coordinates

2.9.1 Missile model dynamics in Cartesian coordinates

The equations of motion in respect to the total incidence o,

2 2
o= UT—HU@ (2.41)
f T

are the following:

o= folw,0,7) + go(w, v,7)¢

Po= fo(w,0,7) + gr (W, 0)C + gr (w,0)€
W= fu(v,w,q) + gu(v,w,q)n

¢ = fov,w,q) + gg, (v, w, Q)1 + gge (v, )&

p = fo®) + gp, (v, w, )0+ gy (v, w)E + gy (v, W) (2.42)

The functions f,, fu, fr, fg: f» and ¢u, Gu, 9r, 94, gp are given by equations (C.1) in
Appendix C. These equations will be used to derive the parametric format for
the Cartesian multi-input/multi-output system (MIMO) for control synthesis in the
next chapter.

2.9.2 Missile model dynamics in Polar coordinates

The great majority of missiles, including the model considered by Horton, have a
cruciform cross-section with two pairs of wings and two pairs of control surfaces.
The guidance system issues two commands, one up-down and the other left-right
and these two commands are fed to the elevators and rudders respectively. However
if there is only one set of control surfaces and wings, the commands have to be
issued not in Cartesian, but in Polar form. Some missile types can only have one
set of wings and if the missile has to manoeuvre to the right and up in polar form
the commands are given by the flight direction, 2z, and the angle of orientation, .
In other words the missile has to roll through the angle, A, and manoeuvre in this
roll orientation.

The missile system is transformed in Polar coordinates, with the flight direction
given by z = vv? + w? and the angle of orientation given by A = arctan-.

) 1 1

r = 5_[2 lpVoSd(ganrr_l_anz-'_VOCH§§+VOCT744C)

. 1 1

g = §[y lpVOSd(gdeqq + Cm, 2 + VO & + VoCi,yn)
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Figure 2.14: Transformation from Cartesian to Polar Coordinates

. 1 _
b= 3l ' pVoSd(dCy,p + VoCi ¢ + VoCiyn + VoCi, €)

1
5 = §m_1pVOS(CyZZz + VoCyoyn + VOCyZCC) + u(cos(A)g — sin(A)r)
. 1 _ _ .
A = oM 1,0VOS(VOC,\,]77 + VoCir.C) +uz Y(cos(N)g — sin(M)r) (2.43)

This will be used to derive the parametric format for control synthesis in the next
chapter.

2.10 Closed loop autopilot requirements

The next step would be to design an autopilot system to regulate the motion of the
missile such that the commanded manoeuvres generated by the guidance system are
followed, hence desired trajectory can be achieved. It is usually preferable to have
autopilots with high bandwidths that allow fast and precise command responses.

e It is important to ensure that the autopilot closed-loop dynamics are much faster
and better damped than the inherent airframe response. The usual design aim is to
achieve autopilot bandwidths that are two to three times faster than the open-loop
airframe dynamics. In this case the closed loop time response should be around 0.2s.

e Closed loop performance: The response of an autopilot must be as fast as possible
with the minimum of overshoot so that any command is attained quickly and is of
the required magnitude. For low g demands only, a slight overshoot of short dura-
tion is usually acceptable, since it can compensate for loss of acceleration during the
initial transient. For high ¢ demands, overshoot is usually unacceptable since the
airframe structural load limit may be exceeded, or an uncontrollable flight region
may be entered. The response character of the autopilot is quantified in terms of
rise time, settling time and the maximum percentage overshoot, hence the following
desired metrics are required:
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e Steady state error accuracy: 2%

e Rise time: (0.05s to 0.07s);

e Settling time: (1.2s to 1.8s)

e Maximum percentage overshoot: 10%

e Robustness requirements: The dynamic response of a missile may be simulated by
using a suitable mathematical model of the system. This model is usually arrived
at through processing wind tunnel data pertaining to the airframe in question (such
data are usually subject to experimental and instrumentation errors), from empir-
ical formulae, or from Computational Fluid Dynamics techniques. The resultant
dynamic model may differ therefore from the actual dynamics of the missile, due
to variations in the aerodynamics, the effects of linearization, unmodelled effects,
changes in the flight conditions, or simply build-to-build variations. Any autopilot
design must maintain adequate stability and satisfactory performance in the pres-
ence of such uncertainties.

e The signals physically available for feedback control such as lateral accelerations,
rates and incidence are usually measured by accelerometers, gyroscopes and Pitot
tube respectively.

2.11 Conclusions

This chapter has detailed the complexity of the highly non-linear missile system. It
is a real research model developed by Matra BA Co., which is described by look-up
tables that define the non-linear characteristic of the aerodynamics. It describes a
full 5 degree of freedom model in parametric format with severe cross-coupling and
non-linear behaviour. A polynomial model has been produced to match the para-
metric model as closely as possible in a least squares sense. This polynomial model
is in the form of polynomial relationships that are then used for control synthesis.
A set of convex models is produced that map the vertex points in a high order
parameter space (of the order of 16 variables). The multiple model description of
the airframe aerodynamics is tested for sensitivity on the aerodynamic coefficients.
Also, in order to examine manoeuvrability the model is described in Cartesian and
Polar coordinates.

In order for the missile system to follow a required trajectory, in other words to
respond accurately and rapidly to a large range of acceleration demands, an appro-
priate control algorithm design (i.e. an autopilot system) is necessary. One way to
achieve that is by linearizing the equation of motion about equilibrium conditions
as Horton [69] has done. Another way would be to keep the nonlinear system as it is
and apply global linearization via state feedback which is considered in Chapter 3.



Chapter 3

Feedback Linearization

3.1 Introduction

As stated earlier in the literature review of Chapter 1, the main idea of Feedback
Linearization (FL) techniques is to algebraically transform a non-linear system dy-
namics into a linear form by using state feedback, with Input/State Linearization
corresponding to complete linearization or Input/Qutput Linearization to partial lin-
earization by Isidori et al [2], by Su [4], by Hunt and Sue [3]. This differs entirely
from conventional linearization (i.e. Jacobian linearization) in that FL is achieved
by exact state transformations and feedback, rather than by linear approximations
of the dynamics. Feedback Linearization can be used for both stabilization and
tracking control problems, single-input and multiple-input systems, and has been
successfully applied to a number of practical nonlinear control problems.

Chapter 3 provides a description of Feedback Linearization, including the theory,
its application for control design and its limitations. Then an approximate In-
put/Output Linearization method for controlling a the nonlinear missile system
that is input-output linearizable is examined. The design retains the order and the
relative degree of the system in the linearization process, hence producing a lin-
earized system with no internal or zero dynamics.

Both SISO and MIMO systems have been considered in Section 3.3 and Section 3.4.
In the SISO case two trajectory control designs are studied. The main difference
from other research work is that instead of using angles or body rates as outputs for
the linearization process, lateral velocities and body accelerations are used. Lateral
velocity is directly related to the lateral acceleration, as in steady state a constant
incidence angle is associated with a constant lateral acceleration. The chosen output
for the second design has a linear relationship with the controlled one, hence better
closed loop performance has been achieved when higher demands are required. Two
different ways of presenting the nonlinear control design in Polar and in Cartesian
coordinates have been considered in the MIMO design and their advantages and dis-
advantages have been analyzed. An additional controlled output for the roll channel
has also been examined.

46
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3.2 Feedback Linearization theory

3.2.1 Feedback Linearization process

Consider input-output linearization of a single-input nonlinear system described by
the state space representation:

& = fx)+g(x)u (3.1)
= h(z)

where y is the system output, with f(z) and g(x) being the smooth vector fields.
According to Slotine and Li [14], a linear input-output relation is generated by differ-
entiating the output function y repeatedly until the input u appears. This is shown
here by following the notations of Differential Geometry addressed in Appendix D:

§ = Vh(f + gu) = Lyh(z) + Lh(x)u (3.2)

If Lyh(z) # 0 for some = = x¢ in €, then, by continuity, that relation is valid in a
finite neighbourhood 2 of xy. In €2, the input transformation

1
= —(—L .
u Lgh( rh+v) (3.3)

results in a linear relation between y and v, namely y = v. If Lyh(x) = 0 for all =
in €., y is differentiated again to obtain:

ii= Ly?h(x) + LyLh(z)u (3.4)

If LyLih(x) =0 for all z in €, § is differentiated again until for some integer r, the
following is true:
LyLy 'h(z) # 0 (3.5)

for some z = x( in €2,, where the above relation is valid in a finite neighbourhood
Q of zg. In €2, the control law

1
U= ——">=—+
LyL'h

(=Lih+v) = (—a(z) +v) (3.6)

1
B(x)
is applied to

y" = Lih(z) + LyLy ' h(z)u (3.7)

and the resulting relationship from reference signal v to output is:
Yy =v (3.8)

By using equation (3.6), which is a nonlinear state feedback (where LyL} 'h(x)
and L%h(x) are functions of ), a linear system is obtained from reference signal to
output. This is not a linear approximation, it is often called an exact input-output
linearization. Further on, the simple pole-placement controller can be extended to
asymptotic tracking as studied by Hahn et al [7] and described in the next section.
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3.2.2 Tracking Control

When a tracking control task is required, the reference signal (the new input of the
linearization) is derived such as:

v=—koy—kiy—...—kp_1y"! (3.9)

with the k; chosen such that the polynomial p" 4+ k,_p" "' + ...+ ko has all its roots
strictly in the left half complex plane (i.e. is Hurwitz), leading to the exponentially
stable dynamics described by:

y™ k™Y 4 4 key =0 (3.10)

which implies that y(¢) — 0 as given by Slotine and Li [14]. The reference signal
(the new input v) has been designed such as:

(n) _

v=1y, koe — ke — ... —k, 1€ ! (3.11)

to satisfy the closed loop error dynamics within the outer loop, so the autopilot
system is able to track desired output y4(¢). This is shown in fig. 3.1 for a second
order system. The reference signal is:

v= y[(f) — koe — kyé (3.12)
Yy
Yy, y T L v !
dr2dry ok =O—(r— B ‘ Plant |
a (xi,t)
X, X

Figure 3.1: Tracking Control Diagram

where e(t) = y(t) —yaq(t) is the tracking error. This leads to exponentially convergent
tracking with error dynamics given by:

&+ kié + koe = 0 (3.13)

Then, by using the control law

]' T n . n—
u = m(—th+yg ) —k[]e—kle— ...—kn,1€ 1) (314)



CHAPTER 3. FEEDBACK LINEARIZATION 49

desired tracking performance is achieved. Feedback linearization of MIMO systems is
obtained similarly to the SISO case by Slotine [14] and is described in Appendix D.2.

Input/State Linearization

The number of differentiations (r) required for the input u to appear is called the
relative degree of a nonlinear system. If the relative degree associated with the
Input-Output Linearization is the same as the order of the system, the non-linear
system is fully linearized which is the case of Input/State Linearization.

For linear systems the relative degree is related to well-known properties. For a
SISO linear system

t = Ax+ Bu
y = Cx (3.15)
y(s) = G(s)u(s) (3.16)

the relative degree can be calculated as the difference in degree between denomina-
tor and numerator of the transfer function G(s).

If the relative degree of a nonlinear system is equal to the order of the system,
an exact feedback linearization is achieved. The standard approach in feedback lin-
earization given by Slotine and Li [14] is to use h to define the required change of
coordinates.

For our system we define a series of functions ¢; related to h(zx) by:

¢1(z) = h(z)

¢i(z) = Lj'h(z) (3.17)
Setting 1 = ¢(z), the new equations are:

/li = ¢i+1, izl,...,n—l
fn = a(z) + B(z)u (3.18)

By using the control law u = 3(x) (v — a(z)), the relation /i, = v is linear, with v
as an input to the linearized system, hence an exact state linearization is achieved.
The description in equation (3.18) is often regarded as a canonical form for nonlinear
systems.
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Input/Output Linearization

By means of input-output linearization, the dynamics of a nonlinear system is de-
composed into an external (input-output) part and an internal (”"unobservable”)
part. Since the external part consist of a linear relation between y and v (or equiv-
alently the controllability canonical form between y and u), it is easy to design
the input v so that the output y behaves as desired. The internal part is called
internal dynamics because it cannot be seen from the external input-output rela-
tionship. Then, the question is whether the internal dynamics will also behave well,
i.e. whether the internal states will remain bounded.

If the relative degree is smaller than the system order, then the non-linear system is
only partly linearized which is the case in Input-Output Linearization. This requires
to transform the system into new set of states called Normal forms and whether
the controller can be applied depends on the stability of the internal dynamics (the
modes which are unobservable by the linearization process). Since the control design
must account for the whole dynamics and therefore can not tolerate the instability
of internal dynamics, the internal behaviour has to be addressed carefully.

3.2.3 Normal forms

When the relative degree r is defined and r < n where n is the order of the system,
the nonlinear system can be transformed into new coordinates called Normal form.
To determine the normal form we can follow the same process as in Input/State
linearization see equation (3.18), but the difference will be that we have an unob-
servable part of the system. The change into new coordinates means that:

=Y P2 =Y ey =y (3.19)
and the system description becomes:

i = p2
fo = p3

i = az)+ B(z)u
fos1 = Pr(p,u)

/‘/’n = wnfr(,u/:u)
Yy = m (3.20)

for some functions «, $ and ¢. The linearizing feedback is:

2 a(x)
u="g (3.21)
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which gives the following closed loop system:

= p
fo = W3
=

fogr = U1(p, )

I[j’n = wnfr(ﬂau)
Yy o= I (3.22)

We can see that the whole system has not been linearized. The p; _, part of the
dynamics of system (3.22) are in the form of integrator chains of length r. There
is possibly still some nonlinear dynamics affecting the state variables g, 11, ..., fin.
This dynamics is not visible in the output and is called the internal dynamics of
the system (3.22). This dynamics depends on the output states p and it is un-
observable (it cannot be seen from the external input-output relationship). When
we design the controller, the external p; (i = 1,...,r) part is used because there
is a relation between y and u hence is easy to design an input so that the output
behaves as desired. However when the controller is applied to both the external
p; (i =1,...,r) and the internal p; (i = r+ 1,...,n) part of the system, the
performance of the closed loop system will degrade since we haven’t taken into ac-
count the part u; (i =r+1,...,n) when designing the controller. It is important
to study the stability of the internal dynamics. If it is unstable the system will
become unstable too. However if it is stable, the system will remain stable, but the
controller can’t guarantee closed loop performance, as some part of the system was
ignored when designing the controller.

It is difficult to directly determine the stability of the internal dynamics because
it is nonlinear and coupled to the external closed-loop dynamics. The study of the
internal dynamics stability can be simplified by studying the zero dynamics instead.
The zero dynamics is defined to be the internal dynamics of the system when the
system output is kept at zero by the input. Two useful remarks can be made about
the zero-dynamics of nonlinear systems. First the zero-dynamics is an intrinsic fea-
ture of a nonlinear system, which does not depend on the choice of control law or
desired trajectories. Second, examining the stability of zero-dynamics is much easier
than examining the stability of internal dynamics, because the zero-dynamics only
involves the internal states while the internal dynamics is coupled to the external
dynamics and desired trajectories.

The internal dynamics associated with the input-output linearization corresponds to
the last (n — r) equations 1 = w(u, 1) of the normal form. Generally, this dynamics
depends on the output states u. An intrinsic property of the nonlinear system can
be defined by considering the system’s internal dynamics when the control input is
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such that the output y is maintained at zero. Studying this so-called zero dynamics,
some conclusions about the stability of the internal dynamics can be made.

3.2.4 Examples of Input/Output Linearization

In the following examples we have shown:

1. An input/output linearization which rendered the system with no zero dynamics;
2. An input/output linearization with stable zero dynamics;

3. An input/output linearization with unstable zero dynamics.

1. No Zero dynamics

Consider the non-linear system

1:1 = l‘%’EQ

For the given non-linear system by choosing an output for the linearization process

we can show that the system will result in no zero dynamics if the relative degree
of the equivalent linear system is equal to the order of the system.

Define the output to be:
y=1 (3.24)

By differentiating twice in order to achieve an input-output relationship we get:
g = 22511‘2%.1 + 1‘121:2 = 22513!E22 + 325125E2 +u (325)

The required static feedback for linearized closed loop input/output behaviour is
given by:
1 1
u = B(l/ —a)= I(V — 231%15% — 371 %1y) (3.26)
which will cancel the nonlinearity. The original system is of second order and the
relative degree is equal to 2, so there are no zero dynamics involved and the stability

of the linearized system can be guaranteed.

2. Stable Zero dynamics
Let consider another system:

1:2 = u
y = 11+ T (3.27)
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Introducing new states, gives

2121‘1+ZEQ, Z9 = T9

This will get the system in the following form:

le = Zg +u
ZIQ = u
y = x
The feedback is
U=v— zg

where v is the reference signal. This results in:

le = UV
ZIQ = —Zg +v
y = =
We see that:
y=v

and the dynamics which is not visible in the output signal is:

Z.QZ—ZS"‘V

It is easy to see that this system is globally stable for any constant v.

3. Unstable Zero dynamics

Consider instead the system:

ZCll = —SUE +u
.’EIQ = u
Yy = 1

93

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

In this case is unnecessary to make a coordinate change since we already have z; =y

and the system has relative degree 1. The feedback is:

u:x§+y

(3.35)
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giving the following form of the system:

ZEll = UV
.IIQ = :c% +v
y = (3.36)

There are problems already for v = 0. A small initial value of x5 gives a solution
that rapidly approaches infinity. This means that the control signal will also tend
to infinity.

In order to produce linearized systems that have no internal dynamics, techniques
which preserve the dynamic order of the system such as approximate feedback lin-
earization are needed. A few ways of achieving this are given in the summary.

3.2.5 Summary

Feedback linearization can be used for both stability and tracking control problems,
for both single-input (SISO) and multiple-input systems (MIMO), and has been
successfully applied to a number of practical nonlinear control problems, both as a
system analysis tool and as a controller design tool, just to name a few: Hahn et
al [7], Suykens and Vandewalle [72], Henson and Seborg [73], Bezick et al [8]. With
dynamic inversion, a nonlinear control law is designed which globally reduces the
dynamics of the selected controlled variables to integrators. A closed loop system is
then designed to make the controlled variables exhibit specified command response.
However the theory has got some limitations.

Firstly, it can not be used for all nonlinear systems. The applicability of Input/State
linearization is quantified by a set of stringent conditions, while Input/Output Feed-
back Linearization cannot be applied when the relative degree is not defined.

Secondly the full state has to be measured. The second problem is due to the
difficulty of finding convergent observers for nonlinear systems and when an ob-
server can be found, the lack of a general separation principle which guarantees that
the straightforward combination of a stable state feedback controller and a stable
observer will guarantee the stability of the closed-loop system.

Thirdly, one of the obstacles in the application of Input/Output Linearization is
due to non-minimum phase systems which produce unstable zero dynamics. Be-
cause Input/Output Linearization relies on a nonlinear version of pole-zero cancel-
lations, if the zero dynamics are unstable some of the unobservable states become
unbounded. A not well defined relative degree leads to internal dynamics with unob-
servable states through the linearization. In other words, one of the main problems
with applying Feedback linearization techniques is that the process produces a sys-
tem with the same relative degree as the original system, but usually with an order
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that is less. Indeed, the linearized system order is the same as the relative degree
unless pre-compensators are used to artificially change the order and the relative
degree. This process results in zero or internal dynamics, which are modes that
are effectively rendered unobservable by the linearization process. If the system is
non-minimum phase, then the zero dynamics are unstable. The analogy with linear
systems is that a zero-pole system is linearized into an all-pole system by selecting
the pole-zero excess as the order of the approximating system. In order to produce
linearized systems that have no internal dynamics, techniques which preserve the
dynamic order of the system are needed.

Several approaches are possible to the avoidance of internal or zero dynamics. One
approach is to neglect terms in input derivatives until the required system order
is reached as given by Hauser et al [74]. Another is to pre-compensate the system
to increase the system relative degree artificially, and thus having some limited au-
thority over the stability of the internal dynamics as detailed by Slotine and Li [14].
Designing systems with unstable zero dynamics can also be achieved provided the
input to the system remains bounded under feedback by Lu et al [75]. A fourth way
is to choose an output which has the required relative degree, and which is related
to the required control output in some manner. The approach used in this thesis
is a combination of the first two: to select an output that relates to the variable
that is to be controlled, but which gives a greater relative degree, and to neglect
small terms that allow the final relative degree to be achieved. This is applied to
the nonlinear missile system and detailed in Section 3.3 and Section 3.4 for SISO
and MIMO case respectively.

Finally no robustness is guaranteed in the presence of parametric uncertainty or
unmodelled dynamics. This is due to the fact that the exact model of the nonlinear
system is not available in performing feedback linearization. This disadvantage has
been successfully compensated by using robust control technique, addressed later
on in the thesis in Chapter 4.
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3.3 Trajectory control design for SISO system

For the SISO missile system we have studied the single plane case. The aim is to
track the missile lateral acceleration demand in both pitch and yaw planes which are
treated as being uncoupled. The missile model in this section is thus described by
the reduced 2DOF system assuming there is no interaction between lateral motion
and roll.

Two different designs have been considered. In the first, Design 1, tracking and
non-linear controllers are designed by defining lateral velocity as an output as it pro-
duces a higher relative degree than directly controlling lateral acceleration, which
has a relative degree of zero. Lateral velocity is directly related to the lateral accel-
eration, as in steady state a constant incidence angle is associated with a constant
lateral acceleration. In the second, Design 2, the augmented lateral acceleration
has been used as an output for the linearization procedure, instead of the actual
one. This is again to be able to achieve the same relative degree as the order of the
system, to eliminate zero dynamics.

3.3.1 Design 1: Tracking lateral acceleration via lateral ve-
locity

Both horizontal and vertical lateral motions are symmetric in format and the process

of linearization to control lateral velocities is the same, hence Feedback Linearization

for one of the channels is shown here. The control of the missile will be accomplished

by controlling side-slip velocity. The horizontal motion has already been defined for

yaw channel (¢ and 7) in equation (2.8) of Chapter 2. There is no roll interaction
(no & term) and the equation for side-slip velocity is now:

v = VCpv+ V,CyeC) — ur
= V(Cy, + Cpo,y M +Cy,_ |0 |)v+
Vo(Cyeo + Cyepy M + Cye, [ 0 [)C] — ur
= V(Cppv +Cyy, | v ] v+
VoCyooC + VoCly, | v | ] —ur (3.37)

where the Mach number M, and the total velocity V, are slowly varying with:

150
m

=S

SoS
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1
Ve = —pV,S 3.38
5P (3.38)
where Cuy, Cy,y Cycos Cye, are defined in equations (2.37) and (2.38) of Chapter 2.

The state space for the horizontal motion can be written in the following parametric
format:

l"l = a1 + CLQLE% + asxo + (a4:r:1 + a5)u1
jﬁ'Q == bll'? + bgl‘% + bgl‘l + b4x1x2 + b5$2 + (b6a:1 + b7)U1 (339)
where: . ‘
1 _ v
-]
and the parameters aq,...,as and by, ..., b; are defined in Appendix C.

The state space of the nonlinear system is:

& = f@)+g(r)u

= h=ux (3.41)
or in matrix form:
gi | _ | mw+ asT? + a3 Ty a4y + as ; (3.4)
xlg bll“;’ + bgl‘% + ()33?1 + b4$1$2 + b5372 bgﬂ?l + b7 ! .

The equation (3.41) is in standard form and Input/Output Linearization technique
can be applied to it. By defining the side-slip velocity z; as an output (y; = 1) and
by applying Feedback Linearization, only one differentiation of the output y; = 1
is enough in order for the input u to appear (as #; = f(x,72) + g(x1)u) which can
establish an Input/Output relation. In that case the relative degree (i.e. the order
of the equivalent linear system) would be r; = 1, which is less than the order of
the non-linear system (2"¢). This results in an equivalent linear system with first
order internal dynamics. However, an approximate Feedback Linearization known
as g-modification by Hauser et al [74] can be used instead of exact Feedback Lin-
earization. In which case the relative degree is increased by the required order to
equal the order of the non-linear system which will result in system with no internal
dynamics and a tracking controller is designed without having to consider stability
of unobservable modes. Using this approximation, terms are discarded in order to
retain an approximate system with an equivalent order and relative degree.

By using normal coordinate transformation let py = ¢; = h(z) = z;. We dif-
ferentiate pu:

/ll = a1r1 + agl“? “+ asxo + (04371 + CL5)U1 (343)
p2=p2(x) Y1 (z1,u1)
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We then neglect (21, u;) as it is a very small term compared to the rest of the
missile dynamics. The relative magnitudes between ¢y dynamics and ¢, dynamics
is a ratio of 1 : 10, which has been validated via simulation. This suggests that
11 can be neglected. There is also a phisical explanation for the justification for
neglecting the ¢; term. t; is the fin force and is phisically designed to be smaller
than the ¢, dynamics. ¢, is the body aerodynamic force acting at the centre of
pressure and is normaly an order of magnitude greater than the fin force. The main
effect of 1; is to produce a small force at a large distance which produces a large
turning moment. The turning moment term then appears as 3; in the 7 equation
due to the differentiation of the ¢, dynamics. Hence, although the fin force term is
neglected, the fin turning moment is retained.

Hence ji; = py. We differentiate s to get:
[LQ = (2@22 + a3b1)$13 + (3&1@2 + a3b2)$12 + (CL% + a3b3)x1

a1

+ (alag + Cl3b5)3?2 + (2a2a3 + 0364)$1$2

@1

+ (2@3b6$1 + Cl3b7) Uq (344)

~ /

e

By neglecting the term ¢); shown in (3.43), the g vector field has been modified. The
effect of neglecting the term ¢, in equation (3.43) is to eliminate a non-linear zero
in the system within the model description, and which is not taken into account in
the non-linear control design. It has been shown by White [71], this will not affect
the performance of the control design in a significant manner as the zero can be
approximated by:

(a4 | 21 | +as)

~ 4
& (2a3b6 ‘ T ‘ +a3b7) (3 5)

The zero is negative for all values of x;, hence will not affect the stability of the
closed loop dynamics.

The linearized system can be written in compact form:

= h
P = p2
/:LQ = o1+ Blul (346)

The output (h) has been differentiated twice, hence possesses a relative degree (r) of
2. Since the relative degree is equal with the order of the system, fully linearization
of the non-linear system has been achieved with no zero dynamics. The equation
(3.46) represents a direct relationship between the output (h) and the input (u;) [76]
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by Wang. The required static state feedback for decoupled closed loop Input-Output
behaviour is given by Kravaris and Soroush [77] as:

uy = é(l/ — ) (3.47)

The linearized closed loop system is now given by:
y=v (3.48)

where v is the new linearized system input, as given by Wang [76]. For the second
order yaw plane system, the tracking controller in the outer loop can be investigated
by choosing the resulted new control v input to be:

vV = ?jd — kle - kQB (349)

where e = y — y4. The closed-loop system is thus characterised with the following
error dynamics:
€+ kié+ ke =10 (3.50)

where k; and ks are chosen such that all roots of s? + k15 + ks = 0 are in the open
left-half plane Hurwitz, which ensures lim; ., e(¢) = 0, as shown by Wang [76].

The tracking control problem of the non-linear system described by equation (3.39)
has been solved using the control law in equation (3.47) with the new input defined
in (3.49). Indeed, since equation (3.50) has the same order as the non-linear system,
there is no part of the system dynamics which is rendered “unobservable” in the
approximate Input/Output Linearization. Since there are no zero dynamics in the
linearized system, the tracking problem has been solved provided the approximation
is valid and the neglected terms are small as proved by Hauser et al [74].

&y : : X y=a
Trajectory Nonlinear Actuator Plant a=f(x)
control controller

Figure 3.2: Trajectory control design for Design 1 in SISO

The trajectory control design has been shown in fig. 3.2. A fast linear actuator
with natural frequency of 250 rad/sec has been included in the non-linear system.
The block of the Plant is represented by equation (3.39). The nonlinear controller is
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derived by equation (3.47). The desired acceleration a, is achieved by using the non-
linear equation ag = f(vg). The relation between lateral acceleration and side-slip
velocity is:

a=19+Ur=av+aw’—Ur+Ur (3.51)

hence by finding the roots of
Qg = a1vq + ayv; (3.52)

we would know what side-slip velocity is required for particular lateral acceleration
demand, hence desired tracking performance can be achieved.

The error dynamics (e = v — vy and é = ¥4 — ©) are constructed using the ay

signal and the feedback of the actual states - side-slip velocity v, yaw rate r and
acceleration a, also shown in fig. 3.3.

Vg—0=0ag—Urg—a+Ur (3.53)

4y
_

Urd*>_
v
a___ N

=
Ur ' N :l >—‘
— — +

Nonlinear
+ Controller

v
—_—

—ly

Vi

Figure 3.3: Error dynamics

The trajectory control is derived concerning the closed loop error dynamics expressed
in equation (3.50). The error coefficients are chosen to satisfy Hurwitz polynomial
for the second order error equation in each channel, hence k; = 2¢w, and ko = w2,

with w, = 70 rad/sec and { = 0.7. This speed of response is significantly faster than
the open loop response and so should exercise the dynamics of the non-linear missile.

Results and few comments

The results for 1g (10 m/sec?) and 10g (100 m/sec?) lateral acceleration demands
are shown in fig. 3.4. They show side-slip velocity and the resulting lateral accelera-
tion responses. The side-slip velocity demand has been scaled using equation (3.52)
to give required acceleration. Actuator fin angle and fin rate are also shown to
make sure that no unrealistic control signals are generated. The figures show almost
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identical step responses with some variation in peaks and steady state values for
the body yaw rate, the actuator movement (fin angle) and the side-slip velocity.
As expected for a non-linear system, the relationship between lateral velocity and
lateral acceleration is non-linear. The results also show that the actuator does not
significantly affect the design. The non-linear approach is also shown to be rea-
sonably accurate, as the predicted and actual performance are very close, as given
by Tsourdos et al [78]. The non-minimum phase effect on the lateral acceleration
responses can be seen as evidence that an inherent right half plane zero exists within
the nonlinear system.

eration

Lateral acceleration
|

Lateral accel

w

o
N
S

N}

Sideslip velocity
g = n
e A
T T T T 1

o

o

Fin angle

Rate and fin angle for 1g demand Rate and fin angle for 10g demand

Figure 3.4: Results for Design 1 in SISO for a; = 10 m/sec? and a; = 100 m/sec?
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3.3.2 Design 2: Tracking lateral acceleration via augmented
acceleration

By defining lateral acceleration as an output and applying the standard Input/Output
Linearization procedure, the relative degree (i.e. the order of the equivalent linear
system) is 7 = 0, which is again less than the order of the non-linear system (2"%).
This results now in an equivalent linear system with second order internal dynam-
ics. However, by using the augmented acceleration as the output for the non-linear
controller design and by applying approximate Feedback Linearization known as
g-modification, as given by Hauser et al [74], the relative degree is increased by the
required order to equal the order of the non-linear system. As the system has no in-
ternal dynamics we can then design a tracking controller without having to consider
stability of the unobservable modes. The dynamic equation for lateral acceleration
has been derived in equation (2.32) of Chapter 2 and is given here again by:

a = v+Ur
= ¢(v) +¥(v,() (3.54)

From equation (3.54), the output contains the input control fin deflection ¢ by virtue
of the term (v, (). This makes the lateral acceleration have a relative degree of
zero. This term, however, can be shown to be the lateral force developed by the
fin. The fin’s main contribution to the dynamics of the missile is to develop a
turning moment, by virtue of the term $1,.!pV,2SdCy( in equation (2.8) for r and
the equivalent term in equation (2.7) for ¢, detailed in Chapter 2. If this term is
included in the output equation, then the augmented acceleration can be represented
as:

o = Ot—’l,/}(’U,C)
= ¢(v) =V°[(Cyoov + Cyo, | v | v] (3.55)

or in parametric form as: @ = a;7; +ay2?. The augmented acceleration & is used for
lateral control instead of the lateral acceleration a.. The difference between the two
outputs o and & is now just the lateral acceleration developed by the control fin,
and as such will not introduce much error in the control of the lateral acceleration,
as given by White [71].

The matrix form of the non-linear system shown in equation (3.42) is the same
here, but the controlled output of the non-linear system (3.41) now is:
y=h=az +ar] (3.56)

In order to apply Input/Output Linearization and to retain the system order with
no zero dynamics, an approximate Input/Output Linearization technique is applied.
Let yy = h(z) = a1x1 + apx?. Then by differentiating u we get:
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. 2 2 2.3
a1 = (ajxy + 3ajasx] + ajazxs + 2a5x] + 2a2a311 79

-~

p2=¢1(z)
+ (agaqz? + (aray + asas)x? + (10571 )y (3.57)

~

~~

Y1 (z1,u1)

The (21, u;) dynamics, in this case, is close to zero 0.039 confirmed via simulation,
hence we can neglect it. Conversely to Design 1, there is no physical interpretation
for neglecting the term. To take the next step we set ¢, to zero and ji; = po. Then
we differentiate s to get the Input-Output relation:

/:LQ = \(6@% + 2@2@3()1)%‘% + (12&1&% + a1a3bl + 2@2@3[)2)55? + (Cl? + a1a3b3)x1

a1

+ (a% + 6&%&2 + a1a3b2 + 2a2a3b3)x% + (8&%&3 + 2a2a3b4)x%x2

[e3]

+ (8ayazas + ajaszby + 2aza3bs)x1xs + (2a2a3)23 + (aas + aiasbs) vy

-~

@1

+ (6atasx? + 2a5(3a1a4 + 3asas + asbg)z?) + (ay(ayas + asby)) uy

N vl

B1
+ ((6a1a2a5 + CL%CL4 + a1a3b6 + 2a2a3b7)x1) + (2a2a3(a4x1 + a5)x2) U1
81
(3.58)
and the resulted system is
= 2
/:LQ = o1+ Blul (359)

The output (y) possesses a relative degree (r) of 2, since (y) has been differentiated
twice for the input (u;) to appear. The relative degree of the system is now 2, and
has the same order as the original system. Therefore there are no internal dynamics.
Since the total relative degree is equal to the order of the system, fully linearization
of the non-linear system is achieved. The effect of neglecting the term vy (z, u,)
in equation (3.57) is to eliminate a non-linear zero in the system within the model
description, and which is not taken into account in the non-linear design. It has
been shown by White [71], this will not affect the performance of the control design
in a significant manner as the zero can be approximated by:

Y~ i)
Bi(z)

(3.60)

When the augmented acceleration is defined as a control output of the linearization
procedure we have applied an approximate Input/Output Linearization in order to
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retain the order of the system. In that case there is no zero dynamics involved in
the design. If we don’t neglect any term, then the linearization will take place by
solving the 2" derivative of the output for the first derivative of the input 1/; A
pre-compensator will cancel the inherent zero in the Input-Output equation. An
approximation to this controller that does not include the cancellation pole can be
used by neglecting the Yy term. The zero will exist, which is not taken into the
analysis and will be stable if the fin angle moment is significantly greater than the
static margin. This is usually the case in most agile missiles as the static margin
is made as close to zero as possible for most missiles. This will produce a stable
solution and tracking performance will be satisfactory.

The equation (3.59) represents a direct relationship between the output (h) and
the input (u). The required static state feedback is given by the control law previ-
ously explained in Design 1, see equations (3.47), hence a decoupled closed loop
Input-Output behaviour is achieved. For the linearized closed loop system (3.48),
the new control input has been chosen to be (3.49), so desired tracking performance
has been achieved. By selecting the gains such that all roots of the closed loop error
dynamics (3.50) lie in the left-half plane, asymptotic global stability is guaranteed.
The closed loop error dynamics is (2"¢) order, hence there is no part of the system
dynamics which is rendered “unobservable” in the approximate Input/Output Lin-
earization. Since there are no zero dynamics in the linearized system, the tracking
problem has been solved, as discussed by Isidori [79], Slotine and Li [14].

a . .
d_ Trajectory Nonlinear Actuator Plant 74
control controller o

Figure 3.5: Trajectory control design for Design 2 in SISO

The autopilot simulation is shown in fig. 3.5. The difference from Design 1 is
that the augmented acceleration is used as the linearization output. The controller
design has been produced by using the augmented acceleration, but in the simulation
the lateral acceleration has been used to check the validity of the made approxima-
tions. The error dynamics are constructed by using the desired lateral acceleration
ag signal and the feedback of the actual states - velocities, rates, accelerations and
jerk. Also, a fast linear actuator with natural frequency of 250 rad/sec has been
included in the non-linear simulation. Fixed gain trajectory controller has been used
for the second order error equation (3.50) such as k; = 2w, and ky = w?, with
natural frequency w, = 60 rad/sec and damping factor ¢ = 0.65. This speed of
response is faster than the open loop response and so should exercise the dynamics
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of the non-linear missile sufficiently for meaningful conclusions to be drawn. The re-
sults for 1g (10 m/sec?) and 5g (50 m/sec?) lateral acceleration demands are shown
in fig. 3.6. These figures show almost identical step responses for both demands
with some variation in peaks and steady state values for the body rate, the actua-
tor movement and the lateral velocity. The difference between the lateral and the
augmented acceleration shows that there is a good match between the two and that
the steady state values are very close, as given by White et al [80]. This illustrates
the small effect that the fin force has on the missile acceleration and justifies the
use of the augmented body acceleration.
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3.4 Trajectory control design for MIMO system

The Input-Output design technique can be extended to the MIMO case. The aim
here is again to track the missile lateral acceleration demand in pitch and yaw plane
but to also maintain constant roll rate. The missile model in this section is described
by full 6DOF system with roll interaction.

Two kinds of manoeuvrability are considered here. The first one is based on skid-
to-turn (STT) motion which is presented in Cartesian coordinates and is valid for
missiles with two pairs of control fins (rudders and elevators); and the second one is
based on bank-to-turn (BTT) motion which requires Polar control and is valid for
only one pair of control surfaces, very often used by long range, cruise missiles.

3.4.1 Design 1: Cartesian coordinates

The equations of motion, described in (2.42) in Chapter 2, are used to derive the
state-space form of the non-linear system in a compact parametric format, as:

T = a1xy 4 a1 + 232 4 a3ze + (aq\/212 + 232 + a5)uy

By = bixy (212 + 292) + bowiy/ 112 + 232 + b3wy + byxon/ 212 + 232 + bs2y
+(be\/212 + 232 + br)uy — (bg + bg\/m12 + 3% + big(z1% + 23%)us

T3 = a1x3 + asw3\/x1% + 232 — azxy + (ag\/ 112 + 232 + as)uy

By = —bxs(a® +25%) — b2$3\/m — b33 + bawa\/T1? + 3% + b5y
—(be\/T12 + 3% + by)ug + (b + bg\/ 212 + 332 + bio (71 + 237 us

5 = c1ws+ (e3 + ca/2? + 23)uy + (3 + cay 22 + 23)us + cous (3.61)

In a matrix form that would be:
o i a171 + a2w1v/x12 + 232 + azzxa |

2 bizi (w12 + 222) + beziy/ 212 + 232 + bax1 + bazar/ w12 + 232 + bsz2

3 = a123 + arx3\/x12 + 32 — azx4

v —biz3 (w12 + 232) — baxz\/212 + 232 — baxs + bawar/ 212 + 32 + bsz4

T's
L J i o

i a4\/ac12-|—a:32+a5 0 0 ]
bsr/x1% + x32 + by 0 —bg — bg\/ 12 + 232 uy

—bio(w12 + 732)
10 asr/ 1% + 232 + a5 0 U (3.62)

0 —be\/ 212+ 232 — b7 +bg + bg\/x12 + x32 s

+bio(z12 + 232

L (c3 + car/x? + x2 (c3 + car/z? + x2 ca |
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where:

T T
l‘:[l'l To T3 T4 565] :[vrwqp}
T T
U:[Ul Uz U3}=[C77§]
and the parameters aq,...,as, by,...,bp and ¢q,..., ¢4 are defined in Appendix C.

Equations (3.61) represent severe cross-coupling with inherent nonlinear terms within
the missile dynamics. Firstly, Input/Output Linearization is used to decouple the
system, and secondly, a trajectory controller is designed within the outer loop for
tracking performance.

The non-linear system written in a standard form is:

& = fl@)+g(z)u

= h
hy I

= hy | = | 23 (3.63)
hs Ts

and the Input/Output Linearization technique can be applied to it. Like the SISO
case study, in order to retain the system order with no zero dynamics, an approxi-
mate Input/Output Linearization is applied to the missile model. It is based on the
second approximation method involving the modification of the function g, as pre-
sented by Hauser et al [74]. Using this approximation technique, terms are discarded
in order to retain an approximate system with an equivalent order and relative de-
gree. In other words the g vector field is modified.

Yaw plane

Let puy = ¢ = hi(x) = ;. Then:
[Ll = a1r + asxri1yvV 3312 + 3332 + asxro + (04\/ ZE12 + ZE32 + a5)u1

p2=p2(7) Y1 (z1,u1)

/.:62 = a%xl + 2&1&2331 vV ZE12 + ZE32 + a3g:2) + (CLQ\/ 3312 + $32)(a25p1\/ ZE12 + ZE32 + a3z2)

-~

a1

2
a1a2T1T3 2 2 aoa3r1T3T4 3
+ N ) + AoT1T3 — N ) + a3b15171
VIi1© + 23 VI1© + T3

~ v

a1

+ a3 (baw1? + b3wy + byzav/x12 + 232 + bsao

(o5}
— (azbg + b V212 + 232 + agbio(x12 + 232)) uz + (azbg V12 + 232 + azbr) ug

B2 B1

(3.64)
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or with ¢ (1, u;) set to zero

= o

/:LQ = o+ ﬂlul + ﬂgUg = (l‘, u) (365)
Equation (3.65) is achieved by neglecting the term ¢, (xy, u;) shown in (3.64).

Pitch plane

Let M3 = ¢3 = hQ(l') = I3. Then:
[Lg = a1r3 + asxr3\V 3312 + ZE32 — a3x9 + (a4\/ ZE12 + ZE32 + a5)u1

pa=da(x) s (w2,5)

fta = atrz+2a1a023V 12 + 232 — azza) + aaVri2 + 232) (a2z3 V212 + 232 — azzs)

a2

2
a1a2x1x3 2 9 aga3r1Tor3 3
S + A9 T1T3 — T + a3b1x3
VI1©+x3 VI1© + 3 .
as

+ a3(b2z32 + b3fl?3 - b4334\/ ZE12 + ZE32 - b5fl?4

Q2

— (azbg + bgV/x12 + 232 + agbio(x1? + 23?)) uz + (asbg V12 + x32 + asby) us

~ v ~ v

Ba 5;
(3.66)
or with (9, us) set to zero
f3 =
/14 = Qa9+ 63U2 + 64U3 = Uy (J?, u) (367)

For the roll plane, the roll angle (\) has been taken as an output for the lineariza-
tion process instead of the roll rate. Both roll rate and roll angle control are used in
practice. This study will concentrate on roll angle control as this is the most useful
in practice, when asymmetric sensors are fitted and BTT control is used.

Roll plane

Let pus = ¢5 = ha(x) = xg, where 24 = A the roll angle. Then:

HUs = Ty

~

be=U6
[ = 125 —|—\c3/u3 + (c5 4 ca/2T + 23) ug + (3 + cay/at + 23) uy

a3 Br Bs Bs

(3.68)
or
fs = |l

,[//6 = a3+ B5U1 + ,BGUQ + 67U3 = U3 (I, U) (369)
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The output y; = hy(x) possesses relative degree ry of 2, the output yo = hy(x) also
possesses relative degree o of 2, and the output y3 = hs(z) possesses relative degree
r3 of 2. Hence the total relative degree of the system is equal with the summation
of the r{, r9, r3 and is now 6, which means the system has the same order as the
original one, therefore there are no internal dynamics. And since the total rela-
tive degree is equal with the order of the system, fully linearization of the non-linear
system has been achieved.

The effect of neglecting the terms v; from equations (3.64),(3.66) is to eliminate
a non-linear zero in the system within the model description, and which is not taken
into account in the non-linear control design. Provided the side-slip force is not too
great, as explained by White [71], this will not affect the performance in a significant
manner. The zero can be approximated by:

(as\/2} + 23 + as)
2 o~ - (3.70)
((L3b6\/l'% + ZE% + 03b7)

The explanations for the neglected terms (1);), described earlier for the SISO system
in Design 1, are valid here.

Equations (3.65), (3.67) and (3.69) represent a direct relationship between the out-
puts (h;) and the inputs (u;). The required static state feedback for decoupled closed
loop Input-Output behaviour of a MIMO system is given by the control law as:

u=E"v—| a (3.71)

where E~" is the characteristic, as named by Kravaris and Soroush [77] or decoupling
matrix as named by Slotine and Li [14] of the system, and is given by:

Bi 0 o
E=10 B b (3.72)

Bs Be Dr

which has been checked, is nonsingular.
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In a similar way to Section 3.3 for Design 1, the equations:(3.73), (3.74) and (3.75)
are detailed here again to show the tracking closed loop design. Here the linearized
closed loop system for each channel is given by:

where (v) is the new linearized system input and is given by:
v = ?jd — kle - kge (374)

and where e = y —y4. The closed-loop system for each channel is thus characterised
by the following second order error dynamics:

&+ kié + kpe = 0 (3.75)

where k; and ks, are chosen such that all roots of s>+ k;s+ ks = 0 are Hurwitz in the
open left-half plane, which ensures lim;_,, e(t) = 0, as detailed by Wang [76], hence
the tracking control problem for the non-linear MIMO system has been solved. The
stability of the linearized system has been guaranteed since no zero dynamics has
been involved.

The trajectory control design has got the same structure as shown in fig.3.2 for
Design 1 for the SISO system, but with an additional output (p) for the roll chan-
nel. Again a fast linear actuator with natural frequency of 250 rad/sec has been
included in the non-linear system. The desired lateral acceleration a4 for each chan-
nel is achieved by using the non-linear equation aq = f(v). Therefore the trajectory
controller performs by using the desired acceleration as a function of the lateral
velocity demand. The error dynamics are constructed using the a4 signal and the
feedback of the actual states - velocity, rate and acceleration. The error coefficients
in (3.75) for the trajectory controller are chosen to satisfy Hurwitz polynomial.

The results for 1g (10 m/sec®) and 5g (50 m/sec?) lateral acceleration demands
are shown in fig. 3.7. Fully decoupling has been achieved in yaw, pitch and roll
channels, as detailed by Tsourdos et al [81]. Both figures show desired tracking per-
formance as the predicted and the actual performance are very close, with almost
no steady state error. The non-linear relationship between side-slip (or vertical)
velocity and lateral acceleration for both (yaw and pitch) channels can also be seen.
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Figure 3.7: Results for Design 1 in MIMO for ay = 10 m/sec® and a4 = 50 m/sec?
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3.4.2 Design 2: Polar coordinates

The aim of this section is to track the missile lateral acceleration demand in both
the pitch and yaw plane as well as the roll rate in the roll plane, using the missile
aileron, rudder and elevator, hence yielding a system with 3 inputs and 3 controlled
outputs. The tracking and the non-linear controllers are designed by defining lateral
velocities (v) and (w) as outputs as they produce higher relative degree than directly
controlling lateral acceleration, which has a relative degree of zero. Lateral velocity
is directly related to the lateral acceleration, as in steady state a constant incidence
angle is associated with a constant lateral acceleration. The basic system is fifth
order, with an integrator in front of the roll channel yielding a sixth order system.

The missile system is transformed in Polar coordinates, with the flight direction
given by 2 = v? + w? and the angle of orientation given by A = arctan;>. These
transformations are used to simplify in a significant manner the heavy computa-
tional load required by the nonlinear control law derivation, (see equations (3.64)
and (3.66).

The equations of motion described in (2.43) in Chapter 2 are used to derive the
state-space form of the non-linear system in a compact parametric format, as:

i o= ayz+ a2 + asrsin(A) — azgsin()\)
+(asz + as5)(sin(N)¢ + cos(A)n)
io= b2°sin()\) + byz?sin(A) + bzzsin(\) + byzr + bsr
+(bsz + b7)¢ — (bg + bgz + b,02°)€
¢ = —b2cos(\) — byz*cos(N) — byzcos(N\) + byzq + bsq
—(bez + br)m + (by + bsz + b102%)¢
p = ap+ e+ (c3+caz)(C+n)
A = —azz Y(gsin(\) +reos(N))
+27 Y agz + as) (sin(A)n — cos(A)C) (3.76)

The nonlinear system written in a standard form is:

& = fl@)+g(r)u

v zsin(A)
y = h=|w | =1 zcos(\) (3.77)
p p

and Input/Output Linearization technique can be applied to it. In order to retain
the system order with no zero dynamics, an approximate Input/Output Lineariza-
tion technique is applied to the missile model. It is based on an approximation
method involving the modification of the function g, as presented by Hauser et
al [74]. Using the approximation technique, terms are discarded in order to retain
an approximate system with an equivalent order and relative degree. In other words
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the g vector field is modified. This is achieved by neglecting the terms v (z, () and
Yo (x,n) shown in the following equations.

For the yaw plane let 1y = ¢ = hy(z). Then:

= p2+ (2, Q)
Lo = ai+ i+ Bl = v (x,(§) (3.78)
where:
ar(xz) = (arcos(N) + 2aszcos(N))(a12 + a2 + asrsin(\) — azgsin(N))
+(a1zcos(N\) + azz’cos(N))(—azz (gsin(\) + rcos(N)))
+a3(b123sin(N) + baz?sin(\) + byzsin(\) + byzr + bsr)
Bi(x) = as(bgz + b7) — (bg + bgz + b1022)
Ba(x) = az(bg + bgz + bigz?) (3.79)

Hence the output hy(x) possesses a relative degree ry of 2.

For the pitch plane let u3 = ¢3 = hy(x). Then:

fis = pa+Pa(z,n)
fta = g+ Baus + Bauz = va(w,n, ) (3.80)
where:
as(z) = (arsin(N\) + 2azzsin(N))(a1z + asz? + azrsin(X) — azgsin()))
—(a1zsin(X) + az2’sin(N))(—azz~ " (gsin(\) + rcos())))
—a3(=b12%cos(X) — byzcos(\) — bzzcos(N) + byzq + bsq)
Bs(x) = as(bgz + b7) — (bg + bgz + b1022)
Ba(z) = az(bg + bgz + b1gz?) (3.81)

The output hy(z) also possesses a relative degree ry of 2.
Finally, for the roll plane, for the linearization process (i.e. the design of the non-
linear controller), we take as output the roll rate p, but place an integrator in front

of the roll channel to equalize the channel orders.

Let pus = ¢5 = hz(x), where hz(z) is the roll angle. Then:

fs = He
fte = az+ BsC+ Ben + Br€ = v3(w,(,n, ) (3.82)
where:
az(z) = ¢
Bs(r) = c3+ ez
Be(r) = c3+ ez
Bz(z) = ¢ (3.83)
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Hence the output hz(x) possesses a relative degree r3 of 2. The total relative degree
of the system is equal with the sum of the rq, 5, and 73 is now 6, and has the same
order as the original system and hence there are no internal dynamics. Since the
total relative degree is equal with the order of the system, fully linearization of the
non-linear system has been achieved.

The effect of neglecting the terms (¢;) and (1¢)3) in the previous equations is to
eliminate a non-linear zero in the system within the model description, and which
is not taken into account in the non-linear control design. This will not affect the
performance of the control design in a significant manner as the zero can be approx-
imated by:

(a4z + as)
(20,3[)62 + Cl3b7)

z N =
(3.84)

Equations (3.78), (3.80) and (3.82) represent a direct relationship between the out-
puts (h;) and the inputs (u;). The required static state feedback for decoupled closed
loop Input-Output behaviour is given by Slotine and Li [14] as:

u=FE"1v—| ay (3.85)

where E~! is the characteristic or the decoupling matrix of the system, and here is
determined by:

B 0 B
E=|0 f B (3.86)

Bs Be Dr

which is nonsingular. The determinant of the decoupling matrix is:
p(z) = det(E) = py + p12 + p22° + p32” + paz’ + ps2”®

All the roots are complex. There is no value of interest for z which could make p(z)
(i.e. the determinant of the decoupling matrix) equal to zero.

The linearized closed loop system for each channel is given by:

where (v) is the new linearized system input and for tracking problem can be chosen
to be:
V= gd - kle — k26 (388)
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where e = y — y4. The closed-loop system is thus characterised by:
€+ kié+ ke =10 (3.89)

where k; and ks are chosen such that all roots of s?> + kys + ks = 0 are in the open
left-half plane, which ensures lim; ., e(t) = 0.

Like in the first Design 1 for the SISO system, a fast linear actuator with natural
frequency of 250 rad/sec has been included in the non-linear system. The desired
acceleration ay has been achieved by using the non-linear equation a, = f(v,w),
but in a Polar sense. The desired acceleration is a function of magnitude (z) of the
lateral velocities: a, = a1z + ag2? = a1 (Vv? + w?) + az(v? + w?) and it is used in
the feedback to construct the error dynamics.

The error coefficients in (3.89) are chosen to satisfy a Hurwitz polynomial. For
the acceleration channel, k; = 2¢w,, and ko = w? are chosen with w, = 60 rad/sec
and ¢ = 0.7, for the roll channel with w, = 80 rad/sec and the same damping
factor, (. This speed of response is significantly faster than the open loop response
and so should exercise the dynamics of the non-linear missile. The tracking control
problem for the non-linear system has been solved using the control law in equation
(3.85). Since the equation (3.89) has the same order as each channel of the non-linear
system, there is no part of the system dynamics which is rendered “unobservable”
in the approximate Input/Output Linearization. Since there are no zero dynamics
in the linearized system, the stability of the linearized system has been guaranteed
and the tracking problem has been solved. Desired tracking performance for lateral
accelerations and roll angle of the missile has been achieved by using a non-linear
control law that has been derived by selecting lateral velocities and roll rate as the
linearization outputs. This has been detailed by Tsourdos et al [82].

Finally, simulation results are shown in fig. 3.8 that exercise the final design and
show that the linearization and the controller design are satisfactory. When there
is no lateral acceleration demand, shown in fig. 3.8¢c, a constant roll rate demand,
resulted in zero velocity magnitude which is a good indication for fully decoupled
system. Also a constant roll rate demand (the £ input on the roll channel) had no
effect on the yaw and pitch channels.
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3.5 Conclusions

There are three ways to increase the relative degree of a non-linear system. These
are either to propose a new output that is an approximation of the desired one, to
neglect sufficiently small terms during the differentiation process or finally to design
a pre-compensator for the system.

All four designs (SISO and MIMO), presented in Chapter 3, have used a combi-
nation of the first two. By neglecting small terms associated with the fin deflection
which modifies the g vector and by defining outputs for the linearization procedure
which are related with the controlled outputs, an approximate Feedback Lineariza-
tion technique has been successfully applied. The design has resulted in a linear
equivalent system with no internal or zero dynamics (“no unobservable” states dur-
ing the linearization), and with a design of a trajectory control which gives small
tracking errors for both lateral velocities and accelerations. The simulation results
have shown desired tracking performance for a large range of 1g up to 10g lateral
acceleration demands (for SISO and MIMO systems) and roll control (for the MIMO
system).

When the augmented acceleration was chosen as an output for the linearization
process, in Design 2 for the SISO system, the nonlinear control law involved more
complex mathematics and more nonlinear terms than the nonlinear control law in
Design 1. On the other hand the relationship (augmented acceleration - lateral
acceleration) is linear, so differences in closed loop performance for higher demands
are small, and only in the steady state error. Also, the augmented lateral accelera-
tion is used in Design 2 for the SISO system, provided that the direct acceleration
produced by the fin is small compared to the augmented acceleration. It also shown
that a neglected zero during the linearization process was minimum phase.

Two ways of manoeuvring the missile motion have been proposed by Design 1
and Design 2 for the MIMO system. Although the Horton model has been de-
signed for Cartesian control, Polar control is also possible to be designed because
it can significantly reduce the computational load of the nonlinear control design,
which can be important (less risky and less expensive - computationally speaking).

Finally, full decoupling for the highly non-linear missile system has been achieved.
All four Designs (SISO and MIMO) have involved increasing the speed of responses
of the system sufficiently and the responses for both small and large demands have
shown to be invariant. Other techniques have been researched by White [71] that
involve a quasi-linear approach, or involve pre-compensation to look at techniques
that can be applied to the lateral acceleration directly. This involves dealing with
a non-minimum phase system that yields unstable zero dynamics with direct lin-
earization methods.



Chapter 4

Robust Fuzzy Autopilot Design

It has been shown in the previous chapter that by applying Feedback Linearization
the desired tracking performance can be obtained by assuming an exact knowledge
of aerodynamic coefficients and missile configuration parameters (i.e., reference area,
Mach number, mass, moment of inertia) in the entire flight envelope. In practice
however, this assumption is not valid. Also, if there are either parameter variations
from the nominal case or external disturbances, the Feedback Linearization cannot
guarantee desired performance, neither is robustness provided.

Conversely, fuzzy logic appears promising when dealing with vague and imprecise
information such as uncertain measurement values, parameter variations and noise.
For these reasons, a robust non-linear trajectory controller based on fuzzy logic
has been applied in the outer loop in order to provide robustness for the feedback
linearizable system. An evolutionary algorithm optimisation approach is then ap-
plied off-line to determine the membership function distribution and the rule base
structure of the fuzzy controller. The design uses a genetic algorithm optimisation
approach using a multiple model description of the airframe aerodynamics and meets
objectives related to closed loop performance such as: steady state error, overshoot,
rise and settling time.

The aim of Chapter 4 is to track the missile side-slip velocity demand in the presence
of uncertainties in the aerodynamic coefficients. The required demands are consid-
ered for both pitch and yaw planes, using the missile rudder and elevator as control
surfaces hence only lateral motion is considered, yielding two uncoupled systems
with one input and one controlled output each. Multiple demand tracking is also
addressed here.

4.1 Hybrid Fuzzy Nonlinear Control

" Bverything is a matter of degree and you do not realize it till you have tried to
make it precise”. Bertrand Russell

78
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4.1.1 Fuzzy Logic philosophy

“Fuzziness means multi-valence. It means infinite shades of grey between black and
white. Fuzzy things resemble fuzzy non-things “A resembles not A” and have vague
boundaries with their opposites, their non-things. The more a thing resembles its
opposite the fuzzier it is”, by Kosko [83].

Fig. 4.1.1 stands for the world of oppo-
sites. The maths language creates bound-
aries between black and white. Reason
smoothes them out as it works with grey.
Borders are inexact and things coexist with
non-things. Fuzzy logic is reasoning with
fuzzy sets. Fuzzy logic deals with ambigu-
ous events or situations. However, am-
biguity does not mean there is no sort of
certainty in the events or situations. For
example probability did not alter or even
challenge the black-white picture of the
world. It just showed how to gamble in
it.[83]

Figure 4.1.1 The Yin-Yang symbol

Fuzzy Logic is a mathematical discipline developed by Zadeh [32] based on fuzzy
set theory which allows for degrees of truth and falseness. Fuzzy control is based on
fuzzy logic and provides a means of converting a linguistic control strategy based
on expert knowledge into an automatic control strategy, as detailed by Lee [33].
Fuzzy logic maps a set of inputs called antecedents to a set of control command
outputs called consequents, which actuate devices to translate the system to the
desired state. Because of the multi-valued nature of fuzzy logic, the values of the
system states can be categorically described by linguistic variables which maintain
the intuitive knowledge for the system. For example, rates may be described as pos-
itive fast or negative slow and control actions classified as negative large or positive
medium. The major advantage of fuzzy logic over conventional control algorithms
is that systems can be controlled, based on the designer’s experience (input and
output observations), not on the theoretical methods, which implies that there is no
need to rely on precise models. Fuzzy inferencing provides the means of systemat-
ically synthesizing various fuzzy rules to produce decision actions so that complex
non-linear systems can be controlled. In addition, the ability to control a system in
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an uncertain environment is an important feature, which is the main reason to be
used here for solving our problem. Fuzzy logic has been used in control for many
years. Engineers have successfully applied fuzzy systems in many commercial areas.
Fuzzy systems “intelligently” automate subways, focus cameras, tune colour televi-
sion, control automobile transmissions, defrost refrigerators, control air conditioners,
automate washing machines and vacuum sweepers, guide robot arm manipulators,
control traffic lights, elevators and cement mixers. Most of these applications origi-
nated in Japan, and have been sold and applied throughout the world. Some details
are given by Kosko [83], Bonivento et al [84], Palm and Driankov [85], Mcneill and
Freiberger [86].

Linear control techniques are mainly useful for linear systems. Since we are dealing
with a nonlinear plant, conventional techniques will not be appropriate to use here.
Many processes controlled by human operators in industry cannot be automated
using conventional, linear control techniques, since the performance of these con-
trollers is often inferior to that of the operators.

Conversely, knowledge-based control techniques try to formalise the domain-specific
knowledge, and use reasoning mechanisms for determining the control action from
the knowledge stored in the system and from the available measurements, as given
by Palm and Driankov [85]. These control systems try to enhance the performance,
reliability and robustness of the current control system. Fuzzy Logic Controllers
(FLCs) are rule-based control systems where fuzzy sets are used for specifying qual-
itative values of the controller inputs and outputs. The experts knowledge contains
linguistic terms such as negative (Neg), zero (7), positive (Poz) of the error variable
and can be represented by fuzzy sets (see fig. 4.1).

=1 Neg Z Roz

-6.9 0 69 ©

Figure 4.1: Membership functions defined for the error variable

The membership functions shown in fig. 4.1 provide a smooth interface from the
linguistic knowledge to the numerical process variable.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 81

Using fuzzy sets and fuzzy operations it is possible to design a fuzzy reasoning
system which can act as a controller, as illustrated in fig.4.2. The control strategy
is stored in the form of if-then rules in the rule base. The rules represent an ap-
proximate static mapping from inputs (e.g. errors) to outputs (control actions) (see
Fuzzy Logic Toolbox [87]) and for example can be formulated as follows:

If error is negative medium then control action is positive small.

The first part of the rule, called the antecedent, specifies the conditions under which
the rule holds, while the second part, called the consequent, describes the corre-
sponding control action. Both the antecedent and the consequent contain linguistic
terms (large,small,near zero etc.) that reflect the experts knowledge of the process.
The antecedent condition is defined as a combination of several individual condi-
tions, using a connective, such as the logical AND, OR operations. The reader may
refer to [87] for further understanding.

scding  membership rule membership scding
factors  functions hase functions factors

g ; ¢ ;
aror : e reasoning L — ) control
scaling fuzzification H{mechani L:mjﬁ{defuzzn‘lcanon}ﬁ{ scding mns

Figure 4.2: Block-schematic representation of a fuzzy logic controller

The fuzzification module determines the membership degree of the inputs to the
antecedent fuzzy sets. The reasoning mechanism combines this information with
the rule base and determines the fuzzy output of the rule base system. In order
to obtain a crisp signal, the fuzzy output is defuzzified using several techniques to
produce a single continuous variable.

Fuzzy sets and Membership functions

A fuzzy set is defined as a set with degree of membership associated with each
member. It is a set of ordered pairs which associate each value of the variable to its
grade of membership in the set. The grades of membership are represented by the
membership function p,. Consider a universal, crisp set U, called the universe of
discourse and a fuzzy set A. The membership function p4 maps the elements z € U
into real numbers in [0, 1]:

palz): U — [0,1]
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which gives a measure of the grade of membership of x which belongs to U in the
fuzzy set A. The position and shape (triangular or bell shaped) of p4 depend on the
particular application. For a PD controller there is no difference between different
shapes, as given by Hamm [88]. Fig. 4.1 shows an error of 1.75 which belongs 50% to
the set of Z and 50% to the set of Poz. The p degrees of the fuzzy sets Z and Poz are
both 0.5, which is an orthogonal condition and it has been considered in our work.
It has been shown by Lotfi [89] that membership functions have a dominant effect
on the reasoning process rather than the number of rules or the inference mechanism.

Fuzzy set operations

Fuzzy set operations are performed by logical connectives such as:
AND pi4(z) = min(pa(z), pp(x)) = pa A ps,
OR pa(z) = maz(pa(z), pp(x)) = paV ps,
NOT pa(z) =1 — pa(x).

In our work, the minimum operator is used for conjunction and the maximum oper-
ator for disjunction. The Mamdani method is used for our fuzzy inference system,
i.e. the min operator rule is adopted for the logic AND operator. For example, the
value W' of the antecedents (A’ and A}) of the I"* rule (A}, A}, B!) is calculated as:

W' = min(par, ptaz) = pai(See) A praz(Sae€)

which is the degree of fulfillment of the I"* rule, where a1 (See), paz(Sac€) are the
membership grades of the scaled variables in fuzzy sets A;, A; and S,, Sg. are the
scaling factors for the input variables with A, the min operator. The most common
method for determining the output value for each control in the vector u is by cal-
culating the centroid of where its membership function values are acting along the
output control’s universe of discourse. There are many possible ways to defuzzify an
output. The centre of area can be used for defuzzification and the output is given by:

T

> W
where ' is the center of the " rule’s consequent fuzzy set B, i.e. uly(ul) = 1. The
crisp perturbation control is given by u = S,y°, where S, is the scaling factor for
the control output u. Each rule is weighted by the degree to which the antecedent

of the rule is fulfilled. The final control decision is obtained as the weighted average
of all the contributed conclusions.

Adjustment of membership functions and rules for a fuzzy controller is examined in
detail by Hamm and Splettstoser [88]. A detailed procedure for selecting the type
and the number of j4 for each domain has been considered. They have found that
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up to five p, is easier to design and optimise. If there are more than two inputs or
if each input has many terms, then the number of rules can increase dramatically.

A very useful idea of applying PD fuzzy control for vehicle tracking has been investi-
gated by Chiu et al [40]. The derivative control rules are given much smaller influence
than the proportional control rules to avoid over-damping, in the same way that the
derivative gain is typically smaller than the proportional gain in conventional linear
control. The derivative control actions are predicated upon the condition that the
rate error is near zero. The resultant behaviour is that the controller would not
impose damping until the vehicle approaches the commanded roll rate. Their con-
trol strategy has pushed the vehicle toward the commanded roll rate at maximum
acceleration, and applied damping to stabilize the vehicle only during close tracking.

Fuzzy logic has been successfully applied in combination with other techniques. An
Input/Output Linearization with an adaptive fuzzy outer loop has been applied to
the depth control of a nonlinear underwater vehicle by Trebi-Ollennu and White [90].
The adaptive fuzzy systems are Sugeno type and have been used to approximate the
uncertainties caused by forward speed variations in order to improve the robustness
properties. This control scheme has enhanced the closed loop performance by re-
ducing the output tracking errors and by adding “intelligence” to the conventional
Input/Output controllers.

A hybrid approach, integrating Feedback Linearization and FLC (FL/FLC), has
been proposed by Lin and Gau [91] for improving the transient performance and
robustness of a highly nonlinear and open loop unstable magnetic bearing system.
The disturbance rejection capability of FL/FLC was much better than only the
FL approach. Rotor speed trajectory and gap deviation regulation have been con-
sidered. The nine output variables of the system were transformed to nine linear
decoupled subsystems with no internal dynamics. For each of these systems, 7 p4
input-output variables were used to produce a 49 rule base structure of the FLC.
However, the FLLC parameters were tuned by using extensive computer simulations
(e.g. the trial and error method) which can be very computationally expensive.

A very good control design approach has been investigated by Kwan et al [92] for a
pitch autopilot for a simple missile model. They have used on-line tuning of a fuzzy
CMAC neural network to improve the robustness of Feedback Linearization. The
fuzzy logic has been used to produce a systematic way of adjusting the neural net-
work weights on-line. No off-line training phase was needed which is an interesting
achievement. However, an increased complexity of the control system is associated
with such a design.

An interesting approach has been proposed by Leland [93] for using Feedback Lin-
earization to design controllers for systems with fuzzy uncertainties. Instead of
considering bounded uncertainty, they have used a fuzzy uncertain model. The
Feedback Linearization has provided asymptotic stability for the controller.
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4.1.2 Fuzzy trajectory controller for
the feedback linearized system

A Feedback linearized system with fixed gain trajectory controller has been designed
in Chapter 3. The nominal model of aerodynamic coefficients has been considered.
In order to design an appropriate fuzzy logic controller which can deal with the
non-linear parametric uncertainties of the missile model, we have to reproduce the
dynamic behaviour of the Input/Output linearizable controller by replacing the fixed
gain trajectory controller with a FLC type. At the start, the model has been kept
with the exact knowledge of the aerodynamic coefficients and the missile configu-
ration parameters, so initial fuzzy rules have been derived. One input-one output
(i.e. error-control action) FLC with only five rules has been derived. The contribu-
tion of the fuzzy logic trajectory controller has significantly improved the transient
response. Almost no steady state error and smaller overshoot have been achieved,
conversely to the design with the fixed gain trajectory controller. Each variable of
the FLC has five membership functions symmetrically placed within the Universe of
Discourse. A two input-one output FL.C has also been designed taking into account
the derivative action of the error. This resulted in steady state error. The trial
and error mechanism has been used with many iterations before an appropriate rule
base structure has been achieved which is time demanding and not very practical.
Hence it has been replaced by evolutionary optimisation using a genetic algorithm
for better adaptation.

e [ fovgon] |

@

ALGORITHM

Figure 4.3: Fuzzy-Feedback Linearized Autopilot Design

The autopilot design is shown in fig. 4.3. The missile dynamics are represented
by a multi-modelling format:

to= fl@)+Af@) + (g(z) + Dg(w))u (4.1)
y = h@)

where A f(x) and Ag(x) are considered as uncertainties caused by the aerodynamic
coefficients (Cyy, Cy,, Cpp, Xop). In this chapter the models are randomly generated
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polynomials within a large range of 0° to 45° roll angle. Fast 250 rads/sec second
order linear actuator representing rudder is included within the missile dynamics.
The non-linear control law v = =2, is derived by the feedback linearization tech-
nique, as detailed in equation 3.47, Section 3.3.1 of Chapter 3. The selected output
for the linearization process is the side-slip velocity. A fuzzy logic trajectory con-
troller is used in the outer loop for the side-slip velocity, V CHANEL. The trajectory
controller is designed, based on fuzzy inference engines, as two inputs - one output
system with four membership functions for each variable. An optimisation algorithm
is used to generate the fuzzy control parameters (i.e. membership functions and rule
base structure), while the non-linear controller v = =2 remains fixed. The obtained

fuzzy controller is tested on five trials (i.e. randomly generated models). Then a
performance analysis is done off-line for each autopilot simulation. Four closed loop
performance criteria are considered (i.e. steady state error, settling time, rise time
and overshoot). The maximum objective value of the five trials is returned to the
optimisation algorithm for evaluation of the tested fuzzy controller. The optimi-
sation process repeats for large number of iterations until satisfactory closed loop
performance of the autopilot system is obtained.

4.2 Optimisation of the Fuzzy Logic Controller

One of the major drawbacks of fuzzy logic controllers is that the membership func-
tions are chosen arbitrarily which implies a need of using a “trial and error” design
philosophy to improve the closed-loop system’s behaviour, which may not always
be possible. An evolutionary optimisation technique is suggested and described in
the next section as a possible way to tune the FLC parameters. A surrogate ad-
ditive function which transfers the vectorised multi-objective problem into a scalar
optimisation problem is used here.

4.2.1 Evolutionary Algorithm

The membership functions and rule base structure of a fuzzy controller can be de-
fined by trial and error. However, there is a need for a suitable learning medium
in order to increase the robustness of the FLC. The choice of learning method is
dictated by the nature of the task domain and the available information. One
possible way would be the use of Neural Networks (NNs), as detailed by Linkens
and Nyongesa [31]. They depend highly on the availability of sufficient data rep-
resenting the input-output mapping, but in a situation where such data cannot be
obtained an alternative approach is necessary. One such approach is to test hypo-
thetical trial solutions of the system and generate better solutions on the basis of
the performances using evolutionary techniques. Genetic algorithms (GAs), which
are modelled on natural evolutionary strategies, based on Darwinian principle of
survival of the fittest in biological reproduction, as described by Goldberg [94], are
one possible methodology that can be used as a learning and optimisation tech-
nique under such conditions. They are capable of finding global solutions when
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employed in noisy search spaces, whereas NNs can only provide fine tuned adjust-
ments using local search. The operators GA use, to direct them through the search
space, have features for self repair, self guidance and reproduction which are found
in natural genetics of biological systems. Whenever robust performance is required
nature does it better. GAs are theoretically and empirically proven to provide ro-
bust search in complex spaces. They have been successfully applied to a variety
of problems such as function optimisation, control, identification, self adaptive and
learning systems. The reasons for a large number of applications are because GAs
are computationally simple and powerful in their search engines. Also they are not
limited by restrictive assumptions concerning continuity, existence of derivatives or
unimodality. Other optimisation techniques are shown by Rao [95], such as Cal-
culous based (A), Enumerative (B) and Random (C). Some are local in scope (A)
and use point by point search (A,B and C), hence converging to a local optima.
Such methods depend strongly upon the restrictive requirements mentioned above
and are suitable for a very limited problem domain. Conversely GAs consider many
points from the search space simultaneously (a population of strings climbing many
peaks in parallel) which preserve the probability of converging to global optima.
Also they only need the objective function values associated with each individuals
to asses the quality of the solution. Unlike many methods, GAs use probabilistic
transition rules to guide their search. They use random choice as a tool to guide
the search toward regions with likely improvement and have problem-independent
characteristics of the search scheme, which enables black-box treatment of the GA
code. That is the GA supplies the parameters to the optimisation problem and in
return, the software provides the fitness function which is then utilized by the GA
to evolve the next generation. Goldberg has given a very good example in [94] of
the black box optimisation problem with on-off switches illustrating the idea of a
coding and a payoff measure.

How GA'’s work

The basic cycle for GAs is illustrated 1n
fig. 4.2.1. Tt starts by randomly generat- |

ing a population of individuals (strings)
which are then evaluated by some fitness | vES
function. Then selection takes over to re- REPRODUCTIO
produce new individuals by using GA op- |
erators to create a new generation of pos-

CREATE
sible solutions. Each string represents one |
possible solution to the problem. ? ?

Figure 4.2.1 Simple GA structure

GAs work iteration by iteration, generating and testing a population of strings.
This population by population approach is similar to a natural population of biolog-
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ical organism, where each generation successively evolves into the next generation
by being born and raised until it is ready to reproduce. Optimal strings are found
through population reproduction via selection, crossover and mutation. Selection
is based on stochastic universal sampling and is the process where an old string is
carried through into a new population depending on its performance index (fitness
function) value. So strings with above average fitness values get larger numbers of
copies in the next generation. This strategy, in which good strings get more copies
in the next generation, emphasizes the survival of the fittest concept of GA. A
crossover phase then follows. Crossover exchanges information between the selected
strings paired at random (i.e. between two search points). The mutation operator
is an occasional random alteration of a string position for binary genes (based on
probability of mutation). For real genes, it mutates each variable from the popula-
tion with a given probability. The mutation operator helps to avoid local minimum,
which is very important.

In summary, the search algorithm has inherent parallelism which enables rapid
search of the high-performance regions of complex domains such as a fuzzy logic
control structure. GAs have been recognised to be a powerful tool for learning the
control rules and tuning their membership functions: Bonivento et al [84], Bica et
al [96]. An important point to be mentioned here is that a good solution depends on
setting the objective function correctly. However a major drawback of the technique
is that GAs are computationally inefficient as many trials are necessary until rea-
sonable good solutions are found. But with the new high speed technology such as
UNIX stations, high performance computers (e.g. Cranfield University SGI CRAY
ORIGIN 2000 supercomputer), GAs are able to produce fast solutions. As a con-
clusion we can highly recommend that this technique can be useful for generating
fuzzy control parameters of a non-linear missile.

4.2.2 GA tuning the FLC parameters
The steps for tuning the FL.C are as follows:

First, the scaling factors (SF) for inputs and outputs of the FLC are determined
based on observation of the error, derivative of error and output responses of the
fixed gain trajectory controller for the closed loop system with the nominal model.
The domains of (—SF' to +SF') are the most important parameter of the ;14 tuning,
as given by Hamm and Splettstoser [88]. The effect of the domain of a fuzzy variable
is exactly the same as that of the gain factors of a non fuzzy controller. Changing the
error domain affects rise time and overshoot about three times as much as changing
the domain of the derivative of error [88]. However the SFs are not included in the
optimisation procedure in our work, they are not part of the chromosome structure.

Second, the membership functions have been shown to be more important to tune,
rather than the rule base parameters, as detailed by Driankov et al [35]. A modified
term in a term set affects one row, column or diagonal in the rule table, while a mod-
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ified rule only affects a table cell. In our work, the membership functions for each
universe of discourse have been chosen standard and uniformly spreaded. Initially,
they are uniformly positioned triangles overlapping at a 50% level over the nor-
malised universe of discourse. Since the controller is defined by a nonlinear control
surface in (e, de, u) space, three term sets for each variable (e, de, u) are designed.
At the start, the u,4 distribution is symmetric, and after the optimisation the g4
distribution is asymmetric. In other words by changing the distribution of these
terms within the control variables domain, the design algorithm has been adjusting
the gains of the trajectory fuzzy outer loop.

The existing iterative approaches for choosing the membership functions p4 are
manual trial and error process and lack learning capability and autonomy. The
automatic generation of fuzzy rules and membership functions can be approached
by using evolutionary algorithms and categorised into four types: learning j14 with
fixed fuzzy rules, as Bonivento et al [84]; learning fuzzy rules with fixed p4; learning
fuzzy rules and u4 in stages, first evolving good fuzzy rule sets using fixed 14, then
tuning p4 using the derived fuzzy rule sets; learning fuzzy rules and p, simulta-
neously as Hong et al [97], Liska and Melsheimer [98]. Each chromosome in [97]
consist of an intermediary fuzzy rule set and its associated p4. This allows the GA
operators to integrate multiple fuzzy rule sets and their 4 at the same time. This is
the way we have chosen to generate the FL.C parameters of the trajectory controller.
Further tuning near the optimum can also be achieved by using a conjugate gradi-
ent method [98]. GAs have also been applied to FLC design by Ng and Li [99] for
searching poorly understood irregular and complex spaces. Forty nine bits have been
used to form the rule base structure where a single bit represents each control action.

The proposed framework of our work
maintains a population of fuzzy rule sets

with their membership functions and uses

the evolutionary algorithm to automati-
cally derive the resulting fuzzy knowledge HZL
base. A hybrid real valued-binary chro-
mosome is used to define each individual
fuzzy system. The real valued parame-
ters are defined as being the [Aa, Ab, Ac]

values shown in fig.4.2.2, which lie in

range (0,1]. Triangular shapes are used AalApAc
for the membership functions. By vary-

ing Aa, Ab, Ac, the centre of each p4 are €=0 emax

varying which changes the shapes of the Figure 4.2.2 Membership functions
membership functions.

Five membership functions are used for each input and output, for better closed
loop performance. Next the rule base structure is defined. The binary component
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shown in fig. 4.4 encodes the set of rules used in the system. The membership func-
tions py, of the output Oy for each rule is either on or off (0/1) and corresponds to
the form:

if A; is negative small AND Bj; is zero then Oy is negative small (4.2)

where A; denotes membership function i of input A (i.e. error), B; denotes mem-
bership function j of input B (i.e. derivative of error), and Oy denotes membership
function k of the output O (i.e. control action). In that way the number of p; for
each output variable involved in each rule is allowed to change dynamically during
the GA search. This process allows a full set of rules to be developed for the fuzzy
system, but maintains a fixed length chromosome. This leads to a chromosome
with 12 real valued genes for two inputs and one output and with 125 binary genes
for the rule base. For simplicity fig. 4.4 shows only four membership functions of
real-binary coding of the FLC. The length of the chromosome is N.r = r2.r = 73,
where N is the number of rules and r is the number of membership functions. The
simulations were carried on Unix workstation with a processor speed of 300 M H z.
When using multi-objective optimisation and real-binary coding for the rule base
structure, approximately 12 hours were needed for the GA to optimise the control
parameters if only one demand was required. If each chromosome is evaluated on
three trials (i.e. on three different demands), then 36 hours computational time
is needed. By using real-binary coding of the chromosome structure, the increase
of number of membership functions leads to significant increase on the size of the
rule base structure which is very inefficient computationally speaking. However,
produces control surfaces which are more robust on parametric uncertainties. Also
when 6 membership functions are used, the length of the chromosome is r® = 216
bits long. The maximum number of generations used to stop the evolution process
is not enough to tune the rules and performance requirements are not met.

In order to decrease processing time, the chromosome structure was modified to
real-integer coding, as shown in fig. 4.5. This reduces the length of the chromosome
by a factor r, where r is the number of membership functions. In this case each
rule can fire only one membership function at the time. Zero is used when a rule is
not fired. For evaluations of a chromosome on one trial only (i.e. one set of model
coefficients and one required demand), the processing time decreased from 12 down
to 5 hours.

The fuzzy system uses product for the member function ‘AND’. The ‘OR’ func-
tion is not required as the rules are all expressed as ‘AND’ terms. The implication
method chooses the minimum value and crops the output member functions. The
aggregation method chooses the maximum values of the set of member functions. A
centroid approach is used to defuzzify the output.

The evolutionary algorithm follows the usual format of ranking, selection, crossover,
mutation and evaluation but with the real and binary parts of the chromosomes
being processed separately. The number of offsprings that are generated is the same
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as the number of parents, hence a total replacement policy is used. To evaluate the
performance of each chromosome, a fitness function has been defined such that to
assess the closed loop behaviour of the autopilot system. Hence four objectives such
as: rise time, steady state error, overshoot and settling time have been used. Three
of these objectives: overshoot, rise and settling time have been treated as penal-
ties in order to meet the specified requirements, i.e., if the parameters are within a
required range, the penalty is zero and the penalty increases when a threshold is ex-
ceeded. A multi-objective approach simplified to a scalar optimisation is considered
in this chapter by combining the four closed loop performance criteria in one func-
tion O = O1 + Oy + O3 + Oy, with O; used for steady state error, O, for overshoot,
O3 for rise time and O, for settling time. However, in Chapter 5, these criteria are
treated separately, hence a multi-objective optimisation problem is also considered.
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Figure 4.4: FLC chromosome structure with real-binary coding

The efficiency of GAs can be affected by population size. A small population is
most likely to result in insufficient coverage of the problem space. Large popu-
lations have the advantage of preventing premature convergence to local optima
instead of global optima. Large populations can however increase computational
time, hence a compromise is usually required, as noticed by Trebi-Ollennu [24]. The
choice of population size is a problem dependent. In our work, the evolutionary
algorithm was run with a population size of 20 individuals and for 300 generations.
These values were suggested by an expert and were found to be sufficient for the
problem.
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Figure 4.5: FLC chromosome structure with real-integer coding

The fuzzy control parameters were tuned on a large set of randomly generated mod-
els of aerodynamic coefficients. These models are simulated within the polynomials
of 0° to 45° roll angle. The polynomials are described in tables 2.1 and 2.2 of Chapter
2. Each individual (i.e. an alternative trajectory controller) has been evaluated on
five trials, i.e. randomly generated missile models ( = f; + A fi+(g; +/\g;)u) where
i =1,...,5 and Af;, Ag; are non-linear functions of the aerodynamic coefficients
(Cyy, Cy¢s Xep, Cyr). In that case five successive evaluations of the same chromosome
information returned five sets of objectives. The maximum objective value of the
five trials (i.e. steady state error if multi-objective optimisation is considered) has
been returned to the GA for evaluation of the chromosome. After all the individuals
have been ranked, crossover and mutation operators are processed separately for
the real and the binary part of the chromosome. The number of offsprings that are
generated are the same as the number of parents, hence a total replacement policy
has been used. The results shown in fig. 4.8 of Chapter 4 are obtained for the entire
flight range of 0° to 45° roll angle. For the scalar optimisation problem, the algo-
rithm has achieved convergence in approximate three hours computational time on
a 300 MHz Unix workstation. During the optimisation 6000 fuzzy logic controllers
were evaluated. However when this algorithm is applied to multi-objective optimi-
sation problem, see fig. 4.6, two problems arise.

First, the GA process has taken approximately 12 hours which was computation-
ally inefficient. For each generation, Pareto solutions that are identified are added
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Figure 4.6: GA Multi-objective optimisation

to the existing Pareto solution set. This produces a population with more indi-
viduals for the GA to evaluate at each generation. Because 80% of the popula-
tion were non-dominated solutions, they were on the Pareto front, hence at each
next generation, the number of individuals to evaluate was progressively expanding.
Also when a multi-objective optimisation was considered, the ranking process has
taken longer because each controller was evaluated based on four decision variables
(Er;, Ts;, Tr;, OS; shown in fig. 4.6), which defines the closed loop performance
criteria such as steady state error, settling time, rise time and overshoot.

Second, we cannot maintain robustness because the Pareto front was noisy, hence
was never consistent. Also we cannot afford to test on many random models to
cover the parameter set to sufficiently maintain good solutions from one generation
to the next one, because we have not exercised enough models to be statistically
consistent. There were many good solutions within each generation which were local
but were lost because in the next generation they were tested on a completely new
randomly generated models. Since the good solutions were lost it was not possible
to breed from them, and hence maintain a robust control surface towards model
uncertainties which may arise within such large range of aerodynamic coefficients of
0° to 45° roll angle.

For solving such a noisy problem non-dominated sorting may not be the best way
of ranking the individuals. Some other techniques such as MOGA, MOPSEA would
provide better performance, as detailed by Hughes [100].

The computation efficiency of the GA algorithm can be improved if a coevolu-
tionary approach is possible to apply. For example Pena-Reyes and Sipper [101]
have introduced the fuzzy cooperative coevolution to a real world problem such as
breast cancer diagnosis. In their framework the two coevolving species were defined
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respectively as membership functions and rules where the fitness of the individuals
(membership functions) depend on their ability to colaborate with individuals from
the other species (fuzzy rules). Further understandings of their algorithm is under
investigation.

Stability issue of the FLC

A stability analysis of the nonlinear fuzzy controller in a closed-loop configura-
tion with the equivalent feedback linearized system is very difficult. The amount
of noise coming from the aerodynamic coefficients have caused unpredictable para-
metric uncertainties since we cannot measure them, neither we do know how many
aerodynamic forces or moments will be distributed, hence impossible to analyti-
cally analyse. The available analytical methods from nonlinear system theory such
as Lyapunov or Popov criterion require an accurate description of the process and
the stability proofs can generally only be applied under very special conditions and
valid only for simplified models. The resulting controllers are usually conservative
because of the conservative nature of the stability criteria. Therefore the analysis
of fuzzy controllers in practice are mostly examined by simulation studies.

4.2.3 Results for the scalar optimisation problem

Fig. 4.7 shows the fuzzy surface of the trajectory controller generated by the evo-
lutionary algorithm. This has been developed with randomly generated models
exercising the full range of aerodynamic coefficients from 0° to 45° roll angles. The
polynomial models for 0° and 45° are defined in tables 2.1 and 2.2, in Section 2.8.1
of Chapter 2.

Model variations at roll angle 45° have caused large steady state error to the accel-
eration and the velocity responses, hence by using fixed gain trajectory controller
tracking performance has not been achieved, as shown in fig. 4.8a. On the other
hand the performance of the fuzzy controller has been verified by 200 random trials
and the results have been summarised in fig. 4.8b, where the solid line shows the
responses for the model at 0° roll angle, and the dashed line is for the model at 45°
roll angle.

The desired acceleration a4 is achieved by using the non-linear equation ay = f(v)
which is shown in more details in Chapter 2. Therefore the desired acceleration is a
function of the lateral velocity demand. The error dynamics are constructed using
the a4 signal and the feedback of the actual states - velocity, rate, and acceleration.
The results for lateral acceleration demand 10 m/sec? are shown in fig. 4.8. The
lateral acceleration is controlled through side-slip velocity and the closed loop per-
formance criteria are defined for the side-slip velocity. As a result, the steady state
error on lateral acceleration has not been corrected by the fuzzy trajectory con-
troller when the model at roll angle 45° was used (see the dashed line of fig. 4.8b).
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Figure 4.7: Surface of two input, one output fuzzy controller

However, for both models, at roll angle 0° and 45°, the fuzzy trajectory controller
has achieved satisfactory tracking performance for side-slip velocity response with
almost no steady state error and no overshoot, shown by Blumel et al [102].
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Figure 4.8: Results for 10 m/sec? lateral acceleration demand
solid line - model parameters at 0° roll angle
dashed line - model parameters at 45° roll angle

Conversely to fig. 4.7, the fuzzy control surface shown in fig. 4.9 has been devel-
oped with the model exercising the nominal aerodynamic coefficients only. Fig. 4.9a
shows the full fuzzy surface of the trajectory controller generated by the evolution-
ary algorithm. Fig. 4.9b shows the section of the surface that has been used, which
is only a small area. These results are obtained by using four membership functions
for the fuzzy logic controller, which were not enough to achieve good closed loop
performance. The contour of 4.9b shows the usage of the different regions (i.e. the
fired rules of the full control surface). It is clear that only a small proportion is
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actually used and therefore ‘tuned’ by the evolutionary algorithm. The most fired
rule, 70%, is when both, the error and the derivative of the error, are zero which is

the steady state area of the response.
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Figure 4.9: Fuzzy control surface found by GA

Initially a set of models was generated by randomly selecting a roll angle between
0° and 45° and calculating the coefficients for the randomly selected value. Varia-
tions in the coefficients C,,,, Cy¢, X¢p, Cyyr were also randomly generated at the same
time. This produced a large set of models which proved time consuming and so
a vertex set of models was determined, as shown in fig. 4.10. The minimum and
maximum ranges of the aerodynamic coefficients were chosen to give approximately
10% change in steady state performance for a 1¢g demand and 25% change for a 15¢
demand. This range was judged to be realistic based on the error analysis in the
Horton report [69]. When applying higher demands up to 15¢g, some of the varia-
tions in coefficients at their vertex points cause big steady state errors on side-slip
velocities but small on lateral accelerations and some of the variations cause small
steady state errors on side-slip velocities but big on lateral accelerations, as shown
in fig. 4.10. A decision was made to control the side-slip velocity rather than the
acceleration in order to simplify the problem. The extra complexity of acceleration
control would slow down the optimisation process.
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Fd_ linearization = =80 Ig 5¢ 10g 15¢
Cyv| Cyz| Cnr | Xcp E, | B, E, | By E, | Ey E, | Ey
1| max | max | max | max 16.18] 3.66 9.38 |6.38 3.67 | 9.88 0.63 | 1237
2 | min min min | min 19.68| 3.53 13.39]8.30 3.97 | 1549 8.49 | 25.66
3| max | max | max | min A hin 31.89]2.34 33.96|2.96 34221 2.73 ETOI
4| max | min max | max |V, .. 10.33] 7.55 4.06 |14.90 14.86| 21.08 @ES
5 | min max | max | max 25.81| 1.19 19.16| 7.44 0.6 |23.59 14 ] 525
6 | min min max max Ama 28.38| 1.58 28.81|1.48 28.1210.701 27.12 042
7 | max min max min 27.75]0.19 18.49(5.27 8.14 | 11.01 W@7
8 | min max | max | min |V 0.15 | 1.68 6.62 |3.14 6.06 |7.85 @E
9 | ran ran ran ran 9.24 |1.23 2.04 |2.23 6.00 | 7.96 14.87| 8.88
10| nom | nom | nom | nom 0.016| 0.024 0.32 |0.15 0.59 | 0.41 1.08 | 0.75
min max
25% Cyv +25%
min max
a5 L Sr | 415%
min max
As% L Xep | 415%

Figure 4.10: Fixed gain closed loop performance

For the worst vertex points models (i.e. models: 3, 4, 6, 8 for which veloc-
ity or acceleration responses have their extreme, minimum A,,;,, Vin:n or maximum
Amazs Vimaz, values), the feedback linearized loop with fixed gain trajectory controller
has not been able to provide robust performance, hence tracking is achieved with
+7% on steady state error, as shown in fig. 4.11.

The fuzzy gain trajectory controller has been tuned for nominal aerodynamic coef-
ficients, for a side-slip velocity demand of 2.57 m/sec corresponding to 1g lateral
acceleration. Then, the FLC has been tested on parameter variations on the aero-
dynamic coefficients, C,,, Cy,, X¢p, Cpr , for the worst vertex points models. Robust
performance within 2% on steady state error has been achieved. For the above
mentioned uncertain multi-model airframe dynamics, the fuzzy gain trajectory con-
troller has improved the robustness by 5%, as shown in fig. 4.11.
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4.3 Fuzzy Gain Scheduling

The FLC has been tuned for 5g lateral acceleration demand only. The responses
are very slow on rise time but good on steady state error, as shown in fig. 4.12.
However, for demands higher than 8g, in this example 10g demand is demonstrated,
the FLC has not been able to control the velocity to the required demand. This
is obvious, because the range of the scaling input-output domain has been changed
which has automatically altered the rule based structure. Therefore, a change of
the FLC scaling domain is required for any other demand different than the tuned
one. An interpolation for a large set of demands (i.e. 1g,...,15¢) and their FLC’s
input-output scaling factors have been proposed in the next section.
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Figure 4.12: Multiple demands

4.3.1 Polynomial fit of the multiple demands for FLCs scal-

ing factors

Input-Output scaling

The membership functions defining the fuzzy values of controller inputs and con-
troller outputs have been defined off-line, on a common normalized domain. This
means that the actual physical values of the controller’s inputs and outputs are
mapped onto the same predetermined normalized domain. This mapping is called
normalization and it is done by the so-called normalization factors. Input scaling is
the multiplication of a physical, crisp controller input with a normalization factor
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so that it is mapped onto the normalized domain. Output scaling is the multipli-
cation of a normalized controller output with a denormalization factor so that it
is mapped back onto the physical domain of the controller outputs. Hence, fuzzifi-
cation, rule firing and defuzzification can be designed independently of the actual
physical domains of the controller inputs and controller outputs. The scaling factors,
which describe input normalization and output denormalization, play a roll similar
to that of the gain coefficients in a conventional controller. In other words, they
are of utmost importance with respect to the controller performance and stability
related issues, i.e. they are the source of possible instabilities, oscillation problems
and deteriorated damping effects as noted by Palm [85]. In Bonissone’s chapter of
Fantuzzi’s book [84], the scaling factors of the FLC have been tuned by GAs. Some
time scaling factors are used to fine tune the performance of the system in a similar
way to the tuning of a PID controller. In [103] the firing of the rules in a fuzzy
controller has been shown by Chen with different values of the scaling factors. The
adjustment of the factors is equivalent to the re-construction of the membership
functions in a rule-base, and should be done carefully if the linguistic meaning of
the rule-base has to be preserved. It is inappropriate to tune the input scaling fac-
tors if the rule-base structure is constructed by experts. Fine tuning can be better
achieved by tuning the membership functions only, so that the linguistic meaning
of the rule-base is preserved.

Bearing in mind those valuable findings we could suggest in future investigations to
include the optimisation of the FLC’s scaling factors in our work in the presence of
uncertainties. However for now, the three scaling factors (error, derivative of error
and output) for each required lateral acceleration demand 1g, 2g, ..., 15g have been
determined via simulations based on the results obtained with fixed gain trajectory
controller for the nominal model. Then a polynomial fitting has been used to in-
terpolate between the required demands for side-slip velocities in order to obtain
the scaling factors of the FLC’s inputs and outputs for each demand. As a result,
smooth transition of the scaling factors has been achieved when a different demand
was required within the above mentioned range.

There are two possible ways of applying polynomial fitting: One, is to use the
linear relationship between the required side-slip velocity demands and their scaling
factors; Two, is to use the non-linear relationship between the required acceleration
demands and the scaling factors for the velocity inputs and outputs of the fuzzy
controller.

By applying the linear relationship type of polynomial fitting, it has been found
that the first scaling factor for the error is a 1** order polynomial and the polyno-
mial curve is shown in fig. 4.13.

SCy_er = f(va) = v4 (4.3)

where v, represents the required side-slip velocity demand for the required lateral
acceleration respectively. The scaling factor for the derivative of error is of a 37
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order polynomial:
SCy—era = f(va) = P3vj + p2v] + P1va + Po (4.4)

and the output scaling factor is a 1! order polynomial.

Soout = f(vd) = q194 + Qo (45)

where po, ..., p3 and qqg, ¢; are the polynomial fit coefficients for each scaling factors
respectively.

The second way is to interpolate between the required lateral acceleration demands
and their velocity scaling factors respectively. The non-linear relationship (velocity-
acceleration) can be seen in fig. 4.14. Again the fuzzy logic engine has been scaled
between (0,1). In order to achieve the correct scaling factors for the inputs and
output of the fuzzy trajectory controller we have interpolated the data between a
number of required demands for lateral accelerations (i.e.1g,2g,...,15¢g) and their
corresponding scaling factors for the error and derivative of error of side-slip velocity
respectively.

For the first scaling factor a 4" order polynomial fit has been obtained and the
polynomial curve is shown in fig. 4.14.

SCy_or = flag) = byaly + bsad + bya? + byag + by (4.6)

where a, represents the required lateral acceleration demand and SC,_,, the corre-
sponding scaling factor respectively. The scaling factor for the derivative of error is
a 3" order polynomial.

SCy_erg = flag) = c3a’ + ca’ + craq + ¢ (4.7)
and the scaling factor for the output is a 4" order polynomial.
SCout = f(ad) = d4a3 + d3a3 + dgai + dlad + dg (48)

where bg,...,bs and cg,...,c3 and dy,...,ds are the polynomial fit coefficients for
each scaling factors respectively.
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4.3.2 Results for a large range of lateral acceleration de-
mands

In a situation when a change of a demand is required, smooth transition and gradual
interpolation between the fuzzy control surfaces has been automatically achieved.
The FLC has been simultaneously tuned for two different demands, in this case
5g and 15g. The resulting rule base structure and membership function’s shapes
have been achieved by the scaling factors determined through the polynomial fitting.
The linear type relationship to determine the polynomials for each scaling factor has
been used. The more points we use, the better fit we get. The purpose of such a
tuning process is to improve the system performance with the intention to maintain
the linguistic meaning of the fuzzy controller, which has been validated for each
required demand.

The FLC control surface is shown on the left side of fig. 4.15. It has been tested for
a variety of required demands in this case 1g,...,15g. It can be seen that for each
demand, the FLC scaling factors have changed automatically and desired tracking
has been achieved. However the linguistic meaning of the rule base structure has
been altered and variations in some rules can be seen. The abscissa of the right
column figures have presented the phase portrait for the side-slip velocity errors and
their derivatives. Indirect lateral acceleration control has also been achieved by re-
quiring different side-slip velocity demands (for example 1¢, 5¢, 10g, 15g), as shown
in fig. 4.16.
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Figure 4.17: Fixed gain trajectory controller for multiple demands 15g, 10g, 5g, 1g

In order to compare the performance of the fixed gain and the fuzzy gain trajectory
controllers, we have demonstrated in fig. 4.17 and fig. 4.18 the side-slip velocity and
lateral acceleration responses for a set of different demands (1¢,5¢,109,15g). The
fuzzy trajectory controller has been found to be superior to the fixed gain one. The
quality of the responses has been improoved on steady state error and overshoot.
The feedback linearizable system has been modified by neglecting the g term in
the system when feeding back the acceleration. This rendered a significant steady
state error which has not been corrected by the fixed gain controller especially when
higher demands were required.

Fuzzy Logic Trajectory Controller
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Figure 4.18: Fuzzy Trajectory Controller for multiple demands 15g, 10g, 5g, 1g
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4.4 Conclusions

A fuzzy nonlinear trajectory controller has been proposed within the outer loop
to improve the robustness of the Feedback Linearization with respect to paramet-
ric uncertainties caused by changes of the aerodynamic coefficients due to different
flight conditions. The autopilot design has been found to be robust on mass changes.

The fuzzy logic-feedback linearized control design has been found to be more ef-
fective for improving the transient and steady state performances than the fixed
gain-feedback linearized one. The ability of the FLC to improve the closed loop
performance while managing uncertainties has been shown.

The fuzzy inferencing procedure can provide the means of systematically synthe-
sizing various fuzzy rules to produce decision actions so that a complex non-linear
missile system can be controlled. Fuzzy reasoning builds the understanding of im-
precision into the process, hence provide the ability to control the system in an
uncertain environment and derive smooth control action for uncertain system be-
haviour which is one of the most important characteristics of an intelligent control
system.

The FLC is of nonlinear nature, hence can be designed to capture the nonlinear
dynamics of a system. By increasing the number of the membership functions, the
FLC can achieve better closed loop performance, but for the loss of computational
time, because the number of rules increase significantly. When a large number of
rules must be captured and stored, the FLC implementation can be expensive (com-
putationally speaking).

The trial and error mechanism for tuning FLC parameters has been replaced by evo-
lutionary algorithm optimisation using GAs for better adaptation and robustness.
The hybrid control strategy has been validated via extensive computer simulations.

A fuzzy logic scheduled controller for missile autopilot design has been examined.
The fuzzy logic input output scaling factors have been determined by using polyno-
mial fitting for a large range (1g up to 15g) of multiple acceleration demands.

This chapter has shown that fuzzy controllers can be used for solving engineering
problems allowing the designer to investigate the properties of the system. These
systems are reliable over wide variations in plant dynamics and offer control de-
signers a more elegant solution for such a complex autopilot design system. Also
hardware chip and board level solutions are available, as stated by Mecneill and
Freiberger [86], hence fuzzy control systems can be prototyped.

The next chapter will address the optimisation of the fuzzy trajectory control pa-
rameters from multi-objective point a view.



Chapter 5

Multi-objective optimisation using

GA

Many problems involve simultaneous optimisation of multiple objectives. In prin-
ciple, multi-objective optimisation is very different from single objective optimisa-
tion. In single objective optimisation, one attempts to obtain the best design or
decision, which is usually a global minimum or global maximum, whichever is the
accepted definition of optimum. In the case of multiple objectives one solution that
is best with respect to all objectives may not exist. These solutions are known
as non-dominated. Since none of the solutions in the non-dominated set is abso-
lutely better than any other, any one can be an acceptable solution. The choice of
one solution over the others requires problem knowledge and problem related factors.

One of the main requirements for an autopilot design is to yield a response as
fast as possible with the minimum of overshoot so that any command is attained
quickly and is of the required magnitude. For low g demands only a slight overshoot
of short duration is usually acceptable, since overshoot can compensate for loss of
acceleration during the initial transient. For high ¢ demands, overshoot is usually
unacceptable since the airframe structural load limit may be exceeded as stated by
Lin [104]. In order for the autopilot to yield an accurate and fast response it is very
important to assess the quality of lateral acceleration response, which is quantified
in terms of rise time, settling time, maximum percentage overshoot with almost no
steady state error. This means that while tuning the trajectory control parameters,
the optimisation process should consider these four criteria simultaneously, hence
the single optimisation problem has become one of multi-objective optimisation,
which provides the designer with multiple solutions. Then, question can be asked:
Is the engineer more interested in fast rise time responses or is a slow rise time
with no overshoot satisfactory? The four criteria are conflicting in nature and a
compromise solution must be used. It is interesting to mentioned here that in most
multi-objective optimisation cases it is not clear what kind of preferences should
be specified for each objective, whereas in this particular case the missile engineer
is interested in achieving closed loop performance values within specified ranges in
order that the missile can respond as fast as possible to guidance commands under
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all flight conditions. The determination of these ranges has been proposed by the
author in two different ways:

1. using reference points (ideal, maximum and minimum values for each objec-
tive), as discussed in Section 5.4

2. handling the objectives as penalties based on fuzzy logic membership functions,
as discussed in Section 5.5.

Both ways incorporate preference information into the genetic algorithm optimisa-
tion process to direct the search towards feasible areas which satisfy specific values
of the objectives. A Pareto based approach using non-dominated sorting is used to
produce optimal solutions.

The aim of this chapter is to produce multiple solutions (alternative fuzzy tra-
jectory controllers) which allow the designer to select the best and to investigate the
properties of the system.

5.1 Multi-objective optimisation problem

Multi-objective optimisation (also called multi-criteria optimisation or vector opti-
misation) has been defined by Ocyczka [105] as:

the problem of finding a vector of decision variables which satisfies constraints and
optimises a vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which are usually
in conflict with each other. Hence, the term ’optimise’ means finding such a solution
which would give the values of all the objective functions acceptable to the designer.

It can be stated as follows: Find the vector

*]T

* [k ok
ot =[x}, 25, ..., 2

which will satisfy the m inequality constraints:
gi(z) >0,i=1,2,....,m

the p equality constraints

and optimises the vector function

fa) = [fi(2), fol@), ... fu(2)]"

where © = [, 29,...,2,]7 is the vector of decision variables. The problem is to
determine the particular set of decision variables which yields the optimum values
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of all the objective functions. The constraints define the feasible region F and any
point z in F defines a feasible solution. The vector function f(z) is a function which
maps the set F'in the set X which represents all possible values of the objective
functions. The k components of the vector f(x) represent the non-commensurable
criteria' which must be considered. The constraints g;(x) and h;(z) represent the
restriction imposed on the decision variables. The vector z* denote the optimal
solutions (normally there will be more than one).

The meaning of optimum is not well defined in this context, since it is very rare
to get z* such that for alli =1,2,...,k

Azex (fi(z") < fi(2))

In that case, £* would be a desirable solution. However, normally the case in which
all the f;(x) have a minimum in F at a common point z* does not occur in practice
and in that case certain criteria need to be established to determine what would be
considered as an 'optimal’ solution.

5.1.1 Ideal vector

The vector f* is an ideal vector (the demanded level vector) in the objective space
which contains reference values for each criteria. The values f7, j € 1,...,m can
be specified by the decision maker or can be determined by solving each single
optimisation problem separately:

[ =[minf(z), minfs(x),..., minfn,(x)]

Generally the vector f* is not attainable.

5.1.2 Pareto Optimum

The concept of Pareto optimum was formulated by the economist Vilfredo Pareto
in the 19" century. A point 2* € F is Pareto optimal if for every x € F either

Nier(fi(z) = fi(z"))

or there is at least one 7 € I such that

fi(z) > fi(z")

This definition says that x* is Pareto optimal if there exists no feasible vector x which
would decrease some criterion without causing a simultaneous increase in at least
one other criterion. The Pareto optimum almost always gives not a single solution,
but rather a set of solutions called non-inferior or non-dominated solutions.

! Non-commensurable means that the values of the objective functions are expressed in different
units
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5.1.3 Pareto front

The minima in the Pareto sense are in the locus of the tangent points of the objective
functions. The region of points is called Pareto front. It is not easy to find an
analytical expression of the line or surface that contains these points, and the normal
procedure is to compute the points F* and their corresponding f(F*). A point 2* €
F is a weakly non-dominated solution if there is no = € F such that f;(z) < fi(z*),
for e = 1,...,n. A point z* € F is a strongly non-dominated solution if there
is no z € F such that f;(x) < f;(z*) for i = 1,...,n, and for at least one value
of i, fi(x) < fi(z*). Thus, if z* is strongly non-dominated, it is also weakly non-
dominated, but the converse is not necessarily true.

5.2 Review of multi-objective
GAs-based approaches

The motivation to use an evolutionary technique such as Genetic Algorithms (GAs)
for multi-objective optimisation problems is because GAs are very useful for finding
global solutions when applied to multi-modal noisy search spaces. GAs work with
a population of points as it is natural to use them to capture a number of solutions
simultaneously and are powerful in their search for improvement. Hwang et al [106]
have provided an extensive survey of multiple objective decision making approaches.
Fonseca and Fleming [107], followed later on by Coello [108] has detailed many of
them in the context of genetic algorithms optimisation. Only a brief discussion will
be given here in order to give some idea of the many possible ways of tackling a
multi-objective optimisation problem.

Coello [108] has distinguished between three different groups: aggregating (‘naive’),
non - aggregating (none Pareto based) and Pareto based approaches. The first group
(weighted approach, goal programming, goal attainment and constraint method)
work on the principles of combining all the objectives into a single one. There are
some obvious problems such as providing some accurate scalar information on the
range of the objectives to avoid having one of them dominate the others. This
implies that the behaviour of each of the objective functions should be known but
in real world applications this could be a very expensive process (computationally
speaking) and is not always possible. However, this is the simplest approach and
one of the most efficient procedures, because no further interaction with the deci-
sion maker is required. Also, these approaches are applicable in cases when it is
necessary to assign more importance to certain objectives by using weights. Most
researchers like Begg et al [109], Gen et al [110] use a simple linear combination
of the objectives and then generate the trade-off surface by varying the weights.
The approach has the disadvantage of missing the concave portions of the trade-off
surface as detailed by Ritzel et al [111]. In addition, if the decision maker (DM)
has to assign targets or goals (goal programming) that have to be achieved for
each objective, the objective function will try to minimize the absolute deviations
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from the targets to the objectives. This idea started from Zeleny [112] is called
‘the ideal displacement’ and later on was used by Weistroffer and Narula [113] as
the reference point approach, which has been further expanded to the optimistic or
pessimistic approach by Weistroffer [114]. In our research we have used this idea
to specify goals for each objective. The difference is that it is combined with non-
dominated GA sorting, which is a Pareto based approach, to provide the GAs with
preferable directions in which to search for desirable solutions. Details are given in
Section 5.4. Some applications of goal programming combined with GA are pub-
lished in the literature by Sandgren [115], Wienke et al [116]. On the other hand
Wilson and Macleod [117] elicited some problems associated with the goal attain-
ment method. The main weakness is that, if there are two candidate solutions
which are the same in one objective function value, but different in the other, they
will still have the same goal attainment value for their two objectives, which means
for the GAs that none will be better than the others. Another technique is the
constraint method, which is based on minimization of one (the most preferred)
objective function and considering the other objectives as constraints bounded by
some allowable levels &;. Hence, a single objective minimization is carried out for
the most relevant objective function subject to additional constraints on the other
objective functions. The constrained levels are then altered to generate the entire
Pareto optima set. This approach was suggested by Ritzel et al [111] as a simple
and naive way of solving multiple optimisation problems using genetic algorithms.
The idea is to code the GA in such a way that all the objectives except for one
are kept constant(constrained to a single value) and the remaining objective is the
fitness function for the GA. Thus, through a process of running the GA numerous
times with different values of the constrained objectives, a trade-off surface can be
developed. The obvious drawback is that it is time consuming and also tends to
find weakly non-dominated solutions.

The other big group within multi-objective optimisation is the non-aggregating
approaches that are not Pareto based. The vector evaluated genetic algorithm -
(VEGA) differs from simple genetic algorithm only in the way in which selection
is performed. At each generation, a number of sub-populations is generated by per-
forming proportional selection according to each objective function in turn. For a
problem with & objectives, k sub-populations of size % are generated, assuming a
total population size of N. These sub-populations are shuffled together to obtain
a new population of size N on which the GA applies the crossover and mutation
operator in the usual way. Shaffer [118] found that the solutions are non-dominated
in a local sense, because their non-dominance is limited to the current population.
An individual who is not dominated in the generation, may become dominated by
an individual who emerges in a later generation. This approach is easy to imple-
ment but Richardson et al [119] notes that the shuffling and merging of all the
sub-populations corresponds to averaging the fitness components associated with
each of the objectives. The resulting expected fitness corresponds to a linear combi-
nation of the objectives, where the weights are dependent on the distribution of the

population at each generation. Certain points in concave regions will not be found
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through this optimisation procedure in which a linear combination of objectives is
used, regardless of the set of weights. In the Lexicographic ordering technique,
the objectives are ranked in order of importance by the designer. The optimum
solution is then obtained by minimizing the objective functions, starting with the
most important one and proceeding according to the assigned order of importance
of the objectives. The use of tournament selection makes an important difference
with respect to VEGA, because the pair-wise comparisons of tournament selection
will make scaling information negligible (Fonseca and Fleming [107]), which means
that this approach may be able to see as convex a concave trade-off surface. The
idea of Weighted Min-Max approach has been taken from game theory which
deals with solving conflicting situations. Knowing the extremes, obtained by solv-
ing the optimisation problem for each criterion separately, the desirable solution is
the one which gives the smallest values of the relative increments of all the objec-
tive functions. Hajela and Lin [120] included the weights for each objective in the
chromosome and promoted their diversity in the population through fitness sharing,
hence providing the ability to simultaneously generate a family of Pareto-optimal
designs corresponding to different weighting coefficients in a single run of the GA. A
single number used in the chromosomic string represented not the weight itself but
a combination of weights and the sharing was applied to those combinations. Also,
a mating restriction mechanism was imposed to avoid members within a radius 0,4,
to cross, hence keeping only feasible solutions at all generations. This approach may
create a very high selection pressure for certain combinations of weights. However,
the use of a sharing factor may avoid premature convergence, but it is difficult to
design. On the other hand the use of mating restrictions and feasibility checks dur-
ing the entire evolution process is a constraint-handling approach and may not work
in concave search surfaces.

Finally, Pareto based approaches are reviewed. The basic idea is to find the set
of strings in the population that are Pareto non-dominated by the rest of the popu-
lation. These strings are then assigned the highest rank and eliminated from further
contention. Another set of Pareto non-dominated strings are determined from the
remaining population and are assigned the next highest rank. This process continues
until the population is suitably ranked. A niching mechanism such as sharing, as
given by Goldberg and Richardson [121], can allow the GA to maintain individuals
all along the non-dominated frontier. The performance of Pareto ranking technique
is highly dependent on an appropriate selection of oy, value. The main strength
is that it is less susceptible to the shape or continuity of the Pareto front. Gold-
berg [94] first suggested the use of non-domination ranking and selection to move
a population toward the Pareto front. MOGA has been described by Fonseca in
Zalzala and Fleming book [122]. The rank of a certain individual corresponds to
the number of chromosomes in the current population by which it is dominated.
All non-dominated individuals are assigned rank 1, while dominated ones are penal-
ized according to the population density of the corresponding region of the trade-off
surface. To avoid premature convergence a niche-formation method is used to dis-
tribute the population over the Pareto optimal region, but instead of performing
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sharing on the parameter values as Deb [123], they have used sharing on the objec-
tive function values, which means that two different vectors with the same objective
function values can not exist simultaneously in the population under this scheme.
This could be undesirable because the user may be interested in this kind of solu-
tion. Fonseca and Fleming [107] have proposed the use of a utility function combined
with MOGA to produce a method for the progressive articulation of preferences. In
this case it is possible to evolve only a certain region of the trade-off surface by
combining Pareto dominance with partial preference information in the form of a
goal vector. The idea is to have a feedback loop between the DM and the GA so
that certain solutions (from the Pareto set) are given more preference than others.
Non-dominated sorting (NSGA) is based on several layers of classification of the
individuals, as given by Srinivas and Deb [124]. Before the selection is performed
the population is ranked on the basis of domination. All non-dominated individuals
are classified into one category (with a dummy fitness value), which is proportional
to the population size to provide an equal reproductive potential for these individ-
uals. To maintain the diversity of the population, these classified individuals are
shared with their dummy fitness values. Then this group of classified individuals is
ignored and another layer of non-dominated individuals is considered. The process
continues until all individuals in the population are classified. A stochastic remain-
der proportionate selection is used. Since individuals in the first front have the
maximum fitness value, they always get more copies than the rest of the population.
This allows to search for non-dominated regions and results in quick convergence of
the population toward such regions. Sharing, on its part, helps to distribute it over
this region. The efficiency of NSGA lies in the way in which multiple objectives
are reduced to a dummy fitness function using a non-dominated sorting procedure.
With their approach any number of objectives can be solved and both maximization
and minimization problems can be handled. In this case, sharing is done on the pa-
rameter values instead of the objective values (like MOGA does), to ensure better
distribution of individuals, and to let multiple equivalent solutions exist. Niched
Pareto GA is a tournament selection scheme based on Pareto dominance. Instead
of limiting the comparison to two individuals, a number of other individuals in the
population is used to help determine dominance. When both competitors are either
dominated or non-dominated, the result of the tournament is decided through fit-
ness sharing, as given by Goldberg and Richardson [121]. This approach does not
apply Pareto selection to the entire population, but only to a segment of it at each
run, hence the technique is very fast and produces good non-dominated fronts that
can be kept for a large number of generations.

Concluding remarks

In summary, if it is necessary to assign more importance to certain objectives, an
aggregating approach is the one to use, as it can change the importance of the ob-
jectives easily, in contrast with the ranking techniques (Pareto based approaches).
However, the closed loop performance criteria of autopilot responses are all impor-
tant, hence it is not appropriate to apply aggregating techniques. Also, non-Pareto
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evolutionary algorithms are often sensitive to the non-convexity of Pareto optimal
sets, which is not the case for Pareto based algorithms, as given by Fonseca and
Fleming [125]. However, there is no such thing as the best method of applying
Pareto-optimality, although the use of Pareto-based ranking seems to be gaining
some popularity in new research. These methods allow information from the whole
of the population to be incorporated into the search capabilities of the GA. Zitzler
and Thiele [126] have compared four Pareto based approaches quantitatively, among
which the non-dominated sorting genetic algorithm have shown best performance.
It has been chosen to populate the Pareto front of optimal solutions. The sharing
mechanism is done in the parameters values (the chromosome structure) instead
of the objective values (as in MOGA). The former ensures better distribution of
individuals within the non-dominated front. In addition, preferable ranges for each
closed loop performance criteria are required by the designer engineer before the
start of the optimisation procedure. That is why the Reference Point approach has
been suggested in combination with the non-dominated sorting approach, in order to
incorporate preference information into the GA to guide the search to the particular
Pareto region that is of interest to the DM.

5.3 GA strategy for finding non-dominated solu-
tions

The evolutionary algorithm follows the usual format of ranking, selection, crossover,
mutation and evaluation, but with the real (membership functions) and discrete
(rule-base structure) parts of the chromosomes being processed separately. Then,
a multi-objective approach is used to identify multiple solutions. The mechanism
of the non-dominated sorting Pareto based approach has already been explained
in the previous Section 5.2. The non-dominated ranking is detailed by Deb [123].
All solutions in the population are compared for domination on all objectives and
the ones that are not marked ’"dominated’ are non-dominated solutions. All these
non-dominated solutions are assumed to constitute the first non-dominated front in
the population. These solutions are temporarily ignored from the population and
the procedure is applied again. The resulting non-dominated solutions are assumed
to constitute the second non-dominated front. This procedure is continued until all
population members are assigned a front. The ranking operation helps to prevent
premature convergence of the genetic algorithm.

Since all solutions in a particular non-dominated front are equally important, all are
assigned the same fitness value. We begin with solutions of the first non-dominated
front. A dummy fitness value (equal to 1) is assigned to each non-dominated solu-
tion of the first front. However, in order to maintain diversity among solutions, a
sharing mechanism is applied to these individuals, reducing their assigned value if
they have near neighbours (on a chromosome level). The sharing process ensures
that a spread of solutions is obtained across the Pareto front. The minimum value
assigned to the first front solutions is identified and then reduced by 1%. This re-
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duced value is then used as the dummy value for the second front solutions and the
sharing procedure is performed among the solutions of the second non-domination
front. This process is continued until all population members are assigned a shared
fitness value. The conventional ranking and selection processes are then applied as
normal to the objective obtained by the non-dominated ranking and the sharing
operation. After all solutions are assigned a fitness, a selection operator based on
the stochastic universal sampling principle is used to select good individuals from
the population for breeding, where a solution is selected as a parent in proportion
to its fitness value. With such an operator, solutions of the first non-dominated
front have a higher probability of being a parent than solutions of other fronts. This
process allows the algorithm to search for non-dominated regions, which will finally
lead to the Pareto-optimal front. This results in quick convergence of the popula-
tion toward non-dominated regions and the sharing procedure helps to distribute it
over this region. Thus, the selection operator helps to emphasize better solutions
in the population and reproduce them, but does not help to create new solutions, a
matter which is performed by Crossover and Mutation operators. Before producing
new individuals, the concept of generation gap was employed. The generation gap
(GGAP) represents the percentage of the population to be replaced during each
generation. For each new generation (N*GGAP) individuals of the current popu-
lation are selected to be replaced in the next generation, where N is the number
of individuals in the population. In this work a generation gap of 20% is used.
Crossover utilizes probabilistic decisions to exchange systematic information among
two randomly selected individuals from the mating pool to produce new individuals.
The process involves picking uniformly, at random, a crossover point along the two
individuals. This is followed by exchanging all characters either to the right or left
of this point. Therefore, two new individuals are generated. On the other hand,
mutation generates new individuals by modifying one or more of the gene values
of an individual offspring after crossover. Values for those operators are mentioned
later when the genetic strategy is given. The new individuals are then concatenated
into the current population to generate the new population for the next generation.
And the process is repeated until a maximum number of generations is reached.

It is important to mentioned here that a different evolutionary strategy than to-
tal replacement is used and detailed further on. When the objectives are combined
in one scalar function as in Chapter 4, the same number of offsprings are gener-
ated as parents and a total replacement policy is used which takes approximately
three hours of computational time. When using this strategy for the multi-objective
optimisation problem, it takes at least four times longer, because the GAs are deal-
ing now with four objectives and the ranking mechanism is working by comparing
each objective for each possible solution (individual). In addition, many dupli-
cate solutions are generated during FLC tuning for the nominal model and also
the non-dominated solutions from each population are concatenated with the next
one, rendered in a larger number of evaluations of the control parameters. In order
to prevent the expansion of the population, a different GA strategy from that in
Chapter 4 is proposed here, see fig. 5.1. A population of 100 individuals is main-
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Figure 5.1: Genetic algorithm structure

tained by the algorithm. In each generation, 20 individuals are selected for breeding.
Crossover is performed at a rate of 0.9, with intermediate crossover being used for
the real values and uniform multi-point crossover for the binary part. A mutation
rate of 2/137, with 137 being the length of the chromosome and a selective pressure
of 1.7 is used. The high crossover value and the low selective pressure is used to
slow convergence and to help prevent a local optimum being exploited. The 20 new
individuals are evaluated and then concatenated with the old population, forming
a set of 120 individuals. Non-dominated ranking is then applied to this set and the
best 100 are taken for the next generation. In this application, much of the feasible
space of the controller is not used (see the results section). The genes responsible for
these areas will settle to some semi-random state. That is why some solutions with
very similar control surfaces may have very different chromosomes. This feature
disturbs the sharing process, so a fixed value of o444 = 0.5 was used, as varying
osnare has little effect for this problem.

The main strengths of the non-dominated sorting approach is that it can handle
any number of objectives independently and takes account of non-domination during
the ranking process. In the next section unique method is proposed to incorporate
preference information into the evolutionary multi-objective algorithm by using the
optimistic reference point approach to direct the GAs search towards specified areas
for optimal solutions.

5.4 Optimistic Reference point approach

As shown by Hwang et al [106], preference articulation can be given by assigning
weight coefficients, priorities, or goal values which indicate desired levels of per-
formance in each objective dimension. The way goals are interpreted may vary.
The goals may represent minimum levels of performance to be attained, Utopian
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performance levels to be approximated, or ideal performance levels to be matched
as closely as possible. Goals are usually easier to set than weights and priorities,
because they relate more closely to the final solution of the problem.

Depending on how the multiple objectives have been considered, they will affect the
evolutionary algorithm behaviour in terms of convergence and searching through
feasible regions for acceptable solutions. One way to explore this problem is to
define the closed loop performance criteria as four objectives using the Reference
Point approach (Weistroffer [114]), which is a kind of preference information for the
GAs. Fonseca and Fleming [125, 127] have demonstrated the need for some degree
of preference articulation in Pareto based evolutionary optimisation by using a goal
attainment method. In their work, they have also achieved interactive optimisation
with the DM. In this case, if the DM finds the candidate solutions unacceptable,
DM can refine the preferences in order to stimulate the GA to move in to a different
region of the non-dominated set. In our case, this kind of active interaction has not
been necessary as we shall see.

In the optimistic reference point approach, for example, the DM initially specifies
optimistic objective function values (not achievable simultaneously) as the desired
values. A solution is found by minimizing the under achievements of the objective
function values with respect to the specified desired values. The optimistic approach
can be viewed as the special case of the reference point approach in which all refer-
ence values consistently exceed the objective function values at all the intermediate
solutions. The Reference Point approach has been applied to a scalar optimisation
problem using a surrogate aggregating function, as given by Weistroffer [114], Stoy-
anov et al [128]. In our case, the objectives are treated separately and, by specifying
the desirable ranges for each, GAs have achieved simultaneous convergence on all
objectives without having the opportunity to stack in a local area on one of the
objectives. If references are not specified, it may well be possible for a genetic drift
to appear.

Generally, the objective criteria are not comparable and the numerical values may
differ considerably. A procedure for normalization must be used to convert the
criteria y;(x) into a dimensionless function 7;(x) for which usually 7;(x) € [0,1].
The optimistic reference point approach given by Weistroffer [114], and followed by
Narula and Weistroffer [113] uses a function of losses to represent the losses from
the ideal values y; for the objectives given by:
*
w,je[l,...,m]. (5.1)
J

ni(z) =

If the ideal values y; are very small numbers or y; — 0, the following alternative

form can be used: . )
Y, —Y;X .
ni(x) = 2" iel,...,m] (5.2)
Yjmaz — Yjmin
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where Y4, and yjmin are respectively the maximum and the minimum values of
the criterion y;(z) in x € X, which define the set of feasible solutions.

This approach is called optimistic, because y; are the most desired values for each
objective. The form of equation (5.2) is applied to all four closed loop performance
criteria described in the next section.

5.4.1 Closed loop performance criteria

Rise time (,), steady state error, overshoot y(t,) and settling time (5) are the im-
portant criteria with which to judge the quality of a unit step response. They are
shown in fig. 5.2 and are used as objectives for the optimisation process. The aim
is to minimize each within a specified range, as required by the missile engineer.

77 (8 T
o 3 Allowable
Steady-state tolerance

error
+5% or £2%

System response or
unit step response

Figure 5.2: Closed loop criteria

e Steady state error in %

‘ Ydemand — Yfinal ‘ « 100

e =
| Ydemand |

e Evaluation of percentage overshoot %0OS

The percentage overshoot, %0S is given by:

%08 = Ymaz — Yfinal £ 100
Yfinal

where %0S is the amount that the response overshoots the steady-state or final
value, expressed as a percentage of the steady-state value. gy presents the lateral
acceleration or the side-slip velocity, depending which one is controlled. 1,4, is the
value at the time, the response reaches its first maximum peak.
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e Rise Time ¢,

Rise time is defined as the time for the response to go from 10% to 90% of its
final value.
t, = time(Yrinar * 0.9 — Ypina * 0.1)

e Settling Time %,

Settling time () is the amount of time required for the transient damped oscil-
lations to stay within +2%.

ts = time((y > Ypina * 1.02) or (¥ < Yfina * 0.98))

Rise time, settling time and peak time yield information about the speed of the
transient response. This information can help the designer to determine whether
or not the speed and the nature of the response degrade the performance of the
system. The objective values are all expressed in different units and a normalization
procedure is necessary for further use, which is explained in the next section.

5.4.2 Function of losses - preference information

The closed loop performance criteria are chosen as the following:

e Steady state error:
Ery — Eri(x)
j j -
() = 1,... . 5.3
771] (l‘) Erjmax - Erjmin g € [ ’ 1 ( )
e Overshoot: 0% — Os;(x)
57— Osj(x .
i(z) = 1,... . 5.4
712 (:E) Osjmax — Osjmin,] = [ ) 7m] ( )
e Rise time: Trs — Tri(x)
rr—Trj(x .
(r) = 1,... . 5.5
7133 (:E) Tijaz _ Tijm’] S [ ) 7m] ( )
e Settling time:
Tst—Ts;(x) |
774]’(‘r) ! - ) € [Lam] (56)

B Tsjmam - Tsjmin
where m are the number of evaluated individuals.
Table 5.1 shows the reference points used in the objective calculations. The most

desired values y; for each objectives are defined to satisfy the missile control engineer
requirements for the Horton model.
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Ideal point

Maximum point

Minimum point

Steady State Error

Er: = 0.0[%)]

BT jman = 2.0[%)

Settling time

T'st = 0.15[sec]

TS jmaz=0.25[sec]

TS jmin = 0.1]sec]

Rising time

Try = 0.08[sec]

T7jmaz = 0.14[sec]

T jmin = 0.07[sec]

Overshoot

Osy = 4.5[%)

O3 jmaz = 25.0[%)

Table 5.1: Closed loop performance criteria

5.4.3 Decision Making

Bearing in mind that there will be more than one solution, the influence of the deci-
sion maker is of utmost importance. Pareto optimality is not the only step towards
solving a multi-objective optimisation problem. The choice of a suitable compro-
mise solution from all non-inferior alternatives is also important. It is not only
problem dependent, it depends also on the subjective preferences of a DM. Hence,
the final solution to the problem is the result of both the optimisation process and
the decision process. Depending on how those two are combined in the search for
compromise solutions, the following groups have been identified by Hwang et al [106]:

e no articulation of preferences is needed from the DM

e a priori articulation of preference - expressed before the search is run

e interactive articulation of preferences - the preferences are expressed and can be
altered as the search is running

e a posteriori articulation of preference-expressed after the search is run, the DM
chooses from a set of possible solutions provided at the end of the run.

A priori methods clearly allow a degree of certainty by fixing the targeted out-
come in advance of the optimisation run.

Interactive methods allow the user both to react to changing situations in the appli-
cation problem, and to interact with the optimisation process by updating objectives
or goals as the optimisation is conducted.

A posteriori methods have the advantage of allowing no possible solution to be
eliminated prematurely in the optimisation process by preserving all potential out-
comes. This may be seen as a disadvantage if there are a large number of solutions
as the user may be presented with an excessive number from which to make a choice.

Ultimately, the preferred method of DM is likely to be influenced by the problem
requirements. In fact, multi-criteria decision making (MCDM) is a field in which
we are all well practiced in our personal lives, as we make decisions which involve
multiple conflicting criteria daily, without the support of a formal approach. The
very nature of multiple criteria problems is that there is much information of a com-



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 122

plex and conflicting nature, often reflecting differing viewpoints and often changing
with time. One of the principal aims of the MCDM approaches is to help decision
makers organize and synthesize such information in a way which leads them to feel
comfortable about making a decision, as stated by Zeleny [112]:

“ The decision unfolds through a process of learning, understanding, information
processing, assessing and defining the problem and its circumstances”.

The multi attribute decision problem can be expressed in matrix format as:

Ay T11, X125 -+ 5 Tln
D= 42 To1, 2522,.- <3 Ton (5‘7)

Ap | Tt Timo, - oo Tonn
Where A;,i = 1,...,m are possible courses of action (referred to as alternatives);
Zij,t=1,...,m,j =1,...,n are attributes with which alternative performance are

measured; i is the performance (or rating) of alternative A; with respect to attribute
j. With respect to our problem the matrix is:

Chromy Ery, Tsy, Try, OS;
Chroms Ery, Tsy, Try, OS5

(5.8)

Chrom,, | Erp, TSy, Tr,,, OS,,

where Er;, Ts;, Tr;, OS; are the closed loop performance criteria and Chrom;
stands for chromosomes which define the trajectory controllers and represent the
compromise individuals at each generation.

In a typical run, about 95% of the solutions are non-dominated and of highly com-
petitive nature. Final decision is made based on the maximum acceptable level for
each objective, which corresponds to the pre-specified maximum desired values of
the reference point approach. Only solutions which are below the maximum desired
value on each objective are considered. Fig. 5.3 shows the trade-off plots for the
closed loop performance criteria in the final population (last generation). Most of
the solutions are non-dominated and the one shown in fig. 5.3b, within minimum
and maximum range of each criteria, as specified by the DM has been considered
as acceptable. The objective values 7;(z) in fig. 5.3 are normalized using equations
(5.3, 5.4, 5.5 and 5.6). Each continuous line in fig. 5.3 represents one set of the
four closed loop criteria for one alternative solution (the optimised fuzzy controller
parameters). A strong conflict can be seen between overshoot and rise time, which
is expected, with not so much conflict between rise and settling times. The magni-
tude of the objective values are scaled, hence they do not represent their physical
values. Also, on this plot we cannot see the conflict between settling time and
overshoot or between settling time and steady state error. That is why a detailed
trade off surface for the individuals in a population is illustrated in figures 5.4, 5.5
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and 5.6. The intention here is to show how solutions evolve within generations, so
trade off dynamics can also be seen. Before the convergence is achieved, there are
some unacceptable solutions clustered in areas of higher objective values, as shown
in fig. 5.4, that die out as the evolution progresses. After convergence (after ap-
proximately 30 generations, as shown in fig. 5.7) most of the objective values are
within the pre-specified range, which is an indication that solutions have converged
towards the desired feasible area (see the scale in fig. 5.5). There are some solutions
strongly dominated on one objective which obviously are not taken under further
considerations by the DM. Each star represents the objective value of an individual
within a current population. Also, the non-dominated solutions are almost identical
at the 151" generation and at the 250" generation when the optimisation process
is complete. The fact that there are no major differences suggest that an earlier
stopping mechanism could be used in this case.

Trade-off of the Pareto front
14 T

a) Before decision making

Trade-off after DM
T

overshoot rise time settling time

b) After decision making

Figure 5.3: Trade-off surfaces
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5.4.4 Results using the reference approach

1. Side-slip velocity control

The nonlinear control law of the autopilot design for the SISO system has been
considered. It is defined as Design 1 in Section 3.3 of Chapter 3. A fuzzy logic
trajectory controller has been added in an outer loop and multi-objective optimisa-
tion using a genetic algorithm has been used to determine the fuzzy logic control
parameters, as given by Blumel et al [129], [130].

Fig. 5.8 shows the control surface section used and the corresponding side slip ve-
locity responses for two alternative solutions from the non-dominated set. These
results are obtained using five membership functions. Solution (b) is one of the best
selected according to all four closed loop performance criteria: steady state error
within (2%), (5%) on overshoot, a fast rise time (0.05s) and very close to ideal set-
tling time(0.12s). Solution (d) has an acceptable steady state error(< 2%), almost
no overshoot, but is very slow on rise time and on settling time. From a practi-
cal point of view, the first one would be preferred by a missile control engineer.
Both solutions have similar control surfaces showing a ‘winged’ structure (see the
left side of fig. 5.8). By looking at the phase portrait pattern, further information
for the membership functions and rules used can be extracted. The circles present
the nominal case of aerodynamic coefficients and the dotted lines are for the uncer-
tain case. Solution (f) is very bad on steady state error, and hence, is not acceptable.

The fuzzy logic controller is tuned for the nominal case of the aerodynamic coeffi-
cients, a demand of 2.57 m/s corresponding to 1g lateral acceleration, and is tested
for parameter variations within the ranges specified in Section 2.8 of Chapter 2.
Two particular combinations of model variation have been used:

é-min Cnrmal' chmaz ]

C

NTrmazx chmin ]

2. [ Cyp,,.. Cy

é-min

Robust performance within 2% relative steady state error is achieved. If we look
at the side-slip velocity response produced with the fixed gain trajectory controller
shown in fig. 4.11 in Chapter 4, we can see that for the same combinations of the
multi-model airframe dynamics of aerodynamic coefficient uncertainties, an error of
about 7% is achieved. On the other hand, in this case the fuzzy trajectory controller
has improved the robustness against these uncertainties by 5%.
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In this chapter, the fuzzy control parameters were mainly tuned for the nominal
model coefficients because the process was time demanding when multi-objective
optimisation was considered. One reason for this is because of the use of binary
coding. The chromosome structure with the binary coding of the rule base system
allowes robust properties of the fuzzy controller to be used but the optimisation al-
gorithm takes 12 hours on a 300 MHz Unix workstation. Also, in order to evaluate
each chromosome in the population, each controller is tested on all vertex points
models.

Two changes have been made to decrease processing time. First, a generation gap
was introduced to prevent a change in number of individuals to be evaluated at each
generation. Second, the chromosome structure was modified to real-integer coding
which reduced the length of the chromosome by a factor r, where r is the number
of membership functions. For evaluations of chromosomes on one trial only (i.e.
1 set of model coefficients and 1 required demand), the processing time decreased
from 12 down to 5 hours using this approach. Four membership functions and four
objectives have been considered.

2. FLC tuning on vertex points models

The fuzzy trajectory controller has been tuned for a set of worst case vertex mod-
els, 4 and 8 (i.e. Vi and V., values on side-slip velocities at steady state, see
fig. 4.10 in Chapter 4). Therefore the controller is robust against any parametric
uncertainties which may appear within the range defined by the vertex models. The
exact model within the vertex models is determined by the flight condition and will
also be a function of the aerodynamic coefficients (Cy,, Cy¢, Xy, Cpr) within their
uncertainty ranges. Most of the results shown in the thesis were obtained based
on nominal model simulations to a step input. As a result, the fuzzy logic control
surface has been exercised very little and hence the robust properties of the resulting
controller were not as good as the ones obtained based on extensive simulations on
all vertex models. There is still a problem associated with using a step input, how-
ever. The difference from fig. 5.8 of Chapter 5 is that the fuzzy gain surface shown
in fig.5.9 has been tuned for a set of vertex points models, hence can maintain ro-
bustness for any uncertainties which may arise within the ranges of these models.
Multiple solutions were also obtained but not shown. Initially the controller was
tuned on 5 trials (i.e. 4 vertex points models and the nominal one) for 250 gen-
erations. The optimisation algorithm has taken approximately 27 hours on a PC
300 MHz. A real-integer chromosome structure has been used. Most of the Pareto
solutions at the last 5 generations were with a st.st. error bigger than 10%. For
evaluations of 22500 fuzzy controllers(i.e. NIND.GGAP.trials. MAXGEN), 250
generations were not enough to obtain satisfactory closed loop performance criteria.
The fuzzy controller was then tuned on 3 trials (two worst case models and nominal
one), but still the optimal objective values were not satisfactory. Finally, the GA
were seeded with a set of Pareto solutions of the last 5 generations from the pre-
vious run. Then for another 200 generations the optimisation was carried on two
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Figure 5.9: Results

trials (i.e. the worst case models). The mutation rate was reduced from (1/NV AR)
to (0.5/NVAR) to ensure the survival of good solutions. In fig. 5.9b, dashed line
shows the velocity responses when the fixed gain controller is tested on worst case
models and the solid line shows the velocity responses when the fuzzy gain optimal
controller is tuned and tested on the same models. The responses produced with the
fuzzy gain controller are very close to the bounds of responses produced with the
fixed gain controller. Also, when the fuzzy gain controller was tested on all vertex
points models, the performance criteria on steady state error remained within the
bounds obtained by the worst case models, hence the FLC has maintained robust
properties of the closed loop system.
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3. Lateral acceleration control

The difference here is that the lateral acceleration control and the nonlinear con-
trol law detailed as Design 2 in Section 3.3 of Chapter 3 is used. Again, only a
single plane for the yaw or pitch channel has been considered. As a result of multi-
objective optimisation, multiple solutions are obtained from which the designer can
choose the one which best satisfies his requirements. In fig. 5.10 we show a set of lat-
eral acceleration responses with a variety of closed loop performance criteria. Some
are unacceptable, with high overshoot values, are very slow on rise time or settling
time, but some are very good with almost no steady state error and no overshoot.
Fig. 5.11 shows the fuzzy gain surfaces for three of them and the corresponding
acceleration responses of these. (b) is the best on steady state error, and (d), which
is within 6% error from the demand, is probably not acceptable, although it has
no overshoot and has a satisfactory rise time. Finally, solution (f), which is too
slow on rise time and settling time but within 3% on steady state error, may not be
considered as an acceptable solution by the designer. The dashed line represents the
augmented acceleration which shows an almost identical closed loop performance as
that for lateral acceleration. The only difference is in the non-minimum phase effect
which can be seen in the solid line for the lateral acceleration. However, it should
be remembered that here the augmented acceleration is used to design the nonlinear
control law, but the actual lateral acceleration is used as the controlled output. The
fuzzy gain surfaces for the acceleration control are more nonlinear compared with
the surfaces for the side-slip velocity control.

Lateral acceleration 2g demand
T T T

25

I I I I I I I
[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time in [sec]

Figure 5.10: A set of lateral acceleration responses
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Figure 5.11: Three alternative Pareto solutions with acceleration control
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5.4.5 Results for Fuzzy logic scheduled controllers
multiple demands case - 1g, 5g, 10g, 15g

Multiple solutions are obtained when a large range of different velocity demands are
required. The optimisation process is examined using two trial 5g and 15g demands
and individuals with bigger objective values are evaluated for further optimisation.
It may be noticed that the values of the criteria are very similar for all four de-
mands, however a little offset on the rise time can be observed on each response as,
for every required demand, the system changes, which then alters the fuzzy logic
control properties.

In fig. 5.12 a fixed gain trajectory controller is illustrated for all four demands.
The presence of steady state error is due to the neglected fin control surface term
in the system. Conversely, all fuzzy trajectory controllers (see fig. 5.13) have been
able to provide less fast solutions but with almost no oscillations and very little
steady state error. The closed loop criteria here have been considered such that
the reference point approach has been used to determine optimal solutions for the
side-slip velocity control of the fuzzy autopilot design.

Various solutions have been presented to show the powerful interpolative mecha-
nism of the fuzzy scheduled controllers when multiple demands are required. The
scaling factors of the fuzzy controller have been determined by using polynomial fit-
ting for each demand. The optimisation procedure is able to find multiple solutions
(alternative fuzzy controllers) in terms of closed loop performance criteria and is
able to tune the control parameters (membership functions and rule base structure)
simultaneously for multiple demands.
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Figure 5.12: Fixed gain trajectory controller
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Figure 5.13: Alternative solutions for multiple demands
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5.5 The objectives defined as fuzzy constraints-
penalties

Another way of looking at multi-objective optimisation is to specify the objectives
as constraints, or in this case as penalties using the fuzzy logic set theory to produce
the membership functions. This idea has been proposed previously by Trebi-Ollennu
and White [18] and has been further investigated in our research and applied to
missile fuzzy control parameters. In [18] a multi-objective fuzzy genetic algorithm
optimisation for selecting free control parameters was used. The difference from our
work is that Trebi-Ollennu has addressed the multi-objective problem as a scalar
optimisation problem and has generated multiple solutions by varying the weights
in order to address the relative importance of the fuzzy objectives. We have used
this idea of representing the objectives as fuzzy constraints, but have allowed the
optimisation procedure to find optimal solutions by using non-dominated sorting,
hence ranking each solution based on independent objective values.

Using fuzzy logic theory, the objectives can be presented as penalties with the fol-
lowing membership functions: ppg in fig. 5.5.1, pp, in fig. 5.5.2 and pg, in fig. 5.5.3.
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Figure 5.5.2 Rise time penalty
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e Settling time penalty
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The steady state error is defined as discussed in Section 5.4.1. The specified range
for acceptable solutions has been determined by the design engineer and is indicated
by the grey area.

5.5.1 Results of fuzzy multi-objective optimisation

We have chosen to show two alternative solutions in fig. 5.14 with conflicting criteria:
one which is not so good on steady state error and one which is too slow on rise
time, but is very good on settling time. However, the fuzzy gain surfaces were
both smooth and robust in the presence of model uncertainties. In this case, the
objectives have been fuzzified as penalties. The objective values of most solutions
were within the required range determined by the engineer as the preferable area
which is penalised with zero value. According to the way the overshoot criteria has
been specified here, it has given the GAs a chance to find solutions with almost no
oscillations, which is very important for the autopilot performance, especially when
higher demands are required. Using this approach it was quicker to find solutions
which satisfy the specified ranges on each objective, although it is difficult to tell how
non-dominated they were. This is because, during the minimization process, most
of the objectives have been given zero value when they have satisfied the required
range, which confuses the non-dominated ranking process. However, in the last
generation all solutions have objective values within the specified fuzzified ranges,
and hence they were all acceptable and no need of further DM was required. A priori
DM was sufficient to predetermine desired feasible solutions at the final stage. This
way of handling objectives is more convenient for engineers.

5.6 Concluding remarks

This chapter has examined multi-objective optimisation of the fuzzy logic trajectory
controller parameters. This has been achieved by evaluating four closed loop perfor-
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mance criteria which asses the quality of the side-slip velocity or lateral acceleration
responses. Evolutionary algorithms, such as genetic algorithms, have produced a
set of results that populate the Pareto solution set, allowing the system designer the
flexibility of trading one solution against others to achieve a desired performance.
By using the Optimistic Reference Point approach we have incorporated preference
information into the optimisation procedure, which helps the GAs to converge on
areas of preferable solutions for each objective simultaneously. In addition, this
idea has been combined with the Pareto based approach which uses non-dominated
sorting, hence an efficient Pareto front with optimal (non-dominated) solutions has
been produced simultaneously.
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Figure 5.14: Two possible alternative solutions for 5g demand

The tradeoff information generated by the evolutionary algorithm can contribute
to a better understanding of the control system properties. As we have used non-
dominated sorting for forming the Pareto front, the concept of crisp preferability

0.35
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can be seen to provide useful information to the optimisation process, which would
otherwise be faced with sampling a very large tradeoff surface (when all the closed
loop performance criteria have been defined in direct form). In consequence, if those
objectives are defined as fuzzy constraints (penalties), this can reduce the size of
the non-dominated set to search for and it is certain that the final non-dominated
solutions at the end of the optimisation are lying within the acceptable regions, so
that the engineering design requirements have been satisfied. Conversely, in the first
case, the GA is searching in a larger feasible area for acceptable solutions, but only a
subset of the non-dominated set can be of practical relevance, which requires further
interaction with the DM (i.e. selective process at the end of the optimisation). It is
one of the aims of this chapter to analyse the behaviour of the optimisation process,
depending on the way objectives have been handled.

The genetic algorithm performance depends on careful adjustment of several param-
eters and the values assigned to these parameters may affect performance drastically.
The determination of GA operators can effect convergence to Pareto optimal front
and diversity preservation among Pareto solutions. It is also important to define
stopping criteria for GAs based on multi-objective optimisation techniques, because
it is not obvious when the population has reached a point from which no further
improvement can be reached. The main way used to stop the GA procedure is to use
a fixed number of generations or to monitor the population at certain intervals and
interpret the results visually to determine when to halt the evolution process. Their
parallel nature allows GAs greater ability to explore the search space and lessens
the risk of becoming stuck in a local optimum.

In this research all the objectives were treated independently, however, if the mis-
sile engineer is interested in solutions that are fast with almost no overshoot, it is
possible to alter the rule base structure of the fuzzy trajectory controller to produce
desired solutions once the controller has been tuned. By studying in detail the rule
base structure it is possible to extract information about which rule affects the rise
time, overshoot, settling time or steady state error. This is an area for further re-
search work.

The evolutionary multi-objective algorithms have contributed efficiently to solving
a real world problem such as finding the trajectory control parameters of a highly
manoeuvrable missile system.



Chapter 6

Conclusions, Discussions and
Future work

The main objectives of the thesis were to design an autopilot system for lateral ve-
locity and acceleration control of a highly non-linear missile. The control system was
required to be robust in the presence of parametric uncertainties of the model and
to be valid for a large range of multiple demands. The other important objective
was to obtain multiple solutions of alternative controllers that allow the designer
the freedom to choose those which satisfy specified requirements of the closed loop
performance so that the autopilot system respond efficiently to guidance commands.

Missiles are mainly employed in a military environment. As technology matures,
targets become more agile with a variety of new shapes which are more difficult to
detect, hence missiles are required to be highly manoeuvrable and accurate. Gener-
ally in a typical guidance scenario they are required to follow a specific trajectory.
In order to do that, they should perform agile, fast and flexible manoeuvres which
involve rapid changes from low to high altitude and from low to fast speed. Missile
systems are well defined in their dynamic behaviour, but are highly non-linear. Most
designs have been able to use linear design and analysis techniques. This requires
the use of a linear model for an airframe which moves in any direction. The system
must be linearized about many combinations of speed along multiple axes in order to
account for the complexity of the system. This additionally complicates the design
as separate controllers are required for each configuration. The main problem is that
there are limited theoretical guarantees of stability in nonlinear operation. Another
problem is the computational load, due to the necessity of computing many linear
controllers. This research has been focussed at non-linear techniques to design the
autopilot system to overcome many of these problems.

Designing an autopilot system is not an easy task. It involves several stages. Start-
ing from the given model we first have to understand the dynamics of that model.
How does it behave in open loop? How sensitive is it towards variations in the aero-
dynamics and then how to design a control algorithm to respond quickly to guidance
commands? We have studied non-linear techniques since they can capture the non-

138
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linearities and produce a single design which is valid over the entire envelope. There
is very little research reported in the literature for using Feedback Linearization
applied to a missile system, which determined our choice to use it. The difference
from other people’s work is that instead of controlling acceleration through angles
and rates we use lateral velocity and augmented acceleration as outputs to control
lateral acceleration. Once the system was linearized a simple fixed gain controller
was not enough to produce a robust solution, even though for a nominal model,
the techniques were successful and the desired trajectory achieved. However in a
real scenario the assumption that model parameters will not change is unrealistic,
which require robust techniques to replace the fixed gain controller in the outer loop.
Using fuzzy logic theory was an appropriate choice since it has been proved in the
literature its ability to deal with vague and imprecise information. The only prob-
lem with designing a fuzzy logic controller is that it uses trial and error methods
to tune its parameters (i.e. the rule base structure and the membership functions).
This involves many iterations before an appropriate design is achieved which is time
demanding and not very practical. We designed the rule base structure for the
nominal model, which wasn’t robust to parametric uncertainties. An evolutionary
algorithm was then used to tune the fuzzy control parameters which were then ro-
bust for the specified uncertainties. Multiple solutions were then obtained by using
multi-objective optimisation, which allowed the designer to choose feasible solutions
which satisfy specified requirements.

The missile model has been provided by Matra British Aerospace Co. as a real
research model. In Chapter 2, we have shown the complexity of the model which is
of highly non-linear nature with severe cross-coupling. The polynomials of aerody-
namic functions were fitted to the set of curves taken from look-up tables derived
from wind tunnel measurements. Wind tunnel techniques provide the best estimates
of the aerodynamics but they will always be subject to variability and uncertainty.
In real flight scenario, for every instance of this missile type, the aerodynamical
functions may deviate from their nominal values. These potential variations intro-
duce parametric uncertainties of the non-linear system. A set of convex models is
produced that map the vertex points in a high order parameter space (of the order
of 16 variables). The multiple model description of the airframe aerodynamics is
tested for sensitivity on the aerodynamic coefficients. The analysis has shown that
the missile behaviour is most sensitive to the centre of pressure coefficient, which
was expected as this is the coefficient most responsible for airframe stability. The
model parameters can take any values randomly generated within the vertex points.
This allows more than 1000 models to be exercised and the control system tested
for robustness.

In Chapter 3, Feedback Linearization technique is detailed as a nonlinear conven-
tional tool to transform the non-linear system dynamics into a linear form by using
state feedback, hence a simple linear control technique can be used in the outer loop.
In other words this is dynamic inversion, in which a nonlinear control law is designed
to globally reduce the dynamics of the selected controlled variables to integrators.
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A closed loop system is then designed to make the controlled variables exhibit a
specified command response. Approximate Feedback Linearization has been used
for lateral motion control. The main difference from other research work is that
instead of using angles or body rates as outputs for the linearization process, lateral
velocities and body accelerations were used. The design has retained the order and
the relative degree of the system in the linearization process, hence has produced
a linearized system with no internal dynamics. Both SISO (the reduced 2"¢ or-
der system, without interaction between lateral motion and roll) and MIMO (full
5 order) systems have been considered. Desired tracking performance has been
achieved assuming an exact knowledge of the nominal model parameters such as:
aerodynamic coefficients and missile configuration parameters (i.e., reference area,
Mach number, mass, moment of inertia).

One of the main problems with applying the Feedback Linearization technique is
that the process produces a system with the same relative degree as the original
system, but usually with an order that is less. Indeed, the linearized system order
is the same as the relative degree unless pre-compensators are used to artificially
change the order and the relative degree. This process results in internal dynamics,
which are modes that are effectively rendered unobservable by the linearization pro-
cess. If the system is non-minimum phase, then the internal dynamics are unstable.
In order to produce linearized systems that have no internal dynamics, techniques
which preserve the dynamic order of the system were needed. In this work we have
selected an output that relates to the variable that is to be controlled, which gives
a greater relative degree and we have neglected small terms related to the input
during the differentiation process that allow the final relative degree to be achieved
and which also retains the order of the system in the linearization process. This
resulted in approximate FL, which can only be done if the neglecting terms in the
non-linear design will not produce unstable zeros, as they will additionally destabi-
lize the closed loop system and degrade the performance. There will always be an
inherent zero in the model because the missile system is non-minimum phase but first
it is important to check the stability of that zero before claiming the method is valid.

By applying approximate FL to the Horton missile, the design has resulted in a
linear equivalent system with no internal dynamics (“no unobservable” states dur-
ing the linearization), and with a design of a trajectory control which has given
small tracking errors for both lateral velocities and accelerations. The simulation
results have shown desired tracking performance for a large range lateral accelera-
tion demands up to 100 m/sec?. Full decoupling for the highly non-linear missile
system has been achieved. All designs for the SISO and the MIMO systems have
involved increasing the speed of response sufficiently for a linear approximation to be
inadequate for design purposes, and the responses for both small and large demands
have been shown to be invariant. Although the Horton model has been designed
for Cartesian control, it has also been useful to apply Polar Control as it has sig-
nificantly reduced the computational load of the non-linear control design, which is
important (less risky and less expensive - computationally speaking).
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The principal disadvantage associated with Feedback Linearization is the lack of
established methods for robust synthesis. By applying FL, desired tracking per-
formance has been obtained by assuming an exact knowledge of aerodynamic co-
efficients and missile configuration parameters in the entire flight envelope. In a
real flight scenario, this assumption is not valid and for parameter variations from
nominal model, the Feedback Linearization cannot guarantee desired closed loop
performance neither is robustness provided.

In Chapter 4, a robust non-linear trajectory controller based on fuzzy logic has
been applied in the outer loop to provide robustness for the feedback linearizable
system with respect to significant parametric uncertainty introduced into the system
through the aerodynamic coefficients. The fuzzy feedback linearized control design
has been found to be more effective for improving the transient and steady state
performances than the fixed gain feedback linearized control design. The ability to
improve the closed loop performance while managing uncertainties has shown the
advantage of using the fuzzy logic theory. It has provided the means of systemati-
cally synthesising various fuzzy rules to produce decision actions so that the complex
missile non-linear system can be controlled. This allows flexible robust manoeuvra-
bility. It has been difficult to determine by hand the fuzzy control parameters which
will count for any of the parametric uncertainties generated in the system. The trial
and error mechanism has been involved with many iterations before an appropriate
design has been achieved which is time demanding and not very practical. Hence it
has been replaced by evolutionary algorithm optimisation using genetic algorithm
for better adaptation and robustness. The rules and the membership functions of
the fuzzy trajectory controller have been generated simultaneously. Each chromo-
some consisted of a rule set and its associated membership functions. This allowed
the GA operators to integrate multiple fuzzy rule sets and their membership func-
tions at the same time. The hybrid control strategy has been validated via extensive
computer simulations and has produced a successful robust non-linear autopilot de-
sign. Although complex, the control system is reliable over wide variations in plant
dynamics and offers an elegant solution to designers.

However, the designer should be careful when looking for quality of the closed loop
performance within reasonable computation time. It is usually a trade-off, because
fuzzy systems perform better when more membership functions are used, but unfor-
tunately this increases computational time, as the size of the rule base structure in
the fuzzy mechanism increases significantly. Hence the trade-off between processing
time and performance is important to take into account. Still new fast technology
can help for implementation of such systems.

Again in Chapter 4, for the normalised fuzzy logic engine, the three scaling factors
(error,derivative of error and output) for each required lateral acceleration demand
(1g,2g,...,15g) have been determined via simulations based on the results obtained
with a fixed gain trajectory controller for the nominal model. Then a polynomial
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fitting has been used to interpolate between large range of required demands for
side-slip velocities in order to obtain the scaling factors of the FLC inputs and out-
puts for each demand. As a result smooth transition of the scaling factors has been
achieved when different demands have been required within the above mentioned
range. This has determined the smooth transition and gradual interpolation between
the control surfaces when multiple demands have been required. The FLC structure
has been simultaneously tuned for multiple demands. The resulting rule base and
membership function’s shapes have been achieved by defining the scaling factors for
each demand through the polynomial fitting. The purpose of such a tuning process
was to improve the system performance with the intention to maintain the linguistic
meaning of the fuzzy controller, which has been validated for each required demand.
To the best of the author’s knowledge this is the first reported fuzzy logic scheduled
controller for multiple demands of a missile autopilot design in the literature.

In Chapter 5, multiple solutions were obtained simultaneously by using multi-
objective optimisation of the fuzzy logic trajectory control parameters, allowing
the system designer the flexibility of trading one solution against others. This has
been achieved by evaluating four closed loop performance criteria which asses the
quality of the side-slip velocity or lateral acceleration responses. An evolutionary al-
gorithm has produced a set of results that populate the Pareto solution set by using
Pareto based approach with non-dominated sorting. The main strengths of this ap-
proach are that it can handle any number of objectives independently and can take
into account non-domination during the ranking process. An unique way has been
proposed to incorporate preference information into the evolutionary multi-objective
algorithm by using the Optimistic Reference Point approach to direct the GA-search
towards specified areas for preferable optimal solutions on each objective simultane-
ously. The non-dominated sorting method has provided good performance, both in
terms of inferior solutions and in terms of its coverage of the available non-dominated
points. The preferability mechanism has helped the designer to implement the de-
sign requirements into the optimisation procedure.

In most multi-objective optimisation problems it is not clear what kind of pref-
erences should be specified for each objective, whereas in this particular case the
missile engineer is interested in achieving closed loop performance values within
specified ranges in order for the missile to respond as fast as possible to guidance
commands and be able to fly in supersonic regime. The determination of these
ranges has been proposed by the author in two different ways: by using reference
points (ideal, maximum and minimum values for each objective), and by handling
the objectives as penalties based on the fuzzy logic membership functions principle.
Both are different ways to incorporate preference information into the genetic algo-
rithm optimisation process to direct the search towards feasible areas which satisfy
specific values of the objectives. As we have used non-dominated sorting for forming
the Pareto front, the concept of crisp preferability (using reference approach) has
been seen to provide useful information in the optimisation process which would
have otherwise been faced with sampling a very large trade-off surface (when all the
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closed loop performance criteria have been defined in direct form). Whereas, if those
objectives are defined as fuzzy constraints (penalties) this has reduced the size of
the non-dominated set to search and it is certain that the final solutions at the end
of the optimisation lie within the specified fuzzyfied ranges, so that the engineering
design requirements are satisfied and no need of further DM is required. A priori
DM was enough to predetermine desired feasible solutions at the final stage. Con-
versely in the first case, the evolutionary algorithm has searched in a larger feasible
area for acceptable solutions, but only a subset of the non-dominated set has been of
practical relevance, which required further interaction with the DM (i.e. a selective
process at the end of the optimisation).

By using the approach of handling objectives as fuzzy constraints, it was much
quicker to find solutions which satisfy the specified ranges on each objective. Al-
though many duplicate solutions were produced, most important was that these so-
lutions were all acceptable. We suggest that seeing the multi-objective optimisation
problem as a multi-constraint one, may actually help designers to refine acceptable
solutions first and then to investigate further on optimising each objective to specific
values.

Evolutionary algorithms seems to gain popularity in the multi-objective optimisa-
tion world. In this thesis GAs have shown to be promising and reliable optimisators
as well as to be useful decision making tool. Finding global optimal solutions was
not the only consideration, as providing solutions with robust performance in the
presence of uncertainties was equally important. In Chapter 5, genetic algorithms
have been also successful in finding multiple solutions when a large range of differ-
ent velocity demands have been required. Various solutions have been presented to
show the powerful interpolative mechanism of the fuzzy scheduled controllers when
multiple demands were required. The scaling factors of the fuzzy controller have
been determined by using polynomial fitting for each demand. The optimisation
procedure has been able to find multiple solutions (alternative fuzzy controllers) in
terms of closed loop performance criteria and has been able to tune the control pa-
rameters (i.e. the membership functions and the rule base structure) simultaneously
for multiple demands.

The conclusions were discussed here as a means of illustrating the role of the au-
topilot and the importance of designing it to meet specific requirements dictated by
the guidance loop. This research work has achieved an elegant and efficient solution
of designing a robust autopilot system. The evolutionary multi-objective algorithms
have contributed for solving a real engineering problem such as finding the trajec-
tory control parameters of a highly manoeuvrable missile system. To the knowledge
of the author these results have not been shown in the literature before.



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 144

6.1 Future work

Important areas of work for further investigation can be identified such as:

An important issue is to find a way to simplify the derived nonlinear control law
of the Feedback Linearization by using a well-trained neural network within the
inner loop of the system. This will be useful to relieve the computational load of
the nonlinear control law and to provide better robustness of the closed loop system.

A comparison of a Neuro Networks Feedback Linearization with Fuzzy Feedback
Linearization can give us better understanding how intelligent systems behave and
how do they differ in terms of performance, complexity and efficiency.

In this research all the objectives were treated independently, however if the missile
engineer is interested in solutions that are fast with almost no overshoot, it is pos-
sible to alter the rule base structure of the fuzzy trajectory controller to produce
desired solutions once the controller has been tuned. By studying in details the rule
base structure, is possible to extract information about which rule affects the rise
time, overshoot, settling time or steady state error.

Tuning the scaling factors for inputs and outputs of the fuzzy controller for each
required demand can be given to the GAs as they should be able to handle this task
easily.

Not many people have done interactive decision making combined with genetic al-
gorithms. During the optimisation process, if the DM finds the candidate solutions
unacceptable, DM can refine the preferences so to stimulate GAs to move on to a
different region of the non-dominated set.

It is an open research area for developing new evolutionary algorithms using genetic
programming strategies. Some comparisons with other existing multi-objective op-
timisation evolutionary Pareto based approaches like MOGA may be an interesting
thing to do.

Finally, extend the multi-objective optimisation work to MIMO system.
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Nomenclature

A.1 Abbreviations
fig. figure

FL Feedback Linearization
SMC  Sliding Mode Control
VSCS  Variable structure control system
ROV  Remote operated vehicle
RCAM research civil aircraft model
FLC  Fuzzy Logic Control
SISO  single-input single-output system
MIMO  multi-input multi-output system
DOF  degree of freedom
I/O  Input/Output
CLOS command to line of sight
NNs  Neural Networks

CMAC cerebellar model arithmetic computer
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GAs

GGAP

SF

VEGA

MOGA

NSGA

DM

MCDM

BTT

STT

Genetic Algorithms

generation gap

scaling factor

vector evaluated genetic algorithm
multi-objective genetic algorithms
non-dominated sorting genetic algorithm
decision maker

multi-criteria decision making
bank-to-turn motion

skid-to-turn motion
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A.2 Variables

Chapter 2

=

b N R

“ZN

> OMAS =g 4 S" 2T

&

S

S QP Zma g S

roll axis

pitch axis

yaw axis

forces

moments in eq 2.6

roll rate

pitch rate

yaw rate

velocity along the roll axis
velocity along the pitch axis
velocity along the yaw axis
total Velocity

elevator angle

rudder angle

aileron angle

pitch incidence

yaw incidence

total incidence
aerodynamic roll

lateral inertia
inertia

mass of the airframe
missile diameter
wing chord

Mach number

speed of sound

air density

centre of gravity
centre of pressure
fin moment arm
static margin
lateral moment arm
roll moment arm
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¢ equation w equation
m,  pitch rate moment Zzw  pitch velocity force
m,  pitch velocity moment 2q pitch rate force
me  aileron control coupling moment 2 aileron control coupling force
my  elevator control moment Zn elevator control force
Cr, damping moment coeff. C,, side-slip normal force coeff.
Cp, side-slip control moment coeff. C., fin roll force coeff.
C’mg fin roll moment coeff. C., fin normal force coeff.
Cpm, fin side-slip moment coeff.
7 equation U equation
Ny yaw rate moment Yo yaw velocity force
Thy yaw velocity moment Yr yaw rate force
ng aileron control coupling moment  y; aileron control coupling force
ne rudder control moment yc  rudder control force
Cn, damping moment coeff. Cy, side-slip normal force coeft.
Cn, side-slip control moments coeff. Cy, fin roll force coeff.
C’n§ fin roll moment coeff. Cyc fin normal force coeff.
Cn,  fin side-slip moment coeff.
P equation
Ly roll rate moment
l¢ rudder control coupling moment
L elevator control coupling moment
l¢ aileron control moment

C,, damping moment coeff.

Ci,  fin coupling moment coeff.

Cy,  fin coupling moment coeff.

C’lg fin roll moment coeff.

a,...,as system parameters (see Appendix C)

bi,..., by system parameters (see Appendix C)

Cly .., C4 system parameters (see Appendix C)
Aay,...,Aas  change in system parameters (see Section 2.8.1)
Aby,...,Ab;  change in system parameters (see Section 2.8.1)
Acy, ..., Aeqy  change in system parameters (see Section 2.8.1)

fvs fws frs fq, [, non-linear functions of a non-linear system
Gvs Gw, 9rs g, §p  DON-linear functions related with the input

z flight direction used for Polar coordinates
A flight angle of orientation used for Polar coordinates
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Chapter 3

e, €, ...,e"!

kOa kla . '7kn—1
¢1(‘r)a teey Qsz(x)
Ji1s s

wl (/L: U); teey wnfr(,ua ’U,)
Y (1, ur)
Yo (w2, ug)

state variable

output of a non-linear system

smooth vector fields which have continuous partial
derivatives of any required order

smooth scalar function of the state x

which is the output (i.e. y) of a non-linear system
gradient of h

Lie derivative of h with respect to f

Lie derivative of h with respect to g

the new input to the linearized system

non-linear state feedback

non-linear state feedback related to the input

decoupling matrix of a MIMO system

static state feedback for decoupled closed loop behaviour

relative degree of a non-linear system

describe the closed loop error dynamics
coefficients of a Hurwitz polynomial

series of functions related to h(x)

a variable which is used to transform a non-linear
system into new coordinates

internal dynamics of a non-linear system

the neglected term of the approximate

feedback linearization (see eq.3.43, eq.3.57, eq.3.64)
the neglected term of the approximate

feedback linearization (see eq.3.66)

lateral acceleration
augmented acceleration

flight direction used for Polar coordinates
flight angle of orientation used for Polar coordinates
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Chapter 4
A a membership function of fuzzy set A
LB a membership function of fuzzy set B
AB fuzzy sets of the inputs of a fuzzy system
O fuzzy set of the output of a fuzzy system
U crisp set called the Universe of Discourse
Se scaling factor for error input variable
Sde scaling factor for derivative of error input variable
Su scaling factor for control output variable
y° defuzzyfied output of a fuzzy system
wt degree of fulfillment of the I** rule
A; membership function i of input A
B, membership function j of input B
Oy, membership function k of output O
O objective function
O, steady state error objective function
O, overshoot objective function
O3 rise time objective function
O4 settling time objective function
ANf,Ng uncertainties in the model
caused by aerodynamic coefficients
SCy_er scaling factor of the error input
of the normalised fuzzy controller
SChy_erd scaling factor of the derivative of error input
of the normalised fuzzy controller
SCut scaling factor of the output
of the normalised fuzzy controller
Doy -y P3 coefficients of SC,_,q polynomial in 4.4
qo, q1 coefficients of SC,,; polynomial in 4.5
bo, ..., by coefficients of SC,_,, polynomial in 4.6
Coy...,C3 coefficients of SC,_..q polynomial in 4.7

do,...,dy coefficients of SC,,; polynomial in 4.8

151



APPENDIX A. NOMENCLATURE

Chapter 5

Ermam
O Smax
Trma:r
TSm(lI

E T'min
Osmin
T'rmin
Tsmin

m

Al, Ca
Tij
Chrom;

ETZ', TTZ', TSZ', OSZ'

, Am

Hos
M,
2

C

NTmazx chmaz ]

C X

NTrmazx

[Cyvmin CyCmin
[Cyvma:c Cy

Cmin CPmin
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vector of decision variables

inequality constraints

equality constraints

objective vector function

vector of decision variables which yields

the optimal values of all obj. functions

ideal vector in the objective space

sharing value

function of losses

ideal objective value

maximum objective value required a priori by DM
minimum objective value required a priori by DM

steady state error
overshoot

rise time

settling time

objective function
objective function
objective function
objective function

ideal reference point of n(x
ideal reference point of ny(x
ideal reference point of n3(x
ideal reference point of ng(x

~— —

objective function
objective function
objective function
objective function

maximum reference point of 7,
maximum reference point of 7,
maximum reference point of 73
maximum reference point of 74

X
X
X
X

AAAA
~— —

objective function
objective function
objective function
objective function

minimum reference point of 7,
minimum reference point of 7,
minimum reference point of 73
minimum reference point of 74

T
T
T
T

N N N N
~— — N e

number of evaluated individuals in a population

alternative solutions

attributes which measure alternative performance
chromosomes to be evaluated in a generation
closed loop performance criteria with which
alternative solutions are evaluated

overshoot penalty
rise time penalty
settling time penalty

vertex points model
vertex points model
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Physical Parameters of Horton
Missile Model

H Symbol ‘ Meaning ‘ Value H
00 Sea Level Air density | 1.23kg/m?
p Air Density po — 0.094h
d Reference diameter | 0.2m
S Reference area d?/4 = 0.0314m?
m Mass 125kg
I,1, Lateral Inertia 67.5kgm?
I, Inertia 6.75kgm?
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Non-linear functions of the state
space model

The non-linear functions f,, fu, fr, fg, f» and gy, gw. 9r, g4, gp from the equation of
motion (2.42) shown in Chapter 2 are given here:

f’U(Ui w7 T)
gu(v, )

fr(w,v,r)

VO(Cyuy + Cyoy VU2 + w2)v — Ur
VoVy(Cyeo + Cye, V2 + w?

—R, [(jczoocyvo + jcznac_’yvo) Vu? + w?

. - d_ - _
+(Zepo Cyy + ap, Oy (0% + w0 + 5 Rol(Crrg + Conr, V02 £ w?)r
RoSyVi(Cogy + Coe V7 + 07)
~RoSVo[(Cyeo By + Cyg, Ry )W + w? + Cy, R, + Cyg, R, (v + w?)]

W (Cpyw + Cry, V2 + w?) + Ugq
WOV,(Clyo + Con, VU2 + w?)

d 1 1
Qo{iomqoq + §d0mqa Vo2 + w?q + E(jczooczwow)

1 _ _ 1 _
+g(f6paczwo + Zepo Crn, WV V2 + w2 + a(fcmczwaw(UQ + wQ))}

—QoVoSi(Clyy + Ciy, VU2 + w?)

QOSfVO[(OZnORNQ + C_’znaRNl) V v+ w? + éznoRNl + OznaRNZ (1)2 + ’U)Q)}
100

D
500R;, Ry, 180 ,——
. L vanvYU v
500R;, R, 180 ,———
. L vanvYU v
500
- (C.1)
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where the Mach number M, and the total velocity V, are slowly varying and where:

The parameters ay,...,as, by, ..

Vo
M =
SoS
1
Ve = W= —pV,S
2m
1
= = — .2
Qo R, o pVoSd (C.2)
.,big and ¢y, ..., ¢4 are defined here which are used

in Chapter 3 to describe the non-linear system in parametric format:

ay
as
as
Q4

as

by
bs

by

Co
C3

&

VOCyu
VoCy,
-U
Vo‘/:’éyCo

—RyS;Vo(Cyey Ry, + Cye, Ry,

—RO‘SVfVOC_’yCORN1

~R,S:V,Cye. Ry,
100

-
500

-

500Rz, Ry, 180
. L Vir

500Rz, Ry, 180
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Appendix D
Lie Algebra

D.1 Lie Derivative and Lie Bracket

The terminology used in differential geometry has been introduced here by describing
the following mathematical tools: A vector function f : R” — R" is called a vector
field in R™ which means to every vector function f corresponds a field of vectors in an
n dimensional space. A smooth vector field is a function f(x) which has continuous
partial derivatives of any required order. Given a smooth scalar function h(x) of the
state x , the gradient of h is denoted by Vh

oh
h=— D.1
Vh= o (D.1)
The gradient is represented by a row-vector of elements (Vh); = %. Similarly,
given a vector field f(x), the Jacobian of f is denoted by Vf:
of
Vi = — D.2
o (D.2)
and it is represented by an n x n matrix of elements (Vf);; = %.

Lie Derivatives

Given a scalar function h(x) and a vector field f(x), a new scalar function L¢h is
defined, called the Lie derivative of h with respect to f. By definition [14] the Lie
derivative of h with respect to f is a scalar function defined by Le¢h(z) = VAf(z).
Thus the Lie derivative L¢h is the directional derivative of h along the direction of
the vector f. First and higher order Lie derivatives can be defined as:

Leh(r) = O () (D.3)

and respectively:
Lih(z) = Ly(L§"h(z)) (D.4)

Similarly, if g is another vector field, then the scalar function LgLgh(x) is given by:

LgL¢h(z) = VLgh(x)g (D.5)
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Lie Brackets
By definition the Lie bracket of f and g is a third vector field defined by:

[f,g[ = Vgf — Vig (D.6)

where f and g are two vector fields on R" and where Vg and Vf represent the
Jacobians (matrices) of g and f respectively.

Successive Lie brackets [f, ..., [f, g], ...] can be defined as follows:
ad(g) = g
adg(g) = [f.9]
adj(g) = [f ad}™'(9)] (D.7)

where “ad” represents “adjoint”. Both Lie Derivatives and Lie Brackets are the main
mathematical tools used by Feedback Linearization for nonlinear dynamic systems.

D.2 Feedback linearization of MIMO systems

Input-Output linearization of MIMO systems [14] is obtained similarly to the SISO
case, by differentiating the outputs y; until the inputs appear. Assume that r; is the
smallest integer such that at least one of the inputs appears in yfri), then

Yy = Lihi+Y ngL;rlhiuj (D.8)
j=1

with ngL;iflhi(x) # 0 for at least one j, in a neighbourhood §2; of the point xg.
Performing the above procedure for each output y; yields

it L hi(x)
= + E(z)u (D.9)
Yt L:‘m hum ()

where the (m x m) matrix E(x) is defined as

LglLl}hl (IE) e Lglejfhl (l‘)
E(z) = L (D.10)

Ly, Lihy(2) . .. L, L hpm ()

where 0 < k£ < 2n — 1. Define then €2 as the intersection of the €2;. If as assumed
above , the partial relative degrees r; are all well defined, then € is itself a finite
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neighbourhood of 5. Furthermore, if E(x) is invertible over the region €2, then
similarly to the SISO case the input transformation

vy — L?l hl
— (D.11)
Uy — L;’" hom
yields m equations of the simple form
Yt = (D.12)

Since the input v; only affects the output y;, (D.11) is called a decoupling control
law, and the invertible matrix F(z) is called the decoupling matrix of the system.
The system is then said to have relative degree (ry,...,7,) at zo and the scalar
r =1y + ...+ ry is called the total relative degree of the system at xg.

B 1 1 1 1
v=&n j &n 1 j & j &=y

& =4d@)

r+l<=i<=n

Figure D.1: MIMO control design

An interesting case is when the relative degree of a system is the same as its or-
der, i.e., when the output y has to be differentiated n times (with n being the
system order) to obtain a linear input-output relation. In this case, the variables
y,y',...,y" ! may be used as a new set of state variables for the system, and there
is no internal dynamics associated with this input-output linearization. In this case
the Input-Output linearization leads to Input-State linearization by Slotine in [14].

D.3 Complex Nonlinear Derivative
. 2 . .
. . Ti1Tq T1T3T3
(agmi\/212 4+ 32) = agd1\/ 212 + 232 + ay R + as ST (D.13)

Such a complex nonlinear derivative has been used for the nonlinear feedback control
low derived in MIMO case Designl
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Fuzzy logic glossary

Aristotle’s law of ”A or not A” always holds in probability, while Buddha’s law
"A and not A” holds in real life situations. The fuzzy entropy theorem has been
proved in 1986: ”Fuzziness is the ratio of Buddha over Aristotle”. The fuzzier the
set the more Buddha resembles Aristotle”. Fuzzy Logic has two meanings. The first
meaning is multi-valued or 'vague’ logic. Everything is a matter of degree including
truth and set membership. The second meaning is reasoning with fuzzy sets or with
sets of fuzzy rules. This dates back to the first work on fuzzy sets in the 1960s and
1970s by Lofti Zadeh at the University of California at Berkeley. Other synonyms:
gray logic, cloudy logic, continuous logic.

Fuzzy Rule

A conditional of the form IF X is A,THEN Y is B. A and B are fuzzy sets:”IF the
room air is cool, THEN set the motor speed to slow”. In math terms a rule is a
relation between fuzzy sets. Each rule defines a fuzzy patch (the product A x B) in
the system ”state space”- the set of all possible combinations of inputs and outputs.
The wider the fuzzy sets A and B, the wider and more uncertain the fuzzy patch.
More certain knowledge leads to smaller patches or more precise rules. Fuzzy rules
are the knowledge building blocks in a fuzzy system. In math terms each fuzzy rule
acts as an associative memory that associates the fuzzy response B with the fuzzy
stimulus A. Then stimuli similar to A map to responses similar to B. In this sense
each fuzzy rule defines fuzzy associative memory, or FAM. A set of FAM rules in a
fuzzy system acts as a FAM at higher level. It too converts similar inputs to similar
outputs.

Fuzzy set

A set whose members belong to it to some degree. In contrast a standard or non-
fuzzy set contains its members all or none. The set of even numbers has no fuzzy
members. Each number belongs to it 0% or 100% . The set of big molecules has
graded membership. Some molecules are bigger than others and so belong to it to
greater degree. In the same way most properties like redness or tallness or goodness
admit degrees and thus define fuzzy sets. In math term a fuzzy set is either a point
in a hypercube or a curve. A fuzzy set with n members is equal to a list of n numbers
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or fit values. Each fit value lies in the interval from 0 to 1 and stands for the degree
that that member belongs to or fits in the fuzzy set. The set of all such lists of n
fit values defines a solid unit hypercube of n dimensions (with 2" corners made up
of the 2" binary lists of Os and 1s or the 2" non-fuzzy sets). Each fuzzy set is one
point in this fuzzy cube. The same holds as the number n grows to infinity. The
same holds as the number n grows to infinity. Three tall men (0.90.50.3) means the
first is 90% tall, the other is 50% tall or as much not-tall as he is tall.,the third man
is 30% tall or more not tall than tall. A curve defines a fuzzy set for a continuum
of cases like all possible temperature values between 50° and 100° or all possible
car velocities between 0 mph and 120 mph. The height of the curve between 0 and
1 measures the fit value or degree that the element belongs to the fuzzy set. A
non-fuzzy set looks like a step. Part of the curve is the flat line at 100% and the rest
is the flat line at 0%. In this world continuity is a useful fiction for math analysis
and for engineering design. Up close there are only discrete values and a finite and
small set to temperature values or even car velocities. This amounts to “sampling”
a fuzzy curve at several places and gives a finite fit list for the fuzzy set. The more
samples the more accurate the fit list and the larger the dimension of the hypercube
in which it sits as a point.

Fuzzy system

A set of fuzzy rules that converts inputs to outputs. In the simplest case an expert
states the rules in words or symbols. In the more complex case a neural system
learns the rules from data or from watching the behaviour of human experts. Each
input to the fuzzy system fires all the rules to some degree as in a massive associa-
tive memory. The closer the input matches the if-part of a fuzzy rule, the more the
then part fires. The fuzzy system adds up all these output or then part fuzzy sets
and takes their average or centroid value. The centroid is the output of the fuzzy
system. Fuzzy chips perform this associative mapping form input to output thou-
sands or millions of times per second. Each map form input to output defines one
FLIPS- or fuzzy logical inferences per second. The Fuzzy Approximation Theorem
shows that a fuzzy system can model any continuous system. Each rule of the fuzzy
system acts as a fuzzy patch that the system places so as to resemble the response
of the continuous system to all possible inputs.

Probability

The mathematical theory of chance. A probability is a number assigned to an event.
The larger the number the more “likely” the event will occur. In probability theory
all uncertainty comes from an undefined “randomness” or “chance”.

In math terms all probability numbers must add up to one. All events are biva-
lent. Either an event happens or not, in which case its opposite happens. The
probability that either the event A happens or its opposite not-A happens is 100%.
Events in probability theory are just the black-white sets of set theory. In this sense
probability theory rests on bivalent logic.



Appendix F

Software implementation

The software is build under Matlab environment using “C” language. The dynamics
of the missile is written in “C” as S-function and the non-linear control law is written
in “C” as mex function. Both are compiled under Matlab. The simulation of the
autopilot system is designed using Simulink library and it is called from the Matlab
workspace. The Fuzzy logic trajectory controller is produced by using the Fuzzy
Logic toolbox in Matlab language. The genetic algorithm strategy is written with
the help of the GA functions provided by Shefield University, UK. The simulations
were mainly ran on a 300MHz Unix Workstation or PC. The optimisation algorithm
is used to generate the fuzzy control parameters. The obtained fuzzy controller is
then tested on a missile model. A performance analysis is done off-line for each
autopilot simulation. The maximum objective value is returned to the optimisation
algorithm for evaluation of the tested fuzzy controller. The optimisation process
repeats for large number of iterations until satisfactory closed loop performance of
the autopilot system is obtained.
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