

Experimental Genetic Operators Analysis for

the Multi-objective Permutation Flowshop

Carlos A. Brizuela and Rodrigo Aceves

Computer Science Department, CICESE Research Center
Km 107 Carr. Tijuana-Ensenada, Ensenada, B.C., México

{cbrizuel, raceves}@cicese.mx, +52–646–175–0500

Abstract. The aim of this paper is to show the influence of genetic
operators such as crossover and mutation on the performance of a genetic
algorithm (GA). The GA is applied to the multi-objective permutation
flowshop problem. To achieve our goal an experimental study of a set
of crossover and mutation operators is presented. A measure related to
the dominance relations of different non-dominated sets, generated by
different algorithms, is proposed so as to decide which algorithm is the
best. The main conclusion is that there is a crossover operator having the
best average performance on a very specific set of instances, and under
a very specific criterion. Explaining the reason why a given operator is
better than others remains an open problem.

1 Introduction

Optimization problems coming from the real world are, in most cases, multi-
objective (MO) in nature. The lack of efficient methodologies to tackle these
problems makes them attractive both theoretically and practically.

Among these real-world MO problems, scheduling (a combinatorial one)
seems to be one of the most challenging. In a real scheduling problem we are in-
terested not only in minimizing the latest completion time (makespan) but also
in minimizing the total time all jobs exceed their respective due dates as well as
the total time the jobs remain in the shop (work-in-process). A few results on
MO scheduling with a single-objective-like approaches reveal that there is much
to do in this research area.

On the other hand, the available methodologies in genetic algorithms (GA’s)
have been focused more on function optimization rather than in combinatorial
optimization problems (COP’s). In order to fairly compare the performance of
two given algorithms some metrics have been proposed. Recent results [17], [21]
have shown that these metrics may mislead conclusions on the relative perfor-
mance of algorithms. This situation forces us to find appropriate procedures to
fairly compare two non-dominated fronts, at least in terms of dominance rela-
tions.

The remainder of the paper is organized as follows. Section 2 states the prob-
lem we are dealing with. Section 3 reviews some available results for this problem.
Section 4 introduces the global algorithm used in the operators study. Section 5

explains the experimental setup and introduces the proposed performance mea-
sure. Section 6 shows the experimental results. Finally, section 7 presents the
conclusions of this work.

2 Problem Statement

Let Kn be the set of the n first natural numbers, i.e. Kn = {1, 2, · · · , n}. The
permutation flow-shop problem consists of a set Kn of jobs (n > 1) that must be
processed in a set of machines Km (m > 1). Each job j ∈ Kn has m operations.
Each operation Okj , representing the k-th operation of job j, has an associated
processing time pkj . Each machine must finish the operation once it is started to
be processed (no preemption allowed). No machine can process more than one
operation at the same time. No operation can be processed by more than one
machine at a time. Each job j is assigned a readiness time rj , and due date dj .
All jobs must have the same routing through all machines. The goal is to find a
permutation of jobs that minimizes a given objective function (since the order
of machines is fixed).

In order to understand the objective functions we want to optimize we need
to set up some notation first. Let us denote the starting time of operation Okj

by skj . Define the permutations π = {π(1), π(2), · · · , π(n)} as a solution to the
problem.

With this notation a feasible solution must hold the following conditions:

skj > rj ∀k ∈ Km, j ∈ Kn , (1)

skπ(j) + pkπ(j) ≤ s(k+1)π(j)∀k ∈ Km−1, j ∈ Kn . (2)

All pairs of operations, of consecutive jobs, processed by the same machine k
must satisfy:

skπ(j) + pkπ(j) ≤ skπ(j+1)

for every machine k ∈ Km, and every job j ∈ Kn−1 . (3)

Now we are in position of defining the objective functions. First we consider
the makespan, which is the completion time of the latest job, i.e.

f1 = cmax = smπ(n) + pmπ(n) . (4)

The mean flow time, representing the average time the jobs remain in the shop,
is the second objective.

f2 = fl = (1/n)

n∑

j=1

flj , (5)

where flj = {smj + pmj} − rj , i.e. the time job j spends in the shop after its
release. The third objective is the mean tardiness, i.e.

f3 = T = (1/n)

n∑

j=1

Tj , (6)

where Tj = max{0, Lj}, and Lj = smj + tmj − dj .
Thus, we have the following MO problem:

Minimize (f1, f2, f3)

subject to (1)− (3) . (7)

This problem, considering only the makespan (Cmax) as the objective func-
tion, was proven to be NP-hard [11]. This implies that the problem given by (7)
is at least as difficult as the makespan problem.

2.1 Tradeoff among objectives

To show that “conflict” among objectives exists, it is necessary to define what
“conflict” means. We give some definitions in order to understand why our prob-
lem should be treated as a multi-objective one.

Definition 1. The Ideal Point or Ideal Vector is defined as the point z∗

composed of the best attainable objective values. This is,
z∗j = max{fj(x)|x ∈ A}, A is the set (without constraints) of all possible x,

j ∈ Kq , where q > 1 is the number of objective functions.
Definition 2. Two objectives are in conflict if the Euclidean distance from

the ideal point to the set of best values of feasible solutions is different from zero.
Definition 3. Three or more objectives are in conflict if they are in conflict

pairwise.
To show that the objectives are in conflict we are going to construct a counter-

example instance where we can enumerate all solutions and see that there is not
a single solution with all its objective values being better than or equal to the
respective objective values of the other solutions. This implies that the distance
from the set of non-dominated solutions to the ideal point is positive.

Table 1 presents an instance of the PFSP with three jobs and two machines.
All solutions for this problem are enumerated in Table 2, here we can see that
solution 312 has the best makespan value, 231 the best tardiness, and 213 the
best mean flow time. The ideal point z∗ for this instance is given by z∗ =
(44, 16, 87). Therefore, the Euclidean distance from the set of values in Table 2
to the ideal point is positive.

It is not known whether or not, in randomly generated PFSP instances,
it is enough to consider only two objectives, as the third one, in the Pareto
front, will have the same behavior as one of the first two. We did not perform
any experimental study regarding the answer for this question because of the
required computational effort. However, in the experiments section we will see
that for all generated instances there are two objective functions which are not
in conflict. It will be very interesting to know which instances will have three
conflicting objectives and which will not.

Table 1. Problem data for a 3-jobs 2-machines PFSP

Job (j) tj1 tj2 Due Date (dj)

1 17 8 30
2 5 4 15
3 15 11 30

Table 2. Counter-example for the PFSP

Π f1 f2 f3

321 45 30 101
312 44 39 110
231 45 16 105
213 48 18 87
132 47 45 115
123 48 32 102

3 Genetic Algorithm Approach

Surveys on the existing GA’s methodologies for multi-objective optimization
problems can be found in [7], [8], [10], and references therein. Almost any appli-
cation uses the methodologies described in these documents.

The application of GA’s to MO scheduling problems has been rather scarce.
Two interesting ideas are those presented in [18] and [2].

In [18] the scheduling of identical parallel machines, considering as objective
functions the maximum flow time among machines and a non-linear function
of the tardiness and earliness of jobs, is presented. In [2] a natural extension
of NSGA [19] is presented and applied to flow-shop and job-shop scheduling
problems. Another, totally different approach is that presented by Isibuchi and
Murata [15]. They use a local search strategy after the genetic operations without
considering non-dominance properties of solutions. Their method is applied to
the MO flow-shop problem. Basseur et al. [3] also presents a local search idea
to deal with this problem. Research on how intensive the local search should be,
for a very specific instances of the permutation flowshop problem, is presented
by Ishibuchi et al. [16].

In the literature, the main idea when solving MO scheduling problems is to
apply the existing GA’s methodologies to the problem to solve. However, there
are no traces of studies on how adequate these methodologies may be. Again, the
lack of a fair methodology for comparing the results does not help to improve
this situation.

Brizuela et al. [6] present a question related to the existence of a superior com-
bination of genetic operators in terms of non-dominance relations, and whether

or not this superiority will persist over some set of instances for a given flowshop
problem. The work presented here try to answer this question.

The next section presents the algorithm we use to compare the performance
of different operators.

4 The Algorithm

A standard GA for MO [19] is used with some modifications. The fitness share
and dummy fitness assignment are standard. The main difference is in the re-
placement procedure, where an elitist replacement is used.

The specific NSGA we use here as a framework is stated as follows.
Algorithm 1. Multi-objective GA.

Step 1. Set r = 0. Generate an initial population POP [r] of g individ-
uals.
Step 2. Classify the individuals according to a non-dominance relation.
Assign a dummy fitness to each individual.
Step 3. Modify the dummy fitness by fitness sharing.
Step 4. Set i=1.
Step 5. Use RWS to select two individuals for crossover according to
their dummy fitness. Perform crossover with probability pc.
Step 6. Perform mutation of individual i with probability pm.
Step 7. Set i = i + 1. If i = g then go to Step 8 otherwise go to Step 5.
Step 8. Set r = r + 1. Construct the new generation POP [r] of g

individuals. If r = rmax then STOP; otherwise go to STEP 2.

The procedures involved at each step of this algorithm are explained in the
following subsections.

4.1 Decoding

Each individual is represented by a string of integers representing job numbers to
be scheduled (a permutation of job numbers). In this representation individual
r looks like:

ir = (i
(r)
1 i

(r)
2 · · · i

(r)
n), r = 1, 2, · · · , g ,

where i
(r)
k ∈ Kn.

The schedule construction method for this individual is as follows:

1) Enumerate all machines in Km from 1 to m.

2) Select the first job (i
(r)
1) of ir and route it from the first machine

(machine 1) to the last (machine m).
3) Select iteratively the second, third, · · ·, n-th job and route them
through the machines in the same machine sequence adopted for the

first job i
(r)
1 (machines 1 to m). This must be done without violating the

restrictions imposed in (1) to (3).

4.2 Selection and Replacement

The selection operator we use here is standard to GA’s, like those proposed
elsewhere [14]. Two selection processes are distinguished here.

Selection for mating - SELECTION (Step 5). This is the way we choose
two individuals to undergo reproduction (crossover and mutation). In our algo-
rithm roulette wheel selection (RWS) is used. This selection procedure works
based on the dummy fitness function assigned to each individual. The way to
compute the dummy fitness (Step 2) and the way to do the fitness sharing (Step
3) are standard (see [10], pages 147-148).

Selection after reproduction - REPLACEMENT (Step 8). This is the
way to choose individuals to form the new generation from a set given by all
parents and all offsprings. In this paper, the best elements are selected from the
pool of parents and offsprings.

To define “the best,” all individuals (parents and offsprings) are sorted in
fronts. Then the first g individuals are copied from the first front (the nondomi-
nated front) following the next fronts until g individuals are obtained. After this
the g individuals are ordered according to the following rules: in each front, indi-
viduals with better makespans have higher priority followed by individuals with
higher tardiness, and finally by the mean flow time. After sorting all individuals
repeated ones are replaced by randomly selected individuals from the pool of
parents and offsprings. Notice that this does not avoid having repeated individ-
uals in the new generation. The average running time of the above procedure is
O(nlgn), the average running time of Quicksort. The selection of makespan in
the ordering is irrelevant to the overall algortihm. This ordering is only to have
an efficient algorithm for replacing repeated individuals.

4.3 Crossover

The crossover operators described here are the most frequently used in the lit-
erature.

OBX. This is the well known order-based crossover (see [13], page 239)
proposed by Syswerda for the TSP. The position of some genes corresponding to
parent 1 are preserved in the offspring and the not yet copied elements in parent
2 are copied in the order they appear in this parent. For this crossover a random
mask is generated as shown in Fig. 1 (left side).

PPX. Precedence Preservative Crossover [5]. A subset of precedence relations
of the parents genes are preserved in the offspring. Fig. 1 (center) shows how
this operator works. The 1’s in the mask indicate that genes from parent 1 are
to be copied and the 0’s indicate that genes from parent 2 are to be copied, in
the order they appear from left to right.

OSX. One Segment crossover. This is similar to the well known two point
crossover ([13], page 408) where also two random points are selected. An example
of how this operator work is illustrated in Fig. 1 (right), here genes from loci 1
to s1 of parent 1 are copied to loci 1 to s1 in the offspring, and loci s1 + 1 to
s2 (in the offspring) are copied from parent 2 starting at locust 1 and copying

1 2 3 4 5 6 7 8 9

5 4 6 3 1 9 2 7 8

Parent 1:

Child:

Parent 2:

1 0 0 0 1 1 0 1 1

1 4 3 2 5 6 7 8 9

Mask:

1 2 3 4 5 6 7 8 9

5 4 6 3 1 9 2 7 8

1 0 0 0 1 1 0 1 1

1 5 4 6 2 3 9 7 8

OBX PPX

1 2 3 4 5 6 7 8 9

5 4 6 3 1 9 2 7 8

1 2 3 4 5 6 9 7 8

s1 s2

OSX

No mask

Fig. 1. Example of OBX, PPX, and OSX for nine jobs. In OSX the point s1 indicates
that all genes of P1 from loci 1 to s1 are going to be copied in the offspring and from
loci s1 + 1 to s2, in the offspring, genes come from P2. The rest will come from P1
copied from left to right considering only those that were not copied from P1 or P2

all those genes that have not been copied from parent 1. From loci s2 + 1 to n,
genes are copied from parent 1 considering only genes that were not copied into
the offspring.

4.4 Mutation

The mutation operators that we use here are also standard (see [12]). The fol-
lowing mutation operators are used (Step 6).

INSERT. Two loci (s1, s2) are randomly selected if s1 < s2 then the gene
corresponding to s1 is placed on s2 and all genes from s1 + 1 to s2 are shifted
one position towards s1. If s1 > s2 then the shift operation is performed towards
s2 as it is depicted in Fig. 2 (left side).

SWAP. Two loci are randomly selected and their genes interchanged. An
example of this is shown in Fig. 2 (center).

SWITCH. A single interchange of two adjacent genes is performed. The
locus to swap is randomly selected. Once this locus is selected the corresponding
gene is interchanged with its immediate successor to the right, if the last gene
(locus n) is selected then this is interchanged with the first one (locus 1). An
example is shown in Fig. 2 (right side).

5 Performance Measures and Experimental Setup

Many performance measures for MO algorithms have been proposed (for a survey
see [8]-[10]), these metrics try to identify three different characteristics [20] of
the attained non-dominated front: i) how far the non-dominated front is from
the true Pareto front, ii) how widely extended the set of solutions is, in the non-
dominated front, and iii) how evenly distributed the solutions are, in the non-
dominated front. Researchers have already noticed that, for many problems, the

1 2 3 4 5 6 7 8 9

1 2 34 5 6 7 8 9

s1 s2

INSERT

1 2 3 4 5 6 7 8 9

1 2 34 5 67 8 9

s1 s2

Before:

After:

1 2 3 4 5 6 7 8 9

1 2 34 5 6 7 8 9

SWAP SWITCH

Fig. 2. INSERT, SWAP, and SWITCH mutation operators for a 9-jobs flowshop prob-
lem

proposed metrics are not “compatible” with the non-dominance relation among
two different non-dominated fronts [17], this is especially true in combinatorial
problems. For this kind of problems, properties such as expansion or evenly
distributed may not be important. It will depend, of course, on the way the true
Pareto front is extended and distributed. All the difficulties mentioned above
motivate us to directly work with the nondominance relations between the fronts
of the algorithms we want to compare.

In our approach, the non-dominated front to be used for comparisons, is
obtained by applying the following procedure.

For each run i of algorithm j denote the set of solutions in the last gener-
ation as Si

j . Calculate Out(j) =NDS(
⋃Numruns

i=1 Si
j), where NDS(X) is an op-

erator obtaining the set of non-dominated solutions from the input set X . Let
ns = |Out(j)|, na = number of algorithms to compare, and let ss(r, j) de-
note element r of Out(j). Take each solution of Out(j) and compare it against
all other solutions in the sets Out(p) for p = 1, 2, · · · , na and p 6= j. For
each pair of solutions belonging to different sets we can obtain the follow-
ing results: i) no dominance relation can be established between ss(r, j) and
ss(k, p) (ss(r, j) �≺ ss(k, p)), ii) solution ss(r, j) is dominated by solution
ss(k, p) (ss(r, j) ≺ ss(k, p)), iii) solution ss(r, j) dominates solution ss(k, p)
(ss(r, j) � ss(k, p)), and iv) the solutions are the same (ss(r, j) = ss(k, p)).

We propose as measures counting the number of times each of these situations
happen, i.e. m1

j counts the number of times a solution in Out(j) can not establish

a dominance relation with solutions in the other sets, m2
j counts the number of

solutions in other sets that dominate solutions in Out(j), m3
j counts the number

of times solutions in Out(j) dominates solutions in Out(p), finally m4
j counts the

number of times solution ss(r, j) has copies of itself in other sets.

5.1 Statistical Considerations

Since the previous experiments are taken over the whole set of solutions gen-
erated in different runs, we need to know if this behavior statistically holds
when considering the output of randomly generated runs. In order to verify this,
we compare the set of non-dominated solutions of each run and compute the
statistics for each of the four measures (m1

j ,m
2
j ,m

3
j , and m4

j). For computing

these statistics we randomly select, without replacement, NDS(S i
j) uniformly

on i ∈ {1, · · · , NumRuns} for each j ∈ {1, · · · , na} until we have NumRuns
nondominated fronts to compare. The average for each measure mi

j is computed
over NumRuns different samples.

The experiment is performed for each combination of crossover and mutation.
Three different crossover operators and three different mutation operators are
considered (see subsections 4.3 and 4.4).

5.2 Benchmark Generation

In order to generate a set of benchmark instances we take one of the problem
instances in the library maintained by Beasly [4] and apply a procedure proposed
by Armentano and Ronconi [1] for generating due-dates. The authors in [1]
propose a way to systematically generate controlled due dates, following a certain
structure. The procedure is based on an estimation of a lower bound for the
makespan (f1). This lower bound is defined as P , then due dates are randomly
and uniformly generated for each job in the range of P (1− T − R/2) to P (1−
T + R/2), where T and R are parameters for generating different scenarios of
tardiness and due date ranges, respectively.

6 Results

The results on the experiments previously described are presented here. The
main conclusion drawn from these results is that the crossover operator denom-
inated OBX outperforms all other studied operators in terms of the dominance
measures we propose in this work.

Table 3. Dominance relations, mean spacing (S), and ONVG for non-dominated fronts
generated by nine algorithms. Instance 6 (75 jobs 20 machines)

Operator (m4

j) (m3

j) (m2

j) (m1

j) (S) (ONVG)

Algo 1 0.00 49.22 33.04 17.74 17.98 23.86
Algo 2 0.00 47.49 34.21 18.30 18.86 18.62
Algo 3 0.00 2.92 88.36 8.72 30.54 32.96
Algo 4 0.00 87.42 1.29 11.29 19.40 10.70
Algo 5 0.00 80.14 4.42 15.44 15.01 10.02
Algo 6 0.00 69.05 8.29 22.66 21.25 13.66
Algo 7 0.00 48.22 30.14 21.64 17.97 9.88
Algo 8 0.00 43.14 34.53 22.33 36.35 9.40
Algo 9 0.00 11.06 76.76 12.18 28.03 17.56

The maximum number of generations is 2000. The total number of runs for
each algorithm is 50. The crossover rate was fixed to 1.0, the mutation rate to

0.1, and the population size to 100. Ten instances of 75 jobs and 20 machines
are studied. The 75-jobs and 20-machines was taken from the benchmark library
maintained by Beasly [4]. The due-dates were generated by setting T and R to
0.4 and 1.2, respectively. The operator combinations to study are denominated
as follows: OSX-INSERT is Algo 1, OSX-SWAP (Algo 2), OSX-SWITCH (Algo
3), OBX-INSERT (Algo 4), OBX-SWAP (Algo 5), OBX-SWITCH (Algo 6),
PPX-INSERT (Algo 7), PPX-SWAP (Algo 8), and PPX-SWITCH is Algo 9.

All generated instances have their processing times as in the benchmark
instance in [4], the only difference is in the due-dates (the original problem in
[4] considers no due dates).

Fig. 3. Performance measures (mi
j , j ∈ {1, · · · , na}, i ∈ {1, · · · , 4}) for the 75 jobs 20

machines flowshop problem. Instances 1 and 2

Table 3 presents the results for a single instance and 50 runs, it is clear to see
that the combinations OBX with INSERT (Algo 4) and OBX with SWAP (Algo
5) have a small number of solutions dominated by the other combinations (less
than 4.5%) and the highest percentage of domination, over 80% each. Table 3
also presents results for the Spacing (S) and the Overall Nondominated Vector
Generation (ONVG) as they are defined in [20]. In this table we can see that the
ONVG measure is not a good indicator for the performance of algorithms. ONVG
indicates that Algo 3 is the best one, but considering dominance relations it is
one of the worst (m2

3 = 88.36%). Figures 3 to 7 show the performance measure
for each combination of operators, and for each of the 10 different generated
instances.

Fig. 4. Performance measures (mi
j , j ∈ {1, · · · , na}, i ∈ {1, · · · , 4}) for the 75 jobs 20

machines flowshop problem. Instances 3 and 4

Fig. 5. Performance measures (mi
j , j ∈ {1, · · · , na}, i ∈ {1, · · · , 4}) for the 75 jobs 20

machines flowshop problem. Instances 5 and 6

Fig. 6. Performance measures (mi
j , j ∈ {1, · · · , na}, i ∈ {1, · · · , 4}) for the 75 jobs 20

machines flowshop problem. Instances 7 and 8

Figures 8 to 9 show the projections in two axes of the overall nondominated
front for Algo 1, Algo 4, and Algo 5 (instance 6). It is easy to see that Algo 4
and 5 clearly outperforms Algo 1, in every projection. Figure 9 shows that the
mean flow time (f2) and the tardiness (f3) are not in conflict. This is because
of the range of generated due dates.

Figures 10 to 11 show the same two axes projection of three randomly selected
non dominated fronts (one for each algorithm) of a single run, and for a particular
problem instance (Instance 6). Again, Algo 4 and 5 outperform Algo 1.

Fig. 7. Performance measures (mi
j , j ∈ {1, · · · , na}, i ∈ {1, · · · , 4}) for the 75 jobs 20

machines flowshop problem. Instances 9 and 10

2400

2420

2440

2460

2480

2500

2520

5160 5180 5200 5220 5240 5260 5280 5300 5320 5340 5360 5380
3220

3240

3260

3280

3300

3320

3340

5160 5180 5200 5220 5240 5260 5280 5300 5320 5340 5360 5380

Algo 1
Algo 4
Algo 5

(Makespan)f1
(Makespan)f1

(T
ar

di
ne

ss
)

f 3

(M
ea

n
Fl

ow
 T

im
e)

f 2

a) b)

Algo 1
Algo 4
Algo 5

Fig. 8. Union of all nondominated solutions in the last generation (Out(j)) for Algo
1, 4, and 5 for Instance 6. a) Mean Flow Time and Makespan relations. b) Tardiness
and Makespan relations

By looking at Figs. 8 to 11 we can see that Algo 4 outperforms Algo 1 and
Algo 5. To study the significance of the difference between these algorithms,

3220

3240

3260

3280

3300

3320

3340

2400 2420 2440 2460 2480 2500 2520

Algo 1
Algo 4
Algo 5

(T
ar

di
ne

ss
)

f 3

(Mean Flow Time)f
2

Fig. 9. Tardiness and Mean Flow Time relations. Union of all nondominated solutions
in the last generation (Out(j)) for Algo 1, 4, and 5 for Instance 6

2400

2420

2440

2460

2480

2500

2520

2540

2560

5200 5250 5300 5350 5400 5450

3220

3240

3260

3280

3300

3320

3340

3360

3380

5200 5250 5300 5350 5400 5450

(Makespan)f1
(Makespan)f1

(T
ar

di
ne

ss
)

f 3

(M
ea

n
Fl

ow
 T

im
e)

f 2

a) b)

Algo 1
Algo 4
Algo 5

Algo 1
Algo 4
Algo 5

Fig. 10. Nondominated solutions in the last generation of a randomly selected run
(NDS(Si

j)) for Algo 1, 4, and 5 for Instance 6. a) Mean Flow Time and Makespan
relations. b) Tardiness and Makespan relations

3220

3240

3260

3280

3300

3320

3340

3360

3380

2400 2420 2440 2460 2480 2500 2520 2540 2560

(Mean Flow Time)f
2

(T
ar

di
ne

ss
)

f 3

Algo 1
Algo 4
Algo 5

Fig. 11. Tardiness and Mean Flow Time relations. Nondominated solutions in the last
generation of a randomly selected run (NDS(Si

j)) for Algo 1, 4, and 5 for Instance 6

dominance relations between Algo 4 - Algo 1, and Algo 4 - Algo 5 are computed
for all instances. The results for Algo 4 and Algo 5 are presented in Table 4,
these algorithms uses the same crossover operator (OBX) and different muta-

Table 4. Comparison of dominance relations between Algo 4 - Algo 5, and Algo 4 -
Algo 1 over all instances. Dominance relations, mean and standard deviation.

Algo 4 vs. Algo 5 (m4

j) (m3

j) (m2

j) (m1

j)

Mean 0.00 27.26 20.12 52.62
Std. Dev. 1.00 6.87 6.55 4.63

Algo 4 vs. Algo 1

Mean 0.00 84.61 1.42 13.97
Std. Dev. 0.00 4.84 1.80 3.30

tion operators, INSERT and SWAP, respectively. In this case we see that the
domination rate produced by Algo 4 (27%) is not far away from the domination
rate of Algo 5 (20%) and the nondominance is more than 50%. The lower part
of Table 4 shows a different result, two different crossover operators are com-
pared (OBX and OSX), Algo 4 - Algo 1. In this case we see that solutions in the
nondominated front generated by Algo 4 dominates most of the times (84.61%)
solutions in the front generated by Algo 1. This result shows the superiority of
the OBX operator.

7 Conclusions

An experimental analysis of genetic operators (crossover and mutation) for a set
of instances of the multi-objective permutation flowshop problem is presented.
Outperformance measures, related to dominance relations of the nondominated
set generated at each run, are proposed.

The main conclusion of the work is that the OBX crossover operator outper-
forms all others in terms of dominance relations. This outperformance is verified
on a specific set of instances of the PFSP. The reason why this operator outper-
forms the others remains to be solved.

As future work we need to verify whether the properties for the best opera-
tor combinations still hold under different settings of the parameters T and R,
different problems size, and different algorithms. The most important point will
be to understand why some operators outperform others. This will help us to
better understand this class of problems.

References

1. Armentano, V. A., and Ronconi, D. P.: Tabu search for total tardiness minimization
in flowshop scheduling problems. Computers & Operations Research, Vol. 26 (1999)
219-235

2. Bagchi, T. P.: Multiobjective Scheduling by Genetic Algorithm. Kluwer Academic
Publishers (1999)

3. Basseur, M., Seynhaeve, F., Talbi E.: Design of multi-objective evolutionary algo-
rithms: Application to the flow-shop scheduling problem. Congress on Evolutionary
Computation (2002) 459-465

4. http://mscmga.ms.ic.ac.uk/info.html
5. Bierwirth, C., Mattfeld, D. C., Kopfer, H.: On Permutation Representations for

Scheduling Problems. In Proceedings of Parallel Problem Solving from Nature. Lec-
ture Notes in Computer Science, Vol. 1141. Springer-Verlag, Berlin Heidelberg New
York (1996) 310-318

6. C. Brizuela, Y. Zhao, N. Sannomiya.: Multi-Objective Flowshop: Preliminary Re-
sults. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., Corne D., eds., Evo-
lutionary Multi-Criterion Optimization, First International Conference, EMO 2001,
vol. 1993 of LNCS, Berlin:Springer-Verlag (2001) 443-457

7. Coello Coello, C. A.: A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques. Knowledge and Information Systems, Vol. 1, No. 3 (1999)
269-308

8. Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B.: Evolutionary Al-
gorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers (2002)

9. Deb, K.: Multi-objective Genetic Algorithms: Problem Difficulties and Construction
of Test Problems. Evolutionary Computation, 7(3) (1999) 205-230

10. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons (2001)

11. M. R. Garey, D. S. Johnson and Ravi Sethi.: The Complexity of Flowshop and
Jobshop Scheduling. Mathematics of Operations Research, Vol. 1, No. 2 (1976) 117-
129

12. Gen, M. and Cheng, R.: Genetic Algorithms & Engineering Design. John Wiley &
Sons (1997)

13. Gen, M. and Cheng, R.: Genetic Algorithms & Engineering Optimization. John
Wiley & Sons (1997)

14. Golberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley (1989)

15. Isibuchi, H. and Murata, T.: Multi-objective Genetic Local Search Algorithm. Pro-
ceedings of the 1996 International Conference on Evolutionary Computation (1996)
119-124

16. Isibuchi, H. and Murata, T.: Multi-objective Genetic Local Search Algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, 28(3) (1998) 392-403

17. Knowles J. and Corne D.: On Metrics for Comparing Nondominated Sets. Pro-
ceedings of the 2002 Congress on Evolutionary Computation (2002) 711-716

18. Tamaki, H., and Nishino, E.: A Genetic Algorithm approach to multi-objective
scheduling problems with regular and non-regular objective functions. Proceedings
of IFAC LSS’98 (1998) 289-294

19. Srinivas, N. and Deb, K.: Multi-Objective function optimization using non-
dominated sorting genetic algorithms. Evolutionary Computation, 2(3) (1995) 221-
248

20. Van Veldhuizen, D. and Lamont, G.: On measuring multiobjective evolutionary
algorithm performance. Proceedings of the 2000 Congress on Evolutionary Compu-
tation (2000) 204-211

21. Zitzler E., Laumanns M., Thiele L., Fonseca C. M., Grunert da Fonseca V.: Why
Quality Assesment of Multiobjective Optimizers Is Difficult. Proceedings of the 2002
Genetic and Evolutionary Computation Conference (GECCO2002) (2002) 666-673

