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Abstra
tThe thesis is fo
ussed on designing a robust nonlinear autopilot design for a highlynonlinear missile system in the presen
e of parametri
 un
ertainties. First, Feedba
kLinearization is applied to the nominal missile model whi
h produ
es an equivalentlinear system. Applying linear 
ontrol te
hniques, an outer loop is designed to drivethe 
ontrolled variables to rea
h the required demand, hen
e the missile 
an followa desired traje
tory. Unfortunately the 
ontrol law produ
ed by the feedba
k lin-earization is not robust in the presen
e of un
ertainties and hen
e in a real 
ights
enario will not be valid, and will exhibit nonlinear behavior for small 
hanges insystem parameters. Fuzzy logi
 traje
tory 
ontrol is then used in the outer loopto improve the robustness of the feedba
k linearization te
hnique. An evolutionarygeneti
 algorithm is then used to optimise the fuzzy 
ontrol parameters. Multiplesolutions (alternative fuzzy 
ontrollers) are obtained by using a Pareto based ap-proa
h with non-dominated sorting. This has been 
ombined with the referen
epoint approa
h to in
orporate preferen
e information into the geneti
 algorithm todire
t the sear
h towards feasible areas whi
h satisfy spe
i�ed ranges on ea
h obje
-tive. The design meets obje
tives de�ned on the 
losed loop performan
e: steadystate error, rise time settling time and maximum per
entage overshoot. From themultiple solutions the designer 
an 
hoose the one whi
h satis�es spe
i�ed require-ments. Fuzzy s
heduled 
ontrollers are also used to 
ontrol side-slip velo
ity for alarge range of multiple demands. The design has been exer
ised for multi-modelairframe dynami
s at vertex points de�ned by 16 variables.
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Chapter 1Introdu
tion
1.1 Problem de�nitionThe development of new te
hnology in aerospa
e appli
ation suggest some novelshapes of 
ying obje
ts whi
h are be
oming faster and faster with 
exible and unex-pe
ted 
hanges of their motion. In a typi
al guidan
e s
enario, as shown in �g. 1.1,the guidan
e system is required to dete
t and defeat su
h dangerous targets.

Figure 1.1: Guidan
e s
enarioThe guidan
e system produ
es 
ommands in the form of lateral a

eleration that themissile autopilot must follow a

urately and fast. The performan
e of the guidan
esystem relies on this performan
e to maintain its e�e
tiveness. The autopilot must
ontrol the missile airframe response to this required speed and a

ura
y despite1



CHAPTER 1. INTRODUCTION 2large un
ertainty and variability in the aerodynami
 
hara
teristi
s that are mea-sured by wind tunnel tests on s
aled models. As a 
onsequen
e, their aerodynami
data are not a

urate. There will be signi�
ant di�eren
es between the measureddata and any airframe that the autopilot is required to 
ontrol. Not only that, butea
h airframe will have its own un
ertainty due to manufa
turing toleran
es. Hen
ethere will be a large amount of un
ertainty asso
iated with any model of the air-frame. There is also great variability in the performan
e of the airframe as speedand altitude vary. As the Ma
h number of the airframe 
an vary by a fa
tor of 3 or4 and the altitude 
an vary from sea level to 10Km (see �g. 1.2), a large 
hange indynami
 pressure is present in the 
ight envelope. This has dramati
 e�e
ts on thedynami
s as the e�e
tiveness of the wings and the 
ontrol surfa
es are determinedby the dynami
 pressure 12�V 2 (1.1)There are other fa
tors that 
hange the dynami
s signi�
antly, the greatest being thein
iden
e at whi
h the airframe is 
ying. Large 
hanges in dynami
 performan
e areevident as in
iden
e 
hanges, and the demand for large s
ale manoeuvres means thatthe missile 
an exhibit up to 30Æ of in
iden
e for large a

eleration demands. Theusual way to maintain speed and a

ura
y is to produ
e a s
heduled 
ontroller withaltitude and Ma
h number and try to limit the in
iden
e 
hanges. This produ
es aset of linear 
ontrollers designs using a set of linear models. The 
hallenge for thedesigner is to produ
e a single 
ontroller for all parts of the 
ight envelope. Thisentails dealing with a nonlinear model of the airframe and in produ
ing a nonlinear
ontroller. As it must also take a

ount of the un
ertainty in the aerodynami
 data,it must also be robust to these un
ertainties in the nonlinear model.

Figure 1.2: Nonlinear manoeuvre



CHAPTER 1. INTRODUCTION 31.2 Literature review on existing 
ontrol te
hniquesIn the analysis of non-linear 
ontrol systems there is no general method for designingnon-linear 
ontrollers. Several existing 
onventional as well as intelligent 
ontrolte
hniques 
an be potential 
andidates for solving the problem stated in this thesis.Few of them are listed below:1.2.1 Conventional methodsGain-s
hedulingA te
hnique for transforming original system models into equivalent models of a sim-pler form is the so 
alled Ja
obian linearization or linearization about an equilibriumpoint. In this 
ase it 
an be said that the linearization may not be a good approx-imation to the system for arbitrary 
on�gurations. Sin
e the system is linearizedabout a single point, traje
tory tra
king 
an only be guaranteed in a suÆ
ientlysmall ball of states about that point. There are several methods for 
ir
umventingthis problem; one of the most 
ommon is gain s
heduling as analysed by Shammaand Athans [1℄. It was originally developed for the traje
tory 
ontrol of an air
raft.The idea of gain s
heduling is to sele
t a number of operating points whi
h 
overthe range of the system operation. Then at ea
h of these points, the designer makesa linear time invariant approximation to the plant dynami
s and designs a linear
ontroller for ea
h linearized plant. Between operating points, the parameters of the
ompensators are then interpolated, or s
heduled, thus resulting in a global 
ompen-sator. To use gain s
heduling, tra
king 
ontrollers are designed for many di�erentequilibrium points and gains are 
hosen based on the equilibrium points to whi
hthe system is nearest. Gain-s
heduling is simple, and, pra
ti
ally su

essful for anumber of appli
ations. The main problem is that it has only limited theoreti
alguarantees of stability in non-linear operation, but it uses some loose pra
ti
al guide-lines su
h as \the s
heduling variables should 
hange slowly" and \the s
hedulingvariables should 
apture the plant's non-linearities". Another problem is the 
om-putational load in a gain-s
heduling design, due to the ne
essity of 
omputing manylinear 
ontrollers.Feedba
k LinearizationAn alternative te
hnique is Feedba
k Linearization, known as non-linear dynami
inversion. Feedba
k linearization (FL) deals with te
hniques for transforming orig-inal system models into equivalent models of a simpler form. FL 
an be used as anon-linear design methodology. The main idea is to algebrai
ally transform a non-linear system into a linear form using state feedba
k like in Isidori et al [2℄, Hunt andSue [3℄, and Su [4℄, and then to use the well known linear design te
hniques to 
om-plete the 
ontrol design. The purpose of dynami
 inversion is to develop a feedba
k
ontrol law that linearizes the plant response to 
ommands, then a non-linear 
on-



CHAPTER 1. INTRODUCTION 4trol law is designed whi
h globally redu
es the dynami
s of the sele
ted 
ontrolledvariables to integrators. A 
losed loop system is then designed to make the 
on-trolled variables exhibit spe
i�ed 
ommand response and robustness requirementsto the overall system. The approa
h 
an be used for both stability and tra
king
ontrol problems and has been applied to a number of pra
ti
al non-linear 
ontrolproblems. These in
lude the 
ontrol of heli
opter, high performan
e air
raft andindustrial robots by Marino and Spong [5℄, Wang and Vidyasagar [6℄. There arefew examples in the literature of the pra
ti
al appli
ation of feedba
k linearization,ele
tro servo-hydrauli
 a
tuator by Hahn et al [7℄. Appli
ations to aerospa
e sys-tems are rare in the literature Bezi
k et al [8℄, Tahk et al [9℄ and Wee [10℄. In theirresear
h work, the side-slip angle and the angle of atta
k are taken as outputs todesign the 
ontrol law. Then the a

elerations are 
ontrolled using linear relationsbetween body rates and a

elerations at steady state.Feedba
k Linearization te
hnique requires full state measurement and desired tra
k-ing performan
e is only valid for exa
t knowledge of model parameters, however 
anbe useful as model-simplifying devi
e for robust non-linear 
ontrol su
h as slidingor fuzzy logi
 
ontrol whi
h are 
apable to provide robustness of the 
losed loopsystem.Variable stru
ture 
ontrol te
hniquesVariable stru
ture 
ontrol systems (VSCS) evolved from the work in Russia ofEmel'yanov and Barbashin in the early 1960s. The ideas appeared outside Russiaafter the mid 1970s when a book by Itkis (1976) and a survey paper by Utkin [11℄were published in English. Later on they were followed by many other resear
hersWhite and Silson [12℄, Zinober [13℄, Slotine and Li [14℄, Edwards and Spurgeon[15℄.Con
epts of VSCS have been utilised in the design of robust regulators, model-referen
e systems, adaptive s
hemes, tra
king systems, state observers and faultdete
tion s
hemes. The ideas have su

essfully been applied to problems su
h asautomati
 
ight 
ontrol, 
ontrol of ele
tri
 motors, heli
opter stability augmenta-tion systems, spa
e systems and robots. The essential feature of a variable stru
ture
ontroller is that is uses non-linear feedba
k 
ontrol with dis
ontinuities on one ormore manifolds (sliding hyper-planes) in the state spa
e or error spa
e. This methodis attra
tive in the design of 
ontrols for non-linear un
ertain dynami
 systems withun
ertainties and non-linearities of unknown stru
ture as long as they are boundedand o

urring within a subspa
e of the state spa
e.Sliding Mode ControlThe aim of the Sliding Controller (SMC) is to design a non-linear feedba
k 
on-troller for a 
lass of non-linear systems given the extent of parametri
 un
ertainty,disturban
es and the frequen
y range of unmodelled dynami
s. The te
hnique has



CHAPTER 1. INTRODUCTION 5been applied to a variety of plants with highly non-linear dynami
s similar to amissile system: air
raft systems by Singh [16℄, ships by M
Gookin et al [17℄, un-derwater vehi
les by Trebi-Ollennu and White [18℄ and spa
e systems by Singh andIyer [19℄ and has proved the ability to a
hieve good tra
king performan
e in thepresen
e of an un
ertain environment. The 
losed loop dynami
 behaviour obtainedfrom using a variable stru
ture 
ontrol law 
omprises two distin
t types of motion.The initial phase, o

urring whilst the states are being driven towards the surfa
e(referred to as rea
hing phase), whi
h is in general a�e
ted by any mat
hed distur-ban
es present. When the states rea
h the surfa
e and the sliding motion (referredto as sliding phase) takes pla
e, then the system be
omes insensitive to all mat
hedun
ertainty as shown by Singh and Iyer [19℄. The question of 
ontrol for a 
lass ofnonlinear systems whi
h 
an be de
oupled by state-variable feedba
k has been 
on-sidered by Singh [16, 19℄ for an air
raft and spa
e
raft system. The 
ontrol law forasymptoti
ally de
oupled 
ontrol of roll angle, angle of atta
k and side-slip in rapid,non-linear manoeuvres has been derived and large simultaneous lateral and longitu-dinal manoeuvres were performed in spite of un
ertainty in the stability derivatives.The synthesis of longitudinal autopilots for missiles 
ying at high angle of atta
kregimes has been presented by Thukral and Inno
enti [20℄. The autopilot has beentested on a small se
tion of the 
ight envelope (pit
h 
hannel) 
onsisting of a fast180Æ heading reversal in the verti
al plane, whi
h required robustness with respe
tto un
ertainties in the systems dynami
s indu
ed by large variations in dynami
pressure and aerodynami
 
oeÆ
ients. Weil and Wise [21℄ have demonstrated theuse of variable stru
tured system 
ontrol to design the longitudinal autopilot for amissile under 
ombined aerodynami
 surfa
e (�n) and rea
tion jet 
ontrol. Highgain feedba
k using singular perturbation analysis is used to design the rea
tion jetswit
hing surfa
es and �n 
ontrol law. Sliding 
ontrol te
hnique has been appliedto design a pit
h-axis 
ontrol system for high performan
e air
raft by Hedri
k andGopalswamy in [22℄. The 
ontrol obje
tives were to tra
k pilot g 
ommands, whilesatisfying 
ying quality spe
i�
ations. In the pit
h axis problem, the dominantnon-linearities are the aerodynami
 
oeÆ
ient variation with angle of atta
k andsaturation of the a
tuator's position and rate response. In addition to that Fos-sen and Sagatun [23℄ have des
ribed the use of multi-variable sliding mode 
ontrolin dynami
 positioning of underwater vehi
le (ROV). Trebi-Ollennu [24℄ has alsoshown that this method has great potential for 
ontrolling the ROV attitude andposition with ex
ellent robustness properties against parametri
 un
ertainties andunmodelled dynami
s.Few advantages of this te
hnique 
an be mentioned here: Only single design isrequired over the entire operating range of the vehi
le so there is no need for aseries of linearized 
ontrollers. Stability is maintained in Lyapunov sense. SMChas ex
ellent robustness properties against parametri
 un
ertainties when mat
hing
onditions are satis�ed. In pra
ti
e the swit
hing, 
hattering 
ontrol law shouldbe repla
ed by a smooth approximation whi
h 
an be very in
onvenient. Anotherdrawba
k 
an be pointed as the need of 
omplete state information whi
h may notalways be available. SMC is a su

essful te
hnique for 
ontrolling missiles, however
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hers have only 
onsidered 
ontrolling angle of atta
k or angular velo
i-ties.Ba
k-stepping approa
hAnother te
hnique de�ned as a di�erent version of variable stru
ture 
ontrol is theba
k-stepping approa
h. This te
hnique has been approa
hed by Kanellakopoulos,Kristi
 and Kokotovi
 in [25℄ working at Berkeley California University USA, latelyfollowed by other resear
hers like Fossen and Svein [26℄, Rios-Bolivar et al [27℄, Songand Kim [28℄. The output tra
king problem of a 
lass of observable minimum-phase un
ertain non-linear systems has been 
onsidered by Rios-Bolivar et al [29℄,and a solution based on a suitable 
ombination of input-output linearization andthe adaptive ba
k-stepping 
ontrol design pro
edure has been proposed. This ap-proa
h 
an be applied to a large 
lass of non-linear systems, in
luding those that arenot transformable into the parametri
-pure and parametri
-stri
t feedba
k forms,typi
ally 
onsidered in the appli
ations of the ba
k-stepping pro
edure. The 
on-trolled smooth transition of the angular velo
ity of a non-linear DC-motor has beenpresented as an appli
ation example. A non-linear ve
torial ba
kstepping 
ontrollaw for 
ommer
ial ships has been 
onsidered by Fossen and Svein [26℄. Ve
torialba
k-stepping is done in three steps 
orresponding to the state ve
tors of the ship dy-nami
s, kinemati
s and a
tuator dynami
s. Emphasis is pla
ed on 
ompensation ofthe a
tuator dynami
s sin
e the bandwidth of the propellers, thrusters and ruddersis often 
lose to the bandwidth of the ship dynami
s. Global exponential tra
king ofthe (x and y) positions and the yaw angle of a surfa
e ship has been proven by ap-plying Lyapunov stability analysis. Also a globally, uniformly asymptoti
ally stablenon-linear 
ontrol law for dynami
 positioning of ships has been derived by Aslaugand Fossen [30℄. They have avoided linearization and gain-s
heduling te
hniques.However a non-linear observer was used to produ
e noise-free estimates of velo
ityand position from noisy position measurements. Global uniformly asymptoti
 stabil-ity was proven by using the Lyapunov stability theory. Also an adaptive non-linear
ontrol design was applied by Song and Kim [28℄ to the pit
h a

eleration 
ontrollerfor a missile model. Missile motion is modelled to be non-linear with unknown pa-rameters and un
ertainties. Based on the model, an adaptive ba
k-stepping methodhas been adopted whi
h guaranteed uniform boundedness despite model un
ertain-ties. This design has been exer
ised on a very simpli�ed missile model.Ba
k-stepping approa
h is a very promising te
hnique for an autopilot design ofmissiles whi
h are highly non-linear in aerodynami
s with unknown parameters.This approa
h is very robust to parametri
 un
ertainties. By properly 
hosen Lya-punov fun
tion a global asymptoti
 stability 
an be proved. Conversely to SlidingMode Control no 
hattering e�e
t is involved. However, there is a need of an ob-server for the estimation pro
edure whi
h is de�nitely not very appre
iated by realengineers espe
ially when a fast response is required from the missile autopilot de-sign. Also this te
hnique is an adaptive pro
edure and is a question of reliability tobe implemented on a missile board.
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ial intelligen
eSin
e 1989 the Japanese have built the so 
alled LIFE asso
iation for resear
h anddevelopment of pro
essing intelle
tual information. The president at that time,Katsushige Mita stated in few words the importan
e of the dire
tion in su
h �elds:\Operations of present 
omputers depend on simple yes-no logi
 namely binarylogi
, whi
h is di�erent from the information pro
essing inherent in human thinking.Therefore, evaluation based on 
ommon sense and 
exible judgement is 
onsidereddiÆ
ult to a
hieve by 
omputers, hen
e intensive resear
h is now aimed at the real-ization of arti�
ial intelligen
e". Katsushige Mita (President of LIFE asso
iation).Ten years later the advan
ed te
hnology in Japan has proved worthwhile.An intelligent system should be able to 
ope with a variety of unexpe
ted 
hangesand environments whi
h requires learning and adaptation ability. Su
h a system 
anbe referred to as an intelligent 
ontrol system where te
hnology plays a major role inmodern 
ight 
ontrol design and implementation. One goal of the intelligent 
ontrolapproa
h is to make advan
ed 
ontrol systems easier to design. Another goal is tomake them less vulnerable to un
ertainties in system parameters and to unknownenvironment. Two very popular approa
hes for performing non-linear 
ontrol basedon fuzzy logi
 and neural networks are reviewed in detail. In addition, the opportu-nities to 
ombine the useful features of ea
h and to improve their performan
e usingevolutionary algorithms are also 
onsidered. Fundamental 
on
epts of these threete
hniques have been found by Linkens and Nyongesa [31℄.Fuzzy Logi
Control systems should have the 
apability to gain in
reasing knowledge of the sys-tem through operational experien
e, without the interferen
e of human operators.The knowledge-based 
ontrol te
hniques use reasoning me
hanisms to determine the
ontrol a
tion from the knowledge stored in the system and from the available mea-surements. These systems 
an improve the robustness of 
urrent 
ontrol systemsby in
orporating knowledge that 
annot be a

ommodated in analyti
 models uponwhi
h 
onventional 
ontrol algorithms are based. A 
ommon type of knowledge-based 
ontrol is the rule-based 
ontrol, for whi
h the 
ontrol a
tions are des
ribedin terms of if-then rules. The prin
iple of designing a fuzzy logi
 
ontroller is tointegrate an empiri
al knowledge and operator experien
e into the 
ontrollers byusing fuzzy sets and fuzzy rules. The theory was developed by Zadeh [32℄ and theninvented for 
ontrol purpose by Lee [33℄. Mu
h of the expert's knowledge 
ontainslinguisti
 terms su
h as small, negative, positive, et
., whi
h 
an be represented byfuzzy sets. Using fuzzy sets and fuzzy operations it is possible to design a fuzzyreasoning system whi
h 
an a
t as a 
ontroller. The 
ontrol strategy is stored inthe form of if-then rules in a rule base stru
ture. The rules represent an approxi-mate stati
 mapping from inputs (e.g. errors) to outputs (
ontrol a
tions) and aredetermined by using expert knowledge of the pro
ess. The �rst industrial appli
a-
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ontrol was in a 
ement kiln 
ontrol designed by Holmblad andOstergaard [34℄. The rules representing the 
ontroller a
tions were derived from the
ement kiln operator's handbook. Sin
e then, fuzzy logi
 
ontrol has been appliedto various systems in the 
hemi
al pro
ess industry, 
onsumer ele
troni
s, automati
train operation, and many other �elds listed in Driankov et al [35℄. For example theRCAM problem, as formulated in [36℄, investigated the use of knowledge-based 
on-trol te
hniques for a realisti
 
ight 
ontrol problem. The hybrid 
ontroller stru
turewas proposed by S
hram [37℄ in whi
h the inner loop 
onsisted of 
lassi
al attitude
ontrollers and the outer loop was developed by using pilot heuristi
s of 
ying anair
raft. The fuzzy logi
 has provided a transparent interfa
e between the low-levelattitude 
ontrol of air
raft and high-level reasoning of human pilots. A 
ompro-mise was found in whi
h performan
e and robustness properties were good with thepenalty of ex
essive verti
al and lateral a

eleration. In addition S
hram et al [38℄introdu
ed multiple fuzzy 
ontrollers in an adaptive 
ontrol s
heme to a failure tol-erant 
ontrol. Smooth transition between the 
ontrol modes, of possibly di�erentstru
ture, has been automati
ally a
hieved in the 
ase of a gradual degradation of
ontrol system 
omponents. This approa
h has been demonstrated on a non-linear,six degrees of freedom model of a transport air
raft under realisti
 assumptionsabout a
tuator dynami
s and the results have shown that good performan
e hasbeen a
hieved in 
ase of severe a
tuator failures. An appli
ation of FLC to a su-personi
 missile has been investigated by S
hroeder and Liu [39℄, but assuming thepit
h plane autopilot is a linear-time invariant system. A fuzzy logi
 based MIMOroll rate 
ontroller has been designed by Chiu et al [40℄ for Ro
kwell International'sadvan
ed te
hnology wing air
raft model. The FLC has produ
ed 
ommands to sixsurfa
e de
e
tions to 
ontrol roll rate and four torsion moments. FLC has also beenapplied to angle, elevation and azimuth rates at Nasa Jonson Spa
e Centre.FLC has been useful when applied to 
ontrol un
ertain non-linear systems. Fuzzyreasoning builds the understanding of impre
ision into the pro
ess whi
h 
ould beeither parametri
 un
ertainty, unmodelled dynami
s or impre
ise measurement val-ues, hen
e 
an provide the ability to 
ontrol a system in un
ertainty or unknownenvironments whi
h is one of the most important 
hara
teristi
s of an intelligent
ontrol system. Fuzzy logi
 
ontrol is a knowledge-based system that derives 
on-trol a
tions based on input-output relationship, therefore, estimation of the systemparameters is not required. FLC 
an model 
omplex non-linear fun
tions and de-rive smooth 
ontrol a
tion for un
ertain system behaviour. However, if the initially
hosen 
ontrol parameters su
h as membership fun
tions and rule base stru
tureare not satisfa
tory in terms of 
losed loop performan
e, then it is ne
essary to use\trial and error" design philosophy, whi
h may not always be 
onvenient. It maybe an expensive pro
ess 
omputationally speaking. In su
h a 
ase, an appropriatete
hnique is required to optimise the fuzzy logi
 
ontrol parameters. Although fuzzystrategies su�er from some limitations, they 
an produ
e robust 
ontrol design inthe presen
e of parametri
 un
ertainties and we suggest fuzzy logi
 based 
ontrol asan appropriate te
hnique to be used further in this study.



CHAPTER 1. INTRODUCTION 9Neural NetworksNeural Networks (NNs) have shown great promise in solving non-linear 
ontrolproblems be
ause of their universal approximation 
apability, as detailed by Hunt etal [41℄. This powerful property has inspired the development of many neural-networkbased 
ontrollers without signi�
ant prior knowledge of the system dynami
s. Ar-ti�
ial NNs are based on the attempt to mimi
 the brains operation in a parti
ularway with a move away from hard, exa
t mathemati
al 
al
ulations towards general-ising fuzzy 
omputation, as given by Green�eld [42℄. The brain's powerful thinking,remembering and problem solving 
apabilities have inspired many s
ientists to at-tempt 
omputer modelling of its operation. There are several 
ategories of neural
ontrollers in the published literature su
h as: supervised 
ontrol, neural adaptive
ontrol by Sanner and Slotine [43℄, ba
k-propagation through time by Collins andDror [44℄, adaptive 
riti
 ar
hite
ture also known as learning 
ontrol. An interestingapproa
h is learning with 
riti
 algorithm given by Widrow et al [45℄. The learning
ontroller is des
ribed in terms of two-
omponent 
ombination. These 
omponentsare the 
ontroller and the trainer. One perform tasks of a pattern re
ognition and
ontrol parameter sele
tion, and the other to work as a tea
her, whi
h observessystem performan
e and adjusts 
ategory boundaries in the 
ontroller. Neural net-works have been used by M
Kelvey [46℄ to model the unknown feedba
k 
ontrol lawof an optimal 
ight 
ontrol problem. The network uses "bla
k box" stru
ture andit is trained with the ba
k-propagation learning method. In addition an adaptive
riti
 based Neural network ar
hite
ture has been applied to an autopilot by Bal-akrishnan and Biega [47℄. Their approa
h has adapted two networks: a supervisor(
riti
) that assesses the outputs of the 
ontroller network and an a
tion neuralnetwork 
ontroller for modelling the 
ontrol law. Napolitano and Kin
heloe [48℄have proposed the implementation of on-line learning neural 
ontrollers in the au-topilot 
ontrol laws of a modern high-performan
e military air
raft. One advantageof their design is avoiding the pre
omputation, storing, and interpolation betweenthousands of feedba
k gains of a typi
al 
ight 
ontrol system. Another advantageis the ability to 
ompensate for non-linearities and model un
ertainties. The tradi-tional gain-s
heduling-based-
ontrol laws for typi
al autopilot fun
tions are repla
edby on-line learning neural ar
hite
tures, trained with the extended ba
k-propagationalgorithm. This algorithm has shown signi�
ant improvements over the 
onventionalba
k-propagation method in learning, speed and a

ura
y. On-line lo
al learning 
a-pabilities of the neural 
ontrollers have been demonstrated. Finally most relevant toour resear
h is the work by M
Dowell et al [49℄ for hybrid neural-adaptive bank-to-turn lateral autopilot, des
ribed for a short-range 
ommand-to-line-of-sight (CLOS)surfa
e-to-air missile. In order to a
hieve 
onsistent tra
king performan
e over the
ight envelope, a multi-input/multi-output (MIMO) Gaussian radial basis fun
tionnetwork has been employed. The hybrid neural autopilot was evaluated in threedimensional (six-degree of freedom) simulation studies against realisti
 pit
h a

el-eration and roll rate pro�les generated from a typi
al CLOS guidan
e s
enario.



CHAPTER 1. INTRODUCTION 10Few important advantages in using neural networks for 
ontrolling non-linear sys-tems 
an be mentioned here: Firstly, the dynami
s of the 
ontrolled system doesnot need to be 
ompletely known for the design of the 
ontrollers or for the mod-elling of the system. Se
ondly, the potential of on-line learning is a very powerfulfeature for 
ontrolling any pro
ess in real time. In addition NNs have the ability foradaptation and interpolation as well as the ability of parallel 
omputation and anuniversal approximation 
apability, whi
h altoghether make them an attra
tive anduseful te
hnique for solving a variety of non-linear 
ontrol problems. Finally neuralnetworks have very useful properties su
h as the asso
iative storage and retrievalof knowledge. They 
an be trained to approximate any fun
tion suÆ
iently well.Conversely to su
h attra
tive 
hara
teristi
s, the appli
ations of neural networks aselements of real-time 
ontrol systems 
ould be very limited for the following reasons:The 
losed loop system behaviour does not have formal mathemati
al 
hara
terisa-tion; NNs have unstru
tured nature of bla
k-box learning, hen
e 
annot be 
erti�ed.Also large numbers of iterations over the desired mapping are required before thenetwork adequately reprodu
es the required responses. In 
on
lusion from an a
a-demi
 point of view NNs are a very promising te
hnique whi
h 
an improve theperforman
e and the robustness of the missile system. However from an engineeringpoint of view this te
hnique is not an appropriate 
ontrol method to be implementedon a missile board as they 
annot be 
erti�ed.Neuro-Fuzzy ControlFuzzy logi
 
ontrollers have several important bene�ts in that they do not requirea 
omplete analyti
al model of a dynami
 system. They provide knowledge-basedheuristi
 
ontrollers for 
omplex systems, and they 
an be analyti
ally validated.However they are not well suited to learning. This means that fuzzy logi
 systems
annot meet the goals of adaptation to 
hanges in system dynami
s or to unmod-elled dynami
 
hara
teristi
s, and they 
annot gain in
reased performan
e throughlearning. On the other hand arti�
ial neural networks have been su

essfully usedto model and approximate various non-linear relationships and systems. Neuralnetworks 
an be trained to learn the mapping between the input and the outputdomains based on observations without requiring knowledge of the stru
ture of theunderlying systems. They 
an exploit the inherent parallelism asso
iated with fuzzyalgorithms be
ause of the la
k of dependen
ies on 
ontrol rules. On
e the network istrained it 
an pro
ess the rules in parallel. They have shown to possess the ability toadapt to dynami
 environmental 
hanges through 
ontinuous training. The appli
a-tion of knowledge-based 
ontrol te
hniques for 
ight 
ontrol by Steinberg [50, 51℄ hasindi
ated that te
hniques like neural networks and fuzzy systems 
an provide appro-priate tools for non-linear identi�
ation by Linse and Stengel [52℄, 
ontrol of air
raftby Napolitano and Kin
heloe [48℄, heli
opters by Sugeno et al [53℄ and spa
e
raftby Berenji et al [54℄, or 
ight 
ontrol re
on�guration by Napolitano et al [55℄. Inthese appli
ations, neural networks generally serve as non-linear, sometimes adap-tive, models while fuzzy systems are often used as supervisory, expert systems. Few
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h a
tivities are enumerated as follows: An interesting 
ombination ofarti�
ial neural networks and fuzzy logi
 
ontrollers have been addressed by Haririand Malik [56℄ to power system stabilizer, where the method retains all the ad-vantages of adaptability, rapidity and robustness. By using neural network as astru
ture for the fuzzy logi
 
ontroller, the design time of 
onventional FLC 
an besigni�
antly redu
ed, membership fun
tions and fuzzy rules of the 
ontroller 
an begenerated automati
ally to meet the prespe
i�ed performan
e, i.e. tuning of the FLC
ontrol parameters has been solved. Compared to a 
onventional neural network,the training time was de
reased, sin
e a priori knowledge in the form of fuzzy if-thenrules was employed. Shin and Vishnupad [57℄ have applied neuro-fuzzy te
hniquesto a 
omplex manufa
turing pro
esses. The underlying non-linear pro
ess has beenmodelled by NNs and the pro
ess 
ontrol has been performed by FLC. The fuzzyrules have been automati
ally generated from the trained NN and fuzzy 
ontrol hasbeen performed by Mamdani impli
ation. The simulation results have provided arobust and a

urate way of 
ontrolling 
omplex pro
esses without knowledge aboutthe model. Even when the pro
ess has 
hanged dynami
ally, the NNs have learntthe fun
tional relationships between input and output domains through 
ontinuoustraining and the fuzzy 
ontroller has derived the 
ontrol a
tions. A di�erent type ofNNs have been used by Geng and M
Cullough in [58℄ 
alled 
erebellar model arith-meti
 
omputer NNs (CMAC) with a faster learning rate than 
onventional NNsand a limited amount of 
omputation required at any point in the learning pro
ess.The resear
hers have used the strengths of CMAC and Fuzzy 
ontrol s
hemes andapplied for the use in the design of advan
ed missile 
ontrol systems. The fuzzyCMAC has the 
apability of in
orporating human knowledge into the system andpro
essing information based on fuzzy inferen
e rules. The 
ight 
ontrol system hasbeen evaluated using a series of non-linear simulations driven by the mathemati
almodels of HAVE DASH II Bank to turn missile, to examine the stability, high angleof atta
k and 
ight path angle tra
king.In the 
onventional fuzzy design, the user must tune the membership fun
tionsof fuzzy sets de�ned in the input and output universe of dis
ourse by trial anderror. This drawba
k has been eliminated with neuro-fuzzy networks. Due to thesupervised learning methods it is possible to optimise the ante
edent and 
onsequentparts of a linguisti
 rule based fuzzy system. The neuro-fuzzy systems are universalapproximators of any non-linear fun
tions, as proved by Bu
kley and Hayashi [59℄.There is no need of trial and error pro
edure to tune the 
ontrol parameters of thefuzzy logi
 
ontroller as self learning inherently exist. These systems 
an be 
erti�ed,
an have high learning speed and be able to pro
ess the rules in parallel. By 
ombin-ing fuzzy logi
 and neural network the 
ontroller be
omes more robust to impre
iseinformation and external disturban
es and an improvement of the performan
e 
anbe guaranteed. However a major drawba
k is the design 
omplexity. They may bevery expensive and the question of being implemented on a missile board is still anopen one for engineers.
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 AlgorithmsAs pointed out earlier the membership fun
tions of a fuzzy logi
 
ontroller 
an bede�ned by trial and error or by an experts knowledge. The use of a neural networkdepends highly on the availability of suÆ
ient data representing the input-outputmapping, but in a situation where su
h data 
annot be obtained an alternativeapproa
h would be ne
essary. One su
h approa
h is to test hypotheti
al trial solu-tions on the system and generate better solutions on the basis of the performan
esusing evolutionary te
hniques. Geneti
 algorithms, whi
h are modelled on naturalevolutionary strategies, is methodology that has been introdu
ed as a learning andoptimisation te
hnique under su
h 
onditions. They use operations found in naturalgeneti
s to guide them through the paths in the sear
h spa
e, 
an provide means tosear
h poorly understood and irregular spa
es and has been su

essfully applied tovariety of fun
tion optimisations, self-adaptive and learning systems. By using GAsa randomised global sear
h in a solution spa
e is possible. In this spa
e a populationof 
andidate solutions, en
oded as 
hromosomes is evaluated by a �tness fun
tionin terms of its performan
e. The best 
andidates 'evolve' and pass some of their
hara
teristi
s to their 'o�springs'. A group of resear
hers, KrishnaKumar et al [60℄have investigated a hybrid te
hnique for synthesising fuzzy logi
 
ontrollers as astability augmentation system. This te
hnique 
ombines the 
ontrol 
apabilities offuzzy logi
 with the learning 
apabilities of geneti
 algorithms, to yield a fuzzy logi

ontroller optimised to satisfy desired handling quality requirements. An optimal
ontrol model is used to provide the 
losed-loop handling quality metri
s. Geneti
algorithms are used to optimise the attributes of the fuzzy logi
 
ontroller. Theseattributes in
lude the 
ontrol parameters su
h as membership fun
tions and the rulebase stru
ture. The hybrid te
hnique was implemented and tested o�-line using awide envelope FA/18 longitudinal model. The results proved the following: �rst,robustness of the hybrid te
hnique in �nding suitable FLC for di�erent operatingpoints with minimal user intera
tion; se
ond, robustness of the optimised FLC tooperate at di�erent operating 
onditions with no gain s
heduling; third, the abilityof the GA in �nding a suitable FLC with as few as 10 rules in the rule base. An-other su

essful appli
ation of optimising 
ontrol parameters but of a Sliding Mode
ontroller has been investigated by M
Gookin et al [17℄. It involves the performan
eof a 
ontrol system for 
ourse 
hanging manoeuvres of an oil tanker non-linear sys-tem. SMC theory has been used to de�ne the stru
ture of the 
ontroller where theGAs have been used to optimise key 
ontrol parameters in order to obtain satisfa
-tory performan
e. Trebi-Ollennu and White [18℄ have applied multi-obje
tive fuzzygeneti
 algorithm optimisation approa
h to non-linear 
ontrol system design. Thete
hnique has shown to provide an e�e
tive, eÆ
ient and intuitive framework forsele
ting parameters of a modern non-linear robust 
ontroller applied to remotely-operated underwater vehi
les.GAs have been re
ognised to be a powerful tool for learning in many 
ontrol ap-pli
ations and espe
ially with fuzzy logi
 where they have applied to the pro
essof learning 
ontrol rules, also sele
ting of rules and tuning of their membership



CHAPTER 1. INTRODUCTION 13fun
tions. An important noti
e to be made here is that a good solution dependson setting the obje
tive fun
tion 
orre
tly. A major drawba
k of the te
hnique isthat GAs are 
omputationally ineÆ
ient as many trials are ne
essary until �ndingthe right solution. New high te
hnology is able to produ
e still faster solutions.The implementation of these algorithms is made possible by the re
ent advan
es inte
hnology along with the progress in parallel mi
ropro
essors equipment whi
h 
anprovide the availability of eÆ
ient and fast learning algorithms. As a 
on
lusionwe 
an highly re
ommend that this te
hnique 
an guarantee reliability and 
an beuseful for optimising missile traje
tory 
ontrol parameters.1.2.3 Hybrid te
hniquesNeuro-Sliding ControlIn a hybrid design both te
hniques will 
ontribute in the following way: neuralnetworks 
an model the 
omplex dynami
s of the non-linear fun
tion, while SMC
an over
ome some model residual terms and in
rease the robustness of the 
losedloop system. A neural network approa
h has been proposed by Cao et al [61℄ to de-termine the sliding mode equation and the 
ontrol inputs. The approa
h involves theappli
ation of the single layer per
eptron model and the Lyapunov stability theory.The advantage is that it 
an over
ome the diÆ
ulty of determining the sliding modeequations. Another resear
h group Qin et al [62℄ ta
kled the problem of robust-ness for a MIMO aÆne non-linear 
ontrol system in whi
h un
ertainties are onlybounded. A state feedba
k 
ontroller has been 
onstru
ted where the non-linear
losed loop system has been �nitely attra
ted by a given neighbourhood of equilib-rium state. The 
ontroller 
onsists of two parts: the �rst one is a stati
 nominal
ontroller obtained by the variable stru
ture 
ontrol; the se
ond one is a dynami

ompensator obtained by the learning approa
h of an arti�
ial neural network. Therole of nominal 
ontroller is to make the non-linear nominal system arrive qui
klyin the neighbourhood of the sliding surfa
e. The role of the dynami
 
ompensatoris to attenuate the in
uen
e of un
ertainties on the system stability. Another ro-bust 
ontroller design of non-linear dynami
 systems has been proposed by Chiouet al [63℄ by 
ombining SMC and Produ
tive Networks. An attitude 
ontrol prob-lem of a spa
e
raft has been used to demonstrate the e�e
tiveness of the proposedmethod. Essentially, the SMC utilizes a high-speed swit
hing 
ontrol a
tion to drivethe non-linear plant's state traje
tories towards a spe
i�
 hyper-plane in the statespa
e. It will also maintain the state traje
tories sliding on the spe
i�
 hyper-planefor all time. Most relevant to our problem, Fu et al [64℄ have a
hieved an adaptiverobust neural-network-based 
ontrol approa
h for bank-to-turn missile autopilot de-sign. The Lyapunov theory has been used to 
omplete the 
losed loop stabilityproof. This s
heme is a 
ombination of neural networks and sliding mode 
ontrolte
hniques. The former has modelled some unknown non-linear fun
tions, whereasthe latter has been used to over
ome some modelling residual terms. To summarise,the te
hnique does not require a priori training phase, the sliding parameters 
anbe updated on-line gradually and 
ontinuously. Chattering and high gain 
an be
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ura
y and robustness 
an be a
hieved. There is a question-markabout Neural Networks being implemented on a board, but from an a
ademi
 pointa view the 
ombination of these te
hniques is quite a powerful tool for designing anon-linear robust 
ontrol for a missile system.Fuzzy-Sliding ControlAs for the sliding mode 
ontrol, the bounds of un
ertainties must be estimatedin order to guarantee the stability of the 
losed-loop system and also its engineeringappli
ation requires a 
hatter-free sliding mode 
ontrol. Fuzzy 
ontrol, as one ofthe most e�e
tive methods using expert knowledge, 
annot be used for inferen
ebut also approximate any real 
ontinuous fun
tion over a 
ompa
t set to arbitrarya

ura
y. There is similarity when 
omparing the SMC with boundary layer to anFLC whose rules have been derived from the phase plane as explained in Palm [65℄.Sin
e it is possible to de�ne the dynami
s of the error along a swit
hing line by
hoosing the dynami
al equation de�ning the sliding mode, it is straight forward to
onstru
t the 
ontrol rules along the swit
hing line and this 
an be done by sim-ulating the error dynami
s independent of the plant. On
e the 
ontrol rules areestablished along the swit
hing line, the rules 
an be de�ned in the two semi-planeson either side of the swit
hing one. The 
on
ept of fuzzy sliding mode 
ontrollerwas �rst suggested by Palm [65℄. An adaptive fuzzy sliding mode 
ontrol methodhas been applied to the 
ontrol of the verti
al motion of a mine hunting ROV byTrebi-Ollennu et al [66℄. The e�e
ts of parameter variation of the ROV has been
onsidered, and performan
e and robustness to un
ertainty has been assessed. Thee�e
tiveness of the te
hnique has been demonstrated by its ability to de
ouple pit
hand heave of the ROV subje
ted to parameter variations. An adaptive fuzzy systemhas been used by Sun et al [67℄ as an adaptive approximator for the non-linear robotdynami
s. They have proved that the fuzzy system is using the swit
hing fun
tionand its derivative of the sliding mode as inputs, hen
e it 
an approximate the plantnon-linear dynami
s in the neighbourhood of the swit
hing hyper-plane. Thus thefuzzy 
ontroller design has been simpli�ed, and at the same time the fuzzy 
ontrolrules have been obtained easily by the rea
hing 
ondition due to the sliding mode
ontrol. The fuzzy adaptive 
ontrol s
heme based on sliding mode 
an maintainthe invariant property of the sliding mode 
ontrol and alleviate 
hattering withoutthe sa
ri�
e of robustness. The best features of self-organizing fuzzy 
ontrol andsliding mode 
ontrol have been 
ombined by Lu and Chen [68℄ to a
hieve rapid anda

urate tra
king 
ontrol. The 
hatter en
ountered by most sliding-mode 
ontrols
hemes was alleviated without sa
ri�
ing invariant properties. For veri�
ation ofthe s
heme they have performed experiments on a magneti
 leviation system whereregulation and tra
king was performed for validation. The fuzzy 
ontroller has beendesigned to learn and 
ompensate for non-linearities and un
ertainties, thus allowinga redu
tion of the sliding-mode 
ontroller swit
hing gains. The �nal 
ontrol systemdesign is very robust to modelling impre
ision and external disturban
es. Due tothe limitations of the te
hniques, the tuning of the fuzzy logi
 parameters is required



CHAPTER 1. INTRODUCTION 15and there is a need of a suitable learning medium in order to in
rease the robustnessand adaptability.1.2.4 SummaryThe hybrid te
hniques, based on 
onventional and arti�
ial intelligent nature, arequite powerful and useful for solving non-linear 
ontrol design problems. We proposethat a 
ombination of feedba
k linearizationmethod and a fuzzy traje
tory 
ontrollerwould be an interesting useful and new approa
h to solve the problem stated earlierin the thesis. The former would 
an
el the plant non-linearities and the latter wouldexer
ise the robustness of the 
losed loop system when a multiple model des
riptionof the airframe aerodynami
s is used. An optimisation algorithm would then berequired to determine the fuzzy 
ontrol parameters. We suggest geneti
 algorithmsbased on evolutionary nature to be examined as they are useful when applied tomulti-modal noisy sear
h spa
es. Finally in order to meet 
losed loop performan
e
riteria su
h as: steady state error, overshoot, settling and rise time, the optimisationproblem 
an be addressed from multi-obje
tive point of view.1.3 Aims of the thesis and its stru
tureThis thesis has been driven by the following two aims:1. To design an autopilot system for lateral a

eleration and velo
ity 
ontrol ofa highly non-linear missile. The 
ontrol system should be robust in the presen
e ofparametri
 un
ertainties and should be valid for a large range of multiple demandsup to 15g pull of lateral a

eleration.2. To obtain multiple solutions - the alternative traje
tory 
ontrollers whi
h willallow the designer the freedom to 
hoose the one whi
h satisfy spe
i�ed require-ments. This would require the use of multi-obje
tive optimisation to determine thetraje
tory 
ontrol parameters.Thesis stru
tureThe stru
ture of the thesis has been outlined in four stages as shown in �gure (1.3):Stage 1 is detailed in Chapter 2, whi
h des
ribes the 
omplexity of the highlynon-linear missile system. It is a real resear
h model developed by Matra BA Co,whi
h is des
ribed by look up tables that de�ne the non-linear 
hara
teristi
s ofthe aerodynami
s. It des
ribes a full 5 degree of freedom model in parametri
 for-mat with severe 
ross-
oupling and non-linear behaviour. A polynomial model hasbeen produ
ed to mat
h the parametri
 model as 
lose as possible in a least squaressense. This polynomial model is in the form of polynomial relationships that arethen used for 
ontrol synthesis. Autopilot design requirements are spe
i�ed. A set
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onvex models is produ
ed that map the vertex points in a high order parameterspa
e (of the order of 16 variables). The multiple model des
ription of the airframeaerodynami
s is tested for sensitivity on the aerodynami
 
oeÆ
ients. In order toexamine manoeuvrability the model is des
ribed in Cartesian and Polar 
oordinates.Stage 2 is detailed in Chapter 3, whi
h uses Feedba
k Linearization to transformthe non-linear system dynami
s into a linear form by using state feedba
k and asimple linear 
ontrol te
hnique 
an be used in the outer loop. An ApproximateFeedba
k Linearization is used for lateral motion 
ontrol. The main di�eren
e fromother resear
h work is that instead of using angles or body rates as outputs for thelinearization pro
ess, lateral velo
ities and body a

elerations are used. The designretains the order and the relative degree of the system in the linearization pro
ess,hen
e produ
es a linearized system with no internal or zero dynami
s. Both SISO(the redu
ed 4th order system, without intera
tion between lateral motion and roll)and MIMO (full 5th order) systems are 
onsidered. Desired tra
king performan
eis a
hieved assuming an exa
t knowledge of the nominal model parameters su
h as:aerodynami
 
oeÆ
ients and missile 
on�guration parameters (i.e., referen
e area,Ma
h number, mass, moment of inertia).Stage 3 is detailed in Chapter 4, whi
h deals with a design of robust traje
tory
ontrol in presen
e of parametri
 un
ertainties. Unfortunately Feedba
k Lineariza-tion 
annot guarantee desired performan
e in a real 
ight s
enario when there areeither parameter variations or external disturban
es. Conversely fuzzy logi
 theoryis useful when dealing with vague and impre
ise information, hen
e it is used hereto build a fuzzy logi
 traje
tory 
ontroller to improve the robustness of the 
losedloop system. Then an evolutionary optimisation approa
h su
h as geneti
 algorithmis used to determine the membership fun
tion distribution and the rule base stru
-ture of the fuzzy logi
 
ontroller. The robust design is tested on the multiple modeldes
ription of the airframe aerodynami
s with signi�
ant parametri
 un
ertainties.Also fuzzy logi
 s
heduled 
ontrollers for a missile autopilot design have been exam-ined. The fuzzy logi
 input output s
aling fa
tors have been determined by usingpolynomial �t for a large range of multiple a

eleration demands and a magnitudeof 1g up to 15g has been examined.Stage 4 is detailed in Chapter 5. A multi-obje
tive evolutionary optimisation ofthe traje
tory 
ontrol parameters is used. The design meets obje
tives related to
losed loop performan
e su
h as: steady state error, overshoot, settling and risetime. The last three obje
tives are also treated as fuzzy 
onstraints (i.e. penalties),so the designer 
an analyse the behaviour of the optimiasation pro
ess depending onthe way obje
tives have been handled. Multiple solutions are obtained simultane-ously by using non-dominated sorting for forming the Pareto front, 
ombined with areferen
e point approa
h to in
orporate preferen
e information into the geneti
 algo-rithm to dire
t the sear
h towards feasible areas whi
h satisfy spe
i�
 values of theobje
tives. This allow the designer the freedom to 
hoose solutions and investigatethe properties of the system.
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CHAPTER 1. INTRODUCTION 181.4 ContributionsMain 
ontributions� A Fuzzy-Feedba
k Linearization non-linear autopilot is designed for highly non-linear manoeuvrable missile to 
over a large range of parametri
 un
ertainties ofthe multi-model des
ription of the airframe dynami
s, Chapter 4. A set of 
onvexmodels is produ
ed that map the vertex points in a high order parameter spa
e (ofthe order of 16 variables). A detailed sensitivity analysis of the missile behaviourfor ea
h aerodynami
 
oeÆ
ient is examined, Chapter 2.� Multi-
riteria geneti
 algorithm optimisation is used to determine the member-ship fun
tions and rule base stru
ture of the fuzzy logi
 traje
tory 
ontroller. Thisprodu
es a design that meets obje
tives related to 
losed loop performan
e su
has: steady state error, overshoot, rise and settling time. Both side-slip velo
ity andlateral a

eleration 
ontrol are 
onsidered. An unique way to in
orporate prefer-en
e information for ea
h obje
tive into the geneti
 algorithm is proposed to dire
tthe sear
h towards feasible area for �nding solutions whi
h satisfy spe
i�ed require-ments. An optimisti
 referen
e point approa
h is applied in a 
ombination with aPareto based non-dominating sorting te
hnique, Chapter 5. The Pareto based non-dominating sorting algorithm is used from external sour
e.� Multi-obje
tive optimisation of the fuzzy logi
 s
heduled 
ontrollers is appliedto the missile autopilot design. The fuzzy logi
 input output s
aling fa
tors are de-termined by using polynomial �t for a large range of multiple a

eleration demands.A magnitude of 1g up to 15g is examined, Chapter 4.� Lateral a

eleration is 
ontrolled through side-slip velo
ity demand for the au-topilot system 
onsidering the nominal model, Chapter 3.Joint 
ontributions� Side-slip velo
ity autopilot design is a
hieved using Approximate Feedba
k Lin-earization for nominal model 
ase. Both SISO and MIMO systems are examined.Lateral a

eleration is 
ontrolled through side-slip velo
ity demand, Chapter 3.� Applying Feedba
k Linearization to 
ontrol dire
tly lateral a

eleration produ
esrelative degree zero, whi
h means all the states are unobservable and the systemwould be un
ontrollable. Hen
e the augmented a

eleration is de�ned as an out-put for the linearization pro
ess to produ
e relative degree equal with the orderof the system to avoid internal dynami
s. Lateral a

eleration 
ontrol is a
hievedthrough augmented a

eleration using Approximate Feedba
k Linearization for thenon-linear 
ontrol design of the SISO system (i.e. yaw plane), Chapter 3.� Both, roll and lateral a

eleration are 
ontrolled by using Polar 
ontrol for theMIMO system, Chapter 3.



Chapter 2Non-linear system. An aerospa
eappli
ationThe resear
h 
onsidered in the thesis is based on a fast, 1000 m=se
, highly non-linear manoeuvrable missile, developed by Matra BA Co. It is a real resear
h modelwhi
h is des
ribed by look up tables that de�ne non-linear 
hara
teristi
s of theaerodynami
s. It des
ribes a full 5 degree of freedom model in parametri
 formatwith severe 
ross-
oupling and non-linear behaviour. From the polynomials for 0Æand 45Æ roll angle a linear interpolation has been done for the aerodynami
 
oeÆ-
ients, hen
e rendered as a model in polynomial form.2.1 The Missile Motion Dynami
sIn this Se
tion 2.1 the missile motion dynami
s are des
ribed in general. The equa-tions of motion, des
ribing the angular and translational dynami
s, are derived fromNewton's Se
ond Law of Motion expressed in the following form:PFor
es = dP(TranslationalMomentum)=dtPMoments = dP(AngularMomentum)=dt (2.1)where the translational and angular dynami
s are des
ribed in details in the Hortonreport [69℄. The aerodynami
 for
es and moments a
ting on the airframe are non-linear fun
tions of longitudinal and lateral velo
ities, 
ontrol surfa
e de
e
tion, bodyrates, et
, and they 
an be evaluated from empiri
al te
hniques, 
omputational 
owdynami
s or wind tunnel test. In general, aerodynami
 for
es in body axes 
onformto the relationship (2.2), and similarly aerodynami
 moments in body axes 
onformto (2.3). For
e = 12�V 2o SC (2.2)Moment = 12�V 2o SCd (2.3)where C is the aerodynami
 for
e or moment 
oeÆ
ient, Vo - total velo
ity of theairframe, d- referen
e diameter, � the air density and S -referen
e area. A detailed19



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 20aerodynami
 representation breaks the for
es and moments down into a numberof independent in
uen
es and de�nes derivatives, whi
h have been adopted in theaerospa
e 
ommunity and are used here. The suÆx Nv indi
ates the in
uen
e givingrise to the derivative thus (2.4), CNv is a yaw moment derivative dependent on yawvelo
ity v. CNv = �Cn�v (2.4)As the missile manoeuvres it will generate lateral velo
ities v; w. The angles thatthese velo
ity ve
tors form are termed in
iden
e angles, and these are illustrated in�g. 2.1.
U

Vo

v

w

β

λ

α
σ

Figure 2.1: De�nition of in
iden
e anglesWhere Vo; �; �; �; � are detailed in the following table:Meaning FormulaTotal velo
ity Vo = pU2 + v2 + w2Pit
h in
iden
e �= tan�1 wUYaw in
iden
e � = tan�1 vUTotal in
iden
e � = 
os�1 UVoAerodynami
 roll �= tan�1 vwLateral velo
ities v; wWith no 
ontrol surfa
e de
e
tion the e�e
t of lateral velo
ity is to generate a lat-eral for
e whi
h is distributed along the body/wing/tail assembly. However, thisdistributed for
e 
an be 
onsidered as a single for
e a
ting at a single resultant po-sition whi
h is termed the 
entre of pressure. The distan
e between the 
entre ofpressure and the 
entre of gravity is termed the stati
 margin. The lateral for
e,
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ting through the stati
 margin xsm forms a lateral moment. Variations of xsm areasso
iated with the airframe stability. If the 
entre of pressure is behind the 
en-tre of gravity then the stati
 margin is negative, the reverse arrangement produ
esa positive stati
 margin. With a lateral for
e whi
h in
reases it will be seen thatthe negative stati
 margin produ
es a moment whi
h tends to redu
e the in
iden
eand the airframe, is thus, stati
ally stable. The positive stati
 margin, however,produ
es a moment whi
h tends to in
rease the in
iden
e and the airframe is, thus,stati
ally unstable. Sin
e the 
entre of pressure varies with aerodynami
 
onditionsand the 
entre of gravity varies with the fuel burnt then the airframe might be stableor unstable at di�erent times in its 
ight. One role of the autopilot is to produ
e astable, 
ontrollable missile in situations where the airframe is stati
ally unstable.The angular and translational dynami
s of the model are 
ross-
oupled and de-s
ribed by the full set of equations 6DOF:_p = LIx + 1Ix (Iy � Iz)qr_q = MIy + 1Iy (Iz � Ix)pr_r = NIz + 1Iz (Ix � Iy)pq_u = Xm � wq + vr_v = Ym � ur + wp_w = Zm � pv + uq (2.5)where the for
es (X,Y,Z) and the moments (L,M,N) are de�ned as:L = lpp+ l�� + l�� + l��M = mqq +mww +m�� +m��N = nrr + nvv + n�� + n��X = xuu+ xpp+ x��Y = yvv + yrr + y��Z = zww + zqq + z�� (2.6)where �; �; � are the inputs to the system. � is the rudder angle, � is the elevatorangle and � is the aileron angle.The de�nition of the axis systems (see �g. 2.2) in whi
h the linear and angularmotions are derived, is ne
essary, if the equations of motion and response 
hara
-teristi
s of a homing missile are to be obtained.
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Figure 2.2: Airframe axis and nomen
lature
The body axis set is, by de�nition, lo
ated at the 
entre of gravity of the mis-sile and �xed to the body, so rotates and translates with it. The `x' axis is takenforward, the `y' axis out of the right hand wing and the `z' axis downward forminga right hand set.2.2 Horton Model Dynami
sThe linearized airframe 
hara
teristi
s have been 
onsidered by Horton [69℄ and areused as a ben
hmark model for this study. The nonlinear model whi
h is most likelyto be the real s
enario 
ase has been developed and des
ribed in this se
tion. Thelateral motion is derived from the model de�ned in the report by Horton, while theroll model is derived from graphi
al relationships relating the moments generatedby aileron, rudder and elevator a
tion of the 
ru
iform �n 
on�guration. These re-lationships are used to generate a parametri
 model that is used for simulation andanalysis. From this model a polynomial model is produ
ed to mat
h the parametri
model as 
losely as possible in a least-squares sense. This polynomial model is in theform of polynomial relationships that are then used for 
ontrol synthesis and whi
his also de�ned in this se
tion.Some assumptions for the Horton model have been made that lead to some sim-pli�
ations su
h as:� A rigid body of the missile is assumed for all 
ight 
onditions.� A 
onstant forward velo
ity U = 1000 m=se
 with an approximate Ma
h ' 3value is 
onsidered, so _u = 0. Only lateral motions are of interest hen
e a redu
ed



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 235 degree of freedom model is examined through this study.� The skid-to-turn airframe of this missile has got symmetry about both y andz axes whi
h leads to some simpli�
ation. Hen
e all produ
ts of inertia are zero andqr; pr; pq terms are dis
arded, also the moments of lateral inertias in the y and zaxes are equal (Iy = Iz).� The motion of the missile is roll-
ontrolled and wp; vp are not in
luded here.A

ording to the above mentioned assumptions the equations for the model arede�ned with the 
orresponding simpli�
ations in (2.7),(2.8) and (2.9). As both hor-izontal and verti
al lateral motions are symmetri
 in format, both will be dealt withtogether, taking into a

ount the appropriate sign 
hanges in derivatives for ea
hlateral dire
tion.The verti
al motion is de�ned by:_q = mqq +mww +m�� +m��= I�1y (14�VoSd2Cmqq + 12�VoSdCmww + 12�V 2o SdCm�� + 12�V 2o SdCm��)= 12I�1y �VoSd(12dCmqq + Cmww + VoCm�� + VoCm��)_w = m�1(zww + zqq + z�� + z��) + uq= m�1(12�VoSCzww + 12�V 2o SCz�� + 12�V 2o SCz��) + uq= 12m�1�VoS(Czww + VoCz�� + VoCz��) + uq (2.7)The horizontal motion is de�ned by:_r = nrr + nvv + n�� + n��= I�1z (14�VoSd2Cnrr + 12�VoSdCnvv + 12�V 2o SdCn�� + 12�V 2o SdCn��)= 12I�1z �VoSd(12dCnrr + Cnvv + VoCn�� + VoCn��)_v = m�1(yvv + yrr + y�� + y��)� ur= m�1(12�VoSCyvv + 12�V 2o SCy�� + 12�V 2o SCy��)� ur= 12m�1�VoS(Cyvv + VoCy�� + VoCy��)� ur (2.8)and the roll motion by:_p = lpp+ l�� + l�� + l��= I�1x (14�VoSd2Clpp+ 12�V 2o SdCl�� + 12�V 2o SdCl�� + 12�V 2o SdCl��)= 12I�1x �VoSd(dClpp+ VoCl�� + VoCl�� + VoCl��) (2.9)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 24where the axes (x; y; z), rates (r; q; p) and velo
ities (u; v; w) are de�ned in �g. 2.2and where �; �; � are the inputs to the system and are de�ned in the Appendix A.Equations (2.7), (2.8) and (2.9) des
ribe the dynami
s of the body rates and ve-lo
ities under the in
uen
e of external for
es (Cyv) and moments (Cnv) a
ting onthe frame. These for
es and moments derived from a wind-tunnel measurementsare non-linear fun
tions of Ma
h number, longitudinal and lateral velo
ities, 
on-trol surfa
e de
e
tion, aerodynami
 roll angle and body rates. The aerodynami

oeÆ
ients, (Cyv ; Cy� ; X
p and Cnr), are presented by polynomials shown in the nextse
tion. The physi
al parameters of the Horton Missile are shown in the Appendix B:2.3 Aerodynami
 
oeÆ
ients for di�erent 
ight
onditionsThe aerodynami
 
oeÆ
ients (Cyv ; Cy� ; X
p and Cnr) are presented by polynomialsfor 0Æ and 45Æ roll angles. These polynomials are �tted to the set of 
urves takenfrom look-up tables for di�erent 
ight 
onditions. The look-up tables are a set of
urves in the plane of total in
iden
e, �, and Ma
h number, M.Centre of Gravity X
g and Centre of Pressure X
pThe 
entre of gravity is given by the formula:x
g = 1:3 + m500 (2.10)where m is the mass of the missile. The polynomial for the Centre of Pressure fordi�erent roll angles is given by:x
p0 = 1:3 + 0:1M + 0:2j�jx
p45 = 1:3 + 0:1M + 0:3j�j (2.11)Side-slip Normal For
e CoeÆ
ient - Czw; CyvA set of normal for
e 
urves due to side-slip velo
ity in the plane of in
iden
e foraerodynami
 roll angles of 0Æ and 45Æ are given by the polynomial (2.12), where Mis the Ma
h number and � is the total in
iden
e.Cyv = CzwCzw0 = �25 + 1:0M � 60j�jCzw45 = �26 + 1:5M � 30j�j (2.12)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 25Missile Rate Normal For
e CoeÆ
ient - CyrThis 
oeÆ
ient is normally small [70℄, as given by Blakelo
k, and does not e�e
t thedynami
 response of the missile signi�
antly. It is assumed to be zero in this study.Hen
e: Cyr = 0 (2.13)Fin Normal For
e CoeÆ
ient - Cy� ; Cz�The rudder and elevator 
ontrol for
es are proportional to �n angle, and are ex-pressed as derivatives whi
h are fun
tions of in
iden
e,�, Ma
h number, M , andaerodynami
 roll angle, �. A set of derivatives for roll angle of � = 0o and � = 45oare given by the polynomials in (2.14).Cy� = Cz�Cz�0 = �10� 1:6M + 2:0j�jCz�45 = �10� 1:4M + 1:5j�j (2.14)Side-slip and Control Moments Cnv ; CmwThe yawing and pit
hing moment 
oeÆ
ients are derived from the normal for
e
oeÆ
ients (Cyv ; Cy� ; Cy�). The stati
 margin (xsm), �n moment arm (xsf ) for lat-eral motion and roll moment arm (xsr) for roll motion are as follows:Cnv = smCyvCn� = sfCy�Cn� = srCy� (2.15)The stati
 margin, xsm, is de�ned as the di�eren
e between the 
entre of gravityposition, x
g, and the 
entre of pressure position, X
p, measured from the nose ofthe missile. Similarly the �n moment arm, xfm, is de�ned as the di�eren
e betweenthe 
entre of gravity position, x
g, and the 
entre of pressure of the �n, xf , againmeasured from the nose of the missile. Hen
e:sm = d�1xsmsf = d�1xsfsr = d�1xsr (2.16)where xsm = (x
g �X
p)xsf = (xf � x
g)xsr = 1:5d2 (2.17)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 26and xf = 2:6m and the missile referen
e diameter is given by d = 0:2m. The rollmoment arm, xsr, is assumed to be about 1.5 times the radius of the missile.Damping Moment CoeÆ
ients - Cnr; Cmq ; ClpThe yawing and pit
hing damping moments are proportional to body rate and arealso expressed as a derivative. This moment 
ontribution is small 
ompared toother sour
es and is modelled as independent of aerodynami
 roll angle. It displaysvariation with Ma
h number,M , and in
iden
e, �, and is de�ned by the polynomial:Cnr = CmqCmq = �500� 30M + 200j�j (2.18)The roll damping moment is unde�ned from BADL data. For this study it has beenarbitrarily set at: Clp = �500 (2.19)
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oeÆ
ientsFin Coupling Moment CoeÆ
ients - Cl� ; Cn�These are derived from BADL data supplied in the form of simple relationshipsrelating aileron, rudder and elevator moments. They are given as a ratio of rud-der/aileron roll 
oupling: l�l� = Cl�Cl� (2.20)and a ratio of aileron/rudder yaw 
oupling:n�n� = Cn�Cn� (2.21)These are shown in �g. 2.3, left and right respe
tively. Both 
oupling moments arefun
tions of Ma
h Number and in
iden
e.



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 272.4 Polynomial formThe equations de�ned in the parametri
 model in the previous se
tion 
an be rep-resented in polynomial form by the following set of equations using the dynami
parameters, in
iden
e angle, �, Ma
h number, M , and aerodynami
 roll angle, �.Aerodynami
 Roll Angle InterpolationSeveral of the 
oeÆ
ients are fun
tions of aerodynami
 roll angle. The paramet-ri
 relationships are given at roll angles of 0Æ and 45Æ. Horton uses a sinusoidalinterpolation te
hnique whi
h 
an be modelled by the relationship:Cij = 0:5(C0ij�0 + C45ij �45) (2.22)where: �0 = (1 + 
os(4�))�45 = (1� 
os(4�)) (2.23)and the 
oeÆ
ients C0ij and C45ij are the parametri
 equations at 0o and 45o re-spe
tively. This interpolation is used in the polynomial �t for aerodynami
 rolldependent 
oeÆ
ients.Centre of Pressure and Centre of GravityThe 
entre of gravity is modelled by the polynomial equation:x
g = x
g0 (2.24)where: CoeÆ
ient Valuex
g0 1:3 + m500This is a 
opy of the parametri
 relationship and does not involve any polynomial�tting. The 
entre of pressure is a fun
tion of the aerodynami
 roll angle, �. Us-ing the aerodynami
 roll angle interpolation te
hnique, it 
an be modelled by thepolynomial equation:X
p(M;�) = X
p0 +X
pMM +X
p�(�)j�jX
p�(�) = X0
p��0 +X45
p��45 (2.25)or: X
p(M;�) = X
p0 +X
pMM +X0
p��0j�j+X45
p��45j�j (2.26)where:
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ient ValueX
p0 1:3X
pM 0:1X0
p� 0:2X45
p� 0:3The 
arpet plot for this fun
tion is shown in �g. 2.4a, plotted as a fun
tion of in-
iden
e and roll angle for di�erent ma
h numbers, with 2.4b plotted as a fun
tionof Ma
h number and roll angle for di�erent in
iden
e angles, and 2.4
 plotted as afun
tion of Ma
h number and in
iden
e against di�erent roll angles.The stati
 margin and the �n moment arm 
an thus be modelled in polynomialform as:sm(M;�) = d�1(X
p0 +X
pMM +X0
p��0j�j+X45
p��45j�j � x
g0)sf = d�1(xf � x
g0) (2.27)where: CoeÆ
ient Valuexf 2:6d 0:2Side-slip Normal For
e CoeÆ
ients - Czw; CyvThe polynomial equations de�ning the side-slip normal for
e are given by:Czw = 0:5(C0zw�0 + C45zw�45)C0zw = C0zw0 + C0zwMM + C0zw� j�jC45zw = C45zw0 + C45zwMM + C45zw� j�j (2.28)where: CoeÆ
ient ValueC0zw0 -25C0zwM 1C0zw� -60C45zw0 -26C45zwM 1.5C45zw� -30The 
arpet plot for this fun
tion is shown in �gures 2.5a, 2.5b, and 2.5
 in the sameformat as the 
entre of pressure 
oeÆ
ient.
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e CoeÆ
ients - Cz� ; Cy�The �n normal for
e 
oeÆ
ient is modelled in a similar way to give:Cz� = Cz�0 + 0:5(C0z��0 + C45z��45)C0z� = C0z�MM + C0z�� j�jC45z� = C45z�MM + C45z�� j�j (2.29)where: CoeÆ
ient ValueCz�0 10C0z�M -1.6C0z�� 2C45z�M -1.4C45z�� 1.5The 
arpet plot for this fun
tion is shown by White [71℄, in the same format as the
entre of pressure and side-slip normal for
e 
oeÆ
ient.Damping Moment CoeÆ
ients - Cmq ; Cnr; ClpThe lateral moments 
an be modelled dire
tly in polynomial form as:Cmq = Cmq0 + CmqMM + Cmq� j�j (2.30)where: CoeÆ
ient ValueCmq0 -500CmqM -30Cmq� 200The 
arpet plot for this fun
tion is shown in �g. 2.6. The roll damping 
oeÆ
ientis: Clp = Clp0 (2.31)where: CoeÆ
ient ValueCl0 -500
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oeÆ
ient Cmq2.5 Open-Loop Stability AnalysisThe open-loop stability analysis of the system is divided into two steps. In the �rstone we 
onsider the lateral 
ight 
ontrol design, i.e. we study the single-input single-output system. The spe
trum of the poles and zeros for the open-loop single-inputsingle-output system (SISO) is shown in �gures 2.7, 2.8 for di�erent 
ight 
onditions.In this 
ase all the aerodynami
 
oeÆ
ients are des
ribed by aÆne polynomials ofin
iden
e, �, and Ma
h number, M . In order to examine the e�e
t on the system ofthose two variables, a spe
trum of poles and zeros for 
onstant Ma
h number (Ma
hnumber = 3) and varying � (up to 30Æ) is 
onsidered. Then a spe
trum of poles andzeros for Ma
h number varying from 2 to 4 is examined, while a 
onstant value of� = 0:1Æ is maintained.Fig. 2.7 shows the open-loop stability for large variations of total in
iden
e. Formost of the regime the missile is stati
ally stable, as given by Horton [69℄. Forlow values of speed, less than Ma
h 2, the airframe be
omes stati
ally unstable see�g. 2.8. Also �g. 2.8 shows the operating envelope of large variations in Ma
h num-ber, whi
h is the indi
ation for forward speed of the missile. The in
iden
e is used asa state variable so it is important to show the open loop stability for the operatingrange. The 
ontrol law of the autopilot design is derived for variations in in
iden
eof 0:1Æ to 1Æ and �xed Ma
h number = 3, as is detailed in Chapter 3 and Chapter 4.



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 33

−120 −100 −80 −60 −40 −20 0
−2000

−1500

−1000

−500

0

500

1000

1500

2000

σ=0.1°
σ=1°

σ=1°

σ=5°

σ=5°

σ=10°

σ=10°

σ=15°

σ=15°

σ=30°

σ=30°

Poles for Constant Mach=3 and variations in σ

−1950 −1945 −1940 −1935 −1930 −1925 −1920 −1915
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1°,1° σ=5° σ=10° σ=15° σ=30°

Zeros for Constant Mach=3 and variations in σ

Figure 2.7: Pole and Zero Spe
trum for 
onstant Ma
h = 3 and varying in
iden
e

−40 −30 −20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

20

30

40

50

M=0.6 M=0.6M=2 M=2

M=3

M=3

M=4

M=4

M=6

M=6

Poles for Constant σ = 0.1 ° and variations in Mach number

−1948 −1947.5 −1947
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Mach=0.6M=2M=3M=4M=6

Zeros for Constant σ = 0.1 ° and variations in Mach number

Figure 2.8: Pole and Zero Spe
trum for 
onstant in
iden
e = 0:1Æ and varying Ma
hnumber



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 342.6 Cross-
oupling e�e
tIt is ne
essary to determine how strong the 
oupling e�e
t is between the di�erent
hannels (yaw, pit
h and roll). The simulation results for a step input demand onlyon �n angle � are shown in �g. 2.9. If the system is not 
oupled, an input demandon �n angle � should have no e�e
t on pit
h ( _w; _q) or yaw ( _v; _r) 
hannel, whi
h isnot the 
ase here. The other 
ase for a step input demand only on �n angle �, isexamined too. The simulation results for all inputs and state variables are shown in�g. 2.10 (e.g. the system is again ex
ited through a single 
hannel - yaw). Again ifthe system is not 
oupled demand in �n angle � should have no e�e
t on the othertwo 
hannels. However we 
an well see the 
oupling e�e
t distributed along the othertwo 
hannels. The responses for symmetri
al velo
ities side-slip, v, and verti
al, w,again prove the symmetry of both 
hannels. A strong, severe 
ross-
oupling betweenall three 
hannels has been demonstrated.
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 362.7 NonlinearityThe nonlinear behaviour of the system is inherent for a highly manoeuvrable missile.It is 
aused by the 
omplex dynami
s of its motion. Attention has been paid to howa 
ertain �n angles � or � 
an a�e
t the side-slip velo
ity or lateral a

eleration re-sponses and demonstrated in �g. 2.11. Let us now 
onsider the open loop dynami
s
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Figure 2.11: 1g, 5g, 20g demandfor a SISO system in the yaw 
hannel. The non-linear di�erential equations for _vand _r are des
ribed earlier in (2.8). If a 
onstant input demand is required, thenthe missile will a

elerate at 10 m=se
2 with the 
orresponding side-slip velo
ity of2.5 m=se
 shown in �g. 2.11-top. In
reasing the input demand to the rudder by10 or 100 times does not produ
e a proportionate response in the a

eleration andvelo
ity as it would in a linear system. These simulations are also a demonstrationfor two types of nonlinearities: input to state (� to v) and state to 
ontrolled output(v to av). The latter relationship is given by the following dynami
 equation:



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 37
� = _v + Ur� = V o(Cyvv + VoCy��)� Ur + Ur= V o[(Cyv0 + CyvMM + Cyv� j � j)v + Vo(Cy�0 + Cy�MM + Cy�� j � j)�℄= V o[( �Cyvv + �Cyv� j v j v + Vo �Cy�� + Vo �Cy�� j v j �℄ (2.32)and is also an indi
ation that it is possible to a
hieve lateral a

eleration 
ontrolindire
tly through the side-slip velo
ity whi
h is further addressed in Chapter 3.Also the responses of the open loop system are settled within 1:2s and mu
h faster0:5s for higher demands, whereas the 
losed loop requirement for settling time ofthe response is around 0:12s.It is important to understand and e�e
tively 
ontrol the nonlinear behaviour ofthe system as the missile manoeuvres in a large dynami
 range and 
hanges speed
ontinually.2.8 Multi-modelling airframe dynami
s2.8.1 Parametri
 un
ertaintiesThe modelling errors 
an be separated into two types: parametri
 and unstru
tured.Parametri
 un
ertainty refers to modelling errors, under the assumption that thea
tual plant is of the same order as the model, where the numeri
al values of the
oeÆ
ients to the di�erential equation, whi
h are related to the physi
al parametersof the system, between the a
tual plant and the model are di�erent. In the 
aseof unstru
tured un
ertainty, the modelling errors refer to the di�eren
e in the dy-nami
s between the �nite dimensional model and the unknown and possibly in�nitedimensional a
tual pro
ess.The un
ertainties we are dealing with are parametri
 and stru
tured, but we 
annotmeasure them. We know where they may 
ome from but we are not 
ertain whi
hones are 
ausing the model parameters variations. For example, in a real 
ight s
e-nario, for every instan
e of this missile type, the aerodynami
 fun
tions taken inwind tunnel measurements may deviate from their nominal values. The variationsare parametri
 un
ertainties of the non-linear system. In the presen
e of paramet-ri
 un
ertainties the state-spa
e form of the non-linear system 
an be written in a
ompa
t format as: _x = f(x) +4f(x) + (g(x) +4g(x))u (2.33)y = h(x)
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ed order system for yaw plane without roll 
oupling has been 
onsidered:" _x1_x2 # = " fx1(x) +4fx1(x)fx2(x) +4fx2(x) #+ " gx1(x) +4gx1(x) 0gx2(x) +4gx2(x) 0 # + h u1 i (2.34)A set of 
onvex models is produ
ed that map the vertex points in a high orderparameter spa
e (of the order of 16 variables) shown in detail in equations: (2.35)and (2.36). The multiple model des
ription of the airframe aerodynami
s 
an befurther expressed in a parametri
 form as:_x1 = (a1 +4a1)x1 + (a2 +4a2)x21 + (a3 +4a3)x2 + ((a4 +4a4)x1 + a5 +4a5)u1_x2 = (b1 +4b1)x31 + (b2 +4b2)x21 + (b3 +4b3)x1 + (b4 +4b4)x1x2 + (b5 +4b5)x2+ ((b6 +4b6)x1 + b7 +4b7)u1For the equations of lateral velo
ities _v and _w, the parameters 4a1; : : : ;4a5 areshown in equation (2.35). For the equations of yaw _r and pit
h _q rates, the param-eters 4b1; : : : ;4b7 are shown in equation (2.36). Both ai and bi are fun
tions ofthe aerodynami
 
oeÆ
ients: ai; bi = f(Cyv ; X
p; Cy� ; Cnr) and 
an take any valuesrandomly generated within the vertex points. Hen
e more than 1000 models 
an beexer
ised and the 
ontrol system tested for robustness.a1 +4a1 = 12m�VoS( �Cyv0 +4 �Cyv0)a2 +4a2 = 12m�VoS( �Cyv� +4 �Cyv�)a3 +4a3 = Ufa4 +4a4 = 12m�V 2o S( �Cy�� +4 �Cy��)a5 +4a5 = 12m�V 2o S( �Cy�0 +4 �Cy�0) (2.35)b1 +4b1 = �( 12Iyz )�VoS( �X
p� +4 �X
p�)( �Cyv� +4 �Cyv�)b2 +4b2 = �( 12Iyz )�VoS(( �X
p0 +4 �X
p0)( �Cyv� +4 �Cyv�) + ( �X
p� +4 �X
p�)( �Cyv0 +4 �Cyv0))b3 +4b3 = �( 12Iyz )�VoS( �X
p0 +4 �X
p0)( �Cyv0 +4 �Cyv0)b4 +4b4 = ( d24Iyz )�VoS( �Cnr� +4 �Cnr�)b5 +4b5 = ( d24Iyz )�VoS( �Cnr0 +4 �Cnr0)b6 +4b6 = ( d2Iyz )�V 2o SSf ( �Cy�� +4 �Cy��)b7 +4b7 = ( d2Iyz )�V 2o SSf ( �Cy�0 +4 �Cy�0) (2.36)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 39The tables shown below represent the polynomials for the aerodynami
 
oeÆ
ientsin the supersoni
 range for di�erent roll angles 0Æ and 45Æ. They are a set of 
urvesin the plane of total in
iden
e, � and Ma
h number, M . In these tables the Cyvpolynomials present the normal for
e 
urves, the X
p present the 
entre of pressure
urves, Cy� present the rudder and elevator 
ontrol for
es 
urves, and �nally theCnr present the damping yawing and pit
hing moments 
urves whi
h are reasonablyproportional to body rates.Normal for
e Cyv = �25 + 1:0M � 60�Control surfa
es Cy� = �10� 1:6M + 2:0�Centre of pressure X
p = 1:3 + 0:1M + 0:2�Damping moment Cnr = �500� 30M + 200�Table 2.1: Roll angle = 0Æ
Normal for
e Cyv = �26 + 1:5M � 30�Control surfa
es Cy� = �10� 1:4M + 1:5�Centre of pressure X
p = 1:3 + 0:1M + 0:3�Damping moment Cnr = �500� 30M + 200�Table 2.2: Roll angle = 45Æwhere: Cyv = �Cyv0 + �Cyv��Cyv0 = Cyv0 + CyvM VoSoS�Cyv� = Cyv� 180Vo� (2.37)Cy� = �Cy�0 + �Cy���Cy�0 = Cy�0 + Cy�M VoSoS�Cy�� = Cy�� 180Vo� (2.38)Cnr = �Cnr0 + �Cnr��Cnr0 = Cnr0 + CnrM VoSoS�Cnr� = Cnr� 180Vo� (2.39)
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p = �X
p0 + �X
p��X
p0 = X
p0 +X
pM VoSoS�X
p� = X
p� 180Vo� (2.40)A large ex
ursion on perturbations of the aerodynami
 
oeÆ
ients (Cyv ; Cy� ; X
p; Cnr)has been introdu
ed into the system within the range of 0Æ to 45Æ aerodynami
 rollangles.
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oeÆ
ients (Cyv ; Cy� ; X
p; Cnr) have introdu
ed para-metri
 un
ertainties into the non-linear system. They are shown in �g. 2.12 and thepolynomials are presented in tables 2.1 and 2.2. In order to explore the 
omplexityof the problem we have assessed the open and 
losed loop system performan
e fordi�erent autopilot demands (1g, 5g, 10g, 15g) and we have examined the amount ofperturbations allowed in ea
h 
oeÆ
ient before the system's behaviour goes unsta-ble or ex
eeds 10% steady state error on side-slip velo
ity. For simpli
ity we havestudied the single plane ( lateral or verti
al motion ) when the roll angle is 0Æ. A setof models of vertex points is shown on �g. 2.13 for 10 
ombinations of the four aero-dynami
 
oeÆ
ients. Sin
e we have determined that 
hanges in the 
oeÆ
ient, Cnr ,does not a�e
t missile stability, only eight 
ombinations of (min/max) ranges are
onsidered, one random set and one with the nominal 
oeÆ
ients. So a 1000 models
an be generated randomly within the (min/max) ranges and tested for robustness.Also the side-slip velo
ity and a

eleration responses of the open loop system areshown in �g. 2.13. Up to 40% deviation from the nominal value of side-slip velo
ityresponse and up to 55% deviation from the nominal value of lateral a

eleration re-sponse has been found for a large range of unit step demands on rudder or elevator(e.g. 1g, 5g, 10g, 15g).It has been found that some 
oeÆ
ients 
an allow larger per
entage variation fromthe nominal 
ase than others. Within the system we are able to tolerate �50%un
ertainty in ea
h of Cyv ; Cy� ; Cnr before the system dynami
s goes unstable. Also,the aerodynami
 
oeÆ
ient Cyv 
an vary by up to �25% before the side-slip velo
-ity ex
eeds 10% steady state error within the feedba
k linearized loop. For similarperforman
e, Cy� 
an vary by up to �15%, and the most sensitive 
oeÆ
ient, X
p,
an vary by �1:5%. These are all found by extensive simulations. The 
entre ofpressure 
oeÆ
ient X
p and the 
ontrol surfa
e 
oeÆ
ient Cy� have most signi�
ante�e
t on the 
losed loop performan
e (the system is very sensitive to small 
hanges),while the damping moment 
ontribution in Cnr is small and the system is almostinsensitive to it and 
an be assumed independent of the aerodynami
 roll angle.The sign of the stati
 margin xsm = x
g � X
p 
an tell us whether the system isstable or not. The 
entre of gravity point is at 1.55m measured from the nose. Fora minimum side-slip velo
ity demand of 2.7 m=se
, the missile is heading at verylittle in
iden
e, � = 0:1Æ. For that value of �, the 
entre of pressure 
oeÆ
ient isX
p = 1:62mmeasured from the nose and the stati
 margin xsm = �0:07 is negative,hen
e the airframe is stati
ally stable. A 
hange of �130% in the �X
p� term of theX
p 
oeÆ
ient (X
p = �X
p0 + �X
p�) is 
riti
al for the stability of the missile. This
hange will move the 
entre of pressure point to 1.53m whi
h will produ
e a posi-tive stati
 margin of xsm = 0:02. Hen
e when the �X
p� term of X
p is varying, thesign of the stati
 margin 
hanges from negative to positive and the missile be
omesunstable.
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oordinates2.9.1 Missile model dynami
s in Cartesian 
oordinatesThe equations of motion in respe
t to the total in
iden
e �,� = pv2 + w2Vo 180� (2.41)are the following:_v = fv(w; v; r) + gv(w; v; r)�_r = fr(w; v; r) + gr�(w; v)� + gr�(w; v)�_w = fw(v; w; q) + gw(v; w; q)�_q = fq(v; w; q) + gq�(v; w; q)� + gq�(v; w)�_p = fp(p) + gp�(v; w; )� + gp�(v; w)� + gp�(v; w)� (2.42)The fun
tions fv; fw; fr; fq; fp and gv; gw; gr; gq; gp are given by equations (C.1) inAppendix C. These equations will be used to derive the parametri
 format forthe Cartesian multi-input/multi-output system (MIMO) for 
ontrol synthesis in thenext 
hapter.2.9.2 Missile model dynami
s in Polar 
oordinatesThe great majority of missiles, in
luding the model 
onsidered by Horton, have a
ru
iform 
ross-se
tion with two pairs of wings and two pairs of 
ontrol surfa
es.The guidan
e system issues two 
ommands, one up-down and the other left-rightand these two 
ommands are fed to the elevators and rudders respe
tively. Howeverif there is only one set of 
ontrol surfa
es and wings, the 
ommands have to beissued not in Cartesian, but in Polar form. Some missile types 
an only have oneset of wings and if the missile has to manoeuvre to the right and up in polar formthe 
ommands are given by the 
ight dire
tion, z, and the angle of orientation, �.In other words the missile has to roll through the angle, �, and manoeuvre in thisroll orientation.The missile system is transformed in Polar 
oordinates, with the 
ight dire
tiongiven by z = pv2 + w2 and the angle of orientation given by � = ar
tan vw ._r = 12I�1z �VoSd(12dCnrr + Cnzz + VoCn�� + VoCn��)_q = 12I�1y �VoSd(12dCmqq + Cmzz + VoCm�� + VoCm��)
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Figure 2.14: Transformation from Cartesian to Polar Coordinates_p = 12I�1x �VoSd(dClpp+ VoCl�� + VoCl�� + VoCl��)_z = 12m�1�VoS(Cyzzz + VoCyz�� + VoCyz��) + u(
os(�)q � sin(�)r)_� = 12m�1�VoS(VoC��� + VoC���) + uz�1(
os(�)q � sin(�)r) (2.43)This will be used to derive the parametri
 format for 
ontrol synthesis in the next
hapter.2.10 Closed loop autopilot requirementsThe next step would be to design an autopilot system to regulate the motion of themissile su
h that the 
ommanded manoeuvres generated by the guidan
e system arefollowed, hen
e desired traje
tory 
an be a
hieved. It is usually preferable to haveautopilots with high bandwidths that allow fast and pre
ise 
ommand responses.� It is important to ensure that the autopilot 
losed-loop dynami
s are mu
h fasterand better damped than the inherent airframe response. The usual design aim is toa
hieve autopilot bandwidths that are two to three times faster than the open-loopairframe dynami
s. In this 
ase the 
losed loop time response should be around 0:2s.� Closed loop performan
e: The response of an autopilot must be as fast as possiblewith the minimum of overshoot so that any 
ommand is attained qui
kly and is ofthe required magnitude. For low g demands only, a slight overshoot of short dura-tion is usually a

eptable, sin
e it 
an 
ompensate for loss of a

eleration during theinitial transient. For high g demands, overshoot is usually una

eptable sin
e theairframe stru
tural load limit may be ex
eeded, or an un
ontrollable 
ight regionmay be entered. The response 
hara
ter of the autopilot is quanti�ed in terms ofrise time, settling time and the maximum per
entage overshoot, hen
e the followingdesired metri
s are required:
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ura
y: 2%� Rise time: (0:05s to 0:07s);� Settling time: (1:2s to 1:8s)� Maximum per
entage overshoot: 10%� Robustness requirements: The dynami
 response of a missile may be simulated byusing a suitable mathemati
al model of the system. This model is usually arrivedat through pro
essing wind tunnel data pertaining to the airframe in question (su
hdata are usually subje
t to experimental and instrumentation errors), from empir-i
al formulae, or from Computational Fluid Dynami
s te
hniques. The resultantdynami
 model may di�er therefore from the a
tual dynami
s of the missile, dueto variations in the aerodynami
s, the e�e
ts of linearization, unmodelled e�e
ts,
hanges in the 
ight 
onditions, or simply build-to-build variations. Any autopilotdesign must maintain adequate stability and satisfa
tory performan
e in the pres-en
e of su
h un
ertainties.� The signals physi
ally available for feedba
k 
ontrol su
h as lateral a

elerations,rates and in
iden
e are usually measured by a

elerometers, gyros
opes and Pitottube respe
tively.2.11 Con
lusionsThis 
hapter has detailed the 
omplexity of the highly non-linear missile system. Itis a real resear
h model developed by Matra BA Co., whi
h is des
ribed by look-uptables that de�ne the non-linear 
hara
teristi
 of the aerodynami
s. It des
ribes afull 5 degree of freedom model in parametri
 format with severe 
ross-
oupling andnon-linear behaviour. A polynomial model has been produ
ed to mat
h the para-metri
 model as 
losely as possible in a least squares sense. This polynomial modelis in the form of polynomial relationships that are then used for 
ontrol synthesis.A set of 
onvex models is produ
ed that map the vertex points in a high orderparameter spa
e (of the order of 16 variables). The multiple model des
ription ofthe airframe aerodynami
s is tested for sensitivity on the aerodynami
 
oeÆ
ients.Also, in order to examine manoeuvrability the model is des
ribed in Cartesian andPolar 
oordinates.In order for the missile system to follow a required traje
tory, in other words torespond a

urately and rapidly to a large range of a

eleration demands, an appro-priate 
ontrol algorithm design (i.e. an autopilot system) is ne
essary. One way toa
hieve that is by linearizing the equation of motion about equilibrium 
onditionsas Horton [69℄ has done. Another way would be to keep the nonlinear system as it isand apply global linearization via state feedba
k whi
h is 
onsidered in Chapter 3.



Chapter 3Feedba
k Linearization
3.1 Introdu
tionAs stated earlier in the literature review of Chapter 1, the main idea of Feedba
kLinearization (FL) te
hniques is to algebrai
ally transform a non-linear system dy-nami
s into a linear form by using state feedba
k, with Input/State Linearization
orresponding to 
omplete linearization or Input/Output Linearization to partial lin-earization by Isidori et al [2℄, by Su [4℄, by Hunt and Sue [3℄. This di�ers entirelyfrom 
onventional linearization (i.e. Ja
obian linearization) in that FL is a
hievedby exa
t state transformations and feedba
k, rather than by linear approximationsof the dynami
s. Feedba
k Linearization 
an be used for both stabilization andtra
king 
ontrol problems, single-input and multiple-input systems, and has beensu

essfully applied to a number of pra
ti
al nonlinear 
ontrol problems.Chapter 3 provides a des
ription of Feedba
k Linearization, in
luding the theory,its appli
ation for 
ontrol design and its limitations. Then an approximate In-put/Output Linearization method for 
ontrolling a the nonlinear missile systemthat is input-output linearizable is examined. The design retains the order and therelative degree of the system in the linearization pro
ess, hen
e produ
ing a lin-earized system with no internal or zero dynami
s.Both SISO and MIMO systems have been 
onsidered in Se
tion 3.3 and Se
tion 3.4.In the SISO 
ase two traje
tory 
ontrol designs are studied. The main di�eren
efrom other resear
h work is that instead of using angles or body rates as outputs forthe linearization pro
ess, lateral velo
ities and body a

elerations are used. Lateralvelo
ity is dire
tly related to the lateral a

eleration, as in steady state a 
onstantin
iden
e angle is asso
iated with a 
onstant lateral a

eleration. The 
hosen outputfor the se
ond design has a linear relationship with the 
ontrolled one, hen
e better
losed loop performan
e has been a
hieved when higher demands are required. Twodi�erent ways of presenting the nonlinear 
ontrol design in Polar and in Cartesian
oordinates have been 
onsidered in the MIMO design and their advantages and dis-advantages have been analyzed. An additional 
ontrolled output for the roll 
hannelhas also been examined. 46



CHAPTER 3. FEEDBACK LINEARIZATION 473.2 Feedba
k Linearization theory3.2.1 Feedba
k Linearization pro
essConsider input-output linearization of a single-input nonlinear system des
ribed bythe state spa
e representation: _x = f(x) + g(x)u (3.1)y = h(x)where y is the system output, with f(x) and g(x) being the smooth ve
tor �elds.A

ording to Slotine and Li [14℄, a linear input-output relation is generated by di�er-entiating the output fun
tion y repeatedly until the input u appears. This is shownhere by following the notations of Di�erential Geometry addressed in Appendix D:_y = rh(f + gu) = Lfh(x) + Lgh(x)u (3.2)If Lgh(x) 6= 0 for some x = x0 in 
x then, by 
ontinuity, that relation is valid in a�nite neighbourhood 
 of x0. In 
, the input transformationu = 1Lgh(�Lfh+ �) (3.3)results in a linear relation between y and �, namely _y = �. If Lgh(x) = 0 for all xin 
x, _y is di�erentiated again to obtain:�y = Lf 2h(x) + LgLfh(x)u (3.4)If LgLfh(x) = 0 for all x in 
x, �y is di�erentiated again until for some integer r, thefollowing is true: LgLr�1f h(x) 6= 0 (3.5)for some x = x0 in 
x, where the above relation is valid in a �nite neighbourhood
 of x0. In 
, the 
ontrol lawu = 1LgLr�1f h(�Lrfh + �) = 1�(x)(��(x) + �) (3.6)is applied to yr = Lrfh(x) + LgLr�1f h(x)u (3.7)and the resulting relationship from referen
e signal � to output is:yr = � (3.8)By using equation (3.6), whi
h is a nonlinear state feedba
k (where LgLr�1f h(x)and Lrfh(x) are fun
tions of x), a linear system is obtained from referen
e signal tooutput. This is not a linear approximation, it is often 
alled an exa
t input-outputlinearization. Further on, the simple pole-pla
ement 
ontroller 
an be extended toasymptoti
 tra
king as studied by Hahn et al [7℄ and des
ribed in the next se
tion.
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king ControlWhen a tra
king 
ontrol task is required, the referen
e signal (the new input of thelinearization) is derived su
h as:� = �k0y � k1 _y � : : :� kn�1yn�1 (3.9)with the ki 
hosen su
h that the polynomial pn+kn�1pn�1+ : : :+k0 has all its rootsstri
tly in the left half 
omplex plane (i.e. is Hurwitz), leading to the exponentiallystable dynami
s des
ribed by:y(n) + kn�1y(n�1) + : : :+ k0y = 0 (3.10)whi
h implies that y(t) ! 0 as given by Slotine and Li [14℄. The referen
e signal(the new input �) has been designed su
h as:� = y(n)d � k0e� k1 _e� : : :� kn�1en�1 (3.11)to satisfy the 
losed loop error dynami
s within the outer loop, so the autopilotsystem is able to tra
k desired output yd(t). This is shown in �g. 3.1 for a se
ondorder system. The referen
e signal is:� = y(2)d � k0e� k1 _e (3.12)
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king Control Diagramwhere e(t) = y(t)�yd(t) is the tra
king error. This leads to exponentially 
onvergenttra
king with error dynami
s given by:�e+ k1 _e + k0e = 0 (3.13)Then, by using the 
ontrol lawu = 1LgLr�1f h(�Lrfh+ y(n)d � k0e� k1 _e� : : :� kn�1en�1) (3.14)
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king performan
e is a
hieved. Feedba
k linearization of MIMO systems isobtained similarly to the SISO 
ase by Slotine [14℄ and is des
ribed in Appendix D.2.Input/State LinearizationThe number of di�erentiations (r) required for the input u to appear is 
alled therelative degree of a nonlinear system. If the relative degree asso
iated with theInput-Output Linearization is the same as the order of the system, the non-linearsystem is fully linearized whi
h is the 
ase of Input/State Linearization.For linear systems the relative degree is related to well-known properties. For aSISO linear system _x = Ax+Buy = Cx (3.15)or y(s) = G(s)u(s) (3.16)the relative degree 
an be 
al
ulated as the di�eren
e in degree between denomina-tor and numerator of the transfer fun
tion G(s).If the relative degree of a nonlinear system is equal to the order of the system,an exa
t feedba
k linearization is a
hieved. The standard approa
h in feedba
k lin-earization given by Slotine and Li [14℄ is to use h to de�ne the required 
hange of
oordinates.For our system we de�ne a series of fun
tions �i related to h(x) by:�1 (x ) = h(x )... ...�i(x ) = Li�1f h(x) (3.17)Setting � = �(x ), the new equations are:_�i = �i+1; i = 1; : : : ; n� 1_�n = �(x) + �(x)u (3.18)By using the 
ontrol law u = �(x)�1(� ��(x)), the relation _�n = � is linear, with �as an input to the linearized system, hen
e an exa
t state linearization is a
hieved.The des
ription in equation (3.18) is often regarded as a 
anoni
al form for nonlinearsystems.



CHAPTER 3. FEEDBACK LINEARIZATION 50Input/Output LinearizationBy means of input-output linearization, the dynami
s of a nonlinear system is de-
omposed into an external (input-output) part and an internal ("unobservable")part. Sin
e the external part 
onsist of a linear relation between y and � (or equiv-alently the 
ontrollability 
anoni
al form between y and u), it is easy to designthe input � so that the output y behaves as desired. The internal part is 
alledinternal dynami
s be
ause it 
annot be seen from the external input-output rela-tionship. Then, the question is whether the internal dynami
s will also behave well,i.e. whether the internal states will remain bounded.If the relative degree is smaller than the system order, then the non-linear system isonly partly linearized whi
h is the 
ase in Input-Output Linearization. This requiresto transform the system into new set of states 
alled Normal forms and whetherthe 
ontroller 
an be applied depends on the stability of the internal dynami
s (themodes whi
h are unobservable by the linearization pro
ess). Sin
e the 
ontrol designmust a

ount for the whole dynami
s and therefore 
an not tolerate the instabilityof internal dynami
s, the internal behaviour has to be addressed 
arefully.3.2.3 Normal formsWhen the relative degree r is de�ned and r < n where n is the order of the system,the nonlinear system 
an be transformed into new 
oordinates 
alled Normal form.To determine the normal form we 
an follow the same pro
ess as in Input/Statelinearization see equation (3.18), but the di�eren
e will be that we have an unob-servable part of the system. The 
hange into new 
oordinates means that:�1 = y; �2 = _y ; : : : ; �r = yr�1 (3.19)and the system des
ription be
omes:_�1 = �2_�2 = �3..._�r = �(x) + �(x)u_�r+1 =  1(�; u)..._�n =  n�r(�; u)y = �1 (3.20)for some fun
tions �; � and  . The linearizing feedba
k is:u = � � �(x)�(x) (3.21)
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h gives the following 
losed loop system:_�1 = �2_�2 = �3..._�r = �_�r+1 =  1(�; u)..._�n =  n�r(�; u)y = �1 (3.22)We 
an see that the whole system has not been linearized. The �1;:::;r part of thedynami
s of system (3.22) are in the form of integrator 
hains of length r. Thereis possibly still some nonlinear dynami
s a�e
ting the state variables �r+1; : : : ; �n.This dynami
s is not visible in the output and is 
alled the internal dynami
s ofthe system (3.22). This dynami
s depends on the output states � and it is un-observable (it 
annot be seen from the external input-output relationship). Whenwe design the 
ontroller, the external �i (i = 1; : : : ; r) part is used be
ause thereis a relation between y and u hen
e is easy to design an input so that the outputbehaves as desired. However when the 
ontroller is applied to both the external�i (i = 1; : : : ; r) and the internal �i (i = r + 1; : : : ; n) part of the system, theperforman
e of the 
losed loop system will degrade sin
e we haven't taken into a
-
ount the part �i (i = r + 1; : : : ; n) when designing the 
ontroller. It is importantto study the stability of the internal dynami
s. If it is unstable the system willbe
ome unstable too. However if it is stable, the system will remain stable, but the
ontroller 
an't guarantee 
losed loop performan
e, as some part of the system wasignored when designing the 
ontroller.It is diÆ
ult to dire
tly determine the stability of the internal dynami
s be
auseit is nonlinear and 
oupled to the external 
losed-loop dynami
s. The study of theinternal dynami
s stability 
an be simpli�ed by studying the zero dynami
s instead.The zero dynami
s is de�ned to be the internal dynami
s of the system when thesystem output is kept at zero by the input. Two useful remarks 
an be made aboutthe zero-dynami
s of nonlinear systems. First the zero-dynami
s is an intrinsi
 fea-ture of a nonlinear system, whi
h does not depend on the 
hoi
e of 
ontrol law ordesired traje
tories. Se
ond, examining the stability of zero-dynami
s is mu
h easierthan examining the stability of internal dynami
s, be
ause the zero-dynami
s onlyinvolves the internal states while the internal dynami
s is 
oupled to the externaldynami
s and desired traje
tories.The internal dynami
s asso
iated with the input-output linearization 
orresponds tothe last (n � r) equations _� = w(�;  ) of the normal form. Generally, this dynami
sdepends on the output states �. An intrinsi
 property of the nonlinear system 
anbe de�ned by 
onsidering the system's internal dynami
s when the 
ontrol input is
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h that the output y is maintained at zero. Studying this so-
alled zero dynami
s,some 
on
lusions about the stability of the internal dynami
s 
an be made.3.2.4 Examples of Input/Output LinearizationIn the following examples we have shown:1. An input/output linearization whi
h rendered the system with no zero dynami
s;2. An input/output linearization with stable zero dynami
s;3. An input/output linearization with unstable zero dynami
s.1. No Zero dynami
sConsider the non-linear system _x1 = x21x2_x2 = 3x2 + u (3.23)For the given non-linear system by 
hoosing an output for the linearization pro
esswe 
an show that the system will result in no zero dynami
s if the relative degreeof the equivalent linear system is equal to the order of the system.De�ne the output to be: y = x1 (3.24)By di�erentiating twi
e in order to a
hieve an input-output relationship we get:�y = 2x1x2 _x1 + x12 _x2 = 2x13x22 + 3x12x2 + u (3.25)The required stati
 feedba
k for linearized 
losed loop input/output behaviour isgiven by: u = 1� (� � �) = 11(� � 2x13x22 � 3x12x2) (3.26)whi
h will 
an
el the nonlinearity. The original system is of se
ond order and therelative degree is equal to 2, so there are no zero dynami
s involved and the stabilityof the linearized system 
an be guaranteed.2. Stable Zero dynami
sLet 
onsider another system: _x1 = x32_x2 = uy = x1 + x2 (3.27)
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ing new states, givesz1 = x1 + x2; z2 = x2 (3.28)This will get the system in the following form:_z1 = z32 + u_z2 = uy = z1 (3.29)The feedba
k is u = � � z32 (3.30)where � is the referen
e signal. This results in:_z1 = �_z2 = �z32 + �y = z1 (3.31)We see that: _y = � (3.32)and the dynami
s whi
h is not visible in the output signal is:_z2 = �z32 + � (3.33)It is easy to see that this system is globally stable for any 
onstant �.3. Unstable Zero dynami
sConsider instead the system: _x1 = �x22 + u_x2 = uy = x1 (3.34)In this 
ase is unne
essary to make a 
oordinate 
hange sin
e we already have x1 = yand the system has relative degree 1. The feedba
k is:u = x22 + � (3.35)



CHAPTER 3. FEEDBACK LINEARIZATION 54giving the following form of the system:_x1 = �_x2 = x22 + �y = x1 (3.36)There are problems already for � = 0. A small initial value of x2 gives a solutionthat rapidly approa
hes in�nity. This means that the 
ontrol signal will also tendto in�nity.In order to produ
e linearized systems that have no internal dynami
s, te
hniqueswhi
h preserve the dynami
 order of the system su
h as approximate feedba
k lin-earization are needed. A few ways of a
hieving this are given in the summary.3.2.5 SummaryFeedba
k linearization 
an be used for both stability and tra
king 
ontrol problems,for both single-input (SISO) and multiple-input systems (MIMO), and has beensu

essfully applied to a number of pra
ti
al nonlinear 
ontrol problems, both as asystem analysis tool and as a 
ontroller design tool, just to name a few: Hahn etal [7℄, Suykens and Vandewalle [72℄, Henson and Seborg [73℄, Bezi
k et al [8℄. Withdynami
 inversion, a nonlinear 
ontrol law is designed whi
h globally redu
es thedynami
s of the sele
ted 
ontrolled variables to integrators. A 
losed loop system isthen designed to make the 
ontrolled variables exhibit spe
i�ed 
ommand response.However the theory has got some limitations.Firstly, it 
an not be used for all nonlinear systems. The appli
ability of Input/Statelinearization is quanti�ed by a set of stringent 
onditions, while Input/Output Feed-ba
k Linearization 
annot be applied when the relative degree is not de�ned.Se
ondly the full state has to be measured. The se
ond problem is due to thediÆ
ulty of �nding 
onvergent observers for nonlinear systems and when an ob-server 
an be found, the la
k of a general separation prin
iple whi
h guarantees thatthe straightforward 
ombination of a stable state feedba
k 
ontroller and a stableobserver will guarantee the stability of the 
losed-loop system.Thirdly, one of the obsta
les in the appli
ation of Input/Output Linearization isdue to non-minimum phase systems whi
h produ
e unstable zero dynami
s. Be-
ause Input/Output Linearization relies on a nonlinear version of pole-zero 
an
el-lations, if the zero dynami
s are unstable some of the unobservable states be
omeunbounded. A not well de�ned relative degree leads to internal dynami
s with unob-servable states through the linearization. In other words, one of the main problemswith applying Feedba
k linearization te
hniques is that the pro
ess produ
es a sys-tem with the same relative degree as the original system, but usually with an order



CHAPTER 3. FEEDBACK LINEARIZATION 55that is less. Indeed, the linearized system order is the same as the relative degreeunless pre-
ompensators are used to arti�
ially 
hange the order and the relativedegree. This pro
ess results in zero or internal dynami
s, whi
h are modes thatare e�e
tively rendered unobservable by the linearization pro
ess. If the system isnon-minimum phase, then the zero dynami
s are unstable. The analogy with linearsystems is that a zero-pole system is linearized into an all-pole system by sele
tingthe pole-zero ex
ess as the order of the approximating system. In order to produ
elinearized systems that have no internal dynami
s, te
hniques whi
h preserve thedynami
 order of the system are needed.Several approa
hes are possible to the avoidan
e of internal or zero dynami
s. Oneapproa
h is to negle
t terms in input derivatives until the required system orderis rea
hed as given by Hauser et al [74℄. Another is to pre-
ompensate the systemto in
rease the system relative degree arti�
ially, and thus having some limited au-thority over the stability of the internal dynami
s as detailed by Slotine and Li [14℄.Designing systems with unstable zero dynami
s 
an also be a
hieved provided theinput to the system remains bounded under feedba
k by Lu et al [75℄. A fourth wayis to 
hoose an output whi
h has the required relative degree, and whi
h is relatedto the required 
ontrol output in some manner. The approa
h used in this thesisis a 
ombination of the �rst two: to sele
t an output that relates to the variablethat is to be 
ontrolled, but whi
h gives a greater relative degree, and to negle
tsmall terms that allow the �nal relative degree to be a
hieved. This is applied tothe nonlinear missile system and detailed in Se
tion 3.3 and Se
tion 3.4 for SISOand MIMO 
ase respe
tively.Finally no robustness is guaranteed in the presen
e of parametri
 un
ertainty orunmodelled dynami
s. This is due to the fa
t that the exa
t model of the nonlinearsystem is not available in performing feedba
k linearization. This disadvantage hasbeen su

essfully 
ompensated by using robust 
ontrol te
hnique, addressed lateron in the thesis in Chapter 4.
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tory 
ontrol design for SISO systemFor the SISO missile system we have studied the single plane 
ase. The aim is totra
k the missile lateral a

eleration demand in both pit
h and yaw planes whi
h aretreated as being un
oupled. The missile model in this se
tion is thus des
ribed bythe redu
ed 2DOF system assuming there is no intera
tion between lateral motionand roll.Two di�erent designs have been 
onsidered. In the �rst, Design 1, tra
king andnon-linear 
ontrollers are designed by de�ning lateral velo
ity as an output as it pro-du
es a higher relative degree than dire
tly 
ontrolling lateral a

eleration, whi
hhas a relative degree of zero. Lateral velo
ity is dire
tly related to the lateral a

el-eration, as in steady state a 
onstant in
iden
e angle is asso
iated with a 
onstantlateral a

eleration. In the se
ond, Design 2, the augmented lateral a

elerationhas been used as an output for the linearization pro
edure, instead of the a
tualone. This is again to be able to a
hieve the same relative degree as the order of thesystem, to eliminate zero dynami
s.3.3.1 Design 1: Tra
king lateral a

eleration via lateral ve-lo
ityBoth horizontal and verti
al lateral motions are symmetri
 in format and the pro
essof linearization to 
ontrol lateral velo
ities is the same, hen
e Feedba
k Linearizationfor one of the 
hannels is shown here. The 
ontrol of the missile will be a

omplishedby 
ontrolling side-slip velo
ity. The horizontal motion has already been de�ned foryaw 
hannel ( _v and _r) in equation (2.8) of Chapter 2. There is no roll intera
tion(no � term) and the equation for side-slip velo
ity is now:_v = V o(Cyvv + VoCy��)� ur= V o[(Cyv0 + CyvMM + Cyv� j � j)v +Vo(Cy�0 + Cy�MM + Cy�� j � j)�℄� ur= V o[( �Cyv0v + �Cyv� j v j v +Vo �Cy�0� + Vo �Cy�� j v j �℄� ur (3.37)where the Ma
h number M , and the total velo
ity Vo are slowly varying with:j � j = j v jVo 180�M = VoSoS



CHAPTER 3. FEEDBACK LINEARIZATION 57V o = 12m�VoS (3.38)where �Cyv0 ; �Cyv� ; �Cy�0 ; �Cy�� are de�ned in equations (2.37) and (2.38) of Chapter 2.The state spa
e for the horizontal motion 
an be written in the following parametri
format: _x1 = a1x1 + a2x21 + a3x2 + (a4x1 + a5)u1_x2 = b1x31 + b2x21 + b3x1 + b4x1x2 + b5x2 + (b6x1 + b7)u1 (3.39)where: " _x1_x2 # = " _v_r # (3.40)and the parameters a1; : : : ; a5 and b1; : : : ; b7 are de�ned in Appendix C.The state spa
e of the nonlinear system is:_x = f(x) + g(x)uy = h = x1 (3.41)or in matrix form:" _x1_x2 # = " a1x1 + a2x21 + a3x2b1x31 + b2x21 + b3x1 + b4x1x2 + b5x2 #+ " a4x1 + a5b6x1 + b7 # u1 (3.42)The equation (3.41) is in standard form and Input/Output Linearization te
hnique
an be applied to it. By de�ning the side-slip velo
ity x1 as an output (y1 = x1) andby applying Feedba
k Linearization, only one di�erentiation of the output _y1 = _x1is enough in order for the input u to appear (as _x1 = f(x1; x2) + g(x1)u) whi
h 
anestablish an Input/Output relation. In that 
ase the relative degree (i.e. the orderof the equivalent linear system) would be r1 = 1, whi
h is less than the order ofthe non-linear system (2nd). This results in an equivalent linear system with �rstorder internal dynami
s. However, an approximate Feedba
k Linearization knownas g-modi�
ation by Hauser et al [74℄ 
an be used instead of exa
t Feedba
k Lin-earization. In whi
h 
ase the relative degree is in
reased by the required order toequal the order of the non-linear system whi
h will result in system with no internaldynami
s and a tra
king 
ontroller is designed without having to 
onsider stabilityof unobservable modes. Using this approximation, terms are dis
arded in order toretain an approximate system with an equivalent order and relative degree.By using normal 
oordinate transformation let �1 = �1 = h(x) = x1. We dif-ferentiate �1: _�1 = a1x1 + a2x21 + a3x2| {z }�2=�2(x) +(a4x1 + a5)u1| {z } 1(x1;u1) (3.43)
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t  1(x1; u1) as it is a very small term 
ompared to the rest of themissile dynami
s. The relative magnitudes between  1 dynami
s and �2 dynami
sis a ratio of 1 : 10, whi
h has been validated via simulation. This suggests that 1 
an be negle
ted. There is also a phisi
al explanation for the justi�
ation fornegle
ting the  1 term.  1 is the �n for
e and is phisi
ally designed to be smallerthan the �2 dynami
s. �2 is the body aerodynami
 for
e a
ting at the 
entre ofpressure and is normaly an order of magnitude greater than the �n for
e. The maine�e
t of  1 is to produ
e a small for
e at a large distan
e whi
h produ
es a largeturning moment. The turning moment term then appears as �1 in the _r equationdue to the di�erentiation of the �2 dynami
s. Hen
e, although the �n for
e term isnegle
ted, the �n turning moment is retained.Hen
e _�1 = �2. We di�erentiate �2 to get:_�2 = (2a22 + a3b1)x13 + (3a1a2 + a3b2)x12 + (a21 + a3b3)x1| {z }�1+(a1a3 + a3b5)x2 + (2a2a3 + a3b4)x1x2| {z }�1+(2a3b6x1 + a3b7)| {z }�1 u1 (3.44)By negle
ting the term  1 shown in (3.43), the g ve
tor �eld has been modi�ed. Thee�e
t of negle
ting the term  1 in equation (3.43) is to eliminate a non-linear zeroin the system within the model des
ription, and whi
h is not taken into a

ount inthe non-linear 
ontrol design. It has been shown by White [71℄, this will not a�e
tthe performan
e of the 
ontrol design in a signi�
ant manner as the zero 
an beapproximated by: z � � (a4 j x1 j +a5)(2a3b6 j x1 j +a3b7) (3.45)The zero is negative for all values of x1, hen
e will not a�e
t the stability of the
losed loop dynami
s.The linearized system 
an be written in 
ompa
t form:�1 = h_�1 = �2_�2 = �1 + �1u1 (3.46)The output (h) has been di�erentiated twi
e, hen
e possesses a relative degree (r) of2. Sin
e the relative degree is equal with the order of the system, fully linearizationof the non-linear system has been a
hieved with no zero dynami
s. The equation(3.46) represents a dire
t relationship between the output (h) and the input (u1) [76℄
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 state feedba
k for de
oupled 
losed loop Input-Outputbehaviour is given by Kravaris and Soroush [77℄ as:u1 = 1�1 (� � �1) (3.47)The linearized 
losed loop system is now given by:�y = v (3.48)where � is the new linearized system input, as given by Wang [76℄. For the se
ondorder yaw plane system, the tra
king 
ontroller in the outer loop 
an be investigatedby 
hoosing the resulted new 
ontrol v input to be:� = �yd � k1 _e� k2e (3.49)where e = y � yd. The 
losed-loop system is thus 
hara
terised with the followingerror dynami
s: �e+ k1 _e + k2e = 0 (3.50)where k1 and k2 are 
hosen su
h that all roots of s2 + k1s + k2 = 0 are in the openleft{half plane Hurwitz, whi
h ensures limt!1 e(t) = 0, as shown by Wang [76℄.The tra
king 
ontrol problem of the non-linear system des
ribed by equation (3.39)has been solved using the 
ontrol law in equation (3.47) with the new input de�nedin (3.49). Indeed, sin
e equation (3.50) has the same order as the non-linear system,there is no part of the system dynami
s whi
h is rendered \unobservable" in theapproximate Input/Output Linearization. Sin
e there are no zero dynami
s in thelinearized system, the tra
king problem has been solved provided the approximationis valid and the negle
ted terms are small as proved by Hauser et al [74℄.
Nonlinear

   controller
Actuator Plant a=f(x)Trajectory

control

ad x y=a

Figure 3.2: Traje
tory 
ontrol design for Design 1 in SISOThe traje
tory 
ontrol design has been shown in �g. 3.2. A fast linear a
tuatorwith natural frequen
y of 250 rad=se
 has been in
luded in the non-linear system.The blo
k of the Plant is represented by equation (3.39). The nonlinear 
ontroller is



CHAPTER 3. FEEDBACK LINEARIZATION 60derived by equation (3.47). The desired a

eleration ad is a
hieved by using the non-linear equation ad = f(vd). The relation between lateral a

eleration and side-slipvelo
ity is: � = _v + Ur = a1v + a2v2 � Ur + Ur (3.51)hen
e by �nding the roots of �d = a1vd + a2v2d (3.52)we would know what side-slip velo
ity is required for parti
ular lateral a

elerationdemand, hen
e desired tra
king performan
e 
an be a
hieved.The error dynami
s (e = v � vd and _e = _vd � _v) are 
onstru
ted using the �dsignal and the feedba
k of the a
tual states - side-slip velo
ity v, yaw rate r anda

eleration a, also shown in �g. 3.3._vd � _v = �d � Urd � � + Ur (3.53)
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Figure 3.3: Error dynami
sThe traje
tory 
ontrol is derived 
on
erning the 
losed loop error dynami
s expressedin equation (3.50). The error 
oeÆ
ients are 
hosen to satisfy Hurwitz polynomialfor the se
ond order error equation in ea
h 
hannel, hen
e k1 = 2�wn and k2 = w2n,with wn = 70 rad=se
 and � = 0:7. This speed of response is signi�
antly faster thanthe open loop response and so should exer
ise the dynami
s of the non-linear missile.Results and few 
ommentsThe results for 1g (10 m=se
2) and 10g (100 m=se
2) lateral a

eleration demandsare shown in �g. 3.4. They show side-slip velo
ity and the resulting lateral a

elera-tion responses. The side-slip velo
ity demand has been s
aled using equation (3.52)to give required a

eleration. A
tuator �n angle and �n rate are also shown tomake sure that no unrealisti
 
ontrol signals are generated. The �gures show almost
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al step responses with some variation in peaks and steady state values forthe body yaw rate, the a
tuator movement (�n angle) and the side-slip velo
ity.As expe
ted for a non-linear system, the relationship between lateral velo
ity andlateral a

eleration is non-linear. The results also show that the a
tuator does notsigni�
antly a�e
t the design. The non-linear approa
h is also shown to be rea-sonably a

urate, as the predi
ted and a
tual performan
e are very 
lose, as givenby Tsourdos et al [78℄. The non-minimum phase e�e
t on the lateral a

elerationresponses 
an be seen as eviden
e that an inherent right half plane zero exists withinthe nonlinear system.
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CHAPTER 3. FEEDBACK LINEARIZATION 623.3.2 Design 2: Tra
king lateral a

eleration via augmenteda

elerationBy de�ning lateral a

eleration as an output and applying the standard Input/OutputLinearization pro
edure, the relative degree (i.e. the order of the equivalent linearsystem) is r = 0, whi
h is again less than the order of the non-linear system (2nd).This results now in an equivalent linear system with se
ond order internal dynam-i
s. However, by using the augmented a

eleration as the output for the non-linear
ontroller design and by applying approximate Feedba
k Linearization known asg-modi�
ation, as given by Hauser et al [74℄, the relative degree is in
reased by therequired order to equal the order of the non-linear system. As the system has no in-ternal dynami
s we 
an then design a tra
king 
ontroller without having to 
onsiderstability of the unobservable modes. The dynami
 equation for lateral a

elerationhas been derived in equation (2.32) of Chapter 2 and is given here again by:� = _v + Ur= �(v) +  (v; �) (3.54)From equation (3.54), the output 
ontains the input 
ontrol �n de
e
tion � by virtueof the term  (v; �). This makes the lateral a

eleration have a relative degree ofzero. This term, however, 
an be shown to be the lateral for
e developed by the�n. The �n's main 
ontribution to the dynami
s of the missile is to develop aturning moment, by virtue of the term 12I�1yz �V 2o SdCn�� in equation (2.8) for r andthe equivalent term in equation (2.7) for q, detailed in Chapter 2. If this term isin
luded in the output equation, then the augmented a

eleration 
an be representedas: �� = ��  (v; �)= �(v) = V o[( �Cyv0v + �Cyv� j v j v℄ (3.55)or in parametri
 form as: �� = a1x1+a2x21. The augmented a

eleration �� is used forlateral 
ontrol instead of the lateral a

eleration �. The di�eren
e between the twooutputs � and �� is now just the lateral a

eleration developed by the 
ontrol �n,and as su
h will not introdu
e mu
h error in the 
ontrol of the lateral a

eleration,as given by White [71℄.The matrix form of the non-linear system shown in equation (3.42) is the samehere, but the 
ontrolled output of the non-linear system (3.41) now is:y = h = a1x1 + a2x21 (3.56)In order to apply Input/Output Linearization and to retain the system order withno zero dynami
s, an approximate Input/Output Linearization te
hnique is applied.Let �1 = h(x) = a1x1 + a2x21. Then by di�erentiating � we get:



CHAPTER 3. FEEDBACK LINEARIZATION 63
_�1 = (a21x1 + 3a1a2x21 + a1a3x2 + 2a22x31 + 2a2a3x1x2| {z }�2=�1(x)+(a2a4x31 + (a1a4 + a2a5)x21 + a1a5x1)u1| {z } 1(x1;u1) (3.57)The  1(x1; u1) dynami
s, in this 
ase, is 
lose to zero 0:039 
on�rmed via simulation,hen
e we 
an negle
t it. Conversely to Design 1, there is no physi
al interpretationfor negle
ting the term. To take the next step we set  1 to zero and _�1 = �2. Thenwe di�erentiate �2 to get the Input-Output relation:_�2 = (6a32 + 2a2a3b1)x41 + (12a1a22 + a1a3b1 + 2a2a3b2)x31 + (a31 + a1a3b3)x1| {z }�1+(a21 + 6a21a2 + a1a3b2 + 2a2a3b3)x21 + (8a22a3 + 2a2a3b4)x21x2| {z }�1+(8a1a2a3 + a1a3b4 + 2a2a3b5)x1x2 + (2a2a23)x22 + (a21a3 + a1a3b5)x2| {z }�1+(6a21a4x31 + 2a2(3a1a4 + 3a2a5 + a3b6)x21) + (a1(a1a5 + a3b7))| {z }�1 u1+((6a1a2a5 + a21a4 + a1a3b6 + 2a2a3b7)x1) + (2a2a3(a4x1 + a5)x2)| {z }�1 u1(3.58)and the resulted system is _�1 = �2_�2 = �1 + �1u1 (3.59)The output (y) possesses a relative degree (r) of 2, sin
e (y) has been di�erentiatedtwi
e for the input (u1) to appear. The relative degree of the system is now 2, andhas the same order as the original system. Therefore there are no internal dynami
s.Sin
e the total relative degree is equal to the order of the system, fully linearizationof the non-linear system is a
hieved. The e�e
t of negle
ting the term  1(x; u1)in equation (3.57) is to eliminate a non-linear zero in the system within the modeldes
ription, and whi
h is not taken into a

ount in the non-linear design. It hasbeen shown by White [71℄, this will not a�e
t the performan
e of the 
ontrol designin a signi�
ant manner as the zero 
an be approximated by:z � � 1(x)�1(x) (3.60)When the augmented a

eleration is de�ned as a 
ontrol output of the linearizationpro
edure we have applied an approximate Input/Output Linearization in order to



CHAPTER 3. FEEDBACK LINEARIZATION 64retain the order of the system. In that 
ase there is no zero dynami
s involved inthe design. If we don't negle
t any term, then the linearization will take pla
e bysolving the 2nd derivative of the output for the �rst derivative of the input _ . Apre-
ompensator will 
an
el the inherent zero in the Input-Output equation. Anapproximation to this 
ontroller that does not in
lude the 
an
ellation pole 
an beused by negle
ting the _ 1 term. The zero will exist, whi
h is not taken into theanalysis and will be stable if the �n angle moment is signi�
antly greater than thestati
 margin. This is usually the 
ase in most agile missiles as the stati
 marginis made as 
lose to zero as possible for most missiles. This will produ
e a stablesolution and tra
king performan
e will be satisfa
tory.The equation (3.59) represents a dire
t relationship between the output (h) andthe input (u). The required stati
 state feedba
k is given by the 
ontrol law previ-ously explained in Design 1, see equations (3.47), hen
e a de
oupled 
losed loopInput-Output behaviour is a
hieved. For the linearized 
losed loop system (3.48),the new 
ontrol input has been 
hosen to be (3.49), so desired tra
king performan
ehas been a
hieved. By sele
ting the gains su
h that all roots of the 
losed loop errordynami
s (3.50) lie in the left-half plane, asymptoti
 global stability is guaranteed.The 
losed loop error dynami
s is (2nd) order, hen
e there is no part of the systemdynami
s whi
h is rendered \unobservable" in the approximate Input/Output Lin-earization. Sin
e there are no zero dynami
s in the linearized system, the tra
kingproblem has been solved, as dis
ussed by Isidori [79℄, Slotine and Li [14℄.
Nonlinear

   controller
Actuator PlantTrajectory

control

ad

x

y=a

Figure 3.5: Traje
tory 
ontrol design for Design 2 in SISOThe autopilot simulation is shown in �g. 3.5. The di�eren
e from Design 1 isthat the augmented a

eleration is used as the linearization output. The 
ontrollerdesign has been produ
ed by using the augmented a

eleration, but in the simulationthe lateral a

eleration has been used to 
he
k the validity of the made approxima-tions. The error dynami
s are 
onstru
ted by using the desired lateral a

elerationad signal and the feedba
k of the a
tual states - velo
ities, rates, a

elerations andjerk. Also, a fast linear a
tuator with natural frequen
y of 250 rad=se
 has beenin
luded in the non-linear simulation. Fixed gain traje
tory 
ontroller has been usedfor the se
ond order error equation (3.50) su
h as k1 = 2�wn and k2 = w2n, withnatural frequen
y wn = 60 rad=se
 and damping fa
tor � = 0:65. This speed ofresponse is faster than the open loop response and so should exer
ise the dynami
s



CHAPTER 3. FEEDBACK LINEARIZATION 65of the non-linear missile suÆ
iently for meaningful 
on
lusions to be drawn. The re-sults for 1g (10 m=se
2) and 5g (50 m=se
2) lateral a

eleration demands are shownin �g. 3.6. These �gures show almost identi
al step responses for both demandswith some variation in peaks and steady state values for the body rate, the a
tua-tor movement and the lateral velo
ity. The di�eren
e between the lateral and theaugmented a

eleration shows that there is a good mat
h between the two and thatthe steady state values are very 
lose, as given by White et al [80℄. This illustratesthe small e�e
t that the �n for
e has on the missile a

eleration and justi�es theuse of the augmented body a

eleration.
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CHAPTER 3. FEEDBACK LINEARIZATION 663.4 Traje
tory 
ontrol design for MIMO systemThe Input-Output design te
hnique 
an be extended to the MIMO 
ase. The aimhere is again to tra
k the missile lateral a

eleration demand in pit
h and yaw planebut to also maintain 
onstant roll rate. The missile model in this se
tion is des
ribedby full 6DOF system with roll intera
tion.Two kinds of manoeuvrability are 
onsidered here. The �rst one is based on skid-to-turn (STT) motion whi
h is presented in Cartesian 
oordinates and is valid formissiles with two pairs of 
ontrol �ns (rudders and elevators); and the se
ond one isbased on bank-to-turn (BTT) motion whi
h requires Polar 
ontrol and is valid foronly one pair of 
ontrol surfa
es, very often used by long range, 
ruise missiles.3.4.1 Design 1: Cartesian 
oordinatesThe equations of motion, des
ribed in (2.42) in Chapter 2, are used to derive thestate-spa
e form of the non-linear system in a 
ompa
t parametri
 format, as:_x1 = a1x1 + a2x1qx12 + x32 + a3x2 + (a4qx12 + x32 + a5)u1_x2 = b1x1(x12 + x22) + b2x1qx12 + x32 + b3x1 + b4x2qx12 + x32 + b5x2+(b6qx12 + x32 + b7)u1 � (b9 + b8qx12 + x32 + b10(x12 + x32)u3_x3 = a1x3 + a2x3qx12 + x32 � a3x4 + (a4qx12 + x32 + a5)u2_x4 = �b1x3(x12 + x32)� b2x3qx12 + x32 � b3x3 + b4x4qx12 + x32 + b5x4�(b6qx12 + x33 + b7)u2 + (b9 + b8qx12 + x32 + b10(x12 + x32)u3_x5 = 
1x5 + (
3 + 
4qx21 + x23)u1 + (
3 + 
4qx21 + x23)u2 + 
2u3 (3.61)In a matrix form that would be:2666666664
_x1_x2_x3_x4_x5
3777777775 = 266666666664

a1x1 + a2x1px12 + x32 + a3x2b1x1(x12 + x22) + b2x1px12 + x32 + b3x1 + b4x2px12 + x32 + b5x2a1x3 + a2x3px12 + x32 � a3x4�b1x3(x12 + x32)� b2x3px12 + x32 � b3x3 + b4x4px12 + x32 + b5x4
1
377777777775

+266666666664
a4px12 + x32 + a5 0 0b6px12 + x32 + b7 0 �b9 � b8px12 + x32�b10(x12 + x32)0 a4px12 + x32 + a5 00 �b6px12 + x32 � b7 +b9 + b8px12 + x32+b10(x12 + x32(
3 + 
4px21 + x23 (
3 + 
4px21 + x23 
2

3777777777752664 u1u2u3 3775 (3.62)



CHAPTER 3. FEEDBACK LINEARIZATION 67where: x = h x1 x2 x3 x4 x5 iT = h v r w q p iTu = h u1 u2 u3 iT = h � � � iTand the parameters a1; : : : ; a5, b1; : : : ; b10 and 
1; : : : ; 
4 are de�ned in Appendix C.Equations (3.61) represent severe 
ross-
oupling with inherent nonlinear terms withinthe missile dynami
s. Firstly, Input/Output Linearization is used to de
ouple thesystem, and se
ondly, a traje
tory 
ontroller is designed within the outer loop fortra
king performan
e.The non-linear system written in a standard form is:_x = f(x) + g(x)uy = h= 264 h1h2h3 375 = 264 x1x3x5 375 (3.63)and the Input/Output Linearization te
hnique 
an be applied to it. Like the SISO
ase study, in order to retain the system order with no zero dynami
s, an approxi-mate Input/Output Linearization is applied to the missile model. It is based on these
ond approximation method involving the modi�
ation of the fun
tion g, as pre-sented by Hauser et al [74℄. Using this approximation te
hnique, terms are dis
ardedin order to retain an approximate system with an equivalent order and relative de-gree. In other words the g ve
tor �eld is modi�ed.Yaw planeLet �1 = �1 = h1(x) = x1. Then:_�1 = a1x1 + a2x1px12 + x32 + a3x2| {z }�2=�2(x) +(a4px12 + x32 + a5)u1| {z } 1(x1;u1)_�2 = a21x1 + 2a1a2x1px12 + x32 + a3x2) + (a2px12 + x32)(a2x1px12 + x32 + a3x2)| {z }�1+ a1a2x1x23px12 + x32 + a22x1x23 � a2a3x1x3x4px12 + x32 + a3b1x31| {z }�1+ a3(b2x12 + b3x1 + b4x2px12 + x32 + b5x2| {z }�1� (a3b9 + b8px12 + x32 + a3b10(x12 + x32))| {z }�2 u3 + (a3b6px12 + x32 + a3b7)| {z }�1 u1(3.64)



CHAPTER 3. FEEDBACK LINEARIZATION 68or with  1(x1; u1) set to zero_�1 = �2_�2 = �1 + �1u1 + �2u3 = v1(x; u) (3.65)Equation (3.65) is a
hieved by negle
ting the term  1(x1; u1) shown in (3.64).Pit
h planeLet �3 = �3 = h2(x) = x3. Then:_�3 = a1x3 + a2x3px12 + x32 � a3x2| {z }�4=�4(x) +(a4px12 + x32 + a5)u1| {z } 2(x2;u2)_�4 = a21x3 + 2a1a2x3px12 + x32 � a3x4) + a2px12 + x32)(a2x3px12 + x32 � a3x4)| {z }�2+ a1a2x21x3px12 + x32 + a22x21x3 � a2a3x1x2x3px12 + x32 + a3b1x33| {z }�2+ a3(b2x32 + b3x3 � b4x4px12 + x32 � b5x4| {z }�2� (a3b9 + b8px12 + x32 + a3b10(x12 + x32))| {z }�4 u3 + (a3b6px12 + x32 + a3b7)| {z }�3 u2(3.66)or with  2(x2; u2) set to zero_�3 = �4_�4 = �2 + �3u2 + �4u3 = v2(x; u) (3.67)For the roll plane, the roll angle (�) has been taken as an output for the lineariza-tion pro
ess instead of the roll rate. Both roll rate and roll angle 
ontrol are used inpra
ti
e. This study will 
on
entrate on roll angle 
ontrol as this is the most usefulin pra
ti
e, when asymmetri
 sensors are �tted and BTT 
ontrol is used.Roll planeLet �5 = �5 = h3(x) = x6, where x6 = � the roll angle. Then:_�5 = x5|{z}�6=�6_�6 = 
1x5| {z }�3 + 
2|{z}�7 u3 + (
3 + 
4qx21 + x23)| {z }�6 u2 + (
3 + 
4qx21 + x23)| {z }�5 u1 (3.68)or _�5 = �6_�6 = �3 + �5u1 + �6u2 + �7u3 = v3(x; u) (3.69)



CHAPTER 3. FEEDBACK LINEARIZATION 69The output y1 = h1(x) possesses relative degree r1 of 2, the output y2 = h2(x) alsopossesses relative degree r2 of 2, and the output y3 = h3(x) possesses relative degreer3 of 2. Hen
e the total relative degree of the system is equal with the summationof the r1, r2, r3 and is now 6, whi
h means the system has the same order as theoriginal one, therefore there are no internal dynami
s. And sin
e the total rela-tive degree is equal with the order of the system, fully linearization of the non-linearsystem has been a
hieved.The e�e
t of negle
ting the terms  i from equations (3.64),(3.66) is to eliminatea non-linear zero in the system within the model des
ription, and whi
h is not takeninto a

ount in the non-linear 
ontrol design. Provided the side-slip for
e is not toogreat, as explained by White [71℄, this will not a�e
t the performan
e in a signi�
antmanner. The zero 
an be approximated by:z � � (a4qx21 + x23 + a5)(a3b6qx21 + x23 + a3b7) (3.70)The explanations for the negle
ted terms ( i), des
ribed earlier for the SISO systemin Design 1, are valid here.Equations (3.65), (3.67) and (3.69) represent a dire
t relationship between the out-puts (hi) and the inputs (ui). The required stati
 state feedba
k for de
oupled 
losedloop Input-Output behaviour of a MIMO system is given by the 
ontrol law as:u = E�1 8><>:v � 264 �1�2�3 3759>=>; (3.71)where E�1 is the 
hara
teristi
, as named by Kravaris and Soroush [77℄ or de
ouplingmatrix as named by Slotine and Li [14℄ of the system, and is given by:E = 264 �1 0 �20 �3 �4�5 �6 �7 375 (3.72)whi
h has been 
he
ked, is nonsingular.



CHAPTER 3. FEEDBACK LINEARIZATION 70In a similar way to Se
tion 3.3 for Design 1, the equations:(3.73), (3.74) and (3.75)are detailed here again to show the tra
king 
losed loop design. Here the linearized
losed loop system for ea
h 
hannel is given by:�yi = vi (3.73)where (v) is the new linearized system input and is given by:v = �yd � k1 _e� k2e (3.74)and where e = y�yd. The 
losed-loop system for ea
h 
hannel is thus 
hara
terisedby the following se
ond order error dynami
s:�e+ k1 _e + k2e = 0 (3.75)where k1 and k2 are 
hosen su
h that all roots of s2+k1s+k2 = 0 are Hurwitz in theopen left-half plane, whi
h ensures limt!1 e(t) = 0, as detailed by Wang [76℄, hen
ethe tra
king 
ontrol problem for the non-linear MIMO system has been solved. Thestability of the linearized system has been guaranteed sin
e no zero dynami
s hasbeen involved.The traje
tory 
ontrol design has got the same stru
ture as shown in �g.3.2 forDesign 1 for the SISO system, but with an additional output (p) for the roll 
han-nel. Again a fast linear a
tuator with natural frequen
y of 250 rad=se
 has beenin
luded in the non-linear system. The desired lateral a

eleration ad for ea
h 
han-nel is a
hieved by using the non-linear equation ad = f(v). Therefore the traje
tory
ontroller performs by using the desired a

eleration as a fun
tion of the lateralvelo
ity demand. The error dynami
s are 
onstru
ted using the ad signal and thefeedba
k of the a
tual states - velo
ity, rate and a

eleration. The error 
oeÆ
ientsin (3.75) for the traje
tory 
ontroller are 
hosen to satisfy Hurwitz polynomial.The results for 1g (10 m=se
2) and 5g (50 m=se
2) lateral a

eleration demandsare shown in �g. 3.7. Fully de
oupling has been a
hieved in yaw, pit
h and roll
hannels, as detailed by Tsourdos et al [81℄. Both �gures show desired tra
king per-forman
e as the predi
ted and the a
tual performan
e are very 
lose, with almostno steady state error. The non-linear relationship between side-slip (or verti
al)velo
ity and lateral a

eleration for both (yaw and pit
h) 
hannels 
an also be seen.
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CHAPTER 3. FEEDBACK LINEARIZATION 723.4.2 Design 2: Polar 
oordinatesThe aim of this se
tion is to tra
k the missile lateral a

eleration demand in boththe pit
h and yaw plane as well as the roll rate in the roll plane, using the missileaileron, rudder and elevator, hen
e yielding a system with 3 inputs and 3 
ontrolledoutputs. The tra
king and the non-linear 
ontrollers are designed by de�ning lateralvelo
ities (v) and (w) as outputs as they produ
e higher relative degree than dire
tly
ontrolling lateral a

eleration, whi
h has a relative degree of zero. Lateral velo
ityis dire
tly related to the lateral a

eleration, as in steady state a 
onstant in
iden
eangle is asso
iated with a 
onstant lateral a

eleration. The basi
 system is �fthorder, with an integrator in front of the roll 
hannel yielding a sixth order system.The missile system is transformed in Polar 
oordinates, with the 
ight dire
tiongiven by z = pv2 + w2 and the angle of orientation given by � = ar
tan vw . Thesetransformations are used to simplify in a signi�
ant manner the heavy 
omputa-tional load required by the nonlinear 
ontrol law derivation, (see equations (3.64)and (3.66).The equations of motion des
ribed in (2.43) in Chapter 2 are used to derive thestate-spa
e form of the non-linear system in a 
ompa
t parametri
 format, as:_z = a1z + a2z2 + a3rsin(�)� a3qsin(�)+(a4z + a5)(sin(�)� + 
os(�)�)_r = b1z3sin(�) + b2z2sin(�) + b3zsin(�) + b4zr + b5r+(b6z + b7)� � (b9 + b8z + b10z2)�_q = �b1z3
os(�)� b2z2
os(�)� b3z
os(�) + b4zq + b5q�(b6z + b7)� + (b9 + b8z + b10z2)�_p = 
1p + 
2� + (
3 + 
4z)(� + �)_� = �a3z�1(qsin(�) + r
os(�))+z�1(a4z + a5)(sin(�)� � 
os(�)�) (3.76)The nonlinear system written in a standard form is:_x = f(x) + g(x)uy = h = 264 vwp 375 = 264 zsin(�)z
os(�)p 375 (3.77)and Input/Output Linearization te
hnique 
an be applied to it. In order to retainthe system order with no zero dynami
s, an approximate Input/Output Lineariza-tion te
hnique is applied to the missile model. It is based on an approximationmethod involving the modi�
ation of the fun
tion g, as presented by Hauser etal [74℄. Using the approximation te
hnique, terms are dis
arded in order to retainan approximate system with an equivalent order and relative degree. In other words



CHAPTER 3. FEEDBACK LINEARIZATION 73the g ve
tor �eld is modi�ed. This is a
hieved by negle
ting the terms  1(x; �) and 2(x; �) shown in the following equations.For the yaw plane let �1 = �1 = h1(x). Then:_�1 = �2 +  1(x; �)_�2 = �1 + �1� + �2� = v1(x; �; �) (3.78)where: �1(x) = (a1
os(�) + 2a2z
os(�))(a1z + a2z2 + a3rsin(�)� a3qsin(�))+(a1z
os(�) + a2z2
os(�))(�a3z�1(qsin(�) + r
os(�)))+a3(b1z3sin(�) + b2z2sin(�) + b3zsin(�) + b4zr + b5r)�1(x) = a3(b6z + b7)� (b9 + b8z + b10z2)�2(x) = a3(b9 + b8z + b10z2) (3.79)Hen
e the output h1(x) possesses a relative degree r1 of 2.For the pit
h plane let �3 = �3 = h2(x). Then:_�3 = �4 +  2(x; �)_�4 = �2 + �3u2 + �4u3 = v2(x; �; �) (3.80)where: �2(x) = (a1sin(�) + 2a2zsin(�))(a1z + a2z2 + a3rsin(�)� a3qsin(�))�(a1zsin(�) + a2z2sin(�))(�a3z�1(qsin(�) + r
os(�)))�a3(�b1z3
os(�)� b2z2
os(�)� b3z
os(�) + b4zq + b5q)�3(x) = a3(b6z + b7)� (b9 + b8z + b10z2)�4(x) = a3(b9 + b8z + b10z2) (3.81)The output h2(x) also possesses a relative degree r2 of 2.Finally, for the roll plane, for the linearization pro
ess (i.e. the design of the non-linear 
ontroller), we take as output the roll rate p, but pla
e an integrator in frontof the roll 
hannel to equalize the 
hannel orders.Let �5 = �5 = h3(x), where h3(x) is the roll angle. Then:_�5 = �6_�6 = �3 + �5� + �6� + �7� = v3(x; �; �; �) (3.82)where: �3(x) = 
1�5(x) = 
3 + 
4z�6(x) = 
3 + 
4z�7(x) = 
2 (3.83)
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e the output h3(x) possesses a relative degree r3 of 2. The total relative degreeof the system is equal with the sum of the r1, r2, and r3 is now 6, and has the sameorder as the original system and hen
e there are no internal dynami
s. Sin
e thetotal relative degree is equal with the order of the system, fully linearization of thenon-linear system has been a
hieved.The e�e
t of negle
ting the terms ( 1) and ( 2) in the previous equations is toeliminate a non-linear zero in the system within the model des
ription, and whi
his not taken into a

ount in the non-linear 
ontrol design. This will not a�e
t theperforman
e of the 
ontrol design in a signi�
ant manner as the zero 
an be approx-imated by: z � � (a4z + a5)(2a3b6z + a3b7) (3.84)Equations (3.78), (3.80) and (3.82) represent a dire
t relationship between the out-puts (hi) and the inputs (ui). The required stati
 state feedba
k for de
oupled 
losedloop Input-Output behaviour is given by Slotine and Li [14℄ as:u = E�1 8><>:v � 264 �1�2�3 3759>=>; (3.85)where E�1 is the 
hara
teristi
 or the de
oupling matrix of the system, and here isdetermined by: E = 264 �1 0 �20 �3 �4�5 �6 �7 375 (3.86)whi
h is nonsingular. The determinant of the de
oupling matrix is:p(z) = det(E) = p0 + p1z + p2z2 + p3z3 + p4z4 + p5z5All the roots are 
omplex. There is no value of interest for z whi
h 
ould make p(z)(i.e. the determinant of the de
oupling matrix) equal to zero.
The linearized 
losed loop system for ea
h 
hannel is given by:�yi = vi (3.87)where (v) is the new linearized system input and for tra
king problem 
an be 
hosento be: v = �yd � k1 _e� k2e (3.88)
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losed-loop system is thus 
hara
terised by:�e+ k1 _e + k2e = 0 (3.89)where k1 and k2 are 
hosen su
h that all roots of s2 + k1s + k2 = 0 are in the openleft-half plane, whi
h ensures limt!1 e(t) = 0.Like in the �rst Design 1 for the SISO system, a fast linear a
tuator with naturalfrequen
y of 250 rad=se
 has been in
luded in the non-linear system. The desireda

eleration ad has been a
hieved by using the non-linear equation az = f(v; w),but in a Polar sense. The desired a

eleration is a fun
tion of magnitude (z) of thelateral velo
ities: az = a1z + a2z2 = a1(pv2 + w2) + a2(v2 + w2) and it is used inthe feedba
k to 
onstru
t the error dynami
s.The error 
oeÆ
ients in (3.89) are 
hosen to satisfy a Hurwitz polynomial. Forthe a

eleration 
hannel, k1 = 2�wn and k2 = w2n are 
hosen with wn = 60 rad=se
and � = 0:7, for the roll 
hannel with wn = 80 rad=se
 and the same dampingfa
tor, �. This speed of response is signi�
antly faster than the open loop responseand so should exer
ise the dynami
s of the non-linear missile. The tra
king 
ontrolproblem for the non-linear system has been solved using the 
ontrol law in equation(3.85). Sin
e the equation (3.89) has the same order as ea
h 
hannel of the non-linearsystem, there is no part of the system dynami
s whi
h is rendered \unobservable"in the approximate Input/Output Linearization. Sin
e there are no zero dynami
sin the linearized system, the stability of the linearized system has been guaranteedand the tra
king problem has been solved. Desired tra
king performan
e for laterala

elerations and roll angle of the missile has been a
hieved by using a non-linear
ontrol law that has been derived by sele
ting lateral velo
ities and roll rate as thelinearization outputs. This has been detailed by Tsourdos et al [82℄.Finally, simulation results are shown in �g. 3.8 that exer
ise the �nal design andshow that the linearization and the 
ontroller design are satisfa
tory. When thereis no lateral a

eleration demand, shown in �g. 3.8
, a 
onstant roll rate demand,resulted in zero velo
ity magnitude whi
h is a good indi
ation for fully de
oupledsystem. Also a 
onstant roll rate demand (the � input on the roll 
hannel) had noe�e
t on the yaw and pit
h 
hannels.
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CHAPTER 3. FEEDBACK LINEARIZATION 773.5 Con
lusionsThere are three ways to in
rease the relative degree of a non-linear system. Theseare either to propose a new output that is an approximation of the desired one, tonegle
t suÆ
iently small terms during the di�erentiation pro
ess or �nally to designa pre-
ompensator for the system.All four designs (SISO and MIMO), presented in Chapter 3, have used a 
ombi-nation of the �rst two. By negle
ting small terms asso
iated with the �n de
e
tionwhi
h modi�es the g ve
tor and by de�ning outputs for the linearization pro
edurewhi
h are related with the 
ontrolled outputs, an approximate Feedba
k Lineariza-tion te
hnique has been su

essfully applied. The design has resulted in a linearequivalent system with no internal or zero dynami
s (\no unobservable" states dur-ing the linearization), and with a design of a traje
tory 
ontrol whi
h gives smalltra
king errors for both lateral velo
ities and a

elerations. The simulation resultshave shown desired tra
king performan
e for a large range of 1g up to 10g laterala

eleration demands (for SISO and MIMO systems) and roll 
ontrol (for the MIMOsystem).When the augmented a

eleration was 
hosen as an output for the linearizationpro
ess, in Design 2 for the SISO system, the nonlinear 
ontrol law involved more
omplex mathemati
s and more nonlinear terms than the nonlinear 
ontrol law inDesign 1. On the other hand the relationship (augmented a

eleration - laterala

eleration) is linear, so di�eren
es in 
losed loop performan
e for higher demandsare small, and only in the steady state error. Also, the augmented lateral a

elera-tion is used in Design 2 for the SISO system, provided that the dire
t a

elerationprodu
ed by the �n is small 
ompared to the augmented a

eleration. It also shownthat a negle
ted zero during the linearization pro
ess was minimum phase.Two ways of manoeuvring the missile motion have been proposed by Design 1and Design 2 for the MIMO system. Although the Horton model has been de-signed for Cartesian 
ontrol, Polar 
ontrol is also possible to be designed be
auseit 
an signi�
antly redu
e the 
omputational load of the nonlinear 
ontrol design,whi
h 
an be important (less risky and less expensive - 
omputationally speaking).Finally, full de
oupling for the highly non-linear missile system has been a
hieved.All four Designs (SISO and MIMO) have involved in
reasing the speed of responsesof the system suÆ
iently and the responses for both small and large demands haveshown to be invariant. Other te
hniques have been resear
hed by White [71℄ thatinvolve a quasi-linear approa
h, or involve pre-
ompensation to look at te
hniquesthat 
an be applied to the lateral a

eleration dire
tly. This involves dealing witha non-minimum phase system that yields unstable zero dynami
s with dire
t lin-earization methods.



Chapter 4Robust Fuzzy Autopilot DesignIt has been shown in the previous 
hapter that by applying Feedba
k Linearizationthe desired tra
king performan
e 
an be obtained by assuming an exa
t knowledgeof aerodynami
 
oeÆ
ients and missile 
on�guration parameters (i.e., referen
e area,Ma
h number, mass, moment of inertia) in the entire 
ight envelope. In pra
ti
ehowever, this assumption is not valid. Also, if there are either parameter variationsfrom the nominal 
ase or external disturban
es, the Feedba
k Linearization 
annotguarantee desired performan
e, neither is robustness provided.Conversely, fuzzy logi
 appears promising when dealing with vague and impre
iseinformation su
h as un
ertain measurement values, parameter variations and noise.For these reasons, a robust non-linear traje
tory 
ontroller based on fuzzy logi
has been applied in the outer loop in order to provide robustness for the feedba
klinearizable system. An evolutionary algorithm optimisation approa
h is then ap-plied o�-line to determine the membership fun
tion distribution and the rule basestru
ture of the fuzzy 
ontroller. The design uses a geneti
 algorithm optimisationapproa
h using a multiple model des
ription of the airframe aerodynami
s and meetsobje
tives related to 
losed loop performan
e su
h as: steady state error, overshoot,rise and settling time.The aim of Chapter 4 is to tra
k the missile side-slip velo
ity demand in the presen
eof un
ertainties in the aerodynami
 
oeÆ
ients. The required demands are 
onsid-ered for both pit
h and yaw planes, using the missile rudder and elevator as 
ontrolsurfa
es hen
e only lateral motion is 
onsidered, yielding two un
oupled systemswith one input and one 
ontrolled output ea
h. Multiple demand tra
king is alsoaddressed here.4.1 Hybrid Fuzzy Nonlinear Control"Everything is a matter of degree and you do not realize it till you have tried tomake it pre
ise". Bertrand Russell 78



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 794.1.1 Fuzzy Logi
 philosophy\Fuzziness means multi-valen
e. It means in�nite shades of grey between bla
k andwhite. Fuzzy things resemble fuzzy non-things \A resembles not A" and have vagueboundaries with their opposites, their non-things. The more a thing resembles itsopposite the fuzzier it is", by Kosko [83℄.
Fig. 4.1.1 stands for the world of oppo-sites. The maths language 
reates bound-aries between bla
k and white. Reasonsmoothes them out as it works with grey.Borders are inexa
t and things 
oexist withnon-things. Fuzzy logi
 is reasoning withfuzzy sets. Fuzzy logi
 deals with ambigu-ous events or situations. However, am-biguity does not mean there is no sort of
ertainty in the events or situations. Forexample probability did not alter or even
hallenge the bla
k-white pi
ture of theworld. It just showed how to gamble init.[83℄ Figure 4.1.1 The Yin-Yang symbolFuzzy Logi
 is a mathemati
al dis
ipline developed by Zadeh [32℄ based on fuzzyset theory whi
h allows for degrees of truth and falseness. Fuzzy 
ontrol is based onfuzzy logi
 and provides a means of 
onverting a linguisti
 
ontrol strategy basedon expert knowledge into an automati
 
ontrol strategy, as detailed by Lee [33℄.Fuzzy logi
 maps a set of inputs 
alled ante
edents to a set of 
ontrol 
ommandoutputs 
alled 
onsequents, whi
h a
tuate devi
es to translate the system to thedesired state. Be
ause of the multi-valued nature of fuzzy logi
, the values of thesystem states 
an be 
ategori
ally des
ribed by linguisti
 variables whi
h maintainthe intuitive knowledge for the system. For example, rates may be des
ribed as pos-itive fast or negative slow and 
ontrol a
tions 
lassi�ed as negative large or positivemedium. The major advantage of fuzzy logi
 over 
onventional 
ontrol algorithmsis that systems 
an be 
ontrolled, based on the designer's experien
e (input andoutput observations), not on the theoreti
al methods, whi
h implies that there is noneed to rely on pre
ise models. Fuzzy inferen
ing provides the means of systemat-i
ally synthesizing various fuzzy rules to produ
e de
ision a
tions so that 
omplexnon-linear systems 
an be 
ontrolled. In addition, the ability to 
ontrol a system in
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ertain environment is an important feature, whi
h is the main reason to beused here for solving our problem. Fuzzy logi
 has been used in 
ontrol for manyyears. Engineers have su

essfully applied fuzzy systems in many 
ommer
ial areas.Fuzzy systems \intelligently" automate subways, fo
us 
ameras, tune 
olour televi-sion, 
ontrol automobile transmissions, defrost refrigerators, 
ontrol air 
onditioners,automate washing ma
hines and va
uum sweepers, guide robot arm manipulators,
ontrol traÆ
 lights, elevators and 
ement mixers. Most of these appli
ations origi-nated in Japan, and have been sold and applied throughout the world. Some detailsare given by Kosko [83℄, Bonivento et al [84℄, Palm and Driankov [85℄, M
neill andFreiberger [86℄.Linear 
ontrol te
hniques are mainly useful for linear systems. Sin
e we are dealingwith a nonlinear plant, 
onventional te
hniques will not be appropriate to use here.Many pro
esses 
ontrolled by human operators in industry 
annot be automatedusing 
onventional, linear 
ontrol te
hniques, sin
e the performan
e of these 
on-trollers is often inferior to that of the operators.Conversely, knowledge-based 
ontrol te
hniques try to formalise the domain-spe
i�
knowledge, and use reasoning me
hanisms for determining the 
ontrol a
tion fromthe knowledge stored in the system and from the available measurements, as givenby Palm and Driankov [85℄. These 
ontrol systems try to enhan
e the performan
e,reliability and robustness of the 
urrent 
ontrol system. Fuzzy Logi
 Controllers(FLCs) are rule-based 
ontrol systems where fuzzy sets are used for spe
ifying qual-itative values of the 
ontroller inputs and outputs. The experts knowledge 
ontainslinguisti
 terms su
h as negative (Neg), zero (Z), positive (Poz) of the error variableand 
an be represented by fuzzy sets (see �g. 4.1).
Z P

µ

e0

0.5=µ

1=µ Neg oz

6.9-6.9Figure 4.1: Membership fun
tions de�ned for the error variableThe membership fun
tions shown in �g. 4.1 provide a smooth interfa
e from thelinguisti
 knowledge to the numeri
al pro
ess variable.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 81Using fuzzy sets and fuzzy operations it is possible to design a fuzzy reasoningsystem whi
h 
an a
t as a 
ontroller, as illustrated in �g.4.2. The 
ontrol strategyis stored in the form of if-then rules in the rule base. The rules represent an ap-proximate stati
 mapping from inputs (e.g. errors) to outputs (
ontrol a
tions) (seeFuzzy Logi
 Toolbox [87℄) and for example 
an be formulated as follows:If error is negative medium then 
ontrol a
tion is positive small.The �rst part of the rule, 
alled the ante
edent, spe
i�es the 
onditions under whi
hthe rule holds, while the se
ond part, 
alled the 
onsequent, des
ribes the 
orre-sponding 
ontrol a
tion. Both the ante
edent and the 
onsequent 
ontain linguisti
terms (large,small,near zero et
.) that re
e
t the experts knowledge of the pro
ess.The ante
edent 
ondition is de�ned as a 
ombination of several individual 
ondi-tions, using a 
onne
tive, su
h as the logi
al AND, OR operations. The reader mayrefer to [87℄ for further understanding.
defuzzificationscaling reasoning

mechanismfuzzification

scaling
factors

membership
functions

membership
functions

scaling 
factors

rule
base

scaling
error

actions
controlFigure 4.2: Blo
k-s
hemati
 representation of a fuzzy logi
 
ontrollerThe fuzzi�
ation module determines the membership degree of the inputs to theante
edent fuzzy sets. The reasoning me
hanism 
ombines this information withthe rule base and determines the fuzzy output of the rule base system. In orderto obtain a 
risp signal, the fuzzy output is defuzzi�ed using several te
hniques toprodu
e a single 
ontinuous variable.Fuzzy sets and Membership fun
tionsA fuzzy set is de�ned as a set with degree of membership asso
iated with ea
hmember. It is a set of ordered pairs whi
h asso
iate ea
h value of the variable to itsgrade of membership in the set. The grades of membership are represented by themembership fun
tion �A. Consider a universal, 
risp set U , 
alled the universe ofdis
ourse and a fuzzy set A. The membership fun
tion �A maps the elements x 2 Uinto real numbers in [0; 1℄: �A(x) : U �! [0; 1℄
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h gives a measure of the grade of membership of x whi
h belongs to U in thefuzzy set A. The position and shape (triangular or bell shaped) of �A depend on theparti
ular appli
ation. For a PD 
ontroller there is no di�eren
e between di�erentshapes, as given by Hamm [88℄. Fig. 4.1 shows an error of 1:75 whi
h belongs 50% tothe set of Z and 50% to the set of Poz. The � degrees of the fuzzy sets Z and Poz areboth 0:5, whi
h is an orthogonal 
ondition and it has been 
onsidered in our work.It has been shown by Lot� [89℄ that membership fun
tions have a dominant e�e
ton the reasoning pro
ess rather than the number of rules or the inferen
e me
hanism.Fuzzy set operationsFuzzy set operations are performed by logi
al 
onne
tives su
h as:AND �A(x) = min(�A(x); �B(x)) = �A ^ �B,OR �A(x) = max(�A(x); �B(x)) = �A _ �B,NOT �A(x) = 1� �A(x).In our work, the minimum operator is used for 
onjun
tion and the maximum oper-ator for disjun
tion. The Mamdani method is used for our fuzzy inferen
e system,i.e. the min operator rule is adopted for the logi
 AND operator. For example, thevalue W l of the ante
edents (Al1 and Al2) of the lth rule (Al1; Al2; Bl) is 
al
ulated as:W l = min(�A1; �A2) = �A1(See) ^ �A2(Sde _e)whi
h is the degree of ful�llment of the lth rule, where �A1(See), �A2(Sde _e) are themembership grades of the s
aled variables in fuzzy sets A1, A2 and Se, Sde are thes
aling fa
tors for the input variables with ^, the min operator. The most 
ommonmethod for determining the output value for ea
h 
ontrol in the ve
tor u is by 
al-
ulating the 
entroid of where its membership fun
tion values are a
ting along theoutput 
ontrol's universe of dis
ourse. There are many possible ways to defuzzify anoutput. The 
entre of area 
an be used for defuzzi�
ation and the output is given by:yo = PW luliPW lwhere ul is the 
enter of the lth rule's 
onsequent fuzzy set Bl, i.e. �lB(uli) = 1. The
risp perturbation 
ontrol is given by u = Suyo, where Su is the s
aling fa
tor forthe 
ontrol output u. Ea
h rule is weighted by the degree to whi
h the ante
edentof the rule is ful�lled. The �nal 
ontrol de
ision is obtained as the weighted averageof all the 
ontributed 
on
lusions.Adjustment of membership fun
tions and rules for a fuzzy 
ontroller is examined indetail by Hamm and Splettstoser [88℄. A detailed pro
edure for sele
ting the typeand the number of �A for ea
h domain has been 
onsidered. They have found that



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 83up to �ve �A is easier to design and optimise. If there are more than two inputs orif ea
h input has many terms, then the number of rules 
an in
rease dramati
ally.A very useful idea of applying PD fuzzy 
ontrol for vehi
le tra
king has been investi-gated by Chiu et al [40℄. The derivative 
ontrol rules are given mu
h smaller in
uen
ethan the proportional 
ontrol rules to avoid over-damping, in the same way that thederivative gain is typi
ally smaller than the proportional gain in 
onventional linear
ontrol. The derivative 
ontrol a
tions are predi
ated upon the 
ondition that therate error is near zero. The resultant behaviour is that the 
ontroller would notimpose damping until the vehi
le approa
hes the 
ommanded roll rate. Their 
on-trol strategy has pushed the vehi
le toward the 
ommanded roll rate at maximuma

eleration, and applied damping to stabilize the vehi
le only during 
lose tra
king.Fuzzy logi
 has been su

essfully applied in 
ombination with other te
hniques. AnInput/Output Linearization with an adaptive fuzzy outer loop has been applied tothe depth 
ontrol of a nonlinear underwater vehi
le by Trebi-Ollennu and White [90℄.The adaptive fuzzy systems are Sugeno type and have been used to approximate theun
ertainties 
aused by forward speed variations in order to improve the robustnessproperties. This 
ontrol s
heme has enhan
ed the 
losed loop performan
e by re-du
ing the output tra
king errors and by adding \intelligen
e" to the 
onventionalInput/Output 
ontrollers.A hybrid approa
h, integrating Feedba
k Linearization and FLC (FL/FLC), hasbeen proposed by Lin and Gau [91℄ for improving the transient performan
e androbustness of a highly nonlinear and open loop unstable magneti
 bearing system.The disturban
e reje
tion 
apability of FL/FLC was mu
h better than only theFL approa
h. Rotor speed traje
tory and gap deviation regulation have been 
on-sidered. The nine output variables of the system were transformed to nine linearde
oupled subsystems with no internal dynami
s. For ea
h of these systems, 7 �Ainput-output variables were used to produ
e a 49 rule base stru
ture of the FLC.However, the FLC parameters were tuned by using extensive 
omputer simulations(e.g. the trial and error method) whi
h 
an be very 
omputationally expensive.A very good 
ontrol design approa
h has been investigated by Kwan et al [92℄ for apit
h autopilot for a simple missile model. They have used on-line tuning of a fuzzyCMAC neural network to improve the robustness of Feedba
k Linearization. Thefuzzy logi
 has been used to produ
e a systemati
 way of adjusting the neural net-work weights on-line. No o�-line training phase was needed whi
h is an interestinga
hievement. However, an in
reased 
omplexity of the 
ontrol system is asso
iatedwith su
h a design.An interesting approa
h has been proposed by Leland [93℄ for using Feedba
k Lin-earization to design 
ontrollers for systems with fuzzy un
ertainties. Instead of
onsidering bounded un
ertainty, they have used a fuzzy un
ertain model. TheFeedba
k Linearization has provided asymptoti
 stability for the 
ontroller.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 844.1.2 Fuzzy traje
tory 
ontroller forthe feedba
k linearized systemA Feedba
k linearized system with �xed gain traje
tory 
ontroller has been designedin Chapter 3. The nominal model of aerodynami
 
oeÆ
ients has been 
onsidered.In order to design an appropriate fuzzy logi
 
ontroller whi
h 
an deal with thenon-linear parametri
 un
ertainties of the missile model, we have to reprodu
e thedynami
 behaviour of the Input/Output linearizable 
ontroller by repla
ing the �xedgain traje
tory 
ontroller with a FLC type. At the start, the model has been keptwith the exa
t knowledge of the aerodynami
 
oeÆ
ients and the missile 
on�gu-ration parameters, so initial fuzzy rules have been derived. One input-one output(i.e. error-
ontrol a
tion) FLC with only �ve rules has been derived. The 
ontribu-tion of the fuzzy logi
 traje
tory 
ontroller has signi�
antly improved the transientresponse. Almost no steady state error and smaller overshoot have been a
hieved,
onversely to the design with the �xed gain traje
tory 
ontroller. Ea
h variable ofthe FLC has �ve membership fun
tions symmetri
ally pla
ed within the Universe ofDis
ourse. A two input-one output FLC has also been designed taking into a

ountthe derivative a
tion of the error. This resulted in steady state error. The trialand error me
hanism has been used with many iterations before an appropriate rulebase stru
ture has been a
hieved whi
h is time demanding and not very pra
ti
al.Hen
e it has been repla
ed by evolutionary optimisation using a geneti
 algorithmfor better adaptation.
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Figure 4.3: Fuzzy-Feedba
k Linearized Autopilot DesignThe autopilot design is shown in �g. 4.3. The missile dynami
s are representedby a multi-modelling format:_x = f(x) +4f(x) + (g(x) +4g(x))u (4.1)y = h(x)where 4f(x) and 4g(x) are 
onsidered as un
ertainties 
aused by the aerodynami

oeÆ
ients (Cyv; Cy� ; Cnr; X
p). In this 
hapter the models are randomly generated



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 85polynomials within a large range of 0Æ to 45Æ roll angle. Fast 250 rads=se
 se
ondorder linear a
tuator representing rudder is in
luded within the missile dynami
s.The non-linear 
ontrol law u = ���� , is derived by the feedba
k linearization te
h-nique, as detailed in equation 3.47, Se
tion 3.3.1 of Chapter 3. The sele
ted outputfor the linearization pro
ess is the side-slip velo
ity. A fuzzy logi
 traje
tory 
on-troller is used in the outer loop for the side-slip velo
ity, V CHANEL. The traje
tory
ontroller is designed, based on fuzzy inferen
e engines, as two inputs - one outputsystem with four membership fun
tions for ea
h variable. An optimisation algorithmis used to generate the fuzzy 
ontrol parameters (i.e. membership fun
tions and rulebase stru
ture), while the non-linear 
ontroller u = ���� remains �xed. The obtainedfuzzy 
ontroller is tested on �ve trials (i.e. randomly generated models). Then aperforman
e analysis is done o�-line for ea
h autopilot simulation. Four 
losed loopperforman
e 
riteria are 
onsidered (i.e. steady state error, settling time, rise timeand overshoot). The maximum obje
tive value of the �ve trials is returned to theoptimisation algorithm for evaluation of the tested fuzzy 
ontroller. The optimi-sation pro
ess repeats for large number of iterations until satisfa
tory 
losed loopperforman
e of the autopilot system is obtained.4.2 Optimisation of the Fuzzy Logi
 ControllerOne of the major drawba
ks of fuzzy logi
 
ontrollers is that the membership fun
-tions are 
hosen arbitrarily whi
h implies a need of using a \trial and error" designphilosophy to improve the 
losed-loop system's behaviour, whi
h may not alwaysbe possible. An evolutionary optimisation te
hnique is suggested and des
ribed inthe next se
tion as a possible way to tune the FLC parameters. A surrogate ad-ditive fun
tion whi
h transfers the ve
torised multi-obje
tive problem into a s
alaroptimisation problem is used here.4.2.1 Evolutionary AlgorithmThe membership fun
tions and rule base stru
ture of a fuzzy 
ontroller 
an be de-�ned by trial and error. However, there is a need for a suitable learning mediumin order to in
rease the robustness of the FLC. The 
hoi
e of learning method isdi
tated by the nature of the task domain and the available information. Onepossible way would be the use of Neural Networks (NNs), as detailed by Linkensand Nyongesa [31℄. They depend highly on the availability of suÆ
ient data rep-resenting the input-output mapping, but in a situation where su
h data 
annot beobtained an alternative approa
h is ne
essary. One su
h approa
h is to test hypo-theti
al trial solutions of the system and generate better solutions on the basis ofthe performan
es using evolutionary te
hniques. Geneti
 algorithms (GAs), whi
hare modelled on natural evolutionary strategies, based on Darwinian prin
iple ofsurvival of the �ttest in biologi
al reprodu
tion, as des
ribed by Goldberg [94℄, areone possible methodology that 
an be used as a learning and optimisation te
h-nique under su
h 
onditions. They are 
apable of �nding global solutions when
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h spa
es, whereas NNs 
an only provide �ne tuned adjust-ments using lo
al sear
h. The operators GA use, to dire
t them through the sear
hspa
e, have features for self repair, self guidan
e and reprodu
tion whi
h are foundin natural geneti
s of biologi
al systems. Whenever robust performan
e is requirednature does it better. GAs are theoreti
ally and empiri
ally proven to provide ro-bust sear
h in 
omplex spa
es. They have been su

essfully applied to a varietyof problems su
h as fun
tion optimisation, 
ontrol, identi�
ation, self adaptive andlearning systems. The reasons for a large number of appli
ations are be
ause GAsare 
omputationally simple and powerful in their sear
h engines. Also they are notlimited by restri
tive assumptions 
on
erning 
ontinuity, existen
e of derivatives orunimodality. Other optimisation te
hniques are shown by Rao [95℄, su
h as Cal-
ulous based (A), Enumerative (B) and Random (C). Some are lo
al in s
ope (A)and use point by point sear
h (A,B and C), hen
e 
onverging to a lo
al optima.Su
h methods depend strongly upon the restri
tive requirements mentioned aboveand are suitable for a very limited problem domain. Conversely GAs 
onsider manypoints from the sear
h spa
e simultaneously (a population of strings 
limbing manypeaks in parallel) whi
h preserve the probability of 
onverging to global optima.Also they only need the obje
tive fun
tion values asso
iated with ea
h individualsto asses the quality of the solution. Unlike many methods, GAs use probabilisti
transition rules to guide their sear
h. They use random 
hoi
e as a tool to guidethe sear
h toward regions with likely improvement and have problem-independent
hara
teristi
s of the sear
h s
heme, whi
h enables bla
k-box treatment of the GA
ode. That is the GA supplies the parameters to the optimisation problem and inreturn, the software provides the �tness fun
tion whi
h is then utilized by the GAto evolve the next generation. Goldberg has given a very good example in [94℄ ofthe bla
k box optimisation problem with on-o� swit
hes illustrating the idea of a
oding and a payo� measure.How GA's workThe basi
 
y
le for GAs is illustrated in�g. 4.2.1. It starts by randomly generat-ing a population of individuals (strings)whi
h are then evaluated by some �tnessfun
tion. Then sele
tion takes over to re-produ
e new individuals by using GA op-erators to 
reate a new generation of pos-sible solutions. Ea
h string represents onepossible solution to the problem.

START

FITNESS

REPRODUCTION

CREATE

NEW GENERATION

STOP
NO

YES

INITIALISE

POPULATION

Select individuals

Figure 4.2.1 Simple GA stru
tureGAs work iteration by iteration, generating and testing a population of strings.This population by population approa
h is similar to a natural population of biolog-
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al organism, where ea
h generation su

essively evolves into the next generationby being born and raised until it is ready to reprodu
e. Optimal strings are foundthrough population reprodu
tion via sele
tion, 
rossover and mutation. Sele
tionis based on sto
hasti
 universal sampling and is the pro
ess where an old string is
arried through into a new population depending on its performan
e index (�tnessfun
tion) value. So strings with above average �tness values get larger numbers of
opies in the next generation. This strategy, in whi
h good strings get more 
opiesin the next generation, emphasizes the survival of the �ttest 
on
ept of GA. A
rossover phase then follows. Crossover ex
hanges information between the sele
tedstrings paired at random (i.e. between two sear
h points). The mutation operatoris an o

asional random alteration of a string position for binary genes (based onprobability of mutation). For real genes, it mutates ea
h variable from the popula-tion with a given probability. The mutation operator helps to avoid lo
al minimum,whi
h is very important.In summary, the sear
h algorithm has inherent parallelism whi
h enables rapidsear
h of the high-performan
e regions of 
omplex domains su
h as a fuzzy logi

ontrol stru
ture. GAs have been re
ognised to be a powerful tool for learning the
ontrol rules and tuning their membership fun
tions: Bonivento et al [84℄, Bi
a etal [96℄. An important point to be mentioned here is that a good solution depends onsetting the obje
tive fun
tion 
orre
tly. However a major drawba
k of the te
hniqueis that GAs are 
omputationally ineÆ
ient as many trials are ne
essary until rea-sonable good solutions are found. But with the new high speed te
hnology su
h asUNIX stations, high performan
e 
omputers (e.g. Cran�eld University SGI CRAYORIGIN 2000 super
omputer), GAs are able to produ
e fast solutions. As a 
on-
lusion we 
an highly re
ommend that this te
hnique 
an be useful for generatingfuzzy 
ontrol parameters of a non-linear missile.4.2.2 GA tuning the FLC parametersThe steps for tuning the FLC are as follows:First, the s
aling fa
tors (SF) for inputs and outputs of the FLC are determinedbased on observation of the error, derivative of error and output responses of the�xed gain traje
tory 
ontroller for the 
losed loop system with the nominal model.The domains of (�SF to +SF ) are the most important parameter of the �A tuning,as given by Hamm and Splettstoser [88℄. The e�e
t of the domain of a fuzzy variableis exa
tly the same as that of the gain fa
tors of a non fuzzy 
ontroller. Changing theerror domain a�e
ts rise time and overshoot about three times as mu
h as 
hangingthe domain of the derivative of error [88℄. However the SFs are not in
luded in theoptimisation pro
edure in our work, they are not part of the 
hromosome stru
ture.Se
ond, the membership fun
tions have been shown to be more important to tune,rather than the rule base parameters, as detailed by Driankov et al [35℄. A modi�edterm in a term set a�e
ts one row, 
olumn or diagonal in the rule table, while a mod-
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ts a table 
ell. In our work, the membership fun
tions for ea
huniverse of dis
ourse have been 
hosen standard and uniformly spreaded. Initially,they are uniformly positioned triangles overlapping at a 50% level over the nor-malised universe of dis
ourse. Sin
e the 
ontroller is de�ned by a nonlinear 
ontrolsurfa
e in (e; Æe; u) spa
e, three term sets for ea
h variable (e; Æe; u) are designed.At the start, the �A distribution is symmetri
, and after the optimisation the �Adistribution is asymmetri
. In other words by 
hanging the distribution of theseterms within the 
ontrol variables domain, the design algorithm has been adjustingthe gains of the traje
tory fuzzy outer loop.The existing iterative approa
hes for 
hoosing the membership fun
tions �A aremanual trial and error pro
ess and la
k learning 
apability and autonomy. Theautomati
 generation of fuzzy rules and membership fun
tions 
an be approa
hedby using evolutionary algorithms and 
ategorised into four types: learning �A with�xed fuzzy rules, as Bonivento et al [84℄; learning fuzzy rules with �xed �A; learningfuzzy rules and �A in stages, �rst evolving good fuzzy rule sets using �xed �A, thentuning �A using the derived fuzzy rule sets; learning fuzzy rules and �A simulta-neously as Hong et al [97℄, Liska and Melsheimer [98℄. Ea
h 
hromosome in [97℄
onsist of an intermediary fuzzy rule set and its asso
iated �A. This allows the GAoperators to integrate multiple fuzzy rule sets and their �A at the same time. This isthe way we have 
hosen to generate the FLC parameters of the traje
tory 
ontroller.Further tuning near the optimum 
an also be a
hieved by using a 
onjugate gradi-ent method [98℄. GAs have also been applied to FLC design by Ng and Li [99℄ forsear
hing poorly understood irregular and 
omplex spa
es. Forty nine bits have beenused to form the rule base stru
ture where a single bit represents ea
h 
ontrol a
tion.The proposed framework of our workmaintains a population of fuzzy rule setswith their membership fun
tions and usesthe evolutionary algorithm to automati-
ally derive the resulting fuzzy knowledgebase. A hybrid real valued-binary 
hro-mosome is used to de�ne ea
h individualfuzzy system. The real valued parame-ters are de�ned as being the [4a;4b;4
℄values shown in �g.4.2.2, whi
h lie inrange (0; 1℄. Triangular shapes are usedfor the membership fun
tions. By vary-ing 4a;4b;4
, the 
entre of ea
h �A arevarying whi
h 
hanges the shapes of themembership fun
tions. a∆ b∆ c∆

µ=1

e maxe= 0Figure 4.2.2 Membership fun
tionsFive membership fun
tions are used for ea
h input and output, for better 
losedloop performan
e. Next the rule base stru
ture is de�ned. The binary 
omponent



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 89shown in �g. 4.4 en
odes the set of rules used in the system. The membership fun
-tions �k of the output Ok for ea
h rule is either on or o� (0/1) and 
orresponds tothe form:if Ai is negative small AND Bj is zero then Ok is negative small (4.2)where Ai denotes membership fun
tion i of input A (i.e. error), Bj denotes mem-bership fun
tion j of input B (i.e. derivative of error), and Ok denotes membershipfun
tion k of the output O (i.e. 
ontrol a
tion). In that way the number of �i forea
h output variable involved in ea
h rule is allowed to 
hange dynami
ally duringthe GA sear
h. This pro
ess allows a full set of rules to be developed for the fuzzysystem, but maintains a �xed length 
hromosome. This leads to a 
hromosomewith 12 real valued genes for two inputs and one output and with 125 binary genesfor the rule base. For simpli
ity �g. 4.4 shows only four membership fun
tions ofreal-binary 
oding of the FLC. The length of the 
hromosome is N:r = r2:r = r3,where N is the number of rules and r is the number of membership fun
tions. Thesimulations were 
arried on Unix workstation with a pro
essor speed of 300 MHz.When using multi-obje
tive optimisation and real-binary 
oding for the rule basestru
ture, approximately 12 hours were needed for the GA to optimise the 
ontrolparameters if only one demand was required. If ea
h 
hromosome is evaluated onthree trials (i.e. on three di�erent demands), then 36 hours 
omputational timeis needed. By using real-binary 
oding of the 
hromosome stru
ture, the in
reaseof number of membership fun
tions leads to signi�
ant in
rease on the size of therule base stru
ture whi
h is very ineÆ
ient 
omputationally speaking. However,produ
es 
ontrol surfa
es whi
h are more robust on parametri
 un
ertainties. Alsowhen 6 membership fun
tions are used, the length of the 
hromosome is r3 = 216bits long. The maximum number of generations used to stop the evolution pro
essis not enough to tune the rules and performan
e requirements are not met.In order to de
rease pro
essing time, the 
hromosome stru
ture was modi�ed toreal-integer 
oding, as shown in �g. 4.5. This redu
es the length of the 
hromosomeby a fa
tor r, where r is the number of membership fun
tions. In this 
ase ea
hrule 
an �re only one membership fun
tion at the time. Zero is used when a rule isnot �red. For evaluations of a 
hromosome on one trial only (i.e. one set of model
oeÆ
ients and one required demand), the pro
essing time de
reased from 12 downto 5 hours.The fuzzy system uses produ
t for the member fun
tion `AND'. The `OR' fun
-tion is not required as the rules are all expressed as `AND' terms. The impli
ationmethod 
hooses the minimum value and 
rops the output member fun
tions. Theaggregation method 
hooses the maximum values of the set of member fun
tions. A
entroid approa
h is used to defuzzify the output.The evolutionary algorithm follows the usual format of ranking, sele
tion, 
rossover,mutation and evaluation but with the real and binary parts of the 
hromosomesbeing pro
essed separately. The number of o�springs that are generated is the same
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e a total repla
ement poli
y is used. To evaluate theperforman
e of ea
h 
hromosome, a �tness fun
tion has been de�ned su
h that toassess the 
losed loop behaviour of the autopilot system. Hen
e four obje
tives su
has: rise time, steady state error, overshoot and settling time have been used. Threeof these obje
tives: overshoot, rise and settling time have been treated as penal-ties in order to meet the spe
i�ed requirements, i.e., if the parameters are within arequired range, the penalty is zero and the penalty in
reases when a threshold is ex-
eeded. A multi-obje
tive approa
h simpli�ed to a s
alar optimisation is 
onsideredin this 
hapter by 
ombining the four 
losed loop performan
e 
riteria in one fun
-tion O = O1 +O2 +O3 +O4, with O1 used for steady state error, O2 for overshoot,O3 for rise time and O4 for settling time. However, in Chapter 5, these 
riteria aretreated separately, hen
e a multi-obje
tive optimisation problem is also 
onsidered.
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Figure 4.4: FLC 
hromosome stru
ture with real-binary 
odingThe eÆ
ien
y of GAs 
an be a�e
ted by population size. A small population ismost likely to result in insuÆ
ient 
overage of the problem spa
e. Large popu-lations have the advantage of preventing premature 
onvergen
e to lo
al optimainstead of global optima. Large populations 
an however in
rease 
omputationaltime, hen
e a 
ompromise is usually required, as noti
ed by Trebi-Ollennu [24℄. The
hoi
e of population size is a problem dependent. In our work, the evolutionaryalgorithm was run with a population size of 20 individuals and for 300 generations.These values were suggested by an expert and were found to be suÆ
ient for theproblem.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 91

1 2 43

a b c

1 2 43

e e ν ... ....
9 Real Genes

1

1

2

3

4

2 3 4e
e
.

3 0 4 1

0 1 4

1 2 1 3

1 3 3

03

16 Integer Genes

1

3

3

Figure 4.5: FLC 
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ture with real-integer 
oding
The fuzzy 
ontrol parameters were tuned on a large set of randomly generated mod-els of aerodynami
 
oeÆ
ients. These models are simulated within the polynomialsof 0Æ to 45Æ roll angle. The polynomials are des
ribed in tables 2.1 and 2.2 of Chapter2. Ea
h individual (i.e. an alternative traje
tory 
ontroller) has been evaluated on�ve trials, i.e. randomly generated missile models ( _x = fi+4fi+(gi+4gi)u) wherei = 1; : : : ; 5 and 4fi;4gi are non-linear fun
tions of the aerodynami
 
oeÆ
ients(Cyv; Cy� ; X
p; Cnr). In that 
ase �ve su

essive evaluations of the same 
hromosomeinformation returned �ve sets of obje
tives. The maximum obje
tive value of the�ve trials (i.e. steady state error if multi-obje
tive optimisation is 
onsidered) hasbeen returned to the GA for evaluation of the 
hromosome. After all the individualshave been ranked, 
rossover and mutation operators are pro
essed separately forthe real and the binary part of the 
hromosome. The number of o�springs that aregenerated are the same as the number of parents, hen
e a total repla
ement poli
yhas been used. The results shown in �g. 4.8 of Chapter 4 are obtained for the entire
ight range of 0Æ to 45Æ roll angle. For the s
alar optimisation problem, the algo-rithm has a
hieved 
onvergen
e in approximate three hours 
omputational time ona 300 MHz Unix workstation. During the optimisation 6000 fuzzy logi
 
ontrollerswere evaluated. However when this algorithm is applied to multi-obje
tive optimi-sation problem, see �g. 4.6, two problems arise.First, the GA pro
ess has taken approximately 12 hours whi
h was 
omputation-ally ineÆ
ient. For ea
h generation, Pareto solutions that are identi�ed are added
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Figure 4.6: GA Multi-obje
tive optimisationto the existing Pareto solution set. This produ
es a population with more indi-viduals for the GA to evaluate at ea
h generation. Be
ause 80% of the popula-tion were non-dominated solutions, they were on the Pareto front, hen
e at ea
hnext generation, the number of individuals to evaluate was progressively expanding.Also when a multi-obje
tive optimisation was 
onsidered, the ranking pro
ess hastaken longer be
ause ea
h 
ontroller was evaluated based on four de
ision variables(Eri; T si; T ri; OSi shown in �g. 4.6), whi
h de�nes the 
losed loop performan
e
riteria su
h as steady state error, settling time, rise time and overshoot.Se
ond, we 
annot maintain robustness be
ause the Pareto front was noisy, hen
ewas never 
onsistent. Also we 
annot a�ord to test on many random models to
over the parameter set to suÆ
iently maintain good solutions from one generationto the next one, be
ause we have not exer
ised enough models to be statisti
ally
onsistent. There were many good solutions within ea
h generation whi
h were lo
albut were lost be
ause in the next generation they were tested on a 
ompletely newrandomly generated models. Sin
e the good solutions were lost it was not possibleto breed from them, and hen
e maintain a robust 
ontrol surfa
e towards modelun
ertainties whi
h may arise within su
h large range of aerodynami
 
oeÆ
ients of0Æ to 45Æ roll angle.For solving su
h a noisy problem non-dominated sorting may not be the best wayof ranking the individuals. Some other te
hniques su
h as MOGA, MOPSEA wouldprovide better performan
e, as detailed by Hughes [100℄.The 
omputation eÆ
ien
y of the GA algorithm 
an be improved if a 
oevolu-tionary approa
h is possible to apply. For example Pena-Reyes and Sipper [101℄have introdu
ed the fuzzy 
ooperative 
oevolution to a real world problem su
h asbreast 
an
er diagnosis. In their framework the two 
oevolving spe
ies were de�ned
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tively as membership fun
tions and rules where the �tness of the individuals(membership fun
tions) depend on their ability to 
olaborate with individuals fromthe other spe
ies (fuzzy rules). Further understandings of their algorithm is underinvestigation.Stability issue of the FLCA stability analysis of the nonlinear fuzzy 
ontroller in a 
losed-loop 
on�gura-tion with the equivalent feedba
k linearized system is very diÆ
ult. The amountof noise 
oming from the aerodynami
 
oeÆ
ients have 
aused unpredi
table para-metri
 un
ertainties sin
e we 
annot measure them, neither we do know how manyaerodynami
 for
es or moments will be distributed, hen
e impossible to analyti-
ally analyse. The available analyti
al methods from nonlinear system theory su
has Lyapunov or Popov 
riterion require an a

urate des
ription of the pro
ess andthe stability proofs 
an generally only be applied under very spe
ial 
onditions andvalid only for simpli�ed models. The resulting 
ontrollers are usually 
onservativebe
ause of the 
onservative nature of the stability 
riteria. Therefore the analysisof fuzzy 
ontrollers in pra
ti
e are mostly examined by simulation studies.4.2.3 Results for the s
alar optimisation problemFig. 4.7 shows the fuzzy surfa
e of the traje
tory 
ontroller generated by the evo-lutionary algorithm. This has been developed with randomly generated modelsexer
ising the full range of aerodynami
 
oeÆ
ients from 0Æ to 45Æ roll angles. Thepolynomial models for 0Æ and 45Æ are de�ned in tables 2.1 and 2.2, in Se
tion 2.8.1of Chapter 2.Model variations at roll angle 45Æ have 
aused large steady state error to the a

el-eration and the velo
ity responses, hen
e by using �xed gain traje
tory 
ontrollertra
king performan
e has not been a
hieved, as shown in �g. 4.8a. On the otherhand the performan
e of the fuzzy 
ontroller has been veri�ed by 200 random trialsand the results have been summarised in �g. 4.8b, where the solid line shows theresponses for the model at 0Æ roll angle, and the dashed line is for the model at 45Æroll angle.The desired a

eleration ad is a
hieved by using the non-linear equation ad = f(v)whi
h is shown in more details in Chapter 2. Therefore the desired a

eleration is afun
tion of the lateral velo
ity demand. The error dynami
s are 
onstru
ted usingthe ad signal and the feedba
k of the a
tual states - velo
ity, rate, and a

eleration.The results for lateral a

eleration demand 10 m=se
2 are shown in �g. 4.8. Thelateral a

eleration is 
ontrolled through side-slip velo
ity and the 
losed loop per-forman
e 
riteria are de�ned for the side-slip velo
ity. As a result, the steady stateerror on lateral a

eleration has not been 
orre
ted by the fuzzy traje
tory 
on-troller when the model at roll angle 45Æ was used (see the dashed line of �g. 4.8b).
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Figure 4.7: Surfa
e of two input, one output fuzzy 
ontrollerHowever, for both models, at roll angle 0Æ and 45Æ, the fuzzy traje
tory 
ontrollerhas a
hieved satisfa
tory tra
king performan
e for side-slip velo
ity response withalmost no steady state error and no overshoot, shown by Blumel et al [102℄.
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a)Fixed gain traje
tory 
ontroller b)Fuzzy gain traje
tory 
ontrollerFigure 4.8: Results for 10 m=se
2 lateral a

eleration demandsolid line - model parameters at 0Æ roll angledashed line - model parameters at 45Æ roll angleConversely to �g. 4.7, the fuzzy 
ontrol surfa
e shown in �g. 4.9 has been devel-oped with the model exer
ising the nominal aerodynami
 
oeÆ
ients only. Fig. 4.9ashows the full fuzzy surfa
e of the traje
tory 
ontroller generated by the evolution-ary algorithm. Fig. 4.9b shows the se
tion of the surfa
e that has been used, whi
his only a small area. These results are obtained by using four membership fun
tionsfor the fuzzy logi
 
ontroller, whi
h were not enough to a
hieve good 
losed loopperforman
e. The 
ontour of 4.9b shows the usage of the di�erent regions (i.e. the�red rules of the full 
ontrol surfa
e). It is 
lear that only a small proportion is
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tually used and therefore `tuned' by the evolutionary algorithm. The most �redrule, 70%, is when both, the error and the derivative of the error, are zero whi
h isthe steady state area of the response.
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a)FLC surfa
e b)FLC used areaFigure 4.9: Fuzzy 
ontrol surfa
e found by GAInitially a set of models was generated by randomly sele
ting a roll angle between0Æ and 45Æ and 
al
ulating the 
oeÆ
ients for the randomly sele
ted value. Varia-tions in the 
oeÆ
ients Cyv; Cy� ; X
p; Cnr were also randomly generated at the sametime. This produ
ed a large set of models whi
h proved time 
onsuming and soa vertex set of models was determined, as shown in �g. 4.10. The minimum andmaximum ranges of the aerodynami
 
oeÆ
ients were 
hosen to give approximately10% 
hange in steady state performan
e for a 1g demand and 25% 
hange for a 15gdemand. This range was judged to be realisti
 based on the error analysis in theHorton report [69℄. When applying higher demands up to 15g, some of the varia-tions in 
oeÆ
ients at their vertex points 
ause big steady state errors on side-slipvelo
ities but small on lateral a

elerations and some of the variations 
ause smallsteady state errors on side-slip velo
ities but big on lateral a

elerations, as shownin �g. 4.10. A de
ision was made to 
ontrol the side-slip velo
ity rather than thea

eleration in order to simplify the problem. The extra 
omplexity of a

eleration
ontrol would slow down the optimisation pro
ess.
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Figure 4.10: Fixed gain 
losed loop performan
eFor the worst vertex points models (i.e. models: 3, 4, 6, 8 for whi
h velo
-ity or a

eleration responses have their extreme, minimum Amin; Vmin or maximumAmax; Vmax, values), the feedba
k linearized loop with �xed gain traje
tory 
ontrollerhas not been able to provide robust performan
e, hen
e tra
king is a
hieved with�7% on steady state error, as shown in �g. 4.11.The fuzzy gain traje
tory 
ontroller has been tuned for nominal aerodynami
 
oef-�
ients, for a side-slip velo
ity demand of 2.57 m=se
 
orresponding to 1g laterala

eleration. Then, the FLC has been tested on parameter variations on the aero-dynami
 
oeÆ
ients, Cyz; Cyv; X
p; Cnr , for the worst vertex points models. Robustperforman
e within 2% on steady state error has been a
hieved. For the abovementioned un
ertain multi-model airframe dynami
s, the fuzzy gain traje
tory 
on-troller has improved the robustness by 5%, as shown in �g. 4.11.
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hedulingThe FLC has been tuned for 5g lateral a

eleration demand only. The responsesare very slow on rise time but good on steady state error, as shown in �g. 4.12.However, for demands higher than 8g, in this example 10g demand is demonstrated,the FLC has not been able to 
ontrol the velo
ity to the required demand. Thisis obvious, be
ause the range of the s
aling input-output domain has been 
hangedwhi
h has automati
ally altered the rule based stru
ture. Therefore, a 
hange ofthe FLC s
aling domain is required for any other demand di�erent than the tunedone. An interpolation for a large set of demands (i.e. 1g; : : : ; 15g) and their FLC'sinput-output s
aling fa
tors have been proposed in the next se
tion.
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3gFLC tunned only for 5g Phase PortraitFigure 4.12: Multiple demands
4.3.1 Polynomial �t of the multiple demands for FLCs s
al-ing fa
torsInput-Output s
alingThe membership fun
tions de�ning the fuzzy values of 
ontroller inputs and 
on-troller outputs have been de�ned o�-line, on a 
ommon normalized domain. Thismeans that the a
tual physi
al values of the 
ontroller's inputs and outputs aremapped onto the same predetermined normalized domain. This mapping is 
allednormalization and it is done by the so-
alled normalization fa
tors. Input s
aling isthe multipli
ation of a physi
al, 
risp 
ontroller input with a normalization fa
tor



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 99so that it is mapped onto the normalized domain. Output s
aling is the multipli-
ation of a normalized 
ontroller output with a denormalization fa
tor so that itis mapped ba
k onto the physi
al domain of the 
ontroller outputs. Hen
e, fuzzi�-
ation, rule �ring and defuzzi�
ation 
an be designed independently of the a
tualphysi
al domains of the 
ontroller inputs and 
ontroller outputs. The s
aling fa
tors,whi
h des
ribe input normalization and output denormalization, play a roll similarto that of the gain 
oeÆ
ients in a 
onventional 
ontroller. In other words, theyare of utmost importan
e with respe
t to the 
ontroller performan
e and stabilityrelated issues, i.e. they are the sour
e of possible instabilities, os
illation problemsand deteriorated damping e�e
ts as noted by Palm [85℄. In Bonissone's 
hapter ofFantuzzi's book [84℄, the s
aling fa
tors of the FLC have been tuned by GAs. Sometime s
aling fa
tors are used to �ne tune the performan
e of the system in a similarway to the tuning of a PID 
ontroller. In [103℄ the �ring of the rules in a fuzzy
ontroller has been shown by Chen with di�erent values of the s
aling fa
tors. Theadjustment of the fa
tors is equivalent to the re-
onstru
tion of the membershipfun
tions in a rule-base, and should be done 
arefully if the linguisti
 meaning ofthe rule-base has to be preserved. It is inappropriate to tune the input s
aling fa
-tors if the rule-base stru
ture is 
onstru
ted by experts. Fine tuning 
an be bettera
hieved by tuning the membership fun
tions only, so that the linguisti
 meaningof the rule-base is preserved.Bearing in mind those valuable �ndings we 
ould suggest in future investigations toin
lude the optimisation of the FLC's s
aling fa
tors in our work in the presen
e ofun
ertainties. However for now, the three s
aling fa
tors (error, derivative of errorand output) for ea
h required lateral a

eleration demand 1g; 2g; : : : ; 15g have beendetermined via simulations based on the results obtained with �xed gain traje
tory
ontroller for the nominal model. Then a polynomial �tting has been used to in-terpolate between the required demands for side-slip velo
ities in order to obtainthe s
aling fa
tors of the FLC's inputs and outputs for ea
h demand. As a result,smooth transition of the s
aling fa
tors has been a
hieved when a di�erent demandwas required within the above mentioned range.There are two possible ways of applying polynomial �tting: One, is to use thelinear relationship between the required side-slip velo
ity demands and their s
alingfa
tors; Two, is to use the non-linear relationship between the required a

elerationdemands and the s
aling fa
tors for the velo
ity inputs and outputs of the fuzzy
ontroller.By applying the linear relationship type of polynomial �tting, it has been foundthat the �rst s
aling fa
tor for the error is a 1st order polynomial and the polyno-mial 
urve is shown in �g. 4.13.SCv�er = f(vd) = vd (4.3)where vd represents the required side-slip velo
ity demand for the required laterala

eleration respe
tively. The s
aling fa
tor for the derivative of error is of a 3rd



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 100order polynomial: SCv�erd = f(vd) = p3v3d + p2v2d + p1vd + p0 (4.4)and the output s
aling fa
tor is a 1st order polynomial.SCout = f(vd) = q1vd + q0 (4.5)where p0; : : : ; p3 and q0; q1 are the polynomial �t 
oeÆ
ients for ea
h s
aling fa
torsrespe
tively.The se
ond way is to interpolate between the required lateral a

eleration demandsand their velo
ity s
aling fa
tors respe
tively. The non-linear relationship (velo
ity-a

eleration) 
an be seen in �g. 4.14. Again the fuzzy logi
 engine has been s
aledbetween (0; 1). In order to a
hieve the 
orre
t s
aling fa
tors for the inputs andoutput of the fuzzy traje
tory 
ontroller we have interpolated the data between anumber of required demands for lateral a

elerations (i.e.1g; 2g; : : : ; 15g) and their
orresponding s
aling fa
tors for the error and derivative of error of side-slip velo
ityrespe
tively.For the �rst s
aling fa
tor a 4th order polynomial �t has been obtained and thepolynomial 
urve is shown in �g. 4.14.SCv�er = f(ad) = b4a4d + b3a3d + b2a2d + b1ad + b0 (4.6)where ad represents the required lateral a

eleration demand and SCv�er the 
orre-sponding s
aling fa
tor respe
tively. The s
aling fa
tor for the derivative of error isa 3rd order polynomial.SCv�erd = f(ad) = 
3a3d + 
2a2d + 
1ad + 
0 (4.7)and the s
aling fa
tor for the output is a 4th order polynomial.SCout = f(ad) = d4a4d + d3a3d + d2a2d + d1ad + d0 (4.8)where b0; : : : ; b4 and 
0; : : : ; 
3 and d0; : : : ; d4 are the polynomial �t 
oeÆ
ients forea
h s
aling fa
tors respe
tively.
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eleration de-mandsIn a situation when a 
hange of a demand is required, smooth transition and gradualinterpolation between the fuzzy 
ontrol surfa
es has been automati
ally a
hieved.The FLC has been simultaneously tuned for two di�erent demands, in this 
ase5g and 15g. The resulting rule base stru
ture and membership fun
tion's shapeshave been a
hieved by the s
aling fa
tors determined through the polynomial �tting.The linear type relationship to determine the polynomials for ea
h s
aling fa
tor hasbeen used. The more points we use, the better �t we get. The purpose of su
h atuning pro
ess is to improve the system performan
e with the intention to maintainthe linguisti
 meaning of the fuzzy 
ontroller, whi
h has been validated for ea
hrequired demand.The FLC 
ontrol surfa
e is shown on the left side of �g. 4.15. It has been tested fora variety of required demands in this 
ase 1g; : : : ; 15g. It 
an be seen that for ea
hdemand, the FLC s
aling fa
tors have 
hanged automati
ally and desired tra
kinghas been a
hieved. However the linguisti
 meaning of the rule base stru
ture hasbeen altered and variations in some rules 
an be seen. The abs
issa of the right
olumn �gures have presented the phase portrait for the side-slip velo
ity errors andtheir derivatives. Indire
t lateral a

eleration 
ontrol has also been a
hieved by re-quiring di�erent side-slip velo
ity demands (for example 1g; 5g; 10g; 15g), as shownin �g. 4.16.
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tory Controller
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Figure 4.17: Fixed gain traje
tory 
ontroller for multiple demands 15g, 10g, 5g, 1gIn order to 
ompare the performan
e of the �xed gain and the fuzzy gain traje
tory
ontrollers, we have demonstrated in �g. 4.17 and �g. 4.18 the side-slip velo
ity andlateral a

eleration responses for a set of di�erent demands (1g,5g,10g,15g). Thefuzzy traje
tory 
ontroller has been found to be superior to the �xed gain one. Thequality of the responses has been improoved on steady state error and overshoot.The feedba
k linearizable system has been modi�ed by negle
ting the g term inthe system when feeding ba
k the a

eleration. This rendered a signi�
ant steadystate error whi
h has not been 
orre
ted by the �xed gain 
ontroller espe
ially whenhigher demands were required.Fuzzy Logi
 Traje
tory Controller
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lusionsA fuzzy nonlinear traje
tory 
ontroller has been proposed within the outer loopto improve the robustness of the Feedba
k Linearization with respe
t to paramet-ri
 un
ertainties 
aused by 
hanges of the aerodynami
 
oeÆ
ients due to di�erent
ight 
onditions. The autopilot design has been found to be robust on mass 
hanges.The fuzzy logi
-feedba
k linearized 
ontrol design has been found to be more ef-fe
tive for improving the transient and steady state performan
es than the �xedgain-feedba
k linearized one. The ability of the FLC to improve the 
losed loopperforman
e while managing un
ertainties has been shown.The fuzzy inferen
ing pro
edure 
an provide the means of systemati
ally synthe-sizing various fuzzy rules to produ
e de
ision a
tions so that a 
omplex non-linearmissile system 
an be 
ontrolled. Fuzzy reasoning builds the understanding of im-pre
ision into the pro
ess, hen
e provide the ability to 
ontrol the system in anun
ertain environment and derive smooth 
ontrol a
tion for un
ertain system be-haviour whi
h is one of the most important 
hara
teristi
s of an intelligent 
ontrolsystem.The FLC is of nonlinear nature, hen
e 
an be designed to 
apture the nonlineardynami
s of a system. By in
reasing the number of the membership fun
tions, theFLC 
an a
hieve better 
losed loop performan
e, but for the loss of 
omputationaltime, be
ause the number of rules in
rease signi�
antly. When a large number ofrules must be 
aptured and stored, the FLC implementation 
an be expensive (
om-putationally speaking).The trial and error me
hanism for tuning FLC parameters has been repla
ed by evo-lutionary algorithm optimisation using GAs for better adaptation and robustness.The hybrid 
ontrol strategy has been validated via extensive 
omputer simulations.A fuzzy logi
 s
heduled 
ontroller for missile autopilot design has been examined.The fuzzy logi
 input output s
aling fa
tors have been determined by using polyno-mial �tting for a large range (1g up to 15g) of multiple a

eleration demands.This 
hapter has shown that fuzzy 
ontrollers 
an be used for solving engineeringproblems allowing the designer to investigate the properties of the system. Thesesystems are reliable over wide variations in plant dynami
s and o�er 
ontrol de-signers a more elegant solution for su
h a 
omplex autopilot design system. Alsohardware 
hip and board level solutions are available, as stated by M
neill andFreiberger [86℄, hen
e fuzzy 
ontrol systems 
an be prototyped.The next 
hapter will address the optimisation of the fuzzy traje
tory 
ontrol pa-rameters from multi-obje
tive point a view.



Chapter 5Multi-obje
tive optimisation usingGAMany problems involve simultaneous optimisation of multiple obje
tives. In prin-
iple, multi-obje
tive optimisation is very di�erent from single obje
tive optimisa-tion. In single obje
tive optimisation, one attempts to obtain the best design orde
ision, whi
h is usually a global minimum or global maximum, whi
hever is thea

epted de�nition of optimum. In the 
ase of multiple obje
tives one solution thatis best with respe
t to all obje
tives may not exist. These solutions are knownas non-dominated. Sin
e none of the solutions in the non-dominated set is abso-lutely better than any other, any one 
an be an a

eptable solution. The 
hoi
e ofone solution over the others requires problem knowledge and problem related fa
tors.One of the main requirements for an autopilot design is to yield a response asfast as possible with the minimum of overshoot so that any 
ommand is attainedqui
kly and is of the required magnitude. For low g demands only a slight overshootof short duration is usually a

eptable, sin
e overshoot 
an 
ompensate for loss ofa

eleration during the initial transient. For high g demands, overshoot is usuallyuna

eptable sin
e the airframe stru
tural load limit may be ex
eeded as stated byLin [104℄. In order for the autopilot to yield an a

urate and fast response it is veryimportant to assess the quality of lateral a

eleration response, whi
h is quanti�edin terms of rise time, settling time, maximum per
entage overshoot with almost nosteady state error. This means that while tuning the traje
tory 
ontrol parameters,the optimisation pro
ess should 
onsider these four 
riteria simultaneously, hen
ethe single optimisation problem has be
ome one of multi-obje
tive optimisation,whi
h provides the designer with multiple solutions. Then, question 
an be asked:Is the engineer more interested in fast rise time responses or is a slow rise timewith no overshoot satisfa
tory? The four 
riteria are 
on
i
ting in nature and a
ompromise solution must be used. It is interesting to mentioned here that in mostmulti-obje
tive optimisation 
ases it is not 
lear what kind of preferen
es shouldbe spe
i�ed for ea
h obje
tive, whereas in this parti
ular 
ase the missile engineeris interested in a
hieving 
losed loop performan
e values within spe
i�ed ranges inorder that the missile 
an respond as fast as possible to guidan
e 
ommands under108
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ight 
onditions. The determination of these ranges has been proposed by theauthor in two di�erent ways:1. using referen
e points (ideal, maximum and minimum values for ea
h obje
-tive), as dis
ussed in Se
tion 5.42. handling the obje
tives as penalties based on fuzzy logi
 membership fun
tions,as dis
ussed in Se
tion 5.5.Both ways in
orporate preferen
e information into the geneti
 algorithm optimisa-tion pro
ess to dire
t the sear
h towards feasible areas whi
h satisfy spe
i�
 valuesof the obje
tives. A Pareto based approa
h using non-dominated sorting is used toprodu
e optimal solutions.The aim of this 
hapter is to produ
e multiple solutions (alternative fuzzy tra-je
tory 
ontrollers) whi
h allow the designer to sele
t the best and to investigate theproperties of the system.5.1 Multi-obje
tive optimisation problemMulti-obje
tive optimisation (also 
alled multi-
riteria optimisation or ve
tor opti-misation) has been de�ned by O
y
zka [105℄ as:the problem of �nding a ve
tor of de
ision variables whi
h satis�es 
onstraints andoptimises a ve
tor fun
tion whose elements represent the obje
tive fun
tions. Thesefun
tions form a mathemati
al des
ription of performan
e 
riteria whi
h are usuallyin 
on
i
t with ea
h other. Hen
e, the term 'optimise' means �nding su
h a solutionwhi
h would give the values of all the obje
tive fun
tions a

eptable to the designer.It 
an be stated as follows: Find the ve
torx� = [x�1; x�2; : : : ; x�n℄Twhi
h will satisfy the m inequality 
onstraints:gi(x) � 0; i = 1; 2; : : : ; mthe p equality 
onstraints hi(x) = 0; i = 1; 2; : : : ; pand optimises the ve
tor fun
tionf(x) = [f1(x); f2(x); : : : ; fk(x)℄Twhere x = [x1; x2; : : : ; xn℄T is the ve
tor of de
ision variables. The problem is todetermine the parti
ular set of de
ision variables whi
h yields the optimum values
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tive fun
tions. The 
onstraints de�ne the feasible region F and anypoint x in F de�nes a feasible solution. The ve
tor fun
tion f(x) is a fun
tion whi
hmaps the set F in the set X whi
h represents all possible values of the obje
tivefun
tions. The k 
omponents of the ve
tor f(x) represent the non-
ommensurable
riteria1 whi
h must be 
onsidered. The 
onstraints gi(x) and hi(x) represent therestri
tion imposed on the de
ision variables. The ve
tor x� denote the optimalsolutions (normally there will be more than one).The meaning of optimum is not well de�ned in this 
ontext, sin
e it is very rareto get x� su
h that for all i = 1; 2; : : : ; k^x2X(fi(x�) � fi(x))In that 
ase, x� would be a desirable solution. However, normally the 
ase in whi
hall the fi(x) have a minimum in F at a 
ommon point x� does not o

ur in pra
ti
eand in that 
ase 
ertain 
riteria need to be established to determine what would be
onsidered as an 'optimal' solution.5.1.1 Ideal ve
torThe ve
tor f � is an ideal ve
tor (the demanded level ve
tor) in the obje
tive spa
ewhi
h 
ontains referen
e values for ea
h 
riteria. The values f �j , j 2 1; : : : ; m 
anbe spe
i�ed by the de
ision maker or 
an be determined by solving ea
h singleoptimisation problem separately:f � = [minf1(x); minf2(x); : : : ; minfm(x)℄Generally the ve
tor f � is not attainable.5.1.2 Pareto OptimumThe 
on
ept of Pareto optimum was formulated by the e
onomist Vilfredo Paretoin the 19th 
entury. A point x� 2 F is Pareto optimal if for every x 2 F either^i2I(fi(x) = fi(x�))or there is at least one i 2 I su
h thatfi(x) > fi(x�)This de�nition says that x� is Pareto optimal if there exists no feasible ve
tor x whi
hwould de
rease some 
riterion without 
ausing a simultaneous in
rease in at leastone other 
riterion. The Pareto optimum almost always gives not a single solution,but rather a set of solutions 
alled non-inferior or non-dominated solutions.1Non-
ommensurable means that the values of the obje
tive fun
tions are expressed in di�erentunits



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1115.1.3 Pareto frontThe minima in the Pareto sense are in the lo
us of the tangent points of the obje
tivefun
tions. The region of points is 
alled Pareto front. It is not easy to �nd ananalyti
al expression of the line or surfa
e that 
ontains these points, and the normalpro
edure is to 
ompute the points F k and their 
orresponding f (F k). A point x� 2F is a weakly non-dominated solution if there is no x 2 F su
h that fi(x) < fi(x�),for i = 1; : : : ; n. A point x� 2 F is a strongly non-dominated solution if thereis no x 2 F su
h that fi(x) � fi(x�) for i = 1; : : : ; n, and for at least one valueof i, fi(x) < fi(x�). Thus, if x� is strongly non-dominated, it is also weakly non-dominated, but the 
onverse is not ne
essarily true.5.2 Review of multi-obje
tiveGAs-based approa
hesThe motivation to use an evolutionary te
hnique su
h as Geneti
 Algorithms (GAs)for multi-obje
tive optimisation problems is be
ause GAs are very useful for �ndingglobal solutions when applied to multi-modal noisy sear
h spa
es. GAs work witha population of points as it is natural to use them to 
apture a number of solutionssimultaneously and are powerful in their sear
h for improvement. Hwang et al [106℄have provided an extensive survey of multiple obje
tive de
ision making approa
hes.Fonse
a and Fleming [107℄, followed later on by Coello [108℄ has detailed many ofthem in the 
ontext of geneti
 algorithms optimisation. Only a brief dis
ussion willbe given here in order to give some idea of the many possible ways of ta
kling amulti-obje
tive optimisation problem.Coello [108℄ has distinguished between three di�erent groups: aggregating ('naive'),non - aggregating (none Pareto based) and Pareto based approa
hes. The �rst group(weighted approa
h, goal programming, goal attainment and 
onstraint method)work on the prin
iples of 
ombining all the obje
tives into a single one. There aresome obvious problems su
h as providing some a

urate s
alar information on therange of the obje
tives to avoid having one of them dominate the others. Thisimplies that the behaviour of ea
h of the obje
tive fun
tions should be known butin real world appli
ations this 
ould be a very expensive pro
ess (
omputationallyspeaking) and is not always possible. However, this is the simplest approa
h andone of the most eÆ
ient pro
edures, be
ause no further intera
tion with the de
i-sion maker is required. Also, these approa
hes are appli
able in 
ases when it isne
essary to assign more importan
e to 
ertain obje
tives by using weights. Mostresear
hers like Begg et al [109℄, Gen et al [110℄ use a simple linear 
ombinationof the obje
tives and then generate the trade-o� surfa
e by varying the weights.The approa
h has the disadvantage of missing the 
on
ave portions of the trade-o�surfa
e as detailed by Ritzel et al [111℄. In addition, if the de
ision maker (DM)has to assign targets or goals (goal programming) that have to be a
hieved forea
h obje
tive, the obje
tive fun
tion will try to minimize the absolute deviations
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tives. This idea started from Zeleny [112℄ is 
alled'the ideal displa
ement' and later on was used by Weistro�er and Narula [113℄ asthe referen
e point approa
h, whi
h has been further expanded to the optimisti
 orpessimisti
 approa
h by Weistro�er [114℄. In our resear
h we have used this ideato spe
ify goals for ea
h obje
tive. The di�eren
e is that it is 
ombined with non-dominated GA sorting, whi
h is a Pareto based approa
h, to provide the GAs withpreferable dire
tions in whi
h to sear
h for desirable solutions. Details are given inSe
tion 5.4. Some appli
ations of goal programming 
ombined with GA are pub-lished in the literature by Sandgren [115℄, Wienke et al [116℄. On the other handWilson and Ma
leod [117℄ eli
ited some problems asso
iated with the goal attain-ment method. The main weakness is that, if there are two 
andidate solutionswhi
h are the same in one obje
tive fun
tion value, but di�erent in the other, theywill still have the same goal attainment value for their two obje
tives, whi
h meansfor the GAs that none will be better than the others. Another te
hnique is the
onstraint method, whi
h is based on minimization of one (the most preferred)obje
tive fun
tion and 
onsidering the other obje
tives as 
onstraints bounded bysome allowable levels �i. Hen
e, a single obje
tive minimization is 
arried out forthe most relevant obje
tive fun
tion subje
t to additional 
onstraints on the otherobje
tive fun
tions. The 
onstrained levels are then altered to generate the entirePareto optima set. This approa
h was suggested by Ritzel et al [111℄ as a simpleand naive way of solving multiple optimisation problems using geneti
 algorithms.The idea is to 
ode the GA in su
h a way that all the obje
tives ex
ept for oneare kept 
onstant(
onstrained to a single value) and the remaining obje
tive is the�tness fun
tion for the GA. Thus, through a pro
ess of running the GA numeroustimes with di�erent values of the 
onstrained obje
tives, a trade-o� surfa
e 
an bedeveloped. The obvious drawba
k is that it is time 
onsuming and also tends to�nd weakly non-dominated solutions.The other big group within multi-obje
tive optimisation is the non-aggregatingapproa
hes that are not Pareto based. The ve
tor evaluated geneti
 algorithm -(VEGA) di�ers from simple geneti
 algorithm only in the way in whi
h sele
tionis performed. At ea
h generation, a number of sub-populations is generated by per-forming proportional sele
tion a

ording to ea
h obje
tive fun
tion in turn. For aproblem with k obje
tives, k sub-populations of size Nk are generated, assuming atotal population size of N . These sub-populations are shu�ed together to obtaina new population of size N on whi
h the GA applies the 
rossover and mutationoperator in the usual way. Sha�er [118℄ found that the solutions are non-dominatedin a lo
al sense, be
ause their non-dominan
e is limited to the 
urrent population.An individual who is not dominated in the generation, may be
ome dominated byan individual who emerges in a later generation. This approa
h is easy to imple-ment but Ri
hardson et al [119℄ notes that the shu�ing and merging of all thesub-populations 
orresponds to averaging the �tness 
omponents asso
iated withea
h of the obje
tives. The resulting expe
ted �tness 
orresponds to a linear 
ombi-nation of the obje
tives, where the weights are dependent on the distribution of thepopulation at ea
h generation. Certain points in 
on
ave regions will not be found



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 113through this optimisation pro
edure in whi
h a linear 
ombination of obje
tives isused, regardless of the set of weights. In the Lexi
ographi
 ordering te
hnique,the obje
tives are ranked in order of importan
e by the designer. The optimumsolution is then obtained by minimizing the obje
tive fun
tions, starting with themost important one and pro
eeding a

ording to the assigned order of importan
eof the obje
tives. The use of tournament sele
tion makes an important di�eren
ewith respe
t to VEGA, be
ause the pair-wise 
omparisons of tournament sele
tionwill make s
aling information negligible (Fonse
a and Fleming [107℄), whi
h meansthat this approa
h may be able to see as 
onvex a 
on
ave trade-o� surfa
e. Theidea of Weighted Min-Max approa
h has been taken from game theory whi
hdeals with solving 
on
i
ting situations. Knowing the extremes, obtained by solv-ing the optimisation problem for ea
h 
riterion separately, the desirable solution isthe one whi
h gives the smallest values of the relative in
rements of all the obje
-tive fun
tions. Hajela and Lin [120℄ in
luded the weights for ea
h obje
tive in the
hromosome and promoted their diversity in the population through �tness sharing,hen
e providing the ability to simultaneously generate a family of Pareto-optimaldesigns 
orresponding to di�erent weighting 
oeÆ
ients in a single run of the GA. Asingle number used in the 
hromosomi
 string represented not the weight itself buta 
ombination of weights and the sharing was applied to those 
ombinations. Also,a mating restri
tion me
hanism was imposed to avoid members within a radius �matto 
ross, hen
e keeping only feasible solutions at all generations. This approa
h may
reate a very high sele
tion pressure for 
ertain 
ombinations of weights. However,the use of a sharing fa
tor may avoid premature 
onvergen
e, but it is diÆ
ult todesign. On the other hand the use of mating restri
tions and feasibility 
he
ks dur-ing the entire evolution pro
ess is a 
onstraint-handling approa
h and may not workin 
on
ave sear
h surfa
es.Finally, Pareto based approa
hes are reviewed. The basi
 idea is to �nd the setof strings in the population that are Pareto non-dominated by the rest of the popu-lation. These strings are then assigned the highest rank and eliminated from further
ontention. Another set of Pareto non-dominated strings are determined from theremaining population and are assigned the next highest rank. This pro
ess 
ontinuesuntil the population is suitably ranked. A ni
hing me
hanism su
h as sharing, asgiven by Goldberg and Ri
hardson [121℄, 
an allow the GA to maintain individualsall along the non-dominated frontier. The performan
e of Pareto ranking te
hniqueis highly dependent on an appropriate sele
tion of �share value. The main strengthis that it is less sus
eptible to the shape or 
ontinuity of the Pareto front. Gold-berg [94℄ �rst suggested the use of non-domination ranking and sele
tion to movea population toward the Pareto front. MOGA has been des
ribed by Fonse
a inZalzala and Fleming book [122℄. The rank of a 
ertain individual 
orresponds tothe number of 
hromosomes in the 
urrent population by whi
h it is dominated.All non-dominated individuals are assigned rank 1, while dominated ones are penal-ized a

ording to the population density of the 
orresponding region of the trade-o�surfa
e. To avoid premature 
onvergen
e a ni
he-formation method is used to dis-tribute the population over the Pareto optimal region, but instead of performing



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 114sharing on the parameter values as Deb [123℄, they have used sharing on the obje
-tive fun
tion values, whi
h means that two di�erent ve
tors with the same obje
tivefun
tion values 
an not exist simultaneously in the population under this s
heme.This 
ould be undesirable be
ause the user may be interested in this kind of solu-tion. Fonse
a and Fleming [107℄ have proposed the use of a utility fun
tion 
ombinedwith MOGA to produ
e a method for the progressive arti
ulation of preferen
es. Inthis 
ase it is possible to evolve only a 
ertain region of the trade-o� surfa
e by
ombining Pareto dominan
e with partial preferen
e information in the form of agoal ve
tor. The idea is to have a feedba
k loop between the DM and the GA sothat 
ertain solutions (from the Pareto set) are given more preferen
e than others.Non-dominated sorting (NSGA) is based on several layers of 
lassi�
ation of theindividuals, as given by Srinivas and Deb [124℄. Before the sele
tion is performedthe population is ranked on the basis of domination. All non-dominated individualsare 
lassi�ed into one 
ategory (with a dummy �tness value), whi
h is proportionalto the population size to provide an equal reprodu
tive potential for these individ-uals. To maintain the diversity of the population, these 
lassi�ed individuals areshared with their dummy �tness values. Then this group of 
lassi�ed individuals isignored and another layer of non-dominated individuals is 
onsidered. The pro
ess
ontinues until all individuals in the population are 
lassi�ed. A sto
hasti
 remain-der proportionate sele
tion is used. Sin
e individuals in the �rst front have themaximum �tness value, they always get more 
opies than the rest of the population.This allows to sear
h for non-dominated regions and results in qui
k 
onvergen
e ofthe population toward su
h regions. Sharing, on its part, helps to distribute it overthis region. The eÆ
ien
y of NSGA lies in the way in whi
h multiple obje
tivesare redu
ed to a dummy �tness fun
tion using a non-dominated sorting pro
edure.With their approa
h any number of obje
tives 
an be solved and both maximizationand minimization problems 
an be handled. In this 
ase, sharing is done on the pa-rameter values instead of the obje
tive values (like MOGA does), to ensure betterdistribution of individuals, and to let multiple equivalent solutions exist. Ni
hedPareto GA is a tournament sele
tion s
heme based on Pareto dominan
e. Insteadof limiting the 
omparison to two individuals, a number of other individuals in thepopulation is used to help determine dominan
e. When both 
ompetitors are eitherdominated or non-dominated, the result of the tournament is de
ided through �t-ness sharing, as given by Goldberg and Ri
hardson [121℄. This approa
h does notapply Pareto sele
tion to the entire population, but only to a segment of it at ea
hrun, hen
e the te
hnique is very fast and produ
es good non-dominated fronts that
an be kept for a large number of generations.Con
luding remarksIn summary, if it is ne
essary to assign more importan
e to 
ertain obje
tives, anaggregating approa
h is the one to use, as it 
an 
hange the importan
e of the ob-je
tives easily, in 
ontrast with the ranking te
hniques (Pareto based approa
hes).However, the 
losed loop performan
e 
riteria of autopilot responses are all impor-tant, hen
e it is not appropriate to apply aggregating te
hniques. Also, non-Pareto
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onvexity of Pareto optimalsets, whi
h is not the 
ase for Pareto based algorithms, as given by Fonse
a andFleming [125℄. However, there is no su
h thing as the best method of applyingPareto-optimality, although the use of Pareto-based ranking seems to be gainingsome popularity in new resear
h. These methods allow information from the wholeof the population to be in
orporated into the sear
h 
apabilities of the GA. Zitzlerand Thiele [126℄ have 
ompared four Pareto based approa
hes quantitatively, amongwhi
h the non-dominated sorting geneti
 algorithm have shown best performan
e.It has been 
hosen to populate the Pareto front of optimal solutions. The sharingme
hanism is done in the parameters values (the 
hromosome stru
ture) insteadof the obje
tive values (as in MOGA). The former ensures better distribution ofindividuals within the non-dominated front. In addition, preferable ranges for ea
h
losed loop performan
e 
riteria are required by the designer engineer before thestart of the optimisation pro
edure. That is why the Referen
e Point approa
h hasbeen suggested in 
ombination with the non-dominated sorting approa
h, in order toin
orporate preferen
e information into the GA to guide the sear
h to the parti
ularPareto region that is of interest to the DM.5.3 GA strategy for �nding non-dominated solu-tionsThe evolutionary algorithm follows the usual format of ranking, sele
tion, 
rossover,mutation and evaluation, but with the real (membership fun
tions) and dis
rete(rule-base stru
ture) parts of the 
hromosomes being pro
essed separately. Then,a multi-obje
tive approa
h is used to identify multiple solutions. The me
hanismof the non-dominated sorting Pareto based approa
h has already been explainedin the previous Se
tion 5.2. The non-dominated ranking is detailed by Deb [123℄.All solutions in the population are 
ompared for domination on all obje
tives andthe ones that are not marked 'dominated' are non-dominated solutions. All thesenon-dominated solutions are assumed to 
onstitute the �rst non-dominated front inthe population. These solutions are temporarily ignored from the population andthe pro
edure is applied again. The resulting non-dominated solutions are assumedto 
onstitute the se
ond non-dominated front. This pro
edure is 
ontinued until allpopulation members are assigned a front. The ranking operation helps to preventpremature 
onvergen
e of the geneti
 algorithm.Sin
e all solutions in a parti
ular non-dominated front are equally important, all areassigned the same �tness value. We begin with solutions of the �rst non-dominatedfront. A dummy �tness value (equal to 1) is assigned to ea
h non-dominated solu-tion of the �rst front. However, in order to maintain diversity among solutions, asharing me
hanism is applied to these individuals, redu
ing their assigned value ifthey have near neighbours (on a 
hromosome level). The sharing pro
ess ensuresthat a spread of solutions is obtained a
ross the Pareto front. The minimum valueassigned to the �rst front solutions is identi�ed and then redu
ed by 1%. This re-
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ed value is then used as the dummy value for the se
ond front solutions and thesharing pro
edure is performed among the solutions of the se
ond non-dominationfront. This pro
ess is 
ontinued until all population members are assigned a shared�tness value. The 
onventional ranking and sele
tion pro
esses are then applied asnormal to the obje
tive obtained by the non-dominated ranking and the sharingoperation. After all solutions are assigned a �tness, a sele
tion operator based onthe sto
hasti
 universal sampling prin
iple is used to sele
t good individuals fromthe population for breeding, where a solution is sele
ted as a parent in proportionto its �tness value. With su
h an operator, solutions of the �rst non-dominatedfront have a higher probability of being a parent than solutions of other fronts. Thispro
ess allows the algorithm to sear
h for non-dominated regions, whi
h will �nallylead to the Pareto-optimal front. This results in qui
k 
onvergen
e of the popula-tion toward non-dominated regions and the sharing pro
edure helps to distribute itover this region. Thus, the sele
tion operator helps to emphasize better solutionsin the population and reprodu
e them, but does not help to 
reate new solutions, amatter whi
h is performed by Crossover and Mutation operators. Before produ
ingnew individuals, the 
on
ept of generation gap was employed. The generation gap(GGAP) represents the per
entage of the population to be repla
ed during ea
hgeneration. For ea
h new generation (N*GGAP) individuals of the 
urrent popu-lation are sele
ted to be repla
ed in the next generation, where N is the numberof individuals in the population. In this work a generation gap of 20% is used.Crossover utilizes probabilisti
 de
isions to ex
hange systemati
 information amongtwo randomly sele
ted individuals from the mating pool to produ
e new individuals.The pro
ess involves pi
king uniformly, at random, a 
rossover point along the twoindividuals. This is followed by ex
hanging all 
hara
ters either to the right or leftof this point. Therefore, two new individuals are generated. On the other hand,mutation generates new individuals by modifying one or more of the gene valuesof an individual o�spring after 
rossover. Values for those operators are mentionedlater when the geneti
 strategy is given. The new individuals are then 
on
atenatedinto the 
urrent population to generate the new population for the next generation.And the pro
ess is repeated until a maximum number of generations is rea
hed.It is important to mentioned here that a di�erent evolutionary strategy than to-tal repla
ement is used and detailed further on. When the obje
tives are 
ombinedin one s
alar fun
tion as in Chapter 4, the same number of o�springs are gener-ated as parents and a total repla
ement poli
y is used whi
h takes approximatelythree hours of 
omputational time. When using this strategy for the multi-obje
tiveoptimisation problem, it takes at least four times longer, be
ause the GAs are deal-ing now with four obje
tives and the ranking me
hanism is working by 
omparingea
h obje
tive for ea
h possible solution (individual). In addition, many dupli-
ate solutions are generated during FLC tuning for the nominal model and alsothe non-dominated solutions from ea
h population are 
on
atenated with the nextone, rendered in a larger number of evaluations of the 
ontrol parameters. In orderto prevent the expansion of the population, a di�erent GA strategy from that inChapter 4 is proposed here, see �g. 5.1. A population of 100 individuals is main-
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Figure 5.1: Geneti
 algorithm stru
turetained by the algorithm. In ea
h generation, 20 individuals are sele
ted for breeding.Crossover is performed at a rate of 0.9, with intermediate 
rossover being used forthe real values and uniform multi-point 
rossover for the binary part. A mutationrate of 2=137, with 137 being the length of the 
hromosome and a sele
tive pressureof 1:7 is used. The high 
rossover value and the low sele
tive pressure is used toslow 
onvergen
e and to help prevent a lo
al optimum being exploited. The 20 newindividuals are evaluated and then 
on
atenated with the old population, forminga set of 120 individuals. Non-dominated ranking is then applied to this set and thebest 100 are taken for the next generation. In this appli
ation, mu
h of the feasiblespa
e of the 
ontroller is not used (see the results se
tion). The genes responsible forthese areas will settle to some semi-random state. That is why some solutions withvery similar 
ontrol surfa
es may have very di�erent 
hromosomes. This featuredisturbs the sharing pro
ess, so a �xed value of �share = 0:5 was used, as varying�share has little e�e
t for this problem.The main strengths of the non-dominated sorting approa
h is that it 
an handleany number of obje
tives independently and takes a

ount of non-domination duringthe ranking pro
ess. In the next se
tion unique method is proposed to in
orporatepreferen
e information into the evolutionary multi-obje
tive algorithm by using theoptimisti
 referen
e point approa
h to dire
t the GAs sear
h towards spe
i�ed areasfor optimal solutions.5.4 Optimisti
 Referen
e point approa
hAs shown by Hwang et al [106℄, preferen
e arti
ulation 
an be given by assigningweight 
oeÆ
ients, priorities, or goal values whi
h indi
ate desired levels of per-forman
e in ea
h obje
tive dimension. The way goals are interpreted may vary.The goals may represent minimum levels of performan
e to be attained, Utopian
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e levels to be approximated, or ideal performan
e levels to be mat
hedas 
losely as possible. Goals are usually easier to set than weights and priorities,be
ause they relate more 
losely to the �nal solution of the problem.Depending on how the multiple obje
tives have been 
onsidered, they will a�e
t theevolutionary algorithm behaviour in terms of 
onvergen
e and sear
hing throughfeasible regions for a

eptable solutions. One way to explore this problem is tode�ne the 
losed loop performan
e 
riteria as four obje
tives using the Referen
ePoint approa
h (Weistro�er [114℄), whi
h is a kind of preferen
e information for theGAs. Fonse
a and Fleming [125, 127℄ have demonstrated the need for some degreeof preferen
e arti
ulation in Pareto based evolutionary optimisation by using a goalattainment method. In their work, they have also a
hieved intera
tive optimisationwith the DM. In this 
ase, if the DM �nds the 
andidate solutions una

eptable,DM 
an re�ne the preferen
es in order to stimulate the GA to move in to a di�erentregion of the non-dominated set. In our 
ase, this kind of a
tive intera
tion has notbeen ne
essary as we shall see.In the optimisti
 referen
e point approa
h, for example, the DM initially spe
i�esoptimisti
 obje
tive fun
tion values (not a
hievable simultaneously) as the desiredvalues. A solution is found by minimizing the under a
hievements of the obje
tivefun
tion values with respe
t to the spe
i�ed desired values. The optimisti
 approa
h
an be viewed as the spe
ial 
ase of the referen
e point approa
h in whi
h all refer-en
e values 
onsistently ex
eed the obje
tive fun
tion values at all the intermediatesolutions. The Referen
e Point approa
h has been applied to a s
alar optimisationproblem using a surrogate aggregating fun
tion, as given by Weistro�er [114℄, Stoy-anov et al [128℄. In our 
ase, the obje
tives are treated separately and, by spe
ifyingthe desirable ranges for ea
h, GAs have a
hieved simultaneous 
onvergen
e on allobje
tives without having the opportunity to sta
k in a lo
al area on one of theobje
tives. If referen
es are not spe
i�ed, it may well be possible for a geneti
 driftto appear.Generally, the obje
tive 
riteria are not 
omparable and the numeri
al values maydi�er 
onsiderably. A pro
edure for normalization must be used to 
onvert the
riteria yj(x) into a dimensionless fun
tion �j(x) for whi
h usually �j(x) 2 [0; 1℄.The optimisti
 referen
e point approa
h given by Weistro�er [114℄, and followed byNarula and Weistro�er [113℄ uses a fun
tion of losses to represent the losses fromthe ideal values y?j for the obje
tives given by:�j(x) = y?j � yj(x)y?j ; j 2 [1; : : : ; m℄: (5.1)If the ideal values y?j are very small numbers or y?j �! 0, the following alternativeform 
an be used: �j(x) = y?j � yj(x)yjmax � yjmin ; j 2 [1; : : : ; m℄: (5.2)
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tively the maximum and the minimum values ofthe 
riterion yj(x) in x 2 X, whi
h de�ne the set of feasible solutions.This approa
h is 
alled optimisti
, be
ause y?j are the most desired values for ea
hobje
tive. The form of equation (5.2) is applied to all four 
losed loop performan
e
riteria des
ribed in the next se
tion.5.4.1 Closed loop performan
e 
riteriaRise time (tr), steady state error, overshoot y(tp) and settling time (ts) are the im-portant 
riteria with whi
h to judge the quality of a unit step response. They areshown in �g. 5.2 and are used as obje
tives for the optimisation pro
ess. The aimis to minimize ea
h within a spe
i�ed range, as required by the missile engineer.

Figure 5.2: Closed loop 
riteria� Steady state error in %er = j ydemand � yfinal jj ydemand j � 100� Evaluation of per
entage overshoot %OSThe per
entage overshoot, %OS is given by:%OS = ymax � yfinalyfinal � 100where %OS is the amount that the response overshoots the steady-state or �nalvalue, expressed as a per
entage of the steady-state value. y presents the laterala

eleration or the side-slip velo
ity, depending whi
h one is 
ontrolled. ymax is thevalue at the time, the response rea
hes its �rst maximum peak.



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 120� Rise Time trRise time is de�ned as the time for the response to go from 10% to 90% of its�nal value. tr = time(yfinal � 0:9� yfinal � 0:1)� Settling Time tsSettling time (ts) is the amount of time required for the transient damped os
il-lations to stay within �2%.ts = time((y > yfinal � 1:02) or (y < yfinal � 0:98))Rise time, settling time and peak time yield information about the speed of thetransient response. This information 
an help the designer to determine whetheror not the speed and the nature of the response degrade the performan
e of thesystem. The obje
tive values are all expressed in di�erent units and a normalizationpro
edure is ne
essary for further use, whi
h is explained in the next se
tion.5.4.2 Fun
tion of losses - preferen
e informationThe 
losed loop performan
e 
riteria are 
hosen as the following:� Steady state error:�1j(x) = Er?j � Erj(x)Erjmax � Erjmin ; j 2 [1; : : : ; m℄: (5.3)� Overshoot: �2j(x) = Os?j �Osj(x)Osjmax �Osjmin ; j 2 [1; : : : ; m℄: (5.4)� Rise time: �3j(x) = Tr?j � Trj(x)Trjmax � Trjmin ; j 2 [1; : : : ; m℄: (5.5)� Settling time: �4j(x) = Ts?j � Tsj(x)Tsjmax � Tsjmin ; j 2 [1; : : : ; m℄: (5.6)where m are the number of evaluated individuals.Table 5.1 shows the referen
e points used in the obje
tive 
al
ulations. The mostdesired values y?j for ea
h obje
tives are de�ned to satisfy the missile 
ontrol engineerrequirements for the Horton model.



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 121Ideal point Maximum point Minimum pointSteady State Error Er?j = 0:0[%℄ Erjmax = 2:0[%℄ Erjmin = 0:0[%℄Settling time Ts?j = 0:15[se
℄ Tsjmax=0.25[se
℄ Tsjmin = 0:1[se
℄Rising time Tr?j = 0:08[se
℄ Trjmax = 0:14[se
℄ Trjmin = 0:07[se
℄Overshoot Os?j = 4:5[%℄ Osjmax = 25:0[%℄ Osjmin = 2:0[%℄Table 5.1: Closed loop performan
e 
riteria5.4.3 De
ision MakingBearing in mind that there will be more than one solution, the in
uen
e of the de
i-sion maker is of utmost importan
e. Pareto optimality is not the only step towardssolving a multi-obje
tive optimisation problem. The 
hoi
e of a suitable 
ompro-mise solution from all non-inferior alternatives is also important. It is not onlyproblem dependent, it depends also on the subje
tive preferen
es of a DM. Hen
e,the �nal solution to the problem is the result of both the optimisation pro
ess andthe de
ision pro
ess. Depending on how those two are 
ombined in the sear
h for
ompromise solutions, the following groups have been identi�ed by Hwang et al [106℄:� no arti
ulation of preferen
es is needed from the DM� a priori arti
ulation of preferen
e - expressed before the sear
h is run� intera
tive arti
ulation of preferen
es - the preferen
es are expressed and 
an bealtered as the sear
h is running� a posteriori arti
ulation of preferen
e-expressed after the sear
h is run, the DM
hooses from a set of possible solutions provided at the end of the run.A priori methods 
learly allow a degree of 
ertainty by �xing the targeted out-
ome in advan
e of the optimisation run.Intera
tive methods allow the user both to rea
t to 
hanging situations in the appli-
ation problem, and to intera
t with the optimisation pro
ess by updating obje
tivesor goals as the optimisation is 
ondu
ted.A posteriori methods have the advantage of allowing no possible solution to beeliminated prematurely in the optimisation pro
ess by preserving all potential out-
omes. This may be seen as a disadvantage if there are a large number of solutionsas the user may be presented with an ex
essive number from whi
h to make a 
hoi
e.Ultimately, the preferred method of DM is likely to be in
uen
ed by the problemrequirements. In fa
t, multi-
riteria de
ision making (MCDM) is a �eld in whi
hwe are all well pra
ti
ed in our personal lives, as we make de
isions whi
h involvemultiple 
on
i
ting 
riteria daily, without the support of a formal approa
h. Thevery nature of multiple 
riteria problems is that there is mu
h information of a 
om-
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on
i
ting nature, often re
e
ting di�ering viewpoints and often 
hangingwith time. One of the prin
ipal aims of the MCDM approa
hes is to help de
isionmakers organize and synthesize su
h information in a way whi
h leads them to feel
omfortable about making a de
ision, as stated by Zeleny [112℄:\ The de
ision unfolds through a pro
ess of learning, understanding, informationpro
essing, assessing and de�ning the problem and its 
ir
umstan
es".The multi attribute de
ision problem 
an be expressed in matrix format as:D = A1A2...Am 266664 x11; x12; : : : ; x1nx21; x22; : : : ; x2n...xm1; xm2; : : : ; xmn 377775 (5.7)Where Ai; i = 1; : : : ; m are possible 
ourses of a
tion (referred to as alternatives);xij; i = 1; : : : ; m; j = 1; : : : ; n are attributes with whi
h alternative performan
e aremeasured; i is the performan
e (or rating) of alternative Ai with respe
t to attributej. With respe
t to our problem the matrix is:D = Chrom1Chrom2...Chromm 266664 Er1; T s1; T r1; OS1Er2; T s2; T r2; OS2...Erm; T sm; T rm; OSm 377775 (5.8)where Eri; T si; T ri; OSi are the 
losed loop performan
e 
riteria and Chromistands for 
hromosomes whi
h de�ne the traje
tory 
ontrollers and represent the
ompromise individuals at ea
h generation.In a typi
al run, about 95% of the solutions are non-dominated and of highly 
om-petitive nature. Final de
ision is made based on the maximum a

eptable level forea
h obje
tive, whi
h 
orresponds to the pre-spe
i�ed maximum desired values ofthe referen
e point approa
h. Only solutions whi
h are below the maximum desiredvalue on ea
h obje
tive are 
onsidered. Fig. 5.3 shows the trade-o� plots for the
losed loop performan
e 
riteria in the �nal population (last generation). Most ofthe solutions are non-dominated and the one shown in �g. 5.3b, within minimumand maximum range of ea
h 
riteria, as spe
i�ed by the DM has been 
onsideredas a

eptable. The obje
tive values �j(x) in �g. 5.3 are normalized using equations(5.3, 5.4, 5.5 and 5.6). Ea
h 
ontinuous line in �g. 5.3 represents one set of thefour 
losed loop 
riteria for one alternative solution (the optimised fuzzy 
ontrollerparameters). A strong 
on
i
t 
an be seen between overshoot and rise time, whi
his expe
ted, with not so mu
h 
on
i
t between rise and settling times. The magni-tude of the obje
tive values are s
aled, hen
e they do not represent their physi
alvalues. Also, on this plot we 
annot see the 
on
i
t between settling time andovershoot or between settling time and steady state error. That is why a detailedtrade o� surfa
e for the individuals in a population is illustrated in �gures 5.4, 5.5



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 123and 5.6. The intention here is to show how solutions evolve within generations, sotrade o� dynami
s 
an also be seen. Before the 
onvergen
e is a
hieved, there aresome una

eptable solutions 
lustered in areas of higher obje
tive values, as shownin �g. 5.4, that die out as the evolution progresses. After 
onvergen
e (after ap-proximately 30 generations, as shown in �g. 5.7) most of the obje
tive values arewithin the pre-spe
i�ed range, whi
h is an indi
ation that solutions have 
onvergedtowards the desired feasible area (see the s
ale in �g. 5.5). There are some solutionsstrongly dominated on one obje
tive whi
h obviously are not taken under further
onsiderations by the DM. Ea
h star represents the obje
tive value of an individualwithin a 
urrent population. Also, the non-dominated solutions are almost identi
alat the 151th generation and at the 250th generation when the optimisation pro
essis 
omplete. The fa
t that there are no major di�eren
es suggest that an earlierstopping me
hanism 
ould be used in this 
ase.
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Figure 5.6: Trade-o� between ea
h obje
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e approa
h1. Side-slip velo
ity 
ontrolThe nonlinear 
ontrol law of the autopilot design for the SISO system has been
onsidered. It is de�ned as Design 1 in Se
tion 3.3 of Chapter 3. A fuzzy logi
traje
tory 
ontroller has been added in an outer loop and multi-obje
tive optimisa-tion using a geneti
 algorithm has been used to determine the fuzzy logi
 
ontrolparameters, as given by Blumel et al [129℄, [130℄.Fig. 5.8 shows the 
ontrol surfa
e se
tion used and the 
orresponding side slip ve-lo
ity responses for two alternative solutions from the non-dominated set. Theseresults are obtained using �ve membership fun
tions. Solution (b) is one of the bestsele
ted a

ording to all four 
losed loop performan
e 
riteria: steady state errorwithin (2%), (5%) on overshoot, a fast rise time (0:05s) and very 
lose to ideal set-tling time(0:12s). Solution (d) has an a

eptable steady state error(< 2%), almostno overshoot, but is very slow on rise time and on settling time. From a pra
ti-
al point of view, the �rst one would be preferred by a missile 
ontrol engineer.Both solutions have similar 
ontrol surfa
es showing a `winged' stru
ture (see theleft side of �g. 5.8). By looking at the phase portrait pattern, further informationfor the membership fun
tions and rules used 
an be extra
ted. The 
ir
les presentthe nominal 
ase of aerodynami
 
oeÆ
ients and the dotted lines are for the un
er-tain 
ase. Solution (f) is very bad on steady state error, and hen
e, is not a

eptable.The fuzzy logi
 
ontroller is tuned for the nominal 
ase of the aerodynami
 
oeÆ-
ients, a demand of 2.57 m=s 
orresponding to 1g lateral a

eleration, and is testedfor parameter variations within the ranges spe
i�ed in Se
tion 2.8 of Chapter 2.Two parti
ular 
ombinations of model variation have been used:1. [ Cyvmin Cy�min Cnrmax X
pmax ℄2. [ Cyvmax Cy�min Cnrmax X
pmin ℄Robust performan
e within 2% relative steady state error is a
hieved. If we lookat the side-slip velo
ity response produ
ed with the �xed gain traje
tory 
ontrollershown in �g. 4.11 in Chapter 4, we 
an see that for the same 
ombinations of themulti-model airframe dynami
s of aerodynami
 
oeÆ
ient un
ertainties, an error ofabout 7% is a
hieved. On the other hand, in this 
ase the fuzzy traje
tory 
ontrollerhas improved the robustness against these un
ertainties by 5%.
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hapter, the fuzzy 
ontrol parameters were mainly tuned for the nominalmodel 
oeÆ
ients be
ause the pro
ess was time demanding when multi-obje
tiveoptimisation was 
onsidered. One reason for this is be
ause of the use of binary
oding. The 
hromosome stru
ture with the binary 
oding of the rule base systemallowes robust properties of the fuzzy 
ontroller to be used but the optimisation al-gorithm takes 12 hours on a 300 MHz Unix workstation. Also, in order to evaluateea
h 
hromosome in the population, ea
h 
ontroller is tested on all vertex pointsmodels.Two 
hanges have been made to de
rease pro
essing time. First, a generation gapwas introdu
ed to prevent a 
hange in number of individuals to be evaluated at ea
hgeneration. Se
ond, the 
hromosome stru
ture was modi�ed to real-integer 
odingwhi
h redu
ed the length of the 
hromosome by a fa
tor r, where r is the numberof membership fun
tions. For evaluations of 
hromosomes on one trial only (i.e.1 set of model 
oeÆ
ients and 1 required demand), the pro
essing time de
reasedfrom 12 down to 5 hours using this approa
h. Four membership fun
tions and fourobje
tives have been 
onsidered.2. FLC tuning on vertex points modelsThe fuzzy traje
tory 
ontroller has been tuned for a set of worst 
ase vertex mod-els, 4 and 8 (i.e. Vmin and Vmax values on side-slip velo
ities at steady state, see�g. 4.10 in Chapter 4). Therefore the 
ontroller is robust against any parametri
un
ertainties whi
h may appear within the range de�ned by the vertex models. Theexa
t model within the vertex models is determined by the 
ight 
ondition and willalso be a fun
tion of the aerodynami
 
oeÆ
ients (Cyv; Cy� ; X
p; Cnr) within theirun
ertainty ranges. Most of the results shown in the thesis were obtained basedon nominal model simulations to a step input. As a result, the fuzzy logi
 
ontrolsurfa
e has been exer
ised very little and hen
e the robust properties of the resulting
ontroller were not as good as the ones obtained based on extensive simulations onall vertex models. There is still a problem asso
iated with using a step input, how-ever. The di�eren
e from �g. 5.8 of Chapter 5 is that the fuzzy gain surfa
e shownin �g.5.9 has been tuned for a set of vertex points models, hen
e 
an maintain ro-bustness for any un
ertainties whi
h may arise within the ranges of these models.Multiple solutions were also obtained but not shown. Initially the 
ontroller wastuned on 5 trials (i.e. 4 vertex points models and the nominal one) for 250 gen-erations. The optimisation algorithm has taken approximately 27 hours on a PC300 MHz. A real-integer 
hromosome stru
ture has been used. Most of the Paretosolutions at the last 5 generations were with a st.st. error bigger than 10%. Forevaluations of 22500 fuzzy 
ontrollers(i.e. NIND:GGAP:trials:MAXGEN), 250generations were not enough to obtain satisfa
tory 
losed loop performan
e 
riteria.The fuzzy 
ontroller was then tuned on 3 trials (two worst 
ase models and nominalone), but still the optimal obje
tive values were not satisfa
tory. Finally, the GAwere seeded with a set of Pareto solutions of the last 5 generations from the pre-vious run. Then for another 200 generations the optimisation was 
arried on two
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ity responsesFigure 5.9: Resultstrials (i.e. the worst 
ase models). The mutation rate was redu
ed from (1=NV AR)to (0:5=NV AR) to ensure the survival of good solutions. In �g. 5.9b, dashed lineshows the velo
ity responses when the �xed gain 
ontroller is tested on worst 
asemodels and the solid line shows the velo
ity responses when the fuzzy gain optimal
ontroller is tuned and tested on the same models. The responses produ
ed with thefuzzy gain 
ontroller are very 
lose to the bounds of responses produ
ed with the�xed gain 
ontroller. Also, when the fuzzy gain 
ontroller was tested on all vertexpoints models, the performan
e 
riteria on steady state error remained within thebounds obtained by the worst 
ase models, hen
e the FLC has maintained robustproperties of the 
losed loop system.
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eleration 
ontrolThe di�eren
e here is that the lateral a

eleration 
ontrol and the nonlinear 
on-trol law detailed as Design 2 in Se
tion 3.3 of Chapter 3 is used. Again, only asingle plane for the yaw or pit
h 
hannel has been 
onsidered. As a result of multi-obje
tive optimisation, multiple solutions are obtained from whi
h the designer 
an
hoose the one whi
h best satis�es his requirements. In �g. 5.10 we show a set of lat-eral a

eleration responses with a variety of 
losed loop performan
e 
riteria. Someare una

eptable, with high overshoot values, are very slow on rise time or settlingtime, but some are very good with almost no steady state error and no overshoot.Fig. 5.11 shows the fuzzy gain surfa
es for three of them and the 
orrespondinga

eleration responses of these. (b) is the best on steady state error, and (d), whi
his within 6% error from the demand, is probably not a

eptable, although it hasno overshoot and has a satisfa
tory rise time. Finally, solution (f), whi
h is tooslow on rise time and settling time but within 3% on steady state error, may not be
onsidered as an a

eptable solution by the designer. The dashed line represents theaugmented a

eleration whi
h shows an almost identi
al 
losed loop performan
e asthat for lateral a

eleration. The only di�eren
e is in the non-minimum phase e�e
twhi
h 
an be seen in the solid line for the lateral a

eleration. However, it shouldbe remembered that here the augmented a

eleration is used to design the nonlinear
ontrol law, but the a
tual lateral a

eleration is used as the 
ontrolled output. Thefuzzy gain surfa
es for the a

eleration 
ontrol are more nonlinear 
ompared withthe surfa
es for the side-slip velo
ity 
ontrol.
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 s
heduled 
ontrollersmultiple demands 
ase - 1g, 5g, 10g, 15gMultiple solutions are obtained when a large range of di�erent velo
ity demands arerequired. The optimisation pro
ess is examined using two trial 5g and 15g demandsand individuals with bigger obje
tive values are evaluated for further optimisation.It may be noti
ed that the values of the 
riteria are very similar for all four de-mands, however a little o�set on the rise time 
an be observed on ea
h response as,for every required demand, the system 
hanges, whi
h then alters the fuzzy logi

ontrol properties.In �g. 5.12 a �xed gain traje
tory 
ontroller is illustrated for all four demands.The presen
e of steady state error is due to the negle
ted �n 
ontrol surfa
e termin the system. Conversely, all fuzzy traje
tory 
ontrollers (see �g. 5.13) have beenable to provide less fast solutions but with almost no os
illations and very littlesteady state error. The 
losed loop 
riteria here have been 
onsidered su
h thatthe referen
e point approa
h has been used to determine optimal solutions for theside-slip velo
ity 
ontrol of the fuzzy autopilot design.Various solutions have been presented to show the powerful interpolative me
ha-nism of the fuzzy s
heduled 
ontrollers when multiple demands are required. Thes
aling fa
tors of the fuzzy 
ontroller have been determined by using polynomial �t-ting for ea
h demand. The optimisation pro
edure is able to �nd multiple solutions(alternative fuzzy 
ontrollers) in terms of 
losed loop performan
e 
riteria and isable to tune the 
ontrol parameters (membership fun
tions and rule base stru
ture)simultaneously for multiple demands.
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tives de�ned as fuzzy 
onstraints-penaltiesAnother way of looking at multi-obje
tive optimisation is to spe
ify the obje
tivesas 
onstraints, or in this 
ase as penalties using the fuzzy logi
 set theory to produ
ethe membership fun
tions. This idea has been proposed previously by Trebi-Ollennuand White [18℄ and has been further investigated in our resear
h and applied tomissile fuzzy 
ontrol parameters. In [18℄ a multi-obje
tive fuzzy geneti
 algorithmoptimisation for sele
ting free 
ontrol parameters was used. The di�eren
e from ourwork is that Trebi-Ollennu has addressed the multi-obje
tive problem as a s
alaroptimisation problem and has generated multiple solutions by varying the weightsin order to address the relative importan
e of the fuzzy obje
tives. We have usedthis idea of representing the obje
tives as fuzzy 
onstraints, but have allowed theoptimisation pro
edure to �nd optimal solutions by using non-dominated sorting,hen
e ranking ea
h solution based on independent obje
tive values.Using fuzzy logi
 theory, the obje
tives 
an be presented as penalties with the fol-lowing membership fun
tions: �OS in �g. 5.5.1, �Tr in �g. 5.5.2 and �Ts in �g. 5.5.3.� Overshoot penalty
�OS = ( OS10 OS <= 101 + OS�1010 � 3 OS > 10

4

10 20 [%]

Overshoot
penalty
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�Ts =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
1 Ts <= 0:050:1�Ts0:05 0:05 < Ts < 0:10 0:1 < Ts < 0:2Ts�0:20:1 0:2 < Ts < 0:31 Ts >= 0:3 0.30.20.05

0

1

0.1

acceptable   solution

Settling time objective
  as constraint

s

[sec]Figure 5.5.3 Settling time penaltyThe steady state error is de�ned as dis
ussed in Se
tion 5.4.1. The spe
i�ed rangefor a

eptable solutions has been determined by the design engineer and is indi
atedby the grey area.5.5.1 Results of fuzzy multi-obje
tive optimisationWe have 
hosen to show two alternative solutions in �g. 5.14 with 
on
i
ting 
riteria:one whi
h is not so good on steady state error and one whi
h is too slow on risetime, but is very good on settling time. However, the fuzzy gain surfa
es wereboth smooth and robust in the presen
e of model un
ertainties. In this 
ase, theobje
tives have been fuzzi�ed as penalties. The obje
tive values of most solutionswere within the required range determined by the engineer as the preferable areawhi
h is penalised with zero value. A

ording to the way the overshoot 
riteria hasbeen spe
i�ed here, it has given the GAs a 
han
e to �nd solutions with almost noos
illations, whi
h is very important for the autopilot performan
e, espe
ially whenhigher demands are required. Using this approa
h it was qui
ker to �nd solutionswhi
h satisfy the spe
i�ed ranges on ea
h obje
tive, although it is diÆ
ult to tell hownon-dominated they were. This is be
ause, during the minimization pro
ess, mostof the obje
tives have been given zero value when they have satis�ed the requiredrange, whi
h 
onfuses the non-dominated ranking pro
ess. However, in the lastgeneration all solutions have obje
tive values within the spe
i�ed fuzzi�ed ranges,and hen
e they were all a

eptable and no need of further DM was required. A prioriDM was suÆ
ient to predetermine desired feasible solutions at the �nal stage. Thisway of handling obje
tives is more 
onvenient for engineers.5.6 Con
luding remarksThis 
hapter has examined multi-obje
tive optimisation of the fuzzy logi
 traje
tory
ontroller parameters. This has been a
hieved by evaluating four 
losed loop perfor-
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e 
riteria whi
h asses the quality of the side-slip velo
ity or lateral a

elerationresponses. Evolutionary algorithms, su
h as geneti
 algorithms, have produ
ed aset of results that populate the Pareto solution set, allowing the system designer the
exibility of trading one solution against others to a
hieve a desired performan
e.By using the Optimisti
 Referen
e Point approa
h we have in
orporated preferen
einformation into the optimisation pro
edure, whi
h helps the GAs to 
onverge onareas of preferable solutions for ea
h obje
tive simultaneously. In addition, thisidea has been 
ombined with the Pareto based approa
h whi
h uses non-dominatedsorting, hen
e an eÆ
ient Pareto front with optimal (non-dominated) solutions hasbeen produ
ed simultaneously.
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an 
ontributeto a better understanding of the 
ontrol system properties. As we have used non-dominated sorting for forming the Pareto front, the 
on
ept of 
risp preferability
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an be seen to provide useful information to the optimisation pro
ess, whi
h wouldotherwise be fa
ed with sampling a very large tradeo� surfa
e (when all the 
losedloop performan
e 
riteria have been de�ned in dire
t form). In 
onsequen
e, if thoseobje
tives are de�ned as fuzzy 
onstraints (penalties), this 
an redu
e the size ofthe non-dominated set to sear
h for and it is 
ertain that the �nal non-dominatedsolutions at the end of the optimisation are lying within the a

eptable regions, sothat the engineering design requirements have been satis�ed. Conversely, in the �rst
ase, the GA is sear
hing in a larger feasible area for a

eptable solutions, but only asubset of the non-dominated set 
an be of pra
ti
al relevan
e, whi
h requires furtherintera
tion with the DM (i.e. sele
tive pro
ess at the end of the optimisation). It isone of the aims of this 
hapter to analyse the behaviour of the optimisation pro
ess,depending on the way obje
tives have been handled.The geneti
 algorithm performan
e depends on 
areful adjustment of several param-eters and the values assigned to these parameters may a�e
t performan
e drasti
ally.The determination of GA operators 
an e�e
t 
onvergen
e to Pareto optimal frontand diversity preservation among Pareto solutions. It is also important to de�nestopping 
riteria for GAs based on multi-obje
tive optimisation te
hniques, be
auseit is not obvious when the population has rea
hed a point from whi
h no furtherimprovement 
an be rea
hed. The main way used to stop the GA pro
edure is to usea �xed number of generations or to monitor the population at 
ertain intervals andinterpret the results visually to determine when to halt the evolution pro
ess. Theirparallel nature allows GAs greater ability to explore the sear
h spa
e and lessensthe risk of be
oming stu
k in a lo
al optimum.In this resear
h all the obje
tives were treated independently, however, if the mis-sile engineer is interested in solutions that are fast with almost no overshoot, it ispossible to alter the rule base stru
ture of the fuzzy traje
tory 
ontroller to produ
edesired solutions on
e the 
ontroller has been tuned. By studying in detail the rulebase stru
ture it is possible to extra
t information about whi
h rule a�e
ts the risetime, overshoot, settling time or steady state error. This is an area for further re-sear
h work.The evolutionary multi-obje
tive algorithms have 
ontributed eÆ
iently to solvinga real world problem su
h as �nding the traje
tory 
ontrol parameters of a highlymanoeuvrable missile system.



Chapter 6Con
lusions, Dis
ussions andFuture workThe main obje
tives of the thesis were to design an autopilot system for lateral ve-lo
ity and a

eleration 
ontrol of a highly non-linear missile. The 
ontrol system wasrequired to be robust in the presen
e of parametri
 un
ertainties of the model andto be valid for a large range of multiple demands. The other important obje
tivewas to obtain multiple solutions of alternative 
ontrollers that allow the designerthe freedom to 
hoose those whi
h satisfy spe
i�ed requirements of the 
losed loopperforman
e so that the autopilot system respond eÆ
iently to guidan
e 
ommands.Missiles are mainly employed in a military environment. As te
hnology matures,targets be
ome more agile with a variety of new shapes whi
h are more diÆ
ult todete
t, hen
e missiles are required to be highly manoeuvrable and a

urate. Gener-ally in a typi
al guidan
e s
enario they are required to follow a spe
i�
 traje
tory.In order to do that, they should perform agile, fast and 
exible manoeuvres whi
hinvolve rapid 
hanges from low to high altitude and from low to fast speed. Missilesystems are well de�ned in their dynami
 behaviour, but are highly non-linear. Mostdesigns have been able to use linear design and analysis te
hniques. This requiresthe use of a linear model for an airframe whi
h moves in any dire
tion. The systemmust be linearized about many 
ombinations of speed along multiple axes in order toa

ount for the 
omplexity of the system. This additionally 
ompli
ates the designas separate 
ontrollers are required for ea
h 
on�guration. The main problem is thatthere are limited theoreti
al guarantees of stability in nonlinear operation. Anotherproblem is the 
omputational load, due to the ne
essity of 
omputing many linear
ontrollers. This resear
h has been fo
ussed at non-linear te
hniques to design theautopilot system to over
ome many of these problems.Designing an autopilot system is not an easy task. It involves several stages. Start-ing from the given model we �rst have to understand the dynami
s of that model.How does it behave in open loop? How sensitive is it towards variations in the aero-dynami
s and then how to design a 
ontrol algorithm to respond qui
kly to guidan
e
ommands? We have studied non-linear te
hniques sin
e they 
an 
apture the non-138
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e a single design whi
h is valid over the entire envelope. Thereis very little resear
h reported in the literature for using Feedba
k Linearizationapplied to a missile system, whi
h determined our 
hoi
e to use it. The di�eren
efrom other people's work is that instead of 
ontrolling a

eleration through anglesand rates we use lateral velo
ity and augmented a

eleration as outputs to 
ontrollateral a

eleration. On
e the system was linearized a simple �xed gain 
ontrollerwas not enough to produ
e a robust solution, even though for a nominal model,the te
hniques were su

essful and the desired traje
tory a
hieved. However in areal s
enario the assumption that model parameters will not 
hange is unrealisti
,whi
h require robust te
hniques to repla
e the �xed gain 
ontroller in the outer loop.Using fuzzy logi
 theory was an appropriate 
hoi
e sin
e it has been proved in theliterature its ability to deal with vague and impre
ise information. The only prob-lem with designing a fuzzy logi
 
ontroller is that it uses trial and error methodsto tune its parameters (i.e. the rule base stru
ture and the membership fun
tions).This involves many iterations before an appropriate design is a
hieved whi
h is timedemanding and not very pra
ti
al. We designed the rule base stru
ture for thenominal model, whi
h wasn't robust to parametri
 un
ertainties. An evolutionaryalgorithm was then used to tune the fuzzy 
ontrol parameters whi
h were then ro-bust for the spe
i�ed un
ertainties. Multiple solutions were then obtained by usingmulti-obje
tive optimisation, whi
h allowed the designer to 
hoose feasible solutionswhi
h satisfy spe
i�ed requirements.The missile model has been provided by Matra British Aerospa
e Co. as a realresear
h model. In Chapter 2, we have shown the 
omplexity of the model whi
h isof highly non-linear nature with severe 
ross-
oupling. The polynomials of aerody-nami
 fun
tions were �tted to the set of 
urves taken from look-up tables derivedfrom wind tunnel measurements. Wind tunnel te
hniques provide the best estimatesof the aerodynami
s but they will always be subje
t to variability and un
ertainty.In real 
ight s
enario, for every instan
e of this missile type, the aerodynami
alfun
tions may deviate from their nominal values. These potential variations intro-du
e parametri
 un
ertainties of the non-linear system. A set of 
onvex models isprodu
ed that map the vertex points in a high order parameter spa
e (of the orderof 16 variables). The multiple model des
ription of the airframe aerodynami
s istested for sensitivity on the aerodynami
 
oeÆ
ients. The analysis has shown thatthe missile behaviour is most sensitive to the 
entre of pressure 
oeÆ
ient, whi
hwas expe
ted as this is the 
oeÆ
ient most responsible for airframe stability. Themodel parameters 
an take any values randomly generated within the vertex points.This allows more than 1000 models to be exer
ised and the 
ontrol system testedfor robustness.In Chapter 3, Feedba
k Linearization te
hnique is detailed as a nonlinear 
onven-tional tool to transform the non-linear system dynami
s into a linear form by usingstate feedba
k, hen
e a simple linear 
ontrol te
hnique 
an be used in the outer loop.In other words this is dynami
 inversion, in whi
h a nonlinear 
ontrol law is designedto globally redu
e the dynami
s of the sele
ted 
ontrolled variables to integrators.
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losed loop system is then designed to make the 
ontrolled variables exhibit aspe
i�ed 
ommand response. Approximate Feedba
k Linearization has been usedfor lateral motion 
ontrol. The main di�eren
e from other resear
h work is thatinstead of using angles or body rates as outputs for the linearization pro
ess, lateralvelo
ities and body a

elerations were used. The design has retained the order andthe relative degree of the system in the linearization pro
ess, hen
e has produ
eda linearized system with no internal dynami
s. Both SISO (the redu
ed 2nd or-der system, without intera
tion between lateral motion and roll) and MIMO (full5th order) systems have been 
onsidered. Desired tra
king performan
e has beena
hieved assuming an exa
t knowledge of the nominal model parameters su
h as:aerodynami
 
oeÆ
ients and missile 
on�guration parameters (i.e., referen
e area,Ma
h number, mass, moment of inertia).One of the main problems with applying the Feedba
k Linearization te
hnique isthat the pro
ess produ
es a system with the same relative degree as the originalsystem, but usually with an order that is less. Indeed, the linearized system orderis the same as the relative degree unless pre-
ompensators are used to arti�
ially
hange the order and the relative degree. This pro
ess results in internal dynami
s,whi
h are modes that are e�e
tively rendered unobservable by the linearization pro-
ess. If the system is non-minimum phase, then the internal dynami
s are unstable.In order to produ
e linearized systems that have no internal dynami
s, te
hniqueswhi
h preserve the dynami
 order of the system were needed. In this work we havesele
ted an output that relates to the variable that is to be 
ontrolled, whi
h givesa greater relative degree and we have negle
ted small terms related to the inputduring the di�erentiation pro
ess that allow the �nal relative degree to be a
hievedand whi
h also retains the order of the system in the linearization pro
ess. Thisresulted in approximate FL, whi
h 
an only be done if the negle
ting terms in thenon-linear design will not produ
e unstable zeros, as they will additionally destabi-lize the 
losed loop system and degrade the performan
e. There will always be aninherent zero in the model be
ause the missile system is non-minimum phase but �rstit is important to 
he
k the stability of that zero before 
laiming the method is valid.By applying approximate FL to the Horton missile, the design has resulted in alinear equivalent system with no internal dynami
s (\no unobservable" states dur-ing the linearization), and with a design of a traje
tory 
ontrol whi
h has givensmall tra
king errors for both lateral velo
ities and a

elerations. The simulationresults have shown desired tra
king performan
e for a large range lateral a

elera-tion demands up to 100 m=se
2. Full de
oupling for the highly non-linear missilesystem has been a
hieved. All designs for the SISO and the MIMO systems haveinvolved in
reasing the speed of response suÆ
iently for a linear approximation to beinadequate for design purposes, and the responses for both small and large demandshave been shown to be invariant. Although the Horton model has been designedfor Cartesian 
ontrol, it has also been useful to apply Polar Control as it has sig-ni�
antly redu
ed the 
omputational load of the non-linear 
ontrol design, whi
h isimportant (less risky and less expensive - 
omputationally speaking).
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ipal disadvantage asso
iated with Feedba
k Linearization is the la
k ofestablished methods for robust synthesis. By applying FL, desired tra
king per-forman
e has been obtained by assuming an exa
t knowledge of aerodynami
 
o-eÆ
ients and missile 
on�guration parameters in the entire 
ight envelope. In areal 
ight s
enario, this assumption is not valid and for parameter variations fromnominal model, the Feedba
k Linearization 
annot guarantee desired 
losed loopperforman
e neither is robustness provided.In Chapter 4, a robust non-linear traje
tory 
ontroller based on fuzzy logi
 hasbeen applied in the outer loop to provide robustness for the feedba
k linearizablesystem with respe
t to signi�
ant parametri
 un
ertainty introdu
ed into the systemthrough the aerodynami
 
oeÆ
ients. The fuzzy feedba
k linearized 
ontrol designhas been found to be more e�e
tive for improving the transient and steady stateperforman
es than the �xed gain feedba
k linearized 
ontrol design. The ability toimprove the 
losed loop performan
e while managing un
ertainties has shown theadvantage of using the fuzzy logi
 theory. It has provided the means of systemati-
ally synthesising various fuzzy rules to produ
e de
ision a
tions so that the 
omplexmissile non-linear system 
an be 
ontrolled. This allows 
exible robust manoeuvra-bility. It has been diÆ
ult to determine by hand the fuzzy 
ontrol parameters whi
hwill 
ount for any of the parametri
 un
ertainties generated in the system. The trialand error me
hanism has been involved with many iterations before an appropriatedesign has been a
hieved whi
h is time demanding and not very pra
ti
al. Hen
e ithas been repla
ed by evolutionary algorithm optimisation using geneti
 algorithmfor better adaptation and robustness. The rules and the membership fun
tions ofthe fuzzy traje
tory 
ontroller have been generated simultaneously. Ea
h 
hromo-some 
onsisted of a rule set and its asso
iated membership fun
tions. This allowedthe GA operators to integrate multiple fuzzy rule sets and their membership fun
-tions at the same time. The hybrid 
ontrol strategy has been validated via extensive
omputer simulations and has produ
ed a su

essful robust non-linear autopilot de-sign. Although 
omplex, the 
ontrol system is reliable over wide variations in plantdynami
s and o�ers an elegant solution to designers.However, the designer should be 
areful when looking for quality of the 
losed loopperforman
e within reasonable 
omputation time. It is usually a trade-o�, be
ausefuzzy systems perform better when more membership fun
tions are used, but unfor-tunately this in
reases 
omputational time, as the size of the rule base stru
ture inthe fuzzy me
hanism in
reases signi�
antly. Hen
e the trade-o� between pro
essingtime and performan
e is important to take into a

ount. Still new fast te
hnology
an help for implementation of su
h systems.Again in Chapter 4, for the normalised fuzzy logi
 engine, the three s
aling fa
tors(error,derivative of error and output) for ea
h required lateral a

eleration demand(1g; 2g; : : : ; 15g) have been determined via simulations based on the results obtainedwith a �xed gain traje
tory 
ontroller for the nominal model. Then a polynomial



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 142�tting has been used to interpolate between large range of required demands forside-slip velo
ities in order to obtain the s
aling fa
tors of the FLC inputs and out-puts for ea
h demand. As a result smooth transition of the s
aling fa
tors has beena
hieved when di�erent demands have been required within the above mentionedrange. This has determined the smooth transition and gradual interpolation betweenthe 
ontrol surfa
es when multiple demands have been required. The FLC stru
turehas been simultaneously tuned for multiple demands. The resulting rule base andmembership fun
tion's shapes have been a
hieved by de�ning the s
aling fa
tors forea
h demand through the polynomial �tting. The purpose of su
h a tuning pro
esswas to improve the system performan
e with the intention to maintain the linguisti
meaning of the fuzzy 
ontroller, whi
h has been validated for ea
h required demand.To the best of the author's knowledge this is the �rst reported fuzzy logi
 s
heduled
ontroller for multiple demands of a missile autopilot design in the literature.In Chapter 5, multiple solutions were obtained simultaneously by using multi-obje
tive optimisation of the fuzzy logi
 traje
tory 
ontrol parameters, allowingthe system designer the 
exibility of trading one solution against others. This hasbeen a
hieved by evaluating four 
losed loop performan
e 
riteria whi
h asses thequality of the side-slip velo
ity or lateral a

eleration responses. An evolutionary al-gorithm has produ
ed a set of results that populate the Pareto solution set by usingPareto based approa
h with non-dominated sorting. The main strengths of this ap-proa
h are that it 
an handle any number of obje
tives independently and 
an takeinto a

ount non-domination during the ranking pro
ess. An unique way has beenproposed to in
orporate preferen
e information into the evolutionary multi-obje
tivealgorithm by using the Optimisti
 Referen
e Point approa
h to dire
t the GA-sear
htowards spe
i�ed areas for preferable optimal solutions on ea
h obje
tive simultane-ously. The non-dominated sorting method has provided good performan
e, both interms of inferior solutions and in terms of its 
overage of the available non-dominatedpoints. The preferability me
hanism has helped the designer to implement the de-sign requirements into the optimisation pro
edure.In most multi-obje
tive optimisation problems it is not 
lear what kind of pref-eren
es should be spe
i�ed for ea
h obje
tive, whereas in this parti
ular 
ase themissile engineer is interested in a
hieving 
losed loop performan
e values withinspe
i�ed ranges in order for the missile to respond as fast as possible to guidan
e
ommands and be able to 
y in supersoni
 regime. The determination of theseranges has been proposed by the author in two di�erent ways: by using referen
epoints (ideal, maximum and minimum values for ea
h obje
tive), and by handlingthe obje
tives as penalties based on the fuzzy logi
 membership fun
tions prin
iple.Both are di�erent ways to in
orporate preferen
e information into the geneti
 algo-rithm optimisation pro
ess to dire
t the sear
h towards feasible areas whi
h satisfyspe
i�
 values of the obje
tives. As we have used non-dominated sorting for formingthe Pareto front, the 
on
ept of 
risp preferability (using referen
e approa
h) hasbeen seen to provide useful information in the optimisation pro
ess whi
h wouldhave otherwise been fa
ed with sampling a very large trade-o� surfa
e (when all the
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losed loop performan
e 
riteria have been de�ned in dire
t form). Whereas, if thoseobje
tives are de�ned as fuzzy 
onstraints (penalties) this has redu
ed the size ofthe non-dominated set to sear
h and it is 
ertain that the �nal solutions at the endof the optimisation lie within the spe
i�ed fuzzy�ed ranges, so that the engineeringdesign requirements are satis�ed and no need of further DM is required. A prioriDM was enough to predetermine desired feasible solutions at the �nal stage. Con-versely in the �rst 
ase, the evolutionary algorithm has sear
hed in a larger feasiblearea for a

eptable solutions, but only a subset of the non-dominated set has been ofpra
ti
al relevan
e, whi
h required further intera
tion with the DM (i.e. a sele
tivepro
ess at the end of the optimisation).By using the approa
h of handling obje
tives as fuzzy 
onstraints, it was mu
hqui
ker to �nd solutions whi
h satisfy the spe
i�ed ranges on ea
h obje
tive. Al-though many dupli
ate solutions were produ
ed, most important was that these so-lutions were all a

eptable. We suggest that seeing the multi-obje
tive optimisationproblem as a multi-
onstraint one, may a
tually help designers to re�ne a

eptablesolutions �rst and then to investigate further on optimising ea
h obje
tive to spe
i�
values.Evolutionary algorithms seems to gain popularity in the multi-obje
tive optimisa-tion world. In this thesis GAs have shown to be promising and reliable optimisatorsas well as to be useful de
ision making tool. Finding global optimal solutions wasnot the only 
onsideration, as providing solutions with robust performan
e in thepresen
e of un
ertainties was equally important. In Chapter 5, geneti
 algorithmshave been also su

essful in �nding multiple solutions when a large range of di�er-ent velo
ity demands have been required. Various solutions have been presented toshow the powerful interpolative me
hanism of the fuzzy s
heduled 
ontrollers whenmultiple demands were required. The s
aling fa
tors of the fuzzy 
ontroller havebeen determined by using polynomial �tting for ea
h demand. The optimisationpro
edure has been able to �nd multiple solutions (alternative fuzzy 
ontrollers) interms of 
losed loop performan
e 
riteria and has been able to tune the 
ontrol pa-rameters (i.e. the membership fun
tions and the rule base stru
ture) simultaneouslyfor multiple demands.The 
on
lusions were dis
ussed here as a means of illustrating the role of the au-topilot and the importan
e of designing it to meet spe
i�
 requirements di
tated bythe guidan
e loop. This resear
h work has a
hieved an elegant and eÆ
ient solutionof designing a robust autopilot system. The evolutionary multi-obje
tive algorithmshave 
ontributed for solving a real engineering problem su
h as �nding the traje
-tory 
ontrol parameters of a highly manoeuvrable missile system. To the knowledgeof the author these results have not been shown in the literature before.



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 1446.1 Future workImportant areas of work for further investigation 
an be identi�ed su
h as:An important issue is to �nd a way to simplify the derived nonlinear 
ontrol lawof the Feedba
k Linearization by using a well-trained neural network within theinner loop of the system. This will be useful to relieve the 
omputational load ofthe nonlinear 
ontrol law and to provide better robustness of the 
losed loop system.A 
omparison of a Neuro Networks Feedba
k Linearization with Fuzzy Feedba
kLinearization 
an give us better understanding how intelligent systems behave andhow do they di�er in terms of performan
e, 
omplexity and eÆ
ien
y.In this resear
h all the obje
tives were treated independently, however if the missileengineer is interested in solutions that are fast with almost no overshoot, it is pos-sible to alter the rule base stru
ture of the fuzzy traje
tory 
ontroller to produ
edesired solutions on
e the 
ontroller has been tuned. By studying in details the rulebase stru
ture, is possible to extra
t information about whi
h rule a�e
ts the risetime, overshoot, settling time or steady state error.Tuning the s
aling fa
tors for inputs and outputs of the fuzzy 
ontroller for ea
hrequired demand 
an be given to the GAs as they should be able to handle this taskeasily.Not many people have done intera
tive de
ision making 
ombined with geneti
 al-gorithms. During the optimisation pro
ess, if the DM �nds the 
andidate solutionsuna

eptable, DM 
an re�ne the preferen
es so to stimulate GAs to move on to adi�erent region of the non-dominated set.It is an open resear
h area for developing new evolutionary algorithms using geneti
programming strategies. Some 
omparisons with other existing multi-obje
tive op-timisation evolutionary Pareto based approa
hes like MOGA may be an interestingthing to do.Finally, extend the multi-obje
tive optimisation work to MIMO system.
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lature
A.1 Abbreviations�g. �gureFL Feedba
k LinearizationSMC Sliding Mode ControlVSCS Variable stru
ture 
ontrol systemROV Remote operated vehi
leRCAM resear
h 
ivil air
raft modelFLC Fuzzy Logi
 ControlSISO single-input single-output systemMIMO multi-input multi-output systemDOF degree of freedomI/O Input/OutputCLOS 
ommand to line of sightNNs Neural NetworksCMAC 
erebellar model arithmeti
 
omputer
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APPENDIX A. NOMENCLATURE 147GAs Geneti
 AlgorithmsGGAP generation gapSF s
aling fa
torVEGA ve
tor evaluated geneti
 algorithmMOGA multi-obje
tive geneti
 algorithmsNSGA non-dominated sorting geneti
 algorithmDM de
ision makerMCDM multi-
riteria de
ision makingBTT bank-to-turn motionSTT skid-to-turn motion



APPENDIX A. NOMENCLATURE 148A.2 VariablesChapter 2x roll axisy pit
h axisz yaw axisX, Y, Z for
esL, M, N moments in eq 2.6p roll rateq pit
h rater yaw rateU velo
ity along the roll axisv velo
ity along the pit
h axisw velo
ity along the yaw axisVo total Velo
ity� elevator angle� rudder angle� aileron angle� pit
h in
iden
e� yaw in
iden
e� total in
iden
e� aerodynami
 rollIy, Iz lateral inertiaIx inertiam mass of the airframed missile diameterS wing 
hordM Ma
h numberSoS speed of sound� air densityx
g 
entre of gravityX
p 
entre of pressurexf �n moment armxsm stati
 marginxsf lateral moment armxsr roll moment arm



APPENDIX A. NOMENCLATURE 149_q equation _w equationmq pit
h rate moment zw pit
h velo
ity for
emw pit
h velo
ity moment zq pit
h rate for
em� aileron 
ontrol 
oupling moment z� aileron 
ontrol 
oupling for
em� elevator 
ontrol moment z� elevator 
ontrol for
eCmq damping moment 
oe�. Czw side-slip normal for
e 
oe�.Cmw side-slip 
ontrol moment 
oe�. Cz� �n roll for
e 
oe�.Cm� �n roll moment 
oe�. Cz� �n normal for
e 
oe�.Cm� �n side-slip moment 
oe�._r equation _v equationnr yaw rate moment yv yaw velo
ity for
env yaw velo
ity moment yr yaw rate for
en� aileron 
ontrol 
oupling moment y� aileron 
ontrol 
oupling for
en� rudder 
ontrol moment y� rudder 
ontrol for
eCnr damping moment 
oe�. Cyv side-slip normal for
e 
oe�.Cnv side-slip 
ontrol moments 
oe�. Cy� �n roll for
e 
oe�.Cn� �n roll moment 
oe�. Cy� �n normal for
e 
oe�.Cn� �n side-slip moment 
oe�._p equationlp roll rate momentl� rudder 
ontrol 
oupling momentl� elevator 
ontrol 
oupling momentl� aileron 
ontrol momentClp damping moment 
oe�.Cl� �n 
oupling moment 
oe�.Cl� �n 
oupling moment 
oe�.Cl� �n roll moment 
oe�.a1; : : : ; a5 system parameters (see Appendix C)b1; : : : ; b7 system parameters (see Appendix C)
1; : : : ; 
4 system parameters (see Appendix C)4a1; : : : ;4a5 
hange in system parameters (see Se
tion 2.8.1)4b1; : : : ;4b7 
hange in system parameters (see Se
tion 2.8.1)4
1; : : : ;4
4 
hange in system parameters (see Se
tion 2.8.1)fv; fw; fr; fq; fp non-linear fun
tions of a non-linear systemgv; gw; gr; gq; gp non-linear fun
tions related with the inputz 
ight dire
tion used for Polar 
oordinates� 
ight angle of orientation used for Polar 
oordinates



APPENDIX A. NOMENCLATURE 150Chapter 3x state variabley output of a non-linear systemf(x),g(x) smooth ve
tor �elds whi
h have 
ontinuous partialderivatives of any required orderh(x) smooth s
alar fun
tion of the state xwhi
h is the output (i.e. y) of a non-linear systemrh gradient of hLfh(x) Lie derivative of h with respe
t to fLgh(x) Lie derivative of h with respe
t to g� the new input to the linearized system�(x) non-linear state feedba
k�(x) non-linear state feedba
k related to the inputE de
oupling matrix of a MIMO systemu stati
 state feedba
k for de
oupled 
losed loop behaviourr relative degree of a non-linear systeme; _e; : : : ; en�1 des
ribe the 
losed loop error dynami
sk0; k1; : : : ; kn�1 
oeÆ
ients of a Hurwitz polynomial�1(x); : : : ; �i(x) series of fun
tions related to h(x)�1; : : : ; �r a variable whi
h is used to transform a non-linearsystem into new 
oordinates 1(�; u); : : : ;  n�r(�; u) internal dynami
s of a non-linear system 1(x1; u1) the negle
ted term of the approximatefeedba
k linearization (see eq.3.43, eq.3.57, eq.3.64) 2(x2; u2) the negle
ted term of the approximatefeedba
k linearization (see eq.3.66)� lateral a

eleration�� augmented a

elerationz 
ight dire
tion used for Polar 
oordinates� 
ight angle of orientation used for Polar 
oordinates



APPENDIX A. NOMENCLATURE 151Chapter 4�A a membership fun
tion of fuzzy set A�B a membership fun
tion of fuzzy set BA,B fuzzy sets of the inputs of a fuzzy systemO fuzzy set of the output of a fuzzy systemU 
risp set 
alled the Universe of Dis
ourseSe s
aling fa
tor for error input variableSde s
aling fa
tor for derivative of error input variableSu s
aling fa
tor for 
ontrol output variableyo defuzzy�ed output of a fuzzy systemW l degree of ful�llment of the lth ruleAi membership fun
tion i of input ABj membership fun
tion j of input BOk membership fun
tion k of output OO obje
tive fun
tionO1 steady state error obje
tive fun
tionO2 overshoot obje
tive fun
tionO3 rise time obje
tive fun
tionO4 settling time obje
tive fun
tion4f;4g un
ertainties in the model
aused by aerodynami
 
oeÆ
ientsSCv�er s
aling fa
tor of the error inputof the normalised fuzzy 
ontrollerSCv�erd s
aling fa
tor of the derivative of error inputof the normalised fuzzy 
ontrollerSCout s
aling fa
tor of the outputof the normalised fuzzy 
ontrollerp0; : : : ; p3 
oeÆ
ients of SCv�erd polynomial in 4.4q0; q1 
oeÆ
ients of SCout polynomial in 4.5b0; : : : ; b4 
oeÆ
ients of SCv�er polynomial in 4.6
0; : : : ; 
3 
oeÆ
ients of SCv�erd polynomial in 4.7d0; : : : ; d4 
oeÆ
ients of SCout polynomial in 4.8



APPENDIX A. NOMENCLATURE 152Chapter 5x ve
tor of de
ision variablesgi(x) inequality 
onstraintshi(x) equality 
onstraintsf(x) obje
tive ve
tor fun
tionx� ve
tor of de
ision variables whi
h yieldsthe optimal values of all obj. fun
tionsf � ideal ve
tor in the obje
tive spa
e�share sharing value�j(x) fun
tion of lossesy�i ideal obje
tive valueyimax maximum obje
tive value required a priori by DMyimin minimum obje
tive value required a priori by DMer steady state errorOS overshoottr rise timets settling timeEr� ideal referen
e point of �1(x) obje
tive fun
tionOs� ideal referen
e point of �2(x) obje
tive fun
tionTr� ideal referen
e point of �3(x) obje
tive fun
tionTs� ideal referen
e point of �4(x) obje
tive fun
tionErmax maximum referen
e point of �1(x) obje
tive fun
tionOsmax maximum referen
e point of �2(x) obje
tive fun
tionTrmax maximum referen
e point of �3(x) obje
tive fun
tionTsmax maximum referen
e point of �4(x) obje
tive fun
tionErmin minimum referen
e point of �1(x) obje
tive fun
tionOsmin minimum referen
e point of �2(x) obje
tive fun
tionTrmin minimum referen
e point of �3(x) obje
tive fun
tionTsmin minimum referen
e point of �4(x) obje
tive fun
tionm number of evaluated individuals in a populationA1; : : : ; Am alternative solutionsxij attributes whi
h measure alternative performan
eChromi 
hromosomes to be evaluated in a generationEri; T ri; T si; Osi 
losed loop performan
e 
riteria with whi
halternative solutions are evaluated�OS overshoot penalty�Tr rise time penalty�Ts settling time penalty[Cyvmin Cy�min Cnrmax X
pmax℄ vertex points model[Cyvmax Cy�min Cnrmax X
pmin℄ vertex points model



Appendix BPhysi
al Parameters of HortonMissile ModelSymbol Meaning Value�0 Sea Level Air density 1:23kg=m3� Air Density �0 � 0:094hd Referen
e diameter 0:2mS Referen
e area d2=4 = 0:0314m2m Mass 125kgIz; Iy Lateral Inertia 67:5kgm2Ix Inertia 6:75kgm2
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Appendix CNon-linear fun
tions of the statespa
e modelThe non-linear fun
tions fv; fw; fr; fq; fp and gv; gw; gr; gq; gp from the equation ofmotion (2.42) shown in Chapter 2 are given here:fv(v; w; r) = V o( �Cyv0 + �Cyv�pv2 + w2)v � Urgv(v; w) = V oVo( �Cy�0 + �Cy��pv2 + w2fr(w; v; r) = �Ro 1d [(�x
p0 �Cyv0 + �x
p� �Cyv0)pv2 + w2+(�x
p0 �Cyv� + �x
p� �Cyv�(v2 + w2)℄v + d2Ro( �Cnr0 + �Cnr�pv2 + w2)rgr�(v; w) = RoSfVo( �Cy�0 + �Cy��pv2 + w2)gr�(v; w) = �RoSfVo[( �Cy�0RN2 + �Cy��RN1)pv2 + w2 + �Cy�0RN1 + �Cy��RN2(v2 + w2)℄fw(v; w; q) = W o( �Czw0w + �Czw�pv2 + w2) + Uqgw(v; w) = W oVo( �Cz�0 + �Cz��pv2 + w2)fq(v; w; q) = Qo[d2 �Cmq0q + 12dCmq�pv2 + w2q + 1d(�x
p0Czw0w)+1d(�x
p� �Czw0 + �x
p0 �Czw�wpv2 + w2 + 1d(�x
p� �Czw�w(v2 + w2))℄gq�(v; w) = �QoVoSf( �Cz�0 + �Cz��pv2 + w2)gq�(v; w) = QoSfVo[( �Cz�0RN2 + �Cz��RN1)pv2 + w2 + �Cz�0RN1 + �Cz��RN2(v2 + w2)℄fp(p) = �100Ix pgp�(v; w) = 500RL1Ix + RL2Ix 180Vo3:14pv2 + w2gp�(v; w) = 500RL1Ix + RL2Ix 180Vo3:14pv2 + w2gp� = �500Ix (C.1)154



APPENDIX C. NON-LINEAR FUNCTIONS OF THE STATE SPACE MODEL155where the Ma
h number M , and the total velo
ity Vo are slowly varying and where:M = VoSoSV o = W o = 12m�VoSQo = Ro = 12Iyz �VoSd (C.2)The parameters a1; : : : ; a5, b1; : : : ; b10 and 
1; : : : ; 
4 are de�ned here whi
h are usedin Chapter 3 to des
ribe the non-linear system in parametri
 format:a1 = V o �Cyv0a2 = V o �Cyv�a3 = �Ua4 = V oVo �Cy�0a5 = V oVo �Cy��b1 = �Ro 1d �x
p� �Cyv�b2 = �Ro 1d(�x
p0 �Cyv0 + �x
p� �Cyv0)b3 = �Ro 1d �x
p0 �Cyv�b4 = d2Ro �Cnr�b5 = d2Ro �Cnr0b6 = RoSfVo �Cy��b7 = RoSfVo �Cy�0b8 = �RoSfVo( �Cy�0RN2 + �Cy��RN1b9 = �RoSfVo �Cy�0RN1b10 = �RoSfVo �Cy��RN2
1 = �100Ix
2 = �500Ix
3 = 500RL1Ix + RL2Ix 180Vo�
4 = 500RL1Ix + RL2Ix 180Vo� (C.3)



Appendix DLie Algebra
D.1 Lie Derivative and Lie Bra
ketThe terminology used in di�erential geometry has been introdu
ed here by des
ribingthe following mathemati
al tools: A ve
tor fun
tion f : Rn �! Rn is 
alled a ve
tor�eld inRn whi
h means to every ve
tor fun
tion f 
orresponds a �eld of ve
tors in ann dimensional spa
e. A smooth ve
tor �eld is a fun
tion f(x) whi
h has 
ontinuouspartial derivatives of any required order. Given a smooth s
alar fun
tion h(x) of thestate x , the gradient of h is denoted by rhrh = �h�x (D.1)The gradient is represented by a row-ve
tor of elements (rh)j = �h�xj . Similarly,given a ve
tor �eld f(x), the Ja
obian of f is denoted by rf :rf = �f�x (D.2)and it is represented by an n� n matrix of elements (rf)ij = �fi�xj .Lie DerivativesGiven a s
alar fun
tion h(x) and a ve
tor �eld f(x), a new s
alar fun
tion Lfh isde�ned, 
alled the Lie derivative of h with respe
t to f. By de�nition [14℄ the Liederivative of h with respe
t to f is a s
alar fun
tion de�ned by Lfh(x) = rhf(x).Thus the Lie derivative Lfh is the dire
tional derivative of h along the dire
tion ofthe ve
tor f. First and higher order Lie derivatives 
an be de�ned as:Lfh(x) = �h�xf(x) (D.3)and respe
tively: Lkfh(x) = Lf (Lk�1f h(x)) (D.4)Similarly, if g is another ve
tor �eld, then the s
alar fun
tion LgLfh(x) is given by:LgLfh(x) = rLfh(x)g (D.5)156



APPENDIX D. LIE ALGEBRA 157Lie Bra
ketsBy de�nition the Lie bra
ket of f and g is a third ve
tor �eld de�ned by:[f ; g[ = rgf �rfg (D.6)where f and g are two ve
tor �elds on Rn and where rg and rf represent theJa
obians (matri
es) of g and f respe
tively.Su

essive Lie bra
kets [f; :::; [f; g℄; :::℄ 
an be de�ned as follows:ad0f(g) = gad1f(g) = [f; g℄...adkf(g) = [f; adk�1f (g)℄ (D.7)where \ad" represents \adjoint". Both Lie Derivatives and Lie Bra
kets are the mainmathemati
al tools used by Feedba
k Linearization for nonlinear dynami
 systems.D.2 Feedba
k linearization of MIMO systemsInput-Output linearization of MIMO systems [14℄ is obtained similarly to the SISO
ase, by di�erentiating the outputs yi until the inputs appear. Assume that ri is thesmallest integer su
h that at least one of the inputs appears in y(ri)i , theny(ri)i = Lrif hi + mXj=1LgjLri�1f hiuj (D.8)with LgjLri�1f hi(x) 6= 0 for at least one j, in a neighbourhood 
i of the point x0.Performing the above pro
edure for ea
h output yi yields2666664 yr11......yrmm
3777775 = 2666664 Lr1f h1(x)......Lrmf hm(x)

3777775+ E(x)u (D.9)where the (m x m) matrix E(x) is de�ned asE(x) = 2664 Lg1Lkfh1(x) : : : LgmLkfh1(x)... : : : ...Lg1Lkfhm(x) : : : LgmLkfhm(x) 3775 (D.10)where 0 � k � 2n � 1. De�ne then 
 as the interse
tion of the 
i. If as assumedabove , the partial relative degrees ri are all well de�ned, then 
 is itself a �nite



APPENDIX D. LIE ALGEBRA 158neighbourhood of x0. Furthermore, if E(x) is invertible over the region 
, thensimilarly to the SISO 
ase the input transformationu = E�1 2666664 �1 � Lr1f h1......�m � Lrmf hm
3777775 (D.11)yields m equations of the simple formyrii = �i (D.12)Sin
e the input �i only a�e
ts the output yi, (D.11) is 
alled a de
oupling 
ontrollaw, and the invertible matrix E(x) is 
alled the de
oupling matrix of the system.The system is then said to have relative degree (r1; : : : ; rm) at x0 and the s
alarr = r1 + : : :+ rm is 
alled the total relative degree of the system at x0.
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Figure D.1: MIMO 
ontrol designAn interesting 
ase is when the relative degree of a system is the same as its or-der, i.e., when the output y has to be di�erentiated n times (with n being thesystem order) to obtain a linear input-output relation. In this 
ase, the variablesy; y1; : : : ; yr�1 may be used as a new set of state variables for the system, and thereis no internal dynami
s asso
iated with this input-output linearization. In this 
asethe Input-Output linearization leads to Input-State linearization by Slotine in [14℄.D.3 Complex Nonlinear Derivative_(a2x1qx12 + x32) = a2 _x1qx12 + x32 + a2 x21 _x1px12 + x32 + a2 x1x3 _x3px12 + x32 (D.13)Su
h a 
omplex nonlinear derivative has been used for the nonlinear feedba
k 
ontrollow derived in MIMO 
ase Design1



Appendix EFuzzy logi
 glossaryAristotle's law of "A or not A" always holds in probability, while Buddha's law"A and not A" holds in real life situations. The fuzzy entropy theorem has beenproved in 1986: "Fuzziness is the ratio of Buddha over Aristotle". The fuzzier theset the more Buddha resembles Aristotle". Fuzzy Logi
 has two meanings. The �rstmeaning is multi-valued or 'vague' logi
. Everything is a matter of degree in
ludingtruth and set membership. The se
ond meaning is reasoning with fuzzy sets or withsets of fuzzy rules. This dates ba
k to the �rst work on fuzzy sets in the 1960s and1970s by Lofti Zadeh at the University of California at Berkeley. Other synonyms:gray logi
, 
loudy logi
, 
ontinuous logi
.Fuzzy RuleA 
onditional of the form IF X is A,THEN Y is B. A and B are fuzzy sets:"IF theroom air is 
ool, THEN set the motor speed to slow". In math terms a rule is arelation between fuzzy sets. Ea
h rule de�nes a fuzzy pat
h (the produ
t A x B) inthe system "state spa
e"- the set of all possible 
ombinations of inputs and outputs.The wider the fuzzy sets A and B, the wider and more un
ertain the fuzzy pat
h.More 
ertain knowledge leads to smaller pat
hes or more pre
ise rules. Fuzzy rulesare the knowledge building blo
ks in a fuzzy system. In math terms ea
h fuzzy rulea
ts as an asso
iative memory that asso
iates the fuzzy response B with the fuzzystimulus A. Then stimuli similar to A map to responses similar to B. In this senseea
h fuzzy rule de�nes fuzzy asso
iative memory, or FAM. A set of FAM rules in afuzzy system a
ts as a FAM at higher level. It too 
onverts similar inputs to similaroutputs.Fuzzy setA set whose members belong to it to some degree. In 
ontrast a standard or non-fuzzy set 
ontains its members all or none. The set of even numbers has no fuzzymembers. Ea
h number belongs to it 0% or 100% . The set of big mole
ules hasgraded membership. Some mole
ules are bigger than others and so belong to it togreater degree. In the same way most properties like redness or tallness or goodnessadmit degrees and thus de�ne fuzzy sets. In math term a fuzzy set is either a pointin a hyper
ube or a 
urve. A fuzzy set with n members is equal to a list of n numbers159



APPENDIX E. FUZZY LOGIC GLOSSARY 160or �t values. Ea
h �t value lies in the interval from 0 to 1 and stands for the degreethat that member belongs to or �ts in the fuzzy set. The set of all su
h lists of n�t values de�nes a solid unit hyper
ube of n dimensions (with 2n 
orners made upof the 2n binary lists of 0s and 1s or the 2n non-fuzzy sets). Ea
h fuzzy set is onepoint in this fuzzy 
ube. The same holds as the number n grows to in�nity. Thesame holds as the number n grows to in�nity. Three tall men (0:90:50:3) means the�rst is 90% tall, the other is 50% tall or as mu
h not-tall as he is tall.,the third manis 30% tall or more not tall than tall. A 
urve de�nes a fuzzy set for a 
ontinuumof 
ases like all possible temperature values between 50Æ and 100Æ or all possible
ar velo
ities between 0 mph and 120 mph. The height of the 
urve between 0 and1 measures the �t value or degree that the element belongs to the fuzzy set. Anon-fuzzy set looks like a step. Part of the 
urve is the 
at line at 100% and the restis the 
at line at 0%. In this world 
ontinuity is a useful �
tion for math analysisand for engineering design. Up 
lose there are only dis
rete values and a �nite andsmall set to temperature values or even 
ar velo
ities. This amounts to \sampling"a fuzzy 
urve at several pla
es and gives a �nite �t list for the fuzzy set. The moresamples the more a

urate the �t list and the larger the dimension of the hyper
ubein whi
h it sits as a point.Fuzzy systemA set of fuzzy rules that 
onverts inputs to outputs. In the simplest 
ase an expertstates the rules in words or symbols. In the more 
omplex 
ase a neural systemlearns the rules from data or from wat
hing the behaviour of human experts. Ea
hinput to the fuzzy system �res all the rules to some degree as in a massive asso
ia-tive memory. The 
loser the input mat
hes the if-part of a fuzzy rule, the more thethen part �res. The fuzzy system adds up all these output or then part fuzzy setsand takes their average or 
entroid value. The 
entroid is the output of the fuzzysystem. Fuzzy 
hips perform this asso
iative mapping form input to output thou-sands or millions of times per se
ond. Ea
h map form input to output de�nes oneFLIPS- or fuzzy logi
al inferen
es per se
ond. The Fuzzy Approximation Theoremshows that a fuzzy system 
an model any 
ontinuous system. Ea
h rule of the fuzzysystem a
ts as a fuzzy pat
h that the system pla
es so as to resemble the responseof the 
ontinuous system to all possible inputs.ProbabilityThe mathemati
al theory of 
han
e. A probability is a number assigned to an event.The larger the number the more \likely" the event will o

ur. In probability theoryall un
ertainty 
omes from an unde�ned \randomness" or \
han
e".In math terms all probability numbers must add up to one. All events are biva-lent. Either an event happens or not, in whi
h 
ase its opposite happens. Theprobability that either the event A happens or its opposite not-A happens is 100%.Events in probability theory are just the bla
k-white sets of set theory. In this senseprobability theory rests on bivalent logi
.



Appendix FSoftware implementationThe software is build under Matlab environment using \C" language. The dynami
sof the missile is written in \C" as S-fun
tion and the non-linear 
ontrol law is writtenin \C" as mex fun
tion. Both are 
ompiled under Matlab. The simulation of theautopilot system is designed using Simulink library and it is 
alled from the Matlabworkspa
e. The Fuzzy logi
 traje
tory 
ontroller is produ
ed by using the FuzzyLogi
 toolbox in Matlab language. The geneti
 algorithm strategy is written withthe help of the GA fun
tions provided by She�eld University, UK. The simulationswere mainly ran on a 300MHz Unix Workstation or PC. The optimisation algorithmis used to generate the fuzzy 
ontrol parameters. The obtained fuzzy 
ontroller isthen tested on a missile model. A performan
e analysis is done o�-line for ea
hautopilot simulation. The maximum obje
tive value is returned to the optimisationalgorithm for evaluation of the tested fuzzy 
ontroller. The optimisation pro
essrepeats for large number of iterations until satisfa
tory 
losed loop performan
e ofthe autopilot system is obtained.
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