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ABSTRACT

This paper describes a technique that extends the unimodal parti-
cle swarm optimizer to efficiently locate multiple optimal solutions
in multimodal problems. Multiple subswarms are grown from an
initial particle swarm by monitoring the fitness of individual par-
ticles. Experimental results show that the proposed algorithm can
successfully locate all maxima on a small set of test functions dur-
ing all simulation runs.

1. INTRODUCTION

This paper presents the niching particle swarm optimization algo-
rithm, NichePSO. NichePSO is aimed at locating multiple, opti-
mal solutions in a multimodal problem. Particle swarm optimiz-
ers (PSO), using the lbest, and gbest algorithms, have been shown
to effectively solve unimodal optimization problems [16]. These
PSO algorithms are however not well equipped to locating multi-
ple optimal solutions, because of their social propagation of infor-
mation regarding a global good solution [2]. Maintaining diversity
to avoid convergence to local optima and locating a single global
solution, has received much research attention (see [7], [18], [11],
[15]).

Niching algorithms, up to now analyzed mostly under the wing
of genetic algorithms (GAs), have as their goal the identification
and maintenance of multiple optimal solutions [12, 6]. A real
world application of niching, applied to the inversion of teleseis-
mic waves, can be found in [10]. This paper introduces a novel
particle swarm optimization algorithm to detect multiple optima
in parallel. To our knowledge, this is the first PSO niching tech-
nique that searches for multiple solutions in parallel.

In section 2, we present an overview of the PSO algorithm.
Section 3 gives a brief overview of existing niching techniques,
both in the fields of genetic algorithms, and particle swarm opti-
mizers. The new NichePSO algorithm is presented and discussed
in section 4, with experimental results discussed in section 5.

2. PARTICLE SWARM OPTIMIZERS

Particle swarm optimizers are optimization algorithms, modeled
after the social behavior of flocks of birds [9]. PSO is a population
based search process where individuals, referred to as particles,
are grouped into a swarm. Each particle in the swarm represents
a candidate solution to the optimization problem. In a PSO sys-
tem, each particle is “flown” through the multidimensional search
space, adjusting its position in search space according to its own
experience and that of neighboring particles. A particle therefore
makes use of the best position encountered by itself and that of its
neighbors to position itself toward an optimal solution. The effect

is that particles “fly” toward a minimum, while still searching a
wide area around the best solution. The performance of each par-
ticle (i.e. the “closeness” of a particle to the global optimum) is
measured using a predefined fitness function which encapsulates
the characteristics of the optimization problem.

Each particle
�

maintains the following information: (1) x � ,
the current position of the particle, (2) v � , the current velocity of
the particle, and (3) y � , the personal best position of the particle.
The personal best position associated with a particle

�
is the best

position that the particle has visited thus far, i.e. a position that
yielded the highest fitness value for that particle. If � denotes the
objective function, then the personal best of a particle at a time
step � is updated as:
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Two main approaches to PSO exist, namely lbest and gbest, where
the difference is in the neighborhood topology used to exchange
experience among particles. For the gbest model, the best particle
is determined from the entire swarm. If the position of the best
particle is denoted by the vector �� , then
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where - is the total number of particles in the swarm. For the lbest
model, a swarm is divided into overlapping neighborhoods of par-
ticles. For each neighborhood .0/ , a best particle is determined
with position 1� / . This best particle is referred to as the neighbor-
hood best particle, defined as
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Neighborhoods are usually determined using particles indices [7],
although topological neighborhoods have also been used [18]. The
gbest PSO is a special case of lbest with D � - , where D is the
number of particles per neighborhood, and - is the total number
of particles in the swarm; that is, the neighborhood is the entire
swarm.

For each iteration of a gbest PSO algorithm, the EGF7H -dimension
of particle

�
’s velocity vector, I � , and its position vector, J � , is

updated as follows:
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where � is the inertia weight, ��� and ��� are the acceleration con-
stants and ���	� 
���
	���	����� 
���
���������������� . The reader is referred to [20]
for a study of the relationship between the inertia weight and the
acceleration constants in order to select values which will ensure
convergent behavior. Another PSO learning approach, known as
the cognition only model, was tested by Kennedy [8]. This model
uses only a particle’s personal best position found thus far in the
velocity update. � � is then updated as
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Clearly, there is no sharing of social information, and each particle
effectively performs an individual search in its local area, based on
its personal experience.

The PSO algorithm performs repeated applications of the up-
date equations until a specified number of iterations has been ex-
ceeded, or until velocity updates are close to zero.

3. NICHING TECHNIQUES

Niching methods attempt to find multiple solutions to optimiza-
tion problems. They have been studied extensively in the field
of genetic algorithms (GAs) (see [12] and [6] for a complete dis-
cussion) and several different approaches exist. Parallel niching
methods identify and maintain several niches in a population si-
multaneously. Sequential niching methods find multiple solutions
by iteratively applying niching to a problem space, while marking
a potential solution at each iteration to ensure that search efforts
are not duplicated. Some GA niching methods are summarized
below:

Sharing Goldberg [4] regards each niche as a finite resource,
and shares this resource among all individuals in the niche.
An individual’s fitness, 2 � , is adapted to its shared fitness
243� %52��76�8 
:9�; �+<��+� 
�� . The sharing function is defined as

9�; �+<��=%>��-?�+<�6�@1ACB�DFEHG)�JI if the distance < between in-
dividuals K and L is less than @ A	BFD�E�G , otherwise its zero.
The distance measure < can be genotypic or phenotypic,
depending on the problem to be solved.

Sequential niching is a simple, fast algorithm [1] that identi-
fies multiple solutions by adapting the objective function’s
fitness landscape through the application of a derating func-
tion at a position where a potential solution was found. Af-
ter a possible solution is identified, the algorithm is restarted
to search for other solutions. Repeating this process a suf-
ficient number of times will locate all the global minima.
A derating function has the simple effect of lowering the
fitness appeal of previously located solutions.

Deterministic Crowding (DC), based on work done in [3] by
De Jong, evolves a population by deriving offspring from
parents and then letting them compete against each other
for a position in a next generation. (The interested reader
is referred to [12] for a complete analysis.) The repeated
application of this algorithm leads to the development of
similarity traits, identified as niches.

Restricted Tournament Selection [5] is similar to DC, but ran-
domly adapts selected individuals and then lets them com-
pete against the most similar individuals from the popula-
tion. These competitors may not necessarily be the individ-
ual’s parent.

More recently, particle swarm techniques have been developed
to locate multiple optimal solutions. These techniques include:

Objective function “stretching” [15] was applied as a sequen-
tial PSO niching technique, similar to that of Beasley et
al [1]. Once the PSO algorithm has identified a local maxi-
mum 2 �+M:N�� , (through comparing particle fitnesses to a min-
imum threshold value) the objective function is stretched,
such that for each point M , where 2 �+M.�POQ2 �+M N � , M is unaf-
fected. All other points, such that 2 �+M �PR$2 �+M.N�� holds, are
stretched so that M N becomes a local minimum. All parti-
cles are then repositioned randomly. Van den Bergh points
out that the stretching technique may alter the search space
by introducing false maxima, keeping the PSO from dis-
covering all possible solutions [20].

The nbest PSO introduced in [2] uses local, topological neigh-
borhoods that shrink over time to locate multiple solutions
to systems of equations. The nbest algorithm also rede-
fines the fitness function to be more suited to systems of
equations. Topological neighborhoods are similar to neigh-
borhoods defined in the lbest algorithm (see section 2), but
without global convergence characteristics.

4. NICHING PARTICLE SWARM OPTIMIZER

The niching particle swarm optimization (NichePSO) algorithm,
that successfully locates multiple solutions to function optimiza-
tion problems, is presented in this section. Optimization in NichePSO
subswarms utilizes the Guaranteed Convergence Particle Swarm
Optimization (GCPSO) algorithm [20, 21]. An overview of GCPSO
is first given, and then the NichePSO is presented.

4.1. The Guaranteed Convergence Particle Swarm Optimizer

The gbest algorithm exhibits an unwanted property: when M.�S%T � %VUT (for any particle K ), the velocity update in equation (2) de-
pends solely on the � �W����
	� term. When a particle approaches the
global best solution, its velocity property approaches zero, which
implies that eventually all particles will stop moving. This behav-
ior does not guarantee convergence to a global best solution, or
even a local best, only to a best position found thus far. This parti-
cle behavior occurred frequently when running small subswarms.
(The smallest subswarms possible in our implementation, consists
of two particles.) Van den Bergh introduced a new algorithm,
called the GCPSO [20], to proactively counteract this behavior in
a particle swarm. Let X be the index of the global best particle.
The velocity and position updates for M Y are the redefined to be
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The term -\M Y ‘resets’ the particle’s position to the global best po-
sition ]T , � � Y signifies a search direction, and _ ��
	�)�C�c-da�e,�(��
��	�	�
adds a random search term to the equation. The constant _ ��
	� de-
fines the area in which a better solution is searched[20].

4.2. The NichePSO algorithm

Parallel niching algorithms locate and track multiple solutions si-
multaneously, using a fitness-based criterion to detect and mark



Niching Particle Swarm Optimization Algorithm

1. Initialize main particle swarm.

2. Train main swarm particles using one iteration of the cog-
nition only model.

3. Update fitness of each main swarm particle.

4. For each subswarm:

(a) Train subswarm particles using one iteration of the
GCPSO algorithm.

(b) Update each particle’s fitness.

(c) Update swarm radius

5. If possible, merge subswarms

6. Allow subswarms to absorb any particles from the main
swarm that moved into it.

7. Search main swarm for any particle that meets the parti-
tioning criteria – If any is found create a new subswarm
with this particle and its closest neighbor.

8. Repeat from 2 until stopping criteria are met.

Figure 1:

individual solutions. The NichePSO algorithm can be classified as
a parallel niching algorithm utilizing subswarms. Løvbjerg et al
[11] used subswarms to improve swarm diversity and avoid pre-
mature convergence. This approach can be adapted to maintain
and optimize niches in the objective function space.

Figure 1 summarizes the NichePSO algorithm. A number of
issues regarding this algorithm are now discussed:

Initialization The success of the NichePSO depends on the proper
initial distribution of particles throughout the search space.
To ensure uniform distribution, Faure-sequences were used
to generate initial particle positions (as described in [19]).
Faure-sequences are distributed with high uniformity within
an n-dimensional unit cube.

Main Swarm Training The main swarm is trained using the cog-
nition only model [8]. Equation (7) shows that in this model,
only a conscience factor, in the form of a personal best, is
considered when updating particle positions. Therefore no
social information, in the form of a global best solution,
such as in the gbest and lbest algorithms, will influence po-
sition updates. This arrangement allows each particle to
perform a local search.

Identification of niches A fundamental question when searching
for different niches, is how to identify them. Parsopoulos et
al [14] use a threshold value � such that when

���������
	 �
for particle � , the particle is removed from the swarm, and
labeled as a potential global solution. The objective func-
tion’s landscape is then stretched to keep other particles
from exploring this area in the search space. If the isolated
particle’s fitness is not close to a desired level, the solution
can be refined by searching the surrounding function land-
scape with the addition of more particles. This approach
proves to be effective when considering Parsopoulos et al’s
results. This threshold parameter � is however subject to

fine tuning, and locating good solutions with it depends
strongly on the objective function’s landscape and dimen-
sionality. To avoid the use of this tunable parameter, we use
a similar approach that monitors changes in the fitness of
a particle. If a particle’s fitness showed very little change
over a small number of iterations of the learning algorithm,
a subswarm is created with the particle and its closest topo-
logical neighbor. More formally, the variance in particle � ’s
fitness, � � , is tracked over a number of iterations, 
�� , where
 � was set to � in our experiments. When � ��	��

, a sub-
swarm may be created with

� �
. The threshold

�
is a much

more intuitive parameter than � . To avoid problem depen-
dence, � � is normalized according to ��� ��� and ������� . It is
possible that this approach can find local minima, satisfy-
ing � ��	��

. If local minima are undesired, our approach
can be combined with that of a minimum fitness threshold� , to ensure that solutions do meet a minimum fitness cri-
terion. The ‘closest neighbor’ to particle

� �
is simply the

particle
��!

where
��!#"%$�&('*),+.-0/210304(� � 5 ��!0476

; 8 is the
index of any particle in the main swarm, and 8:9" � .

Subswarm radius Subswarm ;=< ’s radius is defined as> < "?)@$BAC304 ; /�D�E F 5 ; /�D�E G 476 (10)

where H is the index of the global best particle in subswarmI
, and ; /�D�E G represents all other particles in ;=< subject to�C9" H .

Absorption of particles into a subswarm Particles are absorbed
into a subswarm when they move ‘into’ a swarm. That is,
particle

� �
will be absorbed into ;0< when4J��� 5 ; / DKE FL4NM > < (11)

Merging subswarms Subswarms are merged when they intersect.
Swarms that intersect are likely to converge on the same
solutions. When they are merged, social information about
the niche is shared between the swarms, avoiding superflu-
ous traversal of the search space. Two subswarms, ;L<�O and;0<QP , intersect when4 ; / D�RSE F 5 ; / DUTJE F�4V	W� > <�OYX > <ZP � (12)

It is entirely possible that a subswarm may have a
> < "W[

.
This situation would occur when all particles have con-
verged to an optimal solution. In this situation, (12) fails
to detect swarms in the same niche. Consequently, when
two swarms, ; <�O and ; <QP do not satisfy (12) because they
have

> <�O " > <QP "\[
they can be merged when4 ; /�D�RSE F 5 ; /�DUTJE F]4N	_^

(13)

As with
�
,
^

can be an appreciably small number, such as` [0a]b
, to ensure that two swarms are sufficiently similar.4 ; /�D�RSE F 5 ; /cDUT(E F]4 is normalized to the interval d [fe `Qg . ;=<�O

and ; <QP are merged by creating a new subswarm consisting
of all ;=<�O and ;=<ZP ’s particles.

The GCPSO Algorithm A description of this algorithm is given
in sub-section 4.1. Subswarms created by NichePSO ini-
tially always consist of two particles. Utilizing the gbest
algorithm, especially when these particles are topologically
close, they may converge to suboptimal solutions. GCPSO
is therefore preferred over the ‘traditional’ gbest algorithm
because of its ability to avoid stagnating on suboptimal so-
lutions.



Function � � � ��� ���	��
 ���	��
������	��
���
0.0001 0.001 30 0.01 1.0���
0.0001 0.001 30 0.01 1.0���
0.0001 0.001 30 0.01 1.0���
0.0001 0.001 30 0.01 1.0���
0.0001 0.001 20 -5.0 5.0

Table 1: Parameter Settings

Function Fitness Deviation % Converged��� ���  �!#"%$'&(� ��� ��&�")$*&+� �,&#&(-��� ./�0����"%$'&(�  /� �(��")$*&#� �,&#&(-��� ��� .#��"%$'&# �1� !# �")$*&#� �,&#&(-��� !/� &#��"%$'&(�  /�  #!�")$*&#� �,&#&(-��� �1� �+!#"%$'&# �#� &#��")$*&#� �,&#&(-
Table 2: Performance Results

5. EXPERIMENTAL RESULTS

This section summarizes results of the application of the NichePSO
algorithm to finding maxima of multimodal functions. Our task
was to find the maxima of the following functions (see figures 2 to
6): ���#2 �435� 68709�: 2;�+< �43 (14)����2 �435� =�>@?�A@B C8D,EFA8GIH 2+JLK/MON PMON Q 3IR�SUT 687F9V: 2;�+< �43 (15)���/2 �435� 68709�: 2;�+<�2 ��WYXYZ $*&�� &#� 383 (16)���12 �435� =�>@?�A@B C8D,EFA8GIH 2+JLK/MON M[QMON Q]\]^ 3 R SUT

68709�: 2;�+<�2 ��WYXYZ $*&�� &#� 383 (17)���/2 �`_Ia135� ��&�&�$b2 � Adc a $b�#� 3 A $e2 � c a A $f� 3 A (18)

These functions were also used by Beasley et al [1] and Spears
[17] to respectively test a GA sequential niching algorithm and
GA subpopulation configurations. Function

���
and

���
both have�

maxima with a function value of
��� &

. In
���

, maxima are evenly
spaced; in

���
maxima are unevenly spaced. In

���
and

���
, local

and global peaks exist at the same � -positions as in
���

and
���

, but
they decrease exponentially. Function

���
(see figure 6), the mod-

ified Himmelblau function, has
�

equal maxima with
���/2 �g_IaV3	��+&#&

. For each of the 5 functions, 30 experiments were done with
the NichePSO algorithm, with h�ij�%h A � ��� �

. The inertia weightk is scaled linearly from
&�� �

to
&/� �

, over a maximum of 2000 itera-
tions of the algorithm. These parameter settings allow the particles
to gradually slow down after initially exploring with vigor; at the
same time ensuring that they follow convergent trajectories [20].
Table (1) reports further parameter settings; the indicated � lj� is the
initial number of particles in the main swarm of every experiment,
before any niche subswarms are created. For functions

���
to
���

,
a particle consists simply of a potential � value. For function

���
,

a particle represents a
2 �g_8a13 position. We evaluate our algorithm

according to accuracy – thus how close the discovered maxima are
to the actual maxima; and success consistency – the proportion of
the experiments that converged to the optimal solution.

Parameter values for � and � in table 2, have been experimen-
tally found to be effective. Table 3 reports the mean and standard
deviation of fitness of all particles in all subswarms, where the fit-
ness is the average distance of the found solutions to the true max-
ima. % Converged signifies the percentage of experiments carried

out for each function that successfully located all the global max-
ima. NichePSO successfully located all global maxima of all the
functions tested. For functions

���
and

���
, with exponentially

decreasing maxima (see for example figure 3), NichePSO located
the global maxima, and in some of the experiments, selected local
maxima. (This explains the relatively large difference in fitness
between functions

���
and

���
, and functions

���
and

���
.)

Beasley et al reported slightly worse results for functions
�m�

–���
, and only found all maxima in

�� #-
of the experiments done

for
���

[1].

6. CONCLUSION AND FUTURE WORK

This paper introduced a variation to the ‘traditional’ PSO algo-
rithm, namely the NichePSO. The NichePSO algorithm locates
multiple optimal solutions for multimodal optimization problems,
through the use of subswarms and a convergent subswarm opti-
mization algorithm, GCPSO. Experimental results showed that the
new algorithm successfully located all maxima for all the simula-
tion runs.

A number of issues still need to be resolved, including:n The relationship between the number of niches/solutions
and � lo� .n Sensitivity of the algorithm to changes in parameters such asp � and � . (Ideally, we do not want to introduce new param-
eters that require intimate knowledge of a problem domain,
and that could adversely affect algorithm performance.)n Differences in algorithm performance that occur when gbest,
instead of GCPSO, is used for learning in subswarms.n Performance on high-dimensional problems.n Empirical comparison to existing PSO niching algorithms.
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Figure 2: Function F1, evenly spaced equal maxima.
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Figure 3: Function F2
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Figure 4: Function F3
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Figure 5: Function F4, Showing exponentially decreasing local
maxima.

-5

0

5x -5

0

5

y

0

50

100

150

200

F5(x,y)

Figure 6: The 4-peak Himmelblau function.


