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Abstract

The nascent field of Genetic Algorithms (GA’s), and a set of tough scheduling
problems provide the focus for this research. The job-shop scheduling problem,
a real-world scheduling problem and a multi-objective permutation flow-shop
problem are dealt with, and the following new results are obtained.

e A new selection procedure for genetic algorithms capable of keeping a
diverse population through the generations is proposed. The method is
based on a random sampling of individuals and partial enumeration of
neighboring solutions. An intensive selection procedure, applied after the
partial enumeration, and the elitist strategy are fundamental elements for
introducing selection pressure in the algorithm. The idea of using ran-
dom sampling comes from the basic statistics concept saying that an ad-
equate sample set of individuals would have the representative properties
of the whole population. The partial enumeration is used as a properties-
discovering procedure of the sampled individuals. The relative robustness
of this algorithm applied to the job-shop (the central problem for this
research) is compared against a standard GA and the advantages of the
proposed algorithm are highlighted.

e It is shown through numerical experiments that the success in the design
of robust algorithms is based on a tight combination of accuracy and
diversity.

e For the real-world scheduling, operating in the job-shop mode, a new
decoding technique is proposed. This decoding technique is a part of
the genotype, introducing in this way a problem specific knowledge in
the individual representation. A comparable accuracy result in a short
computing time is achieved by means of the proposed method.

¢ In case of the multi-objective permutation flow-shop problem, an analysis
of operators is proposed in such a way that it becomes a natural extension
of the landscape study already known for single-objective problems. This
analysis shows that a design procedure following our ideas outperforms
substantially previous existing procedures for the same multi-objective
permutation flow-shop problem.
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Chapter 1

Introduction

1.1 Background and Motivation

Information Technology! is playing a central role in the development and im-
provement of production processes. The availability of data and their post-
processing product: information, has tightened the requirements in the whole
production process. Thanks to the on-line availability of information, the market
needs can rapidly be estimated. These needs are constantly changing, depend-
ing on different factors. It is obvious that fast changing markets require short
manufacturing times to satisfy the demand. However, the extreme complexity
of manufacturing related problems has made them become the bottleneck in the
production-to-market chain.

There are manufacturing processes where each part of a product has a pre-
defined routing through the set of machines. The goal is to assign a sequence of
jobs to each machine in such a way that the completion time of the latest part
on the latest machine is minimized, of course without violating the predefined
routing for each part. This problem is denominated job-shop scheduling. When
the only restriction is that all parts should follow the same routing through all
machines without fixing a predefined one, then a simpler problem called flow-
shop scheduling is implied. These problems are complex in nature (both belong
to the NP-complete class), and there is a need for efficient methods to tackle
them.

There is a long rich history of research dealing with these particular prob-
lems. The first part of this history started in the operations research (OR)
community. However, the last three decades have shown an increasing inter-
est, of the computer-algorithm research community, in these problems. This is
due to the fact that, with the development of computer technology, schedul-

1 We call “Information Technology” to the existing infrastructure: Hardware and Software,
to deal with data and information.



ing problems are becoming more and more important. Tasks that need to be
assigned to processors, packets of information that need to be sent from one
point to another in a network, and many other variations of these problems
are very similar to the scheduling problems arising in manufacturing systems.
Today, both communities are starting to find common points in tackling these
challenging problems.

Especially the computer community has dedicated a lot of effort to find
alternative methods to deal with these problems. Currently, there exist many
approaches, most of them coming from the simulation of a real process occurring
in nature.

These approaches take the name of the process they mimic. Examples
of these approaches are: Neural Network, Simulated Annealing, Evolutionary
Computation, Taboo Search, and Ant Colony. We are focused here on a very
specific type of Evolutionary Algorithms named Genetic Algorithms (GA’s).

The following sections give details of the problems and the methodology we
use.

1.2 The problems

In this thesis we deal with three different problems: the job-shop, a real-world
scheduling, and a multi-objective permutation flow-shop. Our central problem,
the job-shop scheduling, is the key process in many manufacturing systems.
Furthermore, in the mathematical area of combinatorial optimization problems
(COP’s) [68, 29], it is one of the most challenging. This problem and the flow-
shop problem belong to the NP-complete class of problems [39], which basically
means that a polynomial time algorithm,? for the general case, is very unlike
to exist.

Since the pioneer work of Muth and Thompson [64], the job-shop has become
popular in the OR community. A legendary 10-jobs and 10-machines problem
proposed by Fisher and Thompson in [64], lasted more than 20 years until Carlier
and Pinson [25] proved its optimality. Today, many benchmark problems in the
order of 250 operations still remain unsolved (see [50]).

Standard approaches to the job-shop can be found in French [38], Brucker
[22], Blacewicz [11], and Pinedo [69]. Heuristic approaches for this problem and
others can be found in Morton and Pentico [63], and Aarts and Lenstra [2].

The real scheduling we deal with consists of a set of products that must be
processed and assembled. No assembly job may start before all processing jobs
are finished. There are limited number of different sets of parallel machines
and multi-function machines. The goal is to meet all due dates or to minimize
the sum of delays incurred by each product. This problem was introduced by
Sannomiya and co-workers in [74, 75].

2 Polynomial time algorithm: an algorithm whose computing time to achieve the optimum
grows as a polynomial function in the problem’s size, compare [29], pp: 312-313.



Classical examples of flow-shops are assembling lines where parts of a given
product should have the same routing through the machines. There are usually
due dates for products and release dates for the parts of each product. When
the due dates are tight, we want to minimize the weighted sum of the amount
of time each product is delayed. The simplest objective to minimize is the
maximum completion time of the last product (when no due dates are given
or when they are large enough). Another objective has to do with the time
the products spend in the shop (work-in-process). Many other assumptions and
their corresponding objective functions can be added to the basic problem. The
same reasoning follows for the job-shop, for details see the work of Pinedo [69].

The last problem we deal with is the classical flow-shop problem where three
different objective functions are taken into account: The total tardiness, the
latest completion time, and the average time during which the parts stay in the
shop (mean flow time), are minimized. When more than one objective is to be
minimized the standard procedures are no longer applicable. This is because the
standard approaches generate a single solution and what we need is a diverse
set of solutions belonging to what is called the Pareto front (see [27]).

1.3 The methodology

The idea behind genetic algorithms is to mimic the Darwinian evolution process.
It was first proposed by Holland [47] and following the work of Goldberg [43] the
number of applications increased considerably. The GA consists of a population
of individuals, each individual represents a solution to the problem being solved.
The fitness of each individual in the population is determined by the objective
function of the solution it represents. According to their fitness values, the
individuals are selected to take part in the recombination (crossover) and to un-
dergo mutation. After these operations, fitness is assigned to the newly created
individuals, and a selection procedure is applied in order to have the population
for the new generation. The process is repeated until some termination criterion
expires.

Our aim is to understand as much as possible the proposed algorithms’
properties, and to solve scheduling problems. We are not interested in how the
evolution process takes place, but rather on analyzing the resulting algorithm’s
properties. This is because we do not have proofs showing that the Darwinian
evolution process is capable of solving complex problems (NP-complete). In
short, what we want to do is to learn as much as possible what is scientifically
provable, resulting from using such algorithms.

Applications of GA’s to the job-shop problems started with the work of
Davis [30]. The first part of the development was directed towards the design
of appropriate representations to use. Davis [30] used a preference-list-based
representation, Nakano and Yamada [65] used a job-pair-relation-based repre-
sentation, Yamada and Nakano [93] used a completion time based representa-



tion, Tamaki and Nishikawa [84] used a disjunctive graph based representation,
Fang et al. [34] used an operation-based representation, Bean [9] used a random
key-based representation, Shi et al. [76] used a job-based representation, and
Dorndortf and Pesch [33] used a priority-rule-based representation and machine-
based representation. Many other researchers used similar encoding techniques,
for a more complete reference see the work of Gen [40].

The second part of the development was focused on appropriate genetic op-
erations to use and how to embed local search procedures in the GA framework
[77, 54, 95, 73]. It is worth making clear that such development did not happen
as two totally separate events but in a rather time-overlapped manner. Today,
it is well understood that permutation with repetition equipped with an efficient
local search technique produces the best results (see [95, 96], and Chapter 9 of
60)).

When dealing with large-scale problems in general, one of the most time
consuming processes is finding the appropriate values of parameters to use:
crossover rate, mutation rate, population size, and number of generations. Two
difficult parameters to tune are the crossover and mutation rates. Even though
they have been largely investigated [79, 80, 45, 67], there are no clear approaches
in choosing the right set of parameters’ values.

Exploration and exploitation have been widely used in trying to explain
the relations between crossover and mutation rates. Exploration explains the
influence of the mutation operator and exploitation explains the local search
like properties of the crossover operator. The word exploration has also been
related to the diversity of population. Diversity measures the algorithm search
properties of being too local (low diversity) or becoming a random search (high
diversity). The mutation rate controls the steady state population diversity, and
the mechanism to control how fast the initial population diversity decreases to
its final steady state is determined by the selection operator. Unfortunately,
which is the appropriate diversity dynamics in a standard GA to achieve good
results is not known. A limit for the maximum mutation rate (diversity) before
the GA loses its guided stochastic search properties was investigated by Stephens
[82].

We introduce a new selection strategy to achieve the goals of good balance
between exploration and exploitation. The idea behind this strategy comes from
a mimic of behaviour of an ecological system [86], as pointed out in the first
result of this research [15].

1.4 Results

The main results of this research can be stated as follows:

¢ A selection method for GA’s that keeps a high diversity population through
the generations, and produces accurate results is proposed.



e The general belief, that diversity “per se” is the key to success, is dis-
proved.

e The relative robustness of the algorithm does not depend on diversity or
accuracy alone, but on a tight combination of both.

e Hybrid encoding schemes being part of the genotype are valid options
when dealing with complex scheduling problems.

e The idea of landscape study used for single-objective optimization prob-
lems can be extended into the more general case of multi-objective opti-
mization problems. As a result, an appropriate selection of genetic oper-
ators can be achieved.

1.5 Thesis Outline

In Chapter 2, we present the shop-scheduling problems we deal with in this work.
A mathematical formulation of three tough problems: the job-shop, a real-world
scheduling, and a multi-objective permutation flow-shop, is presented. For each
problem a brief description of previous works is given. The statement of what we
call “The Standard GA” (SGA) is also presented. The convergence properties of
a simple algorithm is briefly explained along with the reasons why it is difficult
to give a rigorous proof of the SGA convergence properties.

In Chapter 3, we present the central results for this thesis. A new selec-
tion method based on random sampling and partial enumeration is proposed
as an alternative method to keep a diverse population through the generations.
Numerical experiments showing the diversity and accuracy properties of the
algorithm are presented. The relations among population diversity, algorithm
robustness, and accuracy are presented through numerical experiments. As a
result, based on these experiments, we are able to state a conjecture regarding
relations between population diversity and algorithm accuracy with algorithm
relative robustness.

In Chapter 4, we deal with a real-world scheduling problem operating in
the job-shop mode. A stochastic heuristics is included as a part of the geno-
type in order to introduce problem specific knowledge in the genetic algorithm
framework.

In Chapter 5, we present an analysis method for correct selection of genetic
operators to use when designing genetic algorithms for a multi-objective per-
mutation flow-shop problem. The influence of genetic operators on the number
of non-dominated solutions produced is presented by means of numerical ex-
periments. Furthermore, relation of non-dominance with the distance between
parents is also presented.

Finally, in Chapter 6, we present the conclusions of this research as well as the
new important research avenues that are opened as a result of our contribution.



Chapter 2

Problems Description and
the Standard Genetic
Algorithm

This chapter states the scheduling problems we tackle in this thesis and gives
a brief description of the state-of-the-art methodologies available to deal with
them. The first problem we present is the job-shop scheduling problem, the
central problem for this work. We present a brief description of various existing
deterministic and non-deterministic procedures to deal with this problem. The
second problem comes from a real manufacturing process, which includes the
job-shop. This real-world problem serves us to show the limitations of the clas-
sical model to deal with real problems. Finally, the model of a multi-objective
flow-shop problem is described. The problem is presented in order to make
emphasis on the fact that most of real problems are not single-objective but
multi-objective in nature. The last part of the chapter presents the standard
GA. Parameters influence on the algorithm is briefly explained along with the
state-of-the-art knowledge for proving the convergence.

2.1 The Central Problem: JSSP

In what is called the “classical JSSP” we are given a set J of jobs and a set
M of machines. Each job j € J consists of a set of operations Oj, , with
j€J, k€ Ky, :={1,2,---,n;} where n; is the total number of operations for
job j, and pji is the machine number to process the k-th operation of job j,
ie. pjp € {my,mg,---,mg}. All machines are different and their processing
speeds are constant. The following requirements must also hold:

1. Each job is scheduled on each machine only once.



2. No two operations of the same job may be processed simultaneously.
3. Each job visits every machine in M.
4. Each machine can process only one operation at a time.

5. No machine can free an operation until it is finished (no preemption al-
lowed).

6. The total number of machines of each type is fixed and equals to one.

From the above requirements, we have n; = |M| for all j in the classical
JSSP.

Let us denote the starting time of operation Oj, , as sj,;,, its processing
time as t;,,,, . With this notation the problem can be stated as

Minimize Ijr_lEa}({stn]_ +tj,¢,-n].} (2.1)
s.t.
Sjup >0 VE€EK,, ,j€T (2.2)
Siuje T i < Sjujk+1Vk € Kn;'—l’j €J (2.3)
Sja +tja < Sia O Sig +tia < 8joVi,j €J;a €M (2.4)

This problem belongs to the NP-complete class of problems [39]. Further-
more, the existence of an approximation algorithm with worst case performance
guarantee of 5/4 of the optimum implies P=NP [92]. It is worth to mention
that (2.1) is not the only optimality criterion used (see [22], for other optimality
criteria).

When trying to model real-world scheduling problems the restrictions im-
posed in the previous equations are not accurate enough to describe the problem.
For instance, a due date is usually assigned to each job so the optimality crite-
rion is not the makespan but the weighted sum of all job delays. It is not strange
that machines break down during the production process. There are also cases
where the release time of jobs are unknown, in this case we deal with stochastic
job-shop. The production process in general is not a continuous process but it
has to to be performed within a given time window related for instance to the
factory working hours. Other cases require that the processing time of a given
job is determined by the order in which the job is scheduled in a given machine.
For a detailed classification of scheduling problems see for example [69], [11],
and [22].

A very well known heuristics to solve this problem is the Shifting-Bottleneck
procedure of Adams et al. [3], and Ballas [8]. The idea is to relax the original



problem to a single machine problem. The makespan for this new problem is
calculated for each single machine, and the machine with the worst makespan
is scheduled first in the original problem. This machine is called the bottleneck
machine. The procedure is repeated until all machines are sequenced.

Now we present some other available algorithms to solve this problem.

2.1.1 Meta-heuristic Methods
2.1.1.1 Genetic algorithms

There have been a number of studies on applying GA to JSSP (see [30], [94],
[54], [76], [60], [95], [77], [96]). Their methodologies differ mainly in the problem
representation approach or in the way they perform the genetic operations.
Among the most successful ones (regarding accuracy) we can cite [94] and [60].
The former case uses knowledge of the problem in order to build neighborhoods
to be used in the genetic operations. The latter uses a decoding based on
dispatching rules, and a local search strategy. Surveys on GA applied to the
JSSP can be found in [60] and [40].

2.1.1.2 Neural networks

The main idea when using neural networks, for optimization problems, is to
design an “energy function” which incorporates the objective function and the
constraints of the problem to be solved. The weights of the network should be
adjusted such that the local optima of the problem coincide with the asymp-
totically stable equilibria of the resulting dynamical system. For details of this
approach see the analysis proposed by Vidyasagar [90].

Applications of neural networks to the job-shop problems were proposed
first by Foo and Takefuji in [35], [36], and [37]. A recent method is proposed by
Sabuncuoglu and Gurgun in [72].

2.1.1.3 Simulated annealing

Simulated annealing (SA) emulates the well known phenomenon in physics of
annealing a solid that was previously heated to high temperatures. A survey on
the subject can be found in [88]. The basic procedure works as follows: Define a
neighborhood structure for the solution, select a neighbor with probability one
if its objective function improves the currents’ one, or select it with a probability
that depends on the difference of the objective functions (current solution and
the given neighbor) and a function resembling the temperature of the annealing
process. For application of the SA procedure to the job shop problem see [89],
[59], [31], [55], and references therein.



2.1.1.4 Taboo search

Taboo search (TS) is to date the most successful meta-heuristic for solving the
set of benchmark® job-shop problems available in the literature. A survey on
the subject is given by Glover et al. [42]. The main components of the TS are
the neighborhood structure, the short-term memory, and the aspiration func-
tion. The search is performed in such a way that at each step a neighborhood
is constructed around the current solution then the best element in the neigh-
borhood is selected as long as this element is not included in the short-term
memory. The aspiration function evaluates the profit of performing a forbidden
(taboo) move. Every time a move is possible the list is updated. Whenever
this list is full the oldest element is eliminated. Details of this algorithm for the
job-shop can be found in the works of Nowicki and Smutnicki [66], Taillard [83],
and Dell’Amico and Trubian [31].

2.1.2 Implicit Enumeration

It is evident that an explicit enumeration of all solutions is not a liable method
even for small instances of the job-shop problem. This is because the size of the
enumeration tree is given by (n!)™ for a job-shop of n-jobs and m-machines.

Branch and Bound (B&B) algorithms (see [68], Chapter 18) are methods
to reduce the size of the tree to search. In this procedure there are two key
elements: i) branching, and ii) lower bound computing.

Branching. The branching procedure can be divided in three types: critical
path related branching, time window related branching, and disjunctive arcs
related branch. The target of this procedure is the systematic reduction of the
leaves to evaluate.

Lower bound computation. There is a lack of efficient methods to com-
pute lower bounds for the job-shop. The simplest bounds (the longest job or the
longest processing time among all machines) are useless in general, since they
are far away from the optimum. For a survey on branching and lower bound
computations see [4], [25], [23], and [24].

2.1.3 Approximation Algorithms

The idea of what is called approximation algorithms (AA’s) is to guarantee the
existence of solutions produced by a given algorithm that are not worse than a
pre-specified amount of the optimal solution of a problem. That is, AA’s are not
a kind of algorithms but ways to analyze them, i.e. every time we can bound
the worst case performance of a given algorithm then the algorithm enters the
category of AA’s.

For a survey in the subject see the work edited by Hochbaum [46]. For a
survey of the results for scheduling problems see [26], and [46], Chapter 3. A

3 Available at http://mscmga.ms.ic.ac.uk/info.html



very important step in approximation algorithms for the job-shop was given by
Williansom et al. [92]. In that paper the authors showed that there is no algo-
rithm that can guarantee a worst-case performance less than (5/4)-Optimum,
at least one can solve the problem to optimality (i.e. P=NP).

For a minimization problem a given algorithm is an a-approximation algo-
rithm if its worst case performance is no worse than a-Optimum.

Approximation algorithms for the job-shop problem can be found in [51]. A
conclusion can be drawn from the non-approximability results for the job-shop
and the existence of efficient heuristics methods. It is not difficult to design an
algorithm, for a certain class of job-shop problems, delivering worst case results
less than (5/4)-Optimum. The implication of this empirical results says that
the assertion proposed by Williansom et al. is a very conservative one.

2.2 A Real-world Problem

To state the real problem we want to dealt with, we need to add some constraints
to the representation used in section 2.1 and modify others in the following way:

1. Each job may be scheduled on each machine more than once.

2. No two operations of the same job may be processed simultaneously.
3. The jobs do not have to visit every machine in M.

4. Each machine can process only one operation at a time.

5

. No machine can free an operation until it is finished (no preemption al-
lowed).

6. The number of machines of each type (m;) is fixed and equals to nm;
(identical parallel machines).

7. There are special machines (multi-function machines) that can perform
activities of a subset of parallel machines. There are ns; machines of
each type ¢, and sm different types. Different types may have different
processing speeds.

8. The jobs are divided into groups belonging to the same item called the
product. There are n different types of products and gp; products in each

type .

9. Each product is composed of two kinds of jobs: ¢; part-processing jobs,
and one assembly job. Every job of any kind has a specified number
of operations. There are n;; operations for processing part j (job j) of
product i, and n;o operations for the assembly job of product i (see figure
2.1). No assembly job can start before the processing of all its parts is
finished (precedence constraints among jobs).
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Figure 2.1 Processing sequence for product i.

10. Each product has a readiness time r; (the time at which its parts become
available), and a due date d; (the time by which the product should be
completed).

11. There is a time window (tw) for processing of jobs (factory working hours).
Some machines may have a property such that once it starts inside this
time window it can continue until the operation is completed (even though
it is finished outside the time window). The other machines must stop
processing (when the time window ends) and must resume when the next
time window starts.

Through this thesis we consider a case where the number of products of each
type is one (gp; =1 Vi € {1,...,n}), and the time window is set to 24 hours.

Iis the set of types of products with |I| = n. The set of all jobs corresponding
to all products is J = J; UJ; U---UJ, where J; is the set of jobs of product
i. Their sizes are given by |J;| = ¢; + 1. We associate the assembly job of each
product with the number zero (7 = 0) in {0,1,---,¢;} € J;. The multi-set of
machines M is composed of a multi-set of parallel machines PM, and a multi-set
of multi-function machines MM with M = PM U MM.

Now, let us define the starting time of the k-th operation of job j (product
i) in machine p;jr as sij,,;,, the corresponding processing time as t;5,,,, , and
the completion time of product 7 as ¢;. Then the problem can be described as

Minimize Z max{0,¢; — d;} (2.5)

=1
s.t.
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Sijuigy >0 VEk€Kn,je€Tdiiel (2.6)

Sijpij > Ti VjeJ;,iel (2.7)
Sijuie + tijpin < Sijuijne VE € Knjj—1,5 € Jisi €1 (2.8)
;0% AStiuigni; T biguign, b < Siowin Vi €T (2.9)

Sija t tija < Shka OT
Shka + thka < Sijan, kelJ;i,hel,aeM (2.10)

If d; is sufficiently large then (2.5) loses its meaning and the objective to
consider is no longer (2.5) but something similar to (2.1). Under this assumption
and if there are neither assembly jobs nor multi-function machines and there is
only one parallel machine of each type, then the problem becomes the classical
JSSP. On the other hand, regardless of what happens in (2.5) and keeping the
assumptions just mentioned, the problem is reduced to a JSSP with due dates
(JSSPD). This problem has recently been addressed in a rigorous manner in [8].

If only one product is considered and with no assembly jobs, under the same
availability of resources (machines) the problem is called the Flexible Job Shop
(FJS). Recently, a few interesting neighborhood construction methods to face
this problem appeared in [58]. A Taboo search procedure for this problem was
proposed by Brandimarte [14]. A way to handle machines breakdowns by GA’s
can be found in [48], a GA strategy for unknown release time of parts is dealt
with in [10].

Since the classical JSSP is NP-complete and it is a special case of the prob-
lem defined in (2.5) - (2.10), then the latter is also NP-complete. We need to
emphasize that besides the classical job shop being a rough approximation to our
real problem it does not contribute much in solving the latter. This is because
the neighborhood construction method for solving the classical JSSP (which
is the key for the algorithm accuracy and efficiency) loses its meaning when
the optimality criterion is not the makespan (2.1), and when the availability of
resources is different.

Few attempts have been made in trying to solve the generalization given by
(2.5) to (2.10). Some recent results for the latter problem have been presented
in [75] and [74].

The idea presented in these works is basically an extension of previous GA’s
results for the classical JSSP. The extension is in the proposed individual rep-
resentation [74] and in a time decomposition of the problem [75]. They obtain
good accuracy results after a heavy computational task. To date, and to the
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best of my knowledge there are not classical techniques proposed to deal with
this problem.

2.3 Multi-objective Flow-shop Problem

The permutation flow-shop problem consists of a set J of n jobs that must be
processed in a set of machines M. Each job 5 € J has m = |M]| operations.
Each operation Oy, representing the k-th operation of job j, has an associated
processing time #;;. Each machine must finish the operation once it is started
to be processed (no preemption allowed). No machine can process more than
one operation at the same time. No operation can be processed by more than
one machine at a time. Each job j is assigned a readiness time r;, and due date
d;. All jobs must have the same routing through all machines. The goal is to
find a permutation of jobs that minimizes a given objective function (since the
order of machines is irrelevant).

In order to understand the objective functions we want to optimize we need
to set up some notation first. Let us denote the starting time of operation Oy;
by si; and its completion time by c;;. Define K,, as the set {1,2,---,m}. With
this notation a feasible solution must satisfy the following conditions:

skj2r; VkeKn,,j€J, (2.11)

Sk +tr; < 5(k+1)ij eK,_1,7€J . (2.12)

All pairs of operations O; and O,; processed on the same machine must satisfy:

Sp; +1tr; < 8p; OF
Sri + tr; < sy, for each machine in M,k #rorj#4 . (2.13)

Now we are in position of defining the objective functions. Since there are
several objective functions to be considered, we have a multi-objective (MO)
problem. First we consider the makespan, which is the completion time of the
latest job, i.e.

fi= mjrfiX{Smj +tmi} - (2.14)

The mean flow time, representing the average value of the time during which
the jobs remain in the shop, is the second objective.

fo=fl= (1/n)2ﬂj , (2.15)
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where fl; = s,,; +t;,; — 7, i.e. the time job j spends in the shop after it is
released. The third objective is the mean tardiness, i.e.

fs = fi = (1/n) thj , (2.16)

where ft; = max{0,l;}, and l; = smj + tm; — d;.
Thus, we have the following MO problem:

Minimize (fi, fa, f3)
subject to (2.11) — (2.13) . (2.17)

There have been many attempts to solve the general MO problem by using
GA’s. Surveys on the existing GA methodologies can be found in [81], [28],
[41], and references therein. Almost any application uses the methodologies
described in these surveys.

Since this is a new research area, there are still many fundamental questions
to be answered. Specially, in the field of MO-COP’s, everything is to be done. To
date, one of the most pragmatic question to answer is how to fairly compare two
given methodologies, or in the best case, how to judge any given methodology.

The application of GA’s to MO scheduling problems has been rather scarce.
Two interesting ideas are those presented in [85] and [6].

In [85] the scheduling of identical parallel machines, considering as objective
functions the maximum flow time among machines and a non-linear function
of the tardiness and earliness of jobs, is presented. In [6] a natural extension
of NSGA [81] is presented and applied to flow-shop and job-shop scheduling
problems. Another, totally different approach is presented by Isibuchi and Mu-
rata [49]. They use a local search strategy after the genetic operations without
considering non-dominance properties of solutions. Their method is applied to
the MO flow-shop problem.

2.4 Genetic Algorithms

The objective of this section is to highlight the concepts and results of GA’s that
are relevant to this thesis. We will not give a survey of the latest development
in GA’s but concentrate on the topics that will help us to better understand
the contribution of this work. The canonical GA, and the standard GA for
scheduling problems are presented along with their properties and the state-of-
the-art regarding their convergence. Open problems we need to solve to give a
rigorous explanation of the results obtained here are also presented.
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2.4.1 The Canonical Genetic Algorithm

When dealing with algorithms in general, one of the most important points
is their convergence properties. We are not able to prove the convergence of
the algorithms we propose. The justification for this can be found analyzing the
state-of-the-art theory for proving convergence of GA’s. Most of the convergence
results available to date are of asymptotic type [71, 57]. These asymptotic results
(t — o00) are of little interest since in COP’s we usually have a finite number of
solutions so that any enumeration method will find the best solution in finite
(although non-realizable) time. Exponential-like convergence results should be
more useful, but they are not available.

The work by Rudolph [71] is one of the most referenced work when dealing
with convergence of GA’s. In the following we briefly explain the main results
of his work.

For analyzing the “Canonical GA’s” (CGA’s) let us first explain what is the
problem we are going to deal with. This problem can be stated as follows.

Maximize {f(b)|b € {0,1}'}, (2.18)

where 0 < f(b) < oo for all b € {0,1}! and f # const.
Under these assumptions the CGA is stated as follows.
Algorithm 1. Canonical GA.

Step 1. Set k& = 0. Generate an initial population Pop[k] of ¢
individuals.

Step 2. From Popl[k] select two individuals (b,,bs) and apply
crossover with probability p.. Repeat the process until g individuals
are selected.

Step 3. Apply mutation to each individual’s gene with probability
Pm.-

Step 4. Select individuals to form the population for the next gen-
eration Popl[k + 1] according to their fitness.

Step 5. Set k = k+ 1. If k = k4, then stop, otherwise go to Step
2.

The initial population is generated randomly (Step 1). The population size
g is constant for all generations. k., represents the maximum number of
generations to run (the termination criterion). There are many ways to select
two individuals for reproduction (Step 2), and many ways to select g individuals
to replace individuals at the current generation to obtain the new generation
(Step 4).
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For selection of individuals to undergo crossover we may use a random pro-
cedure, or assign to each individual a probability proportional to its fitness. For
detail explanation of different selection methods at both stages (Steps 2 and 4)
see [43].

It is shown in [71] that by using Algorithm 1 we will be able to reach (in
the probabilistic sense) the global optimum in (2.18), if in the selection process
the best individual, at each generation, survives with probability one (elitist
selection). As we said before the limitation of this demonstration is the asymp-
totic nature of the result. Furthermore, the alphabet representing a solution is
a binary one b € {0,1}!, while in most scheduling problems, this is not the case.

In the next section we review the standard GA for the job-shop scheduling
problem.

2.4.2 The Standard GA for Scheduling Problems

What we call standard GA is the algorithm proposed in [77]. This algorithm
is used because it has the average properties of available GA’s for scheduling
problems and because of its good performance on benchmark problems. That is,
the algorithm has a standard population dynamics and produces good solution

quality in comparable computing time. This standard GA is stated as follows.
Algorithm 2. Standard GA.

Step 1. Set k = 0. Generate an initial population Popl[k] of g
individuals.

Step 2. Using Random Selection choose two individuals from Pop|[#]
for genetic operations.

Step 3. Do Crossover (with probability p.) and mutation (with
probability p,, ).

Step 4. From the parents and the children select the best two (2/4
selection).

Step 5. If the total number of selected individuals is less than g,
then go to Step 2; otherwise go to Step 6.

Step 6. Set k = k + 1. Construct the new generation Popl[k] of g
individuals.

Step 7. If kK = k4, then stop, otherwise go to Step 2.

It is convenient here to briefly recall the parameters’ influence on algorithm’s
performance. The population size g influences the algorithm accuracy. Large
values of g increases the accuracy at higher computational cost. The mutation
rate p,, controls the final stage diversity (with p,, = 0, all individuals become
the same after convergence). p,, gives the appropriate exploration power to the
algorithm. The crossover rate p. determines the number of neighbors (in the
crossover operator space) to be evaluated.
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The most used encoding scheme for the job-shop scheduling problem is the
permutation with repetition or string encoding [77, 60]. In this representation
each individual is represented by a string of integers where each element in the
string represents a job number. Under this representation more than one strings
may represent the same schedule. This fact makes the analysis of the algorithm
difficult.

Now, let us see what happens when we try to prove the convergence of
Algorithm 2 applied to the job-shop. The function to be minimized is given by
equation (2.1). The encoding technique ensures that conditions (2.2) to (2.4)
hold. Thus, from the view point of algorithm the problem becomes:

Minimize {f(b)|b € K™ with C(i) = m for each ¢ € K, }, (2.19)

where 0 < f(b) < 0o, f # const, and C(z) is the number of times the number %
appears in b.
We can write the algorithm in a more general and compact form as:

Bk + 1] = H(BIK]), (2.20)

where B[k] = [by [k]bz[k] - - - b,[k]]T, b; is the individual representing a schedule,
‘H is a stochastic operator taking into account the effects of selection, crossover,
mutation, and elitist selection. In order to prove convergence to the optimum
we need to show that:

1. All global optima of f(b) coincide with the asymptotically stable equi-
libria and the basis of attraction (of at least one equilibrium) has a dimension
greater than zero.

2. All equilibria that are not the global optimum of (2.19) should be unstable
or have their basis of attraction of zero dimension. The non-existence of periodic
solutions or chaotic behavior should be guaranteed.

It is evident that the proofs of these two points are not easy and they are,
of course, open problems in the general context of (2.20).

A recent book by Vose [91] gives interesting tools to analyze (2.20) in the
context of genetic algorithms and dynamical systems. However, the state-of-the-
art of these tools is not developed enough so as to tackle the general problem.

A very interesting work that analyzes (2.20) for simple H’s can be found in
[56].

2.5 Summary

A detailed exposition of the scheduling problems we deal with in this thesis
is presented. Available methodologies to tackle these problems are briefly de-
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scribed. A general genetic algorithm representing most of the algorithms avail-
able for scheduling problems is presented. Limitations for the proof of conver-
gence properties of such algorithm is described.
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Chapter 3

Diversity, Robustness and

the Partial Enumeration
Selection Method

One of the most successful applications of GA’s is found in the area of combi-
natorial optimization problems (see [40]). Here, relations between exploration
and exploitation seem to be the key to choose the set of correct parameters for
a given problem. However, when trying to apply the same tuned algorithm to a
slightly different problem, its performance greatly deteriorates. This has to do
with the robustness properties of the algorithm.

In the case of COP’s (by GA’s), robustness concepts still have a lack of
clarity. The concept has still a long way to go from the basic settings and
definitions to more sophisticated issues.

In this chapter we present some concepts and definitions related to robust-
ness, diversity, and adaptability of GA-based algorithms. Specifically, robust-
ness of algorithm when dealing with the well known job-shop scheduling problem
is studied. Experimental results concerning relations between population diver-
sity and algorithm robustness, for this specific problem, are presented. Finally,
a robust algorithm is presented to deal with a set of problems obtained by per-
turbing the parameters of a given nominal problem. The algorithm performance
is verified through numerical experiments.

This chapter is based on the results of joint research with Sannomiya in
[15, 16, 17, 18, 19).
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3.1 Diversity

Diversity in GA plays an important role when dealing with COP’s; the more
diverse the search space is, the higher the probability to find the optimum.
This only holds, of course, if we have a local search type strategy for each point
belonging to the diverse solution space and if we think of uniformly generated
search points through the whole solution space.

The key point here is to quantify this qualitative affirmation, i.e. how diverse
should the population be in order to ensure that we will succeed in the search
procedure? Is diversity the only component to ensure good results?

It is a general belief that diversity is indispensable when dealing with dy-
namic problems, multi-criteria optimization problems, or simply with static
single-objective problems. However, when implementing the GA’s we may have
a diverse but poor population (high percentage of low fitness individuals), when
a diverse and rich population (high percentage of high fitness individuals) is
needed. This means that diversity alone will not necessarily help us to solve
general combinatorial optimization problems. That is, we need also to ensure
richness of population. This is the primary result of this chapter, i.e. diversity
“per se” does not ensure the success of the algorithm.

In order to measure how different a set of individuals are, we need to char-
acterize them uniquely. That is, the diversity concept should be capable of
capturing all the characteristics of the individual. In order to achieve this, the
combinatorial object should be clearly understood, or the genotype-phenotype
relation must be a one-to-one map.

For the JSSP the combinatorial object is a schedule. The schedule is uniquely
defined by the sequence and location of jobs on each machine, or by the orien-
tation of the disjunctive arcs in its graph representation. Thus, a natural way
to measure how different two given schedules are, will be to consider the num-
ber of differently sequenced jobs on each machine. Following this, the following
definition is proposed [15].

Definition 1: The difference dif(a,b) between two given schedules a and b,
for a JSSP of n-jobs and m-machines, is given by the sum over all machines of
the number of differently sequenced jobs on each machine, i. e.,

m n

dif(a,b) =Y > uli,j), (3.1)

i=1 j=1

where

0 if job j in machine i of schedule a (i.e., (j,i,a)) is
.. immediately followed by the same job that follows
80.17(27.7) = (] Z b) Y y ) (32)

1 otherwise.
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Here, we consider that the last job of each machine is followed by the same
fictitious job. Thus, if the maximum number of jobs for a given machine is
n then the maximum possible number of differently sequenced jobs for that
machine will be n.

For example, let us suppose we have 3-jobs 3-machines job shop schedules
defined as:

M1:123

M2:321

M3:312

for schedule a, and

M1:123

M2: 231

M3: 231

for schedule »b.

Here, M1 represents machine 1 and M1:1 2 3 indicates the job number
sequence in machine 1, i.e. job 1 is scheduled first, followed by job 2 and this is
followed by job 3.

We can see that M1 in a and b, has the same job sequence, thus there is
not difference between a and b in M1. For M2 we see that the two first jobs
are sequenced differently, while the last jobs are followed by the same fictitious
job. In this case the difference for M2 is 2. In M3 all the jobs are sequenced
differently, resulting in a difference of 3. Therefore, we have a total difference
between schedules a and b of dif(a,b)=5.

The disjunctive graph distance may also be used to measure the difference
between two given schedules. Since there are many combinatorial problems
that can be represented as disjunctive graph problems, this distance can also be
well exploited. A definition for diversity based on this approach can be found
elsewhere [60].

Definition 2: Diversity. The population diversity of g individuals for a
JSSP with n jobs and m machines and difference dif(a,b) between schedules a
and b is given by [15]

_ 2 A
div = m ; k2=:1 dif(i,i + k). (3.3)

Notice that this definition is independent of both the population size and the
problem size. This is because we take into account the total number of schedule
difference computations (g(g —1)/2), and the maximum number of different job
sequences for any given instance (mn).

With this definition we have a quantitative view of what is happening at
the phenotype level, avoiding any wrong judgment at the genotype level (a
permutation sequence representation is not a one-to-one map for the JSSP). In
this way we also have a definition which is encoding independent.
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3.2 Robustness

Parameter tuning is one of the most time consuming process in problem solving
by GA’s. When dealing with large scale problems this process takes most of the
time in the resolution of the problem. Manufacturing systems like metal mold
assembly processes have long scheduling periods of weeks or even months (see
[75]). In cases like these the tuning process is not a major drawback. However,
when the changes occur in such a way that there is not enough time for the
tuning process, or simply when there is an interest in knowing the results to
obtain after small modification of the problem parameters, we need to know
what the algorithm performance on the new problem (generated by a small
modification of the original problem) will be. That is, we need to know whether
or not the algorithm will be capable of keeping its accuracy properties without
the need for changing its parameters (p;, pm, g, etc.). This is of course a very
difficult question to answer. In the worst case we would like to be able to
say which of two algorithms will have a better performance, and under what
conditions, on the new input of the problem generated by perturbing the nominal
problem. These ideas are related to the robustness and relative robustness
properties of algorithms.

Before giving definitions like robustness or adaptability in GA’s we need to
set up the stage. First, consider that we are dealing with GA’s, a meta-heuristic
method, i.e. a method where we cannot ensure the performance to be obtained
for a given problem. Now, define the problem to be solved as Pyom = P(®nom)
where P represents the problem depending on the parameter ®. ®,,,,, represents
the nominal value of the parameters of the problem we are given. In case of the
JSSP, ®,,,,, may represent processing times, precedence constraints among jobs,
and number of jobs, among others. By borrowing some notation from optimal
control theory [12], let Q be a set of performance specifications (we want the
GA to achieve) such that:

Q:=q Aga A ... \qp, (3.4)

where ¢; is a given design specification, and A is the conjunctive logic operator.
Performance specifications like optimality, running time, etc., may be consid-
ered.

More precisely, once the GA is designed we need to tune up (ad hoc) all the
algorithm parameters like population size g, crossover rate (p.), and mutation
rate (p,,) in order to get the results as specified by Q over a certain number
of trials on the specific problem P(®,,m,). Now, let us define the resulting
algorithm as Tq, the attained performance as Per(Tq, Prom). In this way, we
can state the problem to solve as: Given P(®,0m,) and Tq with performance
Per(Tq, P(®nom)), can Tq attain the same performance on P(®,0m + A®) for
any A®?

If the answer to this question is yes, then we say that Tq is self-adaptable.
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If Tq can attain the same performance for some A®, or a bound in the deteri-
oration of the performance can be guaranteed ||Per(Tq, P(®nom + A®))|| < v,
for some given v > 0, then we say that Tq is robust to A®. Following this we
establish the next definitions [16].

Definition 3: Robustness. A given genetic algorithm Tq is robust to A® if
it is capable of keeping a certain performance criteria Per(Tq, Ppom) for some
A® around ®,,,,,, without any external parameter modification.

Definition 4: Self-Adaptation. We say that a given GA (Tq) is self-
adaptable if it is capable of keeping a certain performance criteria Per(Tq,
P,,m) for any A®, without any external parameter modification.

Comparing robustness and adaptability concepts we see that robustness is a
less restricted concept. We see also that adaptability implies robustness as they
are defined here.

It is easy to see that, at the present state of the GA theory, these are too
exigent definitions. We still need a simpler and more applicable definition as
follows.

Definition 5: Relative Robustness. Given two algorithms GAz and GAj
tuned for their best accuracy performance on a nominal problem P(®,,.,) we
say that GA7is more robust than GAjover A® if GAs has better average accu-
racy over the set of perturbed problems P(®,,,,+A®) generated by introducing
Ad.

When we say better average accuracy we mean the average on a set of
problems generated according to some probability distribution. For instance,
A® may represent the modification of a fix number of processing times, where
each one is replaced by the value of a uniformly distributed random variable.

In the next section we present a new method to control selection pressure
and therefore the diversity dynamics. Later on, we will study its robustness
performance with respect to the standard GA.

3.3 The Partial Enumeration Selection Method
(PESM)

The main mechanism to increase or decrease the maximum final-stage diversity
is the mutation operator. The one to control how the diversity will decrease
from its initial value to its final steady-state value is the selection process. We
are focused here on the latter issue.

Besides mutation-operator-based methods other approaches have been also
used for introducing diversity [13]. One approach, called Thermodynamical Ge-
netic Algorithm [53] is aimed to select an individual that minimizes a function
of population diversity and objective function. Another approach, the Diversity
Control oriented GA [78], selects individuals according to a selection probabil-
ity depending on the hamming distance of the individual to a target individual.
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Both approaches are computationally expensive, since they evaluate the objec-
tive function a huge number of times.

The idea we propose here is simple in the sense that we do not need to
measure the population diversity nor any other related distance. Sampling
some individuals and enumerating some of their neighbors for selection of the
individuals to replace the sampled ones is our way to control selection pressure
and population diversity.

Assume that generational replacement is used, i.e. the offsprings directly
replace their parents to form part of the next generation. Thus, when selection
of parents for genetic operations is performed at random, the selection pressure
is null and we have a highly diverse population. Then the algorithm converges
to a random solution. This high diversity value will depend, of course, on the
initial diversity of population (generated randomly), and there will not be any
possibility of increasing it (without increasing mutation rate) since the crossover
operator will generate offsprings not so different from their parents.

If we start introducing some order in the selection process, the selection
pressure starts to increase and the solution is no longer random. Increasing the
selection pressure to the appropriate level will help to maintain an adequate
diversity value.

We propose to introduce this ordering through the sorting of a sampled and
enlarged set of individuals, and the selection of the best elements to take part in
the genetic operations. Figure 3.1 describes the method and Algorithm 3 states
it formally [17, 18, 19].

Algorithm 3. Partial Enumeration Selection Method (PESM)

Step 1. Set k¥ = 0. Generate an initial population Popl[k] of ¢
individuals.

Step 2. Set ¢ = 1.

Step 3. Select at random one individual I; from Popl#].

Step 4. Construct a neighborhood of g elements around I, : {I;, J1;,

-, J(g = 1)}
Step 5. If i <p then set 1 = 7 4+ 1 and go to Step 3; otherwise go to
Step 6.

Step 6. From the new pg individuals select the best p elements.
Step 7. Merge these p elements with the g — p not selected individ-
uals (in Steps 3 to 5) to get Pop’[#].

Step 8. Until g individuals are chosen from Pop’[k] DO: select ran-
domly (with replacement) pairs of individuals and apply crossover
and mutation with their respective probabilities. The elite is con-
sidered for selection.

Step 9. Set k = k + 1. Construct the new generation Popl[k] of g
individuals.
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Step 10. If the stop criterion expires then stop, otherwise go to
Step 2.

Here, Poplk] represents the set of g individuals at iteration (generation) k. I;
and Jj; represent the i-th selected individual and its j-th generated neighbor,
respectively. p represents the number of individuals to sample from Pop[k], and
q represents the neighborhood size around each sampled individual.

It is noted that ¢ > 1. When ¢ = 1, Algorithms 2 (Chapter 2) and Algorithm
3 become more similar. The only difference is in Step 4 of Algorithm 2 where
2/4 selection is used while in Algorithm 3 (Step 9) generational replacement is
used.

If ¢ = 1, independently of p we have a highly explorative (random) search.
However, when we start to increase the exploitation power by increasing ¢, ran-
domness starts to decrease and the algorithm becomes more and more selective
and better individuals are created. Different values of g will give different de-
grees of exploitation and exploration (upper bounded by the effect of mutation
rate). Different values of ¢ correspond to different sizes of neighborhood, then
by increasing ¢ the number of individuals to check increases, i.e. the exploitation
power increases. At the same time, the probability that the best p individu-
als belong only to the best neighborhood, increases. This makes the selection
pressure to increase, and the diversity to decrease.

The diversity generation mechanism is still controlled by the mutation rate,
but what we control with ¢ is that a greater/fewer variety of individuals can
undergo crossover and mutation depending on whether we decrease/increase
g. The idea is that with a constant mutation rate and ¢ = 1 we will have
a maximum diversity value, increasing ¢ we obtain the appropriate diversity
value we need to achieve a good performance.

It is worth to make clear at this point that the way to construct the neigh-
borhood and the way to select p individuals, out of pg, influence the way the
exploration and the exploitation power are affected. For instance, if we construct
a neighborhood transition mechanism that resembles the mutation operator, the
exploration power will be clearly affected. However, if instead of choosing the
best p elements we choose the best individual of each neighborhood the selection
pressure will be strongly affected.

3.3.1 Diversity and Accuracy Relations in the PESM

In this section the diversity/accuracy relations for the PESM are analyzed by
means of numerical experiments [17]. The performance of our proposed selec-
tion method is compared against the SGA. For this purpose we use a group of
randomly selected job-shop benchmark problems taken from a recent survey on
the subject [50]. The LA16 to LA20 and FT (10X10) are solved problems while
the TD03-TDO05 (15X15) and the TD21-TD23 (20X20) are still open problems.
Here, (10X10) means a job-shop with 10-jobs and 10-machines.
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Figure 3.1 Partial Enumeration Selection Method.

08 . . . .
PLFT
LAL7 LA18 LA19 LA20 LAl6-
o7 Sg=1 vty 1Y
/ ;i co2
=06 / /) (O
) 42 0. 2 ; g FTSCA)
> \ L 2 N
h 0.5 | i i ' 3;3
g 3 03 \l «3
004 30 4
i LA16(SGA)
03 . LA20(SGA)
0.2 LAlz(SGA)LA18(SGA)LA19(SGA)
0.1
750 800 850 900 950 1000 1050
Makespan (Cpax)

Figure 3.2 Diversity/Makespan relation for LA16-LA20 (10x10) and FT10X10.

In this case we have g = 200, a constant p. = 0.9, and p,, = 0.05. These
are valid for both methods. Additionally for the PESM we have p = 40 sam-
pling points, and different neighborhood sizes ¢g. In this case we use random
wheel selection (RWS) and generational replacement for the SGA. The maxi-
mum number of generations is 1000. These parameters are used following the
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Figure 3.4 Diversity/Makespan relation for TD21-TD23 (20x20).

results in [15].

mark JSSP’s.

The concept of diversity we use here is the one defined by equation (3.3).
Figure 3.2 shows diversity/makespan relations for different 10X10 bench-
Two methods are considered; the SGA and the PESM. The

results of the PESM are shown for the respective values of gq.

We can see that in all cases diversity values for the SGA are smaller than

those for the PESM. In four out of six cases the PESM outperforms the SGA
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in terms of makespan (consider the case ¢ = 2).

Figure 3.3 shows the same relations for three 15X15 benchmark JSSP’s.
Again in this case we see that for ¢ = 2 our proposed method outperforms the
SGA in terms of makespan. The same result can be observed in Figure 3.4 for
20X20 benchmark JSSP’s.

It is observed from figures 3.2 to 3.4 that the PESM has a regular behavior
on the diversity /makespan relation. However, in the SGA we can see a notorious
increase in diversity when the problem size increases. This is due to the lack of
robustness or high tuning of the SGA for 10X10 problems. This characteristic
tells us about the robustness of the PESM (comparing to the SGA).

We can see in Figure 3.2 that for ¢ = 2 we have a good makespan value and
a diversity greater than 0.5. For bigger problem sizes this value of ¢ increases in
such a way that ¢ = 3 for 15X15 problems and ¢ = 5 for 20X20 problems (see
figures 3.3 and 3.4, respectively). The way the required g increases according to
the problem size to achieve a good performance is moderate as compared with
the increase in size of the search space.

As a summary of the parameters’ influence on population diversity we can
state the following hypotheses:

1. Increasing p introduces a high selection pressure and makes the diversity
decrease.

2. For small values of p, increasing g increases the probability of selecting similar
individuals among the best p, decreasing in this way the diversity.

3. For big values of p, increasing ¢ increases the probability of discovering
better and more diverse solutions, contributing with an increasing tendency in
the diversity.

3.3.2 A Better Encoding Technique for the PESM

In the previous subsection a procedure called matrix encoding was used as the
encoding technique. The main drawback of this technique is that some local
optima may not have such a matrix encoding. Thus, the algorithm accuracy
could be affected. In this section, a more general encoding scheme is used to
improve the results obtained by using matrix encoding [18].

Permutation with repetition has become a standard representation scheme
for the JSSP. We define two variations of this representation considering the
way the encoding is performed. Suppose we have a three-jobs three-machines
JSSP with the following specifications:

Jseq = (3.5)

[ CRS
N =W
W W N
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Figure 3.5 Gantt Chart for Decoding Scheme. Active schedule.

whose ij element represents the machine number to process the j-th operation
of job 7 (i.e. the technological constraints). With this consideration we explain
now the two different encodings.

String Encoding. In this case an individual is represented by a string of
integers s := [s1 S2 *** Spm| Whose elements s; represent job numbers. The
sequence of these job numbers represents the order of jobs to be scheduled.

Consider the following individual:

s=[1 3121 2 3 3 2]

To see how this encoding works we need to add the following processing time
specification,

211
T=1|1 2 1
3 2 4

Here, the element of T; ¢, is the processing time for job j on machine k. Hence,
the string s generates the Gantt chart illustrated in Figure 3.5 as follows. The
element s;=1 means that the first operation of job 1 (J11) has to be scheduled
on machine jseq;;=1 during t;; = 2 units of time. s,=3 means that the second
operation to be scheduled is the first operation of job 3 (J31), on machine
j7seqs; = 1 during t3; = 3 units of time. Then s3 = 1 means that the second
operation of job 1 (J12) must follow (on machine jseq;o = 3). By continuing
in this way we schedule the last operation of job 2 (sg = 2, J23) on machine
jseqas = 3. To see in which machine each operation must be scheduled we just
need to check the job sequence matrix Jseq. In this way, only feasible schedules
are generated (in our case feasible and active, see J23 in Figure 3.5).

Matrix Encoding. In this case an individual is represented by an nxm ma-
trix I whose elements represent job numbers. Each column of Iis a permutation
of all job numbers.

Using this encoding and the Jseq given by (3.5) consider the following indi-
vidual:
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Table 3.1 Makespan and final stage diversity. g = 200. p = 40. ¢ = 4.

Matrix Encoding String Encoding
Problem Mak. o (Div.) Mak. o (Div.) UB
Ave. Ave. Ave. Ave.
FT10 963.0 956  (0.651) 959.2 955  (0.651) 930
TDO03 1302.6 1273  (0.482) 1287.1 1269  (0.583) 1218
TDO04 1260.2 1246  (0.491) 1257.8 1228  (0.609) 1175
TDO5 13002 1274  (0.487) 1293.3 1279  (0.558) 1228
TD21 1817.0 1787  (0.539) 1815.6 1773  (0.633) 1647
TD22 1780.1 1733  (0.576) 1765.2 1736  (0.609) 1603
TD23 1720.4 1701  (0.529) 1723.3 1714 (0.610) 1558

1 3 1
I=|2 1 2
3 2 3

To construct a schedule from this individual we just need to convert this matrix
in a sequence of job numbers and apply to it the same procedure used for
the string encoding. To generate this sequence we start with the first element
(I11 = 1) and go through all elements in the first row. After finishing with this
row we go into the first element of the second row (I>; = 2), we proceed in this
way until we reach the last element in the matrix (L3 = 3).

When comparing both encoding techniques it is not difficult to see that the
structure of the matrix encoding leads to a reduction of the search space. This
reduction may restrict the algorithm accuracy, and restrict the use of neighbor-
hoods to the genotype level only. With the string encoding, on the contrary,
the whole solution space can be represented. Therefore, the neighborhood type
to be used has no limitations.

3.3.3 Matrix and String Encodings for the PESM: Com-
parative Results

This subsection is aimed to verify the hypotheses exposed at the end of sub-
section 3.3.1 as well as the advantage of the string encoding over the matrix
encoding by means of numerical experiments [18]. First, measures of last stage
and generational population diversity averages for different sampling and neigh-
borhood sizes, when dealing with 10-jobs 10-machines (FT10) JSSP, are per-
formed. Later on, accuracy performance of the algorithm, using the string
encoding, when dealing with well known open benchmark problems is analyzed
in order to compare with the results obtained by using the matrix encoding.
Figure 3.6 shows last stage diversity for different sampling sizes p, and dif-
ferent neighborhood sizes q. Here we can observe the decreasing of diversity for
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increasing values of p as stipulated in our first hypothesis.

Figure 3.7 shows the average diversity values through generations. High
diversity values for p = ¢g/5 and g = 2 can be observed. However, notice that
when g = 10 a lower diversity is obtained. This happens in accordance with the
second hypothesis. For the case p = 5g/6 low level diversity is attained. The
case when g = 10 shows a faster decreasing rate than the case when ¢ = 2. In
the long run a little difference (lower diversity for ¢ = 2) is observed. This fact
follows our third hypothesis.

In order to select the parameters to use when dealing with benchmark prob-
lems, and by referring to the previous figures, the value of p = ¢g/5 was adopted
because for this value the final stage diversity is kept high. Furthermore, an
appreciable variation of diversity can be obtained by varying ¢q. The neighbor-
hood size q was fixed to four considering that this value gave the best accuracy
result.

Table 3.1 compares the present results with those obtained by using matrix
encoding. The FT10 problem (solved problem) as well as other six still open
instances are dealt with. The up-to-date upper bounds are also presented in or-
der to have an idea of the algorithm accuracy. The entries of Table 3.1 are the
average makespan (over 10 runs), the best solution found, and the average diver-
sity (in parenthesis). UB stands for Upper Bound. They are the best feasible
solutions available to date [50]. For the FT10 problem 930 is the optimum.

We can see that the string encoding presents higher diversity and a com-
parable accuracy to those results obtained by using matrix encoding. This
encoding method will allow us to introduce many local search like procedures
for the neighborhood construction. This is a major limitation when using ma-
trix encoding since there might be neighbors that cannot be constructed, simply
because there is not a matrix that decodes into them.

With this new encoding, problem specific neighborhoods can be constructed.
This will lead to better accuracy results. The next subsection is aimed to verify
this assertion.

3.3.4 Problem specific neighborhood for the PESM

If we want to succeed in applying GA techniques to solve complex scheduling
problems it is important to include problem specific knowledge in the algorithm.
This has the advantage of improving algorithm accuracy in the problem at hand
but lacks of generality.

For COP’s like the job-shop, some problem instances of relatively small
size (say 15 jobs and 15 machines, 225 operations) still remain unsolved. This
motivates us to study whether a GA-based procedure can go beyond the state-
of-the-art results and provide a robust methodology for computing better upper
bounds with efficiency.

Studies have shown that the SGA-JSSP’s landscape, without being a rough
one, has its local optima widely spread through the whole search space [60].
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Figure 3.7 Diversity average. g = 300.

Taking into account this fact we can design a method that incorporates a local
search type procedure keeping at the same time an adequate degree of popula-
tion diversity.

A selection method for keeping adequate values of diversity was proposed in
subsection 3.3 and an improved encoding technique in section 3.3.2. The neigh-
borhood construction used in the method consisted of a deterministic swapping
of elements in the string representing a partial schedule. This time, keeping
the diversity maintenance property of the algorithm, we incorporate problem
specific knowledge, in the neighborhood construction procedure, in order to im-

prove the algorithm accuracy. To do this we need to understand some simple
concepts like critical-block neighborhood [19].
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Figure 3.8 Disjunctive graph representation for the JSSP.

3.3.4.1 The critical-block neighborhood

The Critical Block (CB) neighborhood is one of the most used neighborhood
in local search methods for JSSP’s. It was used in Simulated Annealing (SA)
[89], in Taboo Search [66], and also in GA [95]. In the GA approach [95] the
CB-neighborhood was used as an essential component in the genetic operations.
The idea is to move in the space between two local optima (the parents) hoping
there exists a big valley type structure as it seems to be the case for some
flow-shop problems. This idea comes from what is called the path re-linking
approach (see [42]).

In our case the intuitive idea is completely different. We want the population
to be directed towards promising regions discovered in a single step in the CB-
neighborhood of a number of sampled individuals.

To clearly understand the concept of CB-neighborhood we need first to set
the stage.

Figure 3.8 shows a graph representation for the schedule described by its
Gantt chart in Figure 3.5. Nodes shadowed in the same manner represent oper-
ations to be processed on the same machine. We add two fictitious operations
of zero processing time each, indicating the start “o” (source) and the end “¢”
(sink) of the schedule. Solid lines represent the technological constraints and
dashed lines represent the order in which operations are scheduled in a given
machine. The numbers in parenthesis indicate the (processing time)/(longest
path to the node, from “0”), respectively.

The critical path is the longest path from the source “o” to the sink “e”.
It might not be unique. In Figure 3.8 we can appreciate two critical paths
(highlighted lines),

CP1={ o, J11, J31, J32, J33, e}, and

CP2={ o, J11, J31, J22, J23, J33, e}

The critical block is the set of, at least two, critical operations (operations
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on the critical path) belonging to the same machine. For instance in critical
path CP1 we have only one CB, i. e.

CB1(CP1)={J11, J31},

while CP2 has two CB’s namely;

CB1(CP2)= {J11, J31, J22}, and

CB2(CP2)={J23, J35}.

Now we are in position of building the CB-neighborhood. To do this we just
need to apply the following steps:

1. Find a critical path in the given schedule.

2. Construct one element of the CB-neighborhood by swapping two
consecutive operations in a critical block.

3. Repeat step 2 until all possible swaps over all critical blocks are
done.

If in a given critical path we have b critical blocks and each block 7 has z;
operations then the neighborhood size in Step 4 of Algorithm 3 is given by:

-

g=> (z-1)+1

=1

The neighborhood size g depends on the problem at hand and on the quality
of the schedule since in average better schedules of the same problem have fewer
operations in the critical path.

3.3.4.2 Verification of the algorithm performance

In this subsection we setup a number of experiments to verify the algorithm’s
performance. First we investigate the behavior of average neighborhood size ¢
through generations. Secondly, we check the average diversity through genera-
tions. Finally, we study the algorithm performance when solving tough JSSP’s
[19].

Figure 3.9 shows the average neighborhood size ¢ generated for the FT10
problem. The average is taken over 100 neighborhoods for each generation and
over 10 different runs. Here, we can see that, at least for this problem, better
solutions have fewer critical operations.

We use here and in the rest of the experiments the following parameters:
pe = 0.9, p,, = 0.07, 1000 generations, and p = (1/5)g. Population sizes of 200,
300, 400, and 500 individuals are used. The parameter values are used based
on the results obtained in previous subsections. That is, we do not perform an
exhaustive tuning process.

Figure 3.10 shows the diversity average for the FT10 problem. We can ob-
serve that the diversity decreases rapidly. This is due to the big neighborhood
size generated in the CB method and the type of constructed neighborhood.
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Figure 3.10 FT10X10 problem. Diversity average (over 10 runs) every 10
generations. g = 500, p = 100, p. = 0.9, p,, = 0.07.

The CB-neighbors are relatively close to each other in our concept of differ-
ence between two given schedules (see Definition 1). That is, elements of the
same neighborhood do not contribute to the overall diversity of the population.
However, they contribute to the improvement of the population average fitness.
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Table 3.2 Makespan averages and best values. 10X10 problems (all solved).
p=(1/5)g.

Problem CB-Method Optimum
Average - Best
FT10 9439 930 930
LA16 960.8 946 945
LA17 787.0 T84 784
LA18 851.9 848 848
LA19 848.9 842 842
LA20 907.4 907 902

Table 3.3 Makespan averages and best values. 15X15 problems (TD03-09 open,
LA36-40 solved). p = (1/5)g.

Problem CB-Method UB
Average - Best
TD03 1272.8 1252 1218
TDo4 1222.5 1207 1175
TDO05 1262.8 1248 1228
TDO06 1280.3 1258 1240
TDO7 1260.5 1249 1228
TDO08 1270.5 1261 1217
TDO09 13474 1318 1274
LA36 1311.7 1292 1268
LA37 1454.9 1437 1397
LA38 1256.0 1242 1196
LA39 1254.1 1250 1233
LA40 1254.4 1246 1222

Table 3.2 shows the results for 10X10 (10-jobs and 10-machines) solved prob-
lems. We can see a good performance of the algorithm on these problems. The
result outperforms that presented by Mattfeld in [62] (for LA16, 17, 19, and
20). In this work, the mean error goes from 0.4% to 1.7% while in [62] it goes
from 1.2% to 5.6%.

Table 3.3 shows the results for 15X15 problems. Here, TD03 to TD09 are
still open problems while LA36 to LA40 are solved ones. The mean error (from
the known Upper Bound “UB”) goes from 2.6% to 5.8% for the open problems,
and from 1.7% to 5.0% for the solved ones. Considering best values we have the
relative error going from 1.4% to 3.6%, and from 1.4% to 3.8%, respectively.
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Table 3.4 Makespan averages and best values. 20X20 problems (all open).
p=(1/5)g.

Problem CB-Method UB
Average - Best
TD21 1764.0 1736 1647
TD22 1707.4 1669 1603
TD23 1655.9 1618 1558
TD24 1772.4 1735 1651
TD25 1708.8 1686 1598
TD26 1760.6 1736 1655
TD27 1803.3 1771 1689
TD28 1716.3 1674 1615
TD29 1709.5 1685 1625
TD30 1696.2 1666 1596
YNO1 926.8 915 888
YNO02 958.1 939 909
YNO3 940.0 920 893
YNO4 1034.3 991 968

Table 3.4 shows the results for 20X20 open problems. The mean errors go
from 4.4% to 7.3%, and best value errors go from 2.4% to 5.5%.

There is a clear increasing tendency in the mean error with problem size.
This could be due to the lack of parameter tuning for these problems or because
a single move in the neighborhood is not enough for these sizes of problems.

The results we present here do not outperform the best available results for
GA, see for example [60], but they are at most 5% above.

Since we compute the objective function of pg solutions (in the selection
process) plus the objective function of g solutions (after reproduction to find
the best individual), and the SGA computes only the objective function of g
solutions, we have to pay a higher computational cost.

The computational load along with the accuracy result can still be improved.
This can be achieved by introducing some changes in the computation of the pq
individuals as well as avoiding the computation of g elements after reproduction.
Furthermore, not all moves (Step 2, in the CB construction procedure) need to
be done, it will be enough with moves that improves the makespan (see [66]).

In this subsection we have seen that the accuracy results have clearly im-
proved the results presented in previous subsections. We just need now to study
the relative robustness of the PESM against the SGA.
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3.4 Algorithms’ Robustness-Diversity Relations

When dealing with complex combinatorial optimization problems using meta-
heuristic methods like GA’s, there are a number of parameters that need to be
empirically adjusted (p., Ppm,g, etc.) [43]. This is done in order to get the best
performance of the algorithm on a given input of the problem. Small changes
in the problem parameters force the GA to be tuned again, otherwise, the GA
accuracy becomes worse than it was on the original problem. It is not known
whether it is possible or not to characterize the variations of the problem under
which the algorithm’s performance can be guaranteed. This has to do with the
robustness properties of the algorithm.

Even though robustness is a simple concept it has some difficulties to deal
with. The problem, as we mentioned earlier, lies on the fact that GA is a meta-
heuristic method, hence it is not possible to ensure any performance measure
of the algorithm, and for defining robustness or adaptability we need to be sure
on a certain performance criterion. Because of this limitation, if we are able
to predict at least the relative behavior of two given algorithms on a set of
problems (obtained by modifying some nominal problem parameters) according
to their behaviors on a nominal problem, then a single step in the robustness
analysis of genetic algorithms would be given.

We have the intuition that robustness depends on population diversity of
information-rich individuals. Information-rich individuals mean individuals with
low order and high fitness schemata. We express this idea through a conjecture.

In order to state the conjecture we need first to make two basic assumptions
on the algorithms as follows.

Assumption 1. Given a fixed population size, the algorithms are tuned so
as to get the best accuracy results.

Assumption 2. The number of iterations is large enough to ensure the
algorithm’s convergence.

Under these assumptions we propose the following conjecture [16].

Conjecture 1 If, under assumptions 1 and 2, we verify that GAi accuracy is
better than accuracy of GAj (on Phom), and its final diversity is higher, then
the accuracy of GAi should be in average better than the GAj accuracy for the
perturbed set of problems.

When we look at the assumptions before the conjecture we find that the first
one cannot be guaranteed with 100% of certainty since it is not obvious what set
of parameters gives the algorithm the best performance by taking into account
only a finite number of trails. The second assumption is not difficult to verify
since we can define a minimum diversity value which implies convergence. The
following subsections are aimed to disprove this conjecture.
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3.4.1 The Algorithms

We need to find algorithms holding the conjecture 1 hypothesis. That is, we
seek algorithms having relative accuracy and diversity as stated in the conjec-
ture. In order to explore this idea three different algorithms are presented and
compared. One is the standard GA which uses standard encoding and standard
genetic operations (presented in subsection 2.4.2 of Chapter 2). The other two
algorithms are the PESMA and PESMB [16] which are based on the PESM
presented in section 3.3.

In the PESM the characters A and B represent two different improvements
of the original algorithm (PESM); A is the one presented in section 3.3.2, and
B is the one described in Algorithm 4. The difference between them is in the
way the neighborhood is constructed and in the way the crossover operator is
performed.

In the PESMB the critical-block neighborhood is used. Every CB with
more than two operations produces two neighbors by swapping the first two and
the last two operations of the block. Critical blocks containing two operations
produce only one neighbor (by a single swapping).

In all algorithms a special crossover operator called set partition crossover
(SPX) is used. This crossover technique was proposed in [77]. Here, a brief
description of this operator is given.

The genes sequence is partitioned into two disjoint sets. Let us call this sets
SET1 and SET2. The first child is generated by checking the parents’ gene
sequence one by one and copying into the child a gene of parentl belonging to
SET1 or a gene in parent2 belonging to SET2 until all loci of the child are
completed. To obtain the second child we apply the same procedure but this
time we consider genes that do not belong to the sets.

To give a more precise idea of the methods, details of the PESMB are pre-
sented and the main differences between this method and the PESMA are high-
lighted.

Algorithm 4. Partial Enumeration Selection Method B (PESMB)

Step 1. Set k = 0. Generate an initial population Pop[# of ¢
individuals.

Step 2. Set ¢ = 1.
Step 3. Select at random one individual I; from Popl[#].

Step 4. Construct a CB-neighborhood of g elements (determined by
the number of CB’s and the operations in it) around I;: {I;,J1;, -,

J(g—-1)}.
Step 5. If 7 <p then set : =7+ 1 and go to Step 3; otherwise go to
Step 6.

Step 6. From the new pq individuals select the best p elements.
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Table 3.5 Makespan and diversity averages over 10 runs for the nominal prob-
lem. Population size is g = 100.

Nominal Problem | PESMA | PESMB | SGA
Makespan Ave. 956.5 952.1 955.7
Diversity Ave. 0.581 0.608 0.154

Table 3.6 Makespan averages on 10 problems with various perturbations of
processing times. Population size is g = 100.

Perturbation PESMA | PESMB | SGA
One t;;, changed 965.97 958.81 965.90
Two t;i’s changed 967.44 960.55 972.48
Three t;;’s changed | 967.00 957.59 968.72
Four t;,’s changed | 976.04 962.32 972.57
All t;,’s changed 1011.94 1005.76 1013.75

Step 7. Merge these p elements with the g — p not selected individ-
uals (in Steps 3 to 5) to get Pop’[#].

Step 8. Until g individuals are chosen from Pop’[k] DO:
Step 9. Select randomly (with replacement) two individuals.

Step 10. Apply Set Partition Crossover (SPX) with probability p..
Use the same set size (in SPX) for all individuals.

Step 11. Apply mutation with probability p,,. Loop DO.

Step 12. Set k = k + 1. Construct the new generation Pop[k] of ¢
individuals using generational replacement.

Step 13. If the stop criterion expires then stop, otherwise go to
Step 2.

In the PESMA the neighbourhood elements (Step 4) are created by simple
deterministic swapping on the string encoding the schedule. Therefore, ¢ is an
externally determined parameter. In the PESMB, ¢ is not an external param-
eter, instead it is defined by the total number of critical blocks in the given
schedule.

In PESMA the size of the sets in the SPX (Step 10) is randomly chosen for
each crossover operation (i.e. for each pair of individuals). The size of the sets
for the PESMB is fixed and equals half of the total number of jobs.

Using a CB-neighbourhood (PESMB), instead of a deterministic swapping
of genes (PESMA), increases the exploitation power of the algorithm. By fixing
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the set sizes (in the SPX, PESMB) to half of the job numbers, longer gene
sequences from both parents appears in the offsprings. This helps to obtain
better solutions for problems with the property of having high quality solutions
(children) at the middle point of the line connecting two local optima (parents).

3.4.2 Experimental Setup
3.4.2.1 The nominal problem

The nominal problem is the well known 10-machines and 10-jobs JSSP proposed
by Fisher and Thompson [64]. This problem lasted more than 20 years before
being solved [25]. The nominal set of parameters ®,,,,, considered here is given
by the processing times and by the number of jobs to be processed.

We need to verify now the performance of the above presented algorithms
on the nominal problem. For that reason a population size that gives a short
computing time is proposed.

Once the population size is fixed the rest of the algorithm parameters are
tuned so that the best accuracy results are obtained. After having the results
the final stage diversity is computed. In order to measure this last stage diversity
the following computation is proposed:

%:%Z S din(l,), (3.6)

1=1 j€{970,980,990}

where, div(lj) is the diversity measure (defined by (3.3)) at generation j for
trial I, and r is the total number of trials. The algorithms stop after 1000
generations (number of generations that ensures the convergence of all presented
algorithms). Here, 5 € {970,980, 990} means that div(l, 5) is computed at these
three different points, i.e. at 970, 980, and 990.

3.4.2.2 Variation of processing time and job numbers

In the case of job-shop scheduling problem as in many other scheduling prob-
lems, a set of conditions like processing times, processing order, job numbers,
machine numbers, etc., are given. In real-world applications these specifications
may change due to many factors. Thus, it is important to have an algorithm that
can easily cope with these new problems generated by variations of the nominal
problem parameters, that is, algorithms that are robust to these variations.

The main idea here is to get an algorithm (Tq) for the nominal problem
P(®,0m). Here, @, is given by the benchmark processing times and number
of jobs.

The way to generate A® from the nominal parameter ®,,,,, is as follows:

1. Select with even probability one operation O;i from P,,p,.
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Table 3.7 Makespan average on 10 problems. Variation of number of jobs
added. Population size is g = 100.

Perturbation PESMA | PESMB | SGA
One job added 1000.90 996.87 1008.39
Two jobs added 1030.12 1024.92 1032.96
Three jobs added | 1077.56 1075.74 1080.21

Number of times PESMB
outperforms SGA
IN o © S

N

PT1 PT2 PT3 PT4 PTA PA1 PA2 PA3
P(®,. + AD)

nom

Figure 3.11 Number of times the PESMB outperforms the SGA on different
variations of the nominal problem. PT means processing time perturbations,
and PA means number of jobs perturbations. Population size is g = 100.

2. Replace the selected operations’ processing time t;; by a ran-
domly generated value from U[1,99] (uniformly distributed random
variable in the interval [1,99]).

3. Repeat 10 times steps 1 and 2 in order to obtain 10 different
problems that differ from P(¢nom) in only one processing time ¢;.

The same is done for two, three, four, and all processing times ¢;’s. Another
point we are interested in is whether or not each T has the same performance
when P,,,, is perturbed by adding new jobs to it. To investigate this we add
to P,om one, two, and three new jobs. Each job sequence, for the new added
job, is generated by a random permutation of machine numbers, and their cor-
responding processing times are obtained from U[1,99]. Again, 10 variants are
generated for each case. We solve each of them using the above mentioned
algorithms.
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Table 3.8 Makespan and diversity averages over 10 runs for the nominal prob-
lem. Population size is g = 200.

Nominal Problem | PESMA | PESMB | SGA
Makespan Ave. 953.9 944.1 949.0
Diversity Ave. 0.622 0.513 0.120

Table 3.9 Makespan averages on 10 problems with various perturbations of
processing times. Population size is g = 200.

Perturbation PESMA | PESMB | SGA
One t;;, changed 957.85 954.21 962.45
Two t;i’s changed 961.59 954.79 960.31
Three t;;’s changed | 960.82 954.11 961.53
Four t;;’s changed | 965.01 955.46 961.63
All t;’s changed 1008.95 997.04 1001.66

Once all these new problems are generated we solve them by using Tqsga,
TqopreEsma, and Tqprsup. These experiments are aimed to find a counter-
example to conjecture 1. In the following section we present the results obtained
in the above mentioned experiments [16].

3.4.2.3 Results and discussions

We set the Tqsga, TqpeEsma, and Tqprsup parameters considering that we
are looking for a short computing time, and an acceptable solution. To achieve
this we use population sizes of 100 and 200 individuals. Here, we define Q={q; =
short computating time A ga = best possible solution}.

Table 3.5 shows the makespan and final stage diversity averages for 10 dif-
ferent runs of each algorithm on the nominal problem P,,,,. The population
size is fixed to 100 individuals and the mutation and crossover rates are cho-
sen in order to get the best possible makespan. We can see here that PESMB
outperforms the PESMA and the SGA in terms of accuracy and diversity. In
this way according to conjecture 1 it should also have better average accuracy
performance over the set of perturbed problems.

The best parameter set for each algorithm was as follows.

SGA for g = 100; p. = 0.78, p,, = 0.19. For g = 200; p. = 0.70, p,,, = 0.20.

PESMA for g = 100; p. = 0.90, p,, = 0.03, p = 20. For g = 200; p, = 0.90,
pm = 0.05, p = 40.

PESMB for g = 100; p. = 0.90, p,, = 0.21, p = 20. For g = 200; p. = 0.90,
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Table 3.10 Makespan average on 10 problems. Variation of number of jobs
added. Population size is g = 200.

Perturbation PESMA | PESMB | SGA
One job added 997.69 989.44 998.76
Two jobs added 1026.10 1013.37 1024.10
Three jobs added | 1072.76 1057.92 1073.08

Number of times PESMB
outperforms SGA
N (2] o] =

N

PT1 PT2 PI3 PT4 PTA PAl1 PA2 PAS

P(®

nom + A¢)

Figure 3.12 Number of times the PESMB outperforms the SGA on different
variations of the nominal problem. PT means processing time perturbations,
and PA means number of jobs perturbations. Population size is g = 200.

pm = 0.11, p = 40.

Table 3.6 shows the results for the set of perturbed problems P(®,,,,,, + A®)
when processing times variations are considered. Here, each entry represents
the average over 10 problems. For each of these 10 problems the algorithms are
run 10 times. In all cases PESMB outperforms the other methods.

Table 3.7 shows the results for the perturbed set of problems when adding
new jobs to the nominal problem. Again in this case the PESMB outperforms
the other methods.

Figure 3.11 shows the number of times PESMB outperforms SGA. PT1,
PT2, PT3, PT4, and PTA are the problems where one, two, three, four, and
all processing times, respectively, are modified. PA1, PA2, and PA3 show the
cases where one, two, and three new jobs are added. Ten different problems are
considered for each case, and for each problem, each algorithm is run 10 times.
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It can be seen that PESMB clearly outperforms SGA. In the worst case SGA
outperforms PESMB three times (out of 10) on the problem where three new
jobs are added.

The same series of experiments is performed, with a population of 200 indi-
viduals. Table 3.8 presents the results for the nominal problem, in this case we
can see that PESMB outperforms the other methods in terms of accuracy but
it does not in terms of diversity (PESMA has the highest diversity average).

Table 3.9 shows the results for changes in the processing time and Table 3.10
for addition of new jobs.

It is observed from these tables that the results regarding accuracy are as in
the case of 100 individuals. Furthermore, Figure 3.12 shows that the number of
times PESMB outperforms SGA increases as compared with the case where a
population size of 100 individuals is used.

If in conjecture 1 we relax the conditions to take into account only accuracy,
or only diversity as the key for the best average accuracy results on the set of
perturbed problems, then counter-examples for these new resulting conjectures
can be easily found.

Let us take only accuracy as the condition on the nominal problem for suc-
ceeding on the set of perturbed problems. In Table 3.5 we see that SGA has
better accuracy (on the nominal problem) than PESMA. However, if we take
a look at tables 3.6 and 3.7 (perturbed problems) we find that in most of the
entries PESMA outperforms SGA. Now, if we take diversity alone we see for
example that in Table 3.8 PESMA has higher diversity than PESMB but in
tables 3.9 and 3.10 all entries of PESMB outperforms the entries of PESMA.

In Table 3.8 it can also be observed a big difference in accuracy between
PESMA and PESMB and small difference in diversity. The idea is that with big
differnce in accuracy and small difference in diversity we should prefer accuracy.

The reason for PESMB having better performance than PESMA and SGA
is due to the neighborhood construction method, which incorporates problem
specific knowledge (CB-neighborhood). This directs the search towards good
local optimum solutions. However, the other two methods do not incorporate
problem specific knowledge.

Although the experiments were aimed to disprove conjecture 1 we were not
able to find a counter-example. This fact does not imply that the conjecture is
true. It is just a motivation to look further at the implications of proving the
conjecture.

It is important to emphasize that conjecture 1 should be taken with much
care since the problem to find the best parameters for a complex large-scale
problem is not a trivial task. If a counter-example disproving conjecture 1 is
to be presented, it should be done for a case where the best parameters can be
found with high certainity.
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3.5 Summary

A framework for the study of diversity and robustness when dealing with a
complex combinatorial optimization problem has been established. Experiments
to study relations between diversity and robustness have been proposed.

A method for controlling diversity and selection pressure by partial enumer-
ation of solutions in a neighborhood has been presented. The method outper-
forms the SGA in terms of makespan for a set of non-trivial JSSP’s. The price
for this better performance is a higher computational cost.

The Partial Enumeration Selection Method has been successfully extended
to a more general encoding scheme for the JSSP. The string encoding allows
higher diversity generation and more promising accuracy results. With this en-
coding the CB-neighborhood has been integrated in the PESM. Good accuracy
results have been achieved. Accuracy levels clearly deteriorate with increasing
problem size. This could be due to the lack of algorithm tuning, algorithm’s
poor performance in large size problems, or problem difficulty.

It was shown by counter-examples that neither diversity nor accuracy defines
the relative-robustness property of a given algorithm.

Better accuracy at higher diversity ensures the success of a robust design for
the JSSP under processing time and number of jobs perturbations. The exis-
tence of a counter-example for this belief is left as an interesting open problem.
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Chapter 4

A Quasi-GA for a
Metal-mold Assembly
Problem

This chapter presents an alterantive method to solve a real-world scheduling
problem coming from a metal-mold assembly process. The method uses a
stochastic heuristic method for the decoding procedure in a standard GA. The
heuristic itself is part of the genotype and not a mere rule for mapping the
genotype into the phenotype. This chapter is based on the work described in
[20].

4.1 GA approach to solve the problem

Requirements of small lots of a great variety of products make the planning of
a good schedule one of the most important and difficult task in a production
process.

The Job Shop Scheduling Problem (JSSP) has been one of the most studied
scheduling problem. The Operations Research community has devoted decades
of effort trying to find efficient methods for this problem. Recently, many meta-
heuristic methods like Simulated Annealing (SA) [89], Tabu Search (TS) [66],
Genetic Algorithms (GA) [30], and Neural Networks (NN) [72] have been tested
against this complex combinatorial optimization problem. Even though there
are some methods to efficiently tackle instances of moderate size, large size
instances seem to be very difficult to deal with. Furthermore, this problem is a
far-reduced approximation to real manufacturing problems where more complex
constraints should be taken into account.

Consider a production system where different types of products should be
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manufactured. Each product has a certain number of parts that must be pro-
cessed in a predefined sequence through a set of given machines. This brief
consideration of a production system has already, in an informal way, described
a problem which includes the classical job shop [89].

Most of the real manufacturing problems are not only complex but also
large scale. Due to the complexity of real large-scale scheduling problems it
is necessary to have efficient methods for generating, at least, approximated
solutions.

In order to have efficient procedures, it is important to have a methodol-
ogy that takes into account the structure of the problem. The most successful
method among the meta-heuristic above mentioned seems to be the TS [66].
The key to its success is the use of a neighborhood construction method which
exploits the structure of the problem. For the classical JSSP this is perhaps the
right thing to do. However, adding a single constraint to the problem changes
things drastically, and then the neighborhood method is no longer of much help.
For more constrained cases new methods need to be developed.

We deal with a real manufacturing scheduling problem of which a basic
component is the classical job shop problem. A decoding procedure for a GA (in
which knowledge of the problem is used) is proposed as a fast solution generation
method for the problem. The effectiveness of the proposed algorithms is verified
through computer experiments on a real problem data.

4.2 The proposed Method

It is well known that most of the computational load in GA’s is expended on
evaluating the objective function for each individual (solution) of a popula-
tion. Also when the problem has many constraints the computational effort
for performing genetic operations is bigger than in standard situations (because
feasibility of solution must be preserved). Therefore, modifying any of these
points may help to shorten the computing time.

Our approach to reduce the computational task is based on a very simple
representation that requires only simple movements for the genetic operations,
and on a decoding procedure that helps to accelerate the convergence of the
algorithm. The price we paid is in solution quality when comparing with more
time consuming methods.

4.2.1 Individual Representation

The idea we propose consists of considering the individual to be the ordering
of part-processing operations for each product, i. e. a product based repre-
sentation. Thus, an individual is described as n sequences for the respective
products. This consideration is done in order to define simple genetic opera-
tions (for faster computation) and to give the decoding part a heavy weight in
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the schedule construction. Each product is expressed by integers’ permutation
with repetition representing all operations that have to be performed in order
to obtain the product. The job numbers permutation representing product 4

looks like:

prod(i) = s;18i2- - Sip,alg -+ -al® for each i € I (4.1)

Each gene s;; represents the job number (the allele) of product i, i.e. s;+ €
{1,2,---,4q;}. The order of its operation is given by the number of times the
allele is repeated in the sequence (e.g. if gene s;; equals j and it is the h-th
time it appears in the sequence, then the gene represents the h-th operation of
job j in product 7). The a;o represents the assembly job of product 7 which is
repeated n;y times. The total number of part-processing operations p; is given

by

R qi ..
pi = Zj:l N5

The total number of genes in the array equals to the total number of oper-
ations, i.e.

q= Z:'Lzl E?;o Nj-

We left open the possibility of using a permutation of product numbers
(41,92, *,9n VYi; € {1,2,---,n}) and use the decoding technique for selecting
the product’s operation to be scheduled.

4.2.2 Decoding

The decoding procedure we propose here plays a primary role in the efficiency
of the algorithm. In order to explain the procedure we need first to state some
definitions.

We define in the following description that the indices k¥ and k;; are not
time counters but event counters, i.e. k and one k;; are updated every time an
operation is scheduled. The time counter is defined as the variable indexed by
k and ]CZ]

Head of a product. The head is defined in the following way. Let c;;(k;;)
be the completion time of job j (product i) in its k;;-th operation. Then,

head; (k) = max{e;; (kij)} (4.2)

where

Cij (0) =0

cij(kij + 1) = ci5(kij) + tijr,; Vi € 1,5 € J;.

Every time an operation is scheduled its corresponding index (k;;) is up-
dated. When this happens the index k is also updated. The value in (4.2) is
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computed at each iteration of the objective function computation. Thus, we get
it for free (i.e. no extra computing time is necessary).
Tail of a product. The tail for a product i is given as follows

tazli(k) = jegzﬁ}fo}{aij(kij)} (4.3)
where
MNij Ti0

@ij(0) =) tijug + O tiowa Vi € Ji — {0}, €1,
k=1 k=1

aij(kij) - tij.uij(k,-]-—(-l)
for 0 < k;; < ny;

s (kiy +1) = < kij < myj
A i (Kij) = tiomiogn,; —n ;41

for Nij < ki]‘ < nij + Nio — 2

For computing the tail, we consider only parallel machines. This is because
consideration of multi-function machines will make computation difficult due to
the different processing speeds of multi-function machines. In this way at each
step k we just need to do a simple arithmetic operation for each job, which is
not a time consuming calculation.

The following function gives an idea of the time availability each product
has before its tardiness becomes greater than zero.

tallow;(k) = d; — (head;(k) + tail;(k)) (4.4)

The strategy for choosing a product is based on assigning a probability
inversely proportional to the product’s time availability. If the product ¢ has
already been completed then the assigned probability is zero. On the contrary,
if the product is not yet completed we continue as follows. Let m0 be a positive
constant used for scaling and define a; as:

a;(k) = W for tallow;(k) #0
i m0/100  for tallow;(k) =0

then the assigned probability for choosing product ¢ at step & is given by

ai(k)
>ie ai(k)

This is done in order to generate schedules that tend to minimize the tar-
diness of each product, and at the same time to avoid repeating the product
selection sequence for different individuals. This procedure has some similarity
with the Earliest Due Date heuristic (EDD) and can be considered as its stochas-
tic version. Because, instead of deterministically choosing the tardiest job we

pri(k) = (4.5)

50



Parent 1 Parent 2

S;; S+ Sip Qo Y F13 o =+ Tag Qyoerr Qg

Sn S S 8 B | > | T Ty T2 8 g

Sa Se  Su B0 8o Ma g = Tig 8o 8o
SRz Riep@erno™ Bueno el gen ™ TernpBerno™* By

S Se " Sy 8o 8 Tt Tog -+ T 8o " 8o

Child 1 Child 2

LETR PRI EUIC TR T S;1 S, Sig Ayt By

I'21_r22 "t Top 807 By i1 S S 807 S0

Ma T = T, 8o 8o Sa S, - Sq 80 8o
%kﬂ)l?kﬂ)?' “Sierp 8o Ao Pl oz T g 0pBrnyor* Beraro

S S Sy 8o 8o Toa Tra = Top 8o 8o

Figure 4.1 Crossover for the Product based Representation.

choose it probabilistically. In this way we may denote our product selection
method (in the decoding procedure) as SEDD (S for Stochastic).

Once a product is chosen the operation to be scheduled is given by the first
element in the string sequence not yet scheduled. The way to choose a machine
from M is to determine which machine will make the operation start as soon as
possible (earliest start time). If, in more than one machine the operation can
start at the earliest possible time then the machine with the smaller index is
chosen.

Since the individuals are generated through a similar stochastic procedure,
differentiating only in the jobs scheduling sequence, the expected diversity should
be low, forcing to a fast convergence of the algorithm to suboptimal solutions.

4.2.3 Reproduction Scheme

The 2/4 selection strategy is used, i.e. two individuals are randomly selected for
mating and from the four individuals (two parents and two children) the best
two are selected to form a part of the next generation.

For the crossover operator, simple interchange of the two selected individuals’
genes, corresponding to the same products, is used (one point crossover). This
is better illustrated in figure 4.1. Here, the genes corresponding to products 1
to k of both individuals are exchanged. Genes corresponding to products k + 1
to n remain unchanged.

The mutation operator is based on a simple swap, and on a segment swap
which are explained as follows.

First a product i, prod(i) = $;18,2 - Sip,aly - - - alg® is selected randomly.
For the simple swap mutation two numbers between 1 and p; are randomly
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chosen. These are indices (loci) of genes to be interchanged. For the segment
swap mutation, two segments of genes are randomly chosen and their positions
are interchanged.

The crossover rate is given by p. and the mutation rate by p,, =1 — p,.

4.2.4 The Algorithm

The population size is set to be g as a constant value. The overall algorithm
can be briefly described as follows.
Algorithm 5. Overall Procedure.

Step 1. Set r = 0. Generate an initial population Pop[r] of g
individuals.

Step 2. Using Random Selection choose two individuals from Pop|r]
for genetic operations.

Step 3. Perform crossover with probability p. and mutation with
probability 1 — p..

Step 4. Compute the total tardiness for the parents and the children
using the decoding procedure explained in section 4.2.

Step 5. Select the best two individuals (minimum tardiness indi-
viduals) from the parents-children set.

Step 6. If the total number of selected individuals is less than g,
then go to Step 2; otherwise go to Step 7.

Step 7. Set r = r + 1. Construct the new generation Pop|r] of g
individuals.

Step 8. If the stop criterion expires then stop, otherwise go to Step
2.

The results of applying this algorithm to a real problem data are discussed
in the next section.

4.3 Experimental Setup and Results

To analyze the performance of our proposed method we apply it to a real prob-
lem data which is an instance of the problem described in section 2. The time
window is assumed to be 24 hours, there is one product of each type, there are
five multi-function machines such as two of type A and three of type B. Type
A machines are 1.2 times faster than type B machines (type B machines and
the parallel machines have the same processing speed). The list below gives the
details of the problem [74].
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Table 4.1 Total Tardiness. g = 100. p. = 0.9. p,, = 0.1. Maximum Genera-
tions 7,42 = 200.

Algorithms Total Tardiness Computation Time
Mean Best Worst

ALGO1 9801.1 9675 9883 632.73 seconds

ALGO2 9861.8 9775 9931 238.04 seconds
Different types of Products (|I| = n) 14
Total number of jobs (|J|) 134
Total number of Operations (g) 702
Different types of Parallel Machines 17
Total number of Parallel Machines (|PM]) 50
Different types of Multi-function Machines 2

Tot. number of Multi-function Mach. (]MM]|) 5
Max. number of operations of a single product 265

The experiment consists of the generation of sets of 100 initial solutions (ini-
tial population), i.e. g = 100. This value of g is used as a good compromise
between computing time and accuracy results. The set of initial solutions (in-
dividuals) are generated randomly. The algorithm described in section 4.2.4 is
applied to the set of initial solutions. The crossover and the mutation rate is
given as p. = 0.9 and p,, = 0.1, respectively. The stop criterion used (Step
8, Algorithm 5) is given by a maximum number of iterations (generations)
Tmaz = 1000. Ten different runs are performed for the experiment. The av-
erage over 10 runs, and the best and worst values are obtained along with the
average computing time.

The earliest due date heuristic result (for the total tardiness (2.5)) taken
from [75] is 14654 units of time. The average, best, and worst values obtained by
our SEDD in Pop|0] (randomly generated initial population) are, respectively,
11378.35, 10088 and 14851, over 100 generated solutions. This means that our
population of initial solutions alone outperforms the result of the EDD heuristic
and the initial populations generated in [75] and [74], which are in the order of
35000 units of time.

The best result reported in [74] is 9045 (unfortunately the mean is not re-
ported). The computation time for this case was 1599 seconds (without taking
into account the tuning process).

Table 4.1 shows our results for two different algorithms. The only difference
between them is the decoding procedure. ALGO1 chooses product i with proba-
bility given by (4.5) while in ALGO2 product i is chosen randomly. Notice that
no exhaustive tuning is performed and the genetic operations are kept as simple
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Figure 4.2 Total Tardiness convergence curves for the best individuals of

ALGO1 and ALGO2.

as possible. The computation is performed in a Sun Ultra 60 (2360) machine.

Figure 4.2 shows the total tardiness convergence curves for the best individ-
ual of each algorithm. We can see a better accuracy performance of ALGO1
over ALGO2. This allows us to claim that the stochastic selection of the tardi-
est operation at each step in the schedule construction is better than a random
selection.

From the experimental results we can say that the merit of the decoding
technique we propose here is the capability of generating good solutions when
compared to a traditional heuristic procedure and to previous results reported
for this problem.

4.4 Summary

A new decoding strategy that uses knowledge of the problem for a GA based
method applied to a tough combinatorial optimization problem has been pre-
sented. This procedure generates high quality solutions. In fact, the best initial
solutions on the literature available for this problem are obtained here.

Numerical results show that the decoding method helps to generate good
solutions in short computing time.

Further experiments need to be carried out, especially to compare how dif-
ferent product-selection methods influence the accuracy results and computing
time. Also the use of the proposed decoding technique only for the generation
of the initial population will be considered.
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Chapter 5

Analysis of GGenetic
Operators for a

Multi-objective Flow-shop
Problem

This chapter deals with the analysis of genetic operators when dealing with
a multi-objective permutation flow-shop problem. The results of the analysis
allow us to select the best combination of operators to deal with a specific
problem. Simulation results show that using our design approach we can easily
improve specific results recently available in the literature.

Real world optimization problems are usually multi-objective (MO) in na-
ture. The lack of methodologies to tackle these problems makes them attractive
theoretically, and practically.

The research community in economics has been the pioneer in the study of
multi-criteria analysis and optimization. From this, Pareto’s work is the mile-
stone. Even though continuous multi-objective problems has received a great
deal of attention, the discrete case (Integer Programming MO) has been devoted
little attention.

Among the discrete MO problems, scheduling seems to be one of the most
challenging one. In a real scheduling problem we are interested not only in
minimizing the latest completion time (makespan) but also in minimizing the
total time all jobs exceed their respective due dates.

On the other hand, the available classical methodologies in genetic algo-
rithms (GA’s) have been focused on function optimization rather than in com-
binatorial optimization problems (COP’s). A few works on MO scheduling with
a single-objective-like approaches show that there is much to do in this research
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area.

To the best of our knowledge study of operators and its relation with dom-
inance properties of solutions, for scheduling problems, have not been investi-
gated. The chapter is based on the work described in [21].

5.1 GA’s Approach to MO Scheduling Problems

There are many approaches for solving the general MO problem by using GA’s.
Surveys on the exiting GA’s methodologies can be found in [81], [28], [41], and
references therein. Almost any application uses the methodologies described in
these surveys.

Since this is a new research area, there are still many fundamental questions
to be answered. Specially, in the field of MO-COP’s, everything is to be done. To
date, one of the most pragmatic question to answer is how to fairly compare two
given methodologies, or in the best case, how to judge any given methodology.

The application of GA’s to MO scheduling problems has been rather scarce.
Two interesting ideas are those presented in [85], and [6].

In [85] the scheduling of identical parallel machines, considering as objective
functions the maximum flow time among machines and a non-linear function
of the tardiness and earliness of jobs, is presented. In [6] a natural extension
of NSGA [81] is presented and applied to flow-shop and job-shop scheduling
problems. Another, totally different approach is that presented by Isibuchi
and Murata [49]. They use a local search strategy after the genetic operations
without considering non-dominance properties of solutions. Their method is
applied to the MO flow-shop problem.

The main idea when solving MO scheduling problems is to apply the existing
GA’s methodologies to the problem to solve. However, there are no traces of
studies on how adequate these methodologies may be. Again, the lack of a fair
methodology for comparing the results does not help to improve this situation.

In order to design adequate genetic operators we need to know the properties
of solutions and to understand the problem-algorithm landscape. The following
questions are of much interest:

1. Are neighbouring solutions in the objective function space neigh-
bours in the domain space?

2. Are close Pareto optimal solutions (in the objective function
space), close in the domain space?

3. Does crossover of non-dominated solutions generate mostly non-
dominated solutions?

4. What type of crossover or mutations favours the creation of non-
dominated solutions from non-dominated solutions?
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These questions, related to the problem-algorithm landscape have received
very little attention, although they are of primary importance.

When we design move-operators to deal with neighbourhood construction
for multi-objective optimization problems, there are also fundamental questions
we need to answer in order to choose the right operator. In the generated
neighborhood:

5. Is there always at least one non-dominated neighbour?

6. Is there a high percentage of non-dominated solutions among the
neighbours?

7. Is there any type of neighborhood that favours the generation
of non-dominated solutions? at least one, (almost always) one, or
many?

There is no trace of research addressing these questions for MO problems.
In the case of single objective scheduling problems such questions are answered
in many works related to landscape study as well as neighbourhoods study (see
for example [60] and references therein).

5.2 The Proposed Algorithm

The algorithm we propose here is just the standard GA for MO problems as
suggested in [81], with a minor modification. The contribution we try to make
is in the analysis of genetic operators in order to choose the adequate set for a
given problem. The proposed procedure is in its preliminary stage. Therefore,
more questions than answers will be highlighted.
The specific MOGA we use here as a framework is stated as follows.
Algorithm 6. Multi-objective GA.

Step 1. Set r = 0. Generate an initial population Poplr] of ¢
individuals.

Step 2. Classify the individuals according to a non-dominance re-
lation. Assign a dummy fitness to each individual.

Step 3. Modify the dummy fitness by fitness sharing.
Step 4. Set ¢ = 1.

Step 5. Use RWS to select two individuals for crossover according
to their dummy fitness. Perform crossover with probability p..

Step 6. Perform mutation of individual 7 with probability p,,.

Step 7. Set : =2+ 1. If 2+ = g then go to Step 8 otherwise go to
Step 5.

Step 8. Set r = r + 1. Construct the new generation Pop|r] of g
individuals. If r = 7,4, then STOP; otherwise go to STEP 2.

57



The procedures involved at each step of this algorithm are explained in the
following subsections.

5.2.1 Individual Representation and Decoding

Each individual is represented by a string of integers representing job numbers
to be scheduled. In this representation individual r looks like:

ir :(lgr)ng)Z‘SLT))’ T = 1725"'59 )

where ig) eJ.
The schedule construction method for this individual is as follows:

1) Enumerate all machines in M from 1 to m.

2) Select the first job (iY)) of i, and route it from the first machine
(machine 1) to the last (machine m).

3) Select iteratively the second, third, - --, n-th job and route them
through the machines in the same machine sequence adopted for the
first job igr) (machines 1 to m). This must be done without violating
the restrictions imposed in (2.11) to (2.13).

5.2.2 Genetic Operators

The selection operator we use here is standard to GA’s, like those proposed
elsewhere [43]. Two selection processes are distinguished here.

Selection for mating (Step 5, Algorithm 6). This is the way we choose two
individuals to undergo reproduction (crossover and mutation). In our algorithm
the so called roulette wheel selection (RWS) is used. This selection procedure
works based on the dummy fitness function assigned to each individual. The
way to compute the dummy fitness (Step 2, Algorithm 6) and the way to do the
fitness sharing (Step 3, Algorithm 6) are standard (see [6]).

Selection after reproduction (Step 8, Algorithm 6). This is the way to
choose individuals to form the new generation from a set given by all parents
and all offsprings. In this paper, the best elements are selected from the pool
of parents and offsprings.

To define “the best”, g individuals are sorted according to those belonging
to the non-dominated front, among these, individuals with better makespans
have higher priority followed by tardiness, and finally by the mean flow time.
After sorting all individuals in this front they are erased from the population.
The same procedure is applied to the remaining individuals, until we complete
g sorted individuals.

If there are repeated individuals (considering the objective functions), then
these are erased (only one copy of each type, at each step of the sorting process,
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Figure 5.1 Average of ofd for random solutions.

is left) and replaced by randomly selected individuals from the pool of parents
and children that where not sorted.

We need to explain now the crossover and mutation operators to be used.
Three different types of crossover and mutation operators are considered.

We start explaining the crossover operators (Step 5, Algorithm 6).

OBX. This is the well known order-based crossover (see [40]) proposed by
Syswerda. The position of some genes corresponding to one of the parents are
preserved in the offspring.

PPX. Precedence-based crossover. A subset of precedence relations of the
parents genes are preserved in the offspring.

TPX. Two point crossover. This is a special case of OBX with the difference
that two segments of one of the parents are always copied into the offspring.

The mutation operators for the flow-shop problem can be considered as move
operators in a neighborhood since, in average, the mutated solution is not far
away from the original solution. The following mutation operators are used
(Step 6).

SWAP1. A single swap of two adjacent genes is performed. The locus to
swap is randomly selected.

SWAP2. Two loci are randomly selected and their alleles interchanged.

SWAP3. Two loci (I;,ls) are randomly selected if I; < I then the allele
corresponding to [y is placed on I and all genes from Iy + 1 to l5 are shifted one
position towards l;. If Iy > I5 then the opposite operation is performed.

Before actually using any of these operators in Algorithm 6 we would like to
know about their effects on the non-dominance and distance relations between
the parents and the offsprings. It is also important to know the length of the
jumps of each move (mutation) operator in order to understand which is the
most appropriate for the problem we are solving.

To do this we start by defining the distance measure we are going to deal
with.
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Figure 5.3 Average of ofd for SWAP1, SWAP2, and SWAP3. The operators

are applied to random solutions.

5.3 Distance Measures

In the classical permutation flow-shop problem, the solution is totally defined
by the sequence of jobs numbers. Therefore, the distance measure gives an
idea of how different two such sequences are. To compute this difference, each
sequence s=(J1, j2,"**,Jn) is associated with an nxn matrix whose elements we
define a;;(s)=1 if job j is scheduled before job ¢, and zero otherwise. Thus, the
difference between schedules sr and sk is given by

n n

d(sk,sr) = Z > aij(sr) @ ay;(sk) (5.1)

Jj=1:=1

where @ represents the exclusive-or logical operation. To normalize the distance
(5.1) we divide it by the maximum number of different elements between two
given associated matrices, i.e.
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Table 5.1 Dominance relations. The operators are applied to random solutions.

Operator | (o>=n) | (o=mn) | (0<n) | (0 >=<n)
Swapl 42.46 6.04 42.56 8.94
Swap2 34.10 0.43 34.08 31.39
Swap3 33.55 0.41 33.65 32.39

Table 5.2 Dominance relations. The operators are applied to non-dominated

solutions only.

Operator | (o>=n) | (o=n) | (0<n) | (0 >=<n)
Swapl 52.23 4.59 36.11 10.83
Swap2 50.18 0.33 17.24 32.35
Swap3 44.70 0.36 19.29 35.65
dn(sk,sr) = d(sk,sr)/n(n —1) .

We call this the domain distance since it uniquely represents the solution
which is mapped into the objective function space. This type of distance mea-
sure definition can be found elsewhere [60].

5.3.1 Objective Function Distance

We define the objective function distance (ofd) between solutions sr and sk as
the Euclidean distance of their mappings, i.e.

q
ofd(sk,sr) Z fi(sk) = fi(sr))?)Y/? | (5.3)
7j=1

for a problem with g objective functions f; (7 =1,2,---,q).

In the case of continuous function optimization the Pareto optimal solutions
are close to each other. Then, if we want to reach any neighbour Pareto solution
from a given Pareto solution, we need to move as little as possible. However,
for discrete domain problems, this continuity property does not hold. Thus, we
need to know how far the Pareto solutions are from one another. We need also
to know what type of move operator is needed to go from one Pareto solution
to another. This is important from the application point of view, since it will
allow to increase the number of solutions available to the decision maker. Studies
aimed to address this issue are exposed in the next section.
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Table 5.3 Dominance relations. The operator are applied to the non-dominated
solutions obtained after one GA run.

Operator | (o>=n) | (o=mn) | (0<n) | (0 >=<n)
Swapl 95.74 0.28 0.40 3.58
Swap2 98.57 0.01 0.02 1.40
Swap3 97.26 0.01 0.05 2.68
0.8
0.7
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Domain distance (dn)

Figure 5.4 Distance and dominance relations. The OBX operator is applied
to random solutions.
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Figure 5.5 Distance and dominance relations. The PPX operator is applied to
random solutions.

5.4 Experimental Setup and Results
This section is devoted to the study of the genetic operators: mutation (move),

and crossover. We specially emphasize on the distance-dominance relations of
these operators.
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Figure 5.6 Distance and dominance relations. The 2PX operator is applied to
random solutions.
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Figure 5.7 Distance and dominance relations. The OBX operator is applied
to non-dominated solutions only.

The specific problem we are dealing with is a 49-jobs 15-machines flow-shop
problem with three objective functions. This problem was proposed in [6], and
its solution space size is of approximately 6.08x10%2 solutions. Experiments and
results related to the move operators are presented.

5.4.1 Move Operators

The first experiment is aimed to study relations between the domain distance
and the objective function distance. To do this, a set of 500 random solutions
is generated, and for each domain-distance value (generated by comparing all
against all solutions), the average on the objective function distance is com-
puted. The experiment is repeated 100 times.

Figure 5.1 shows the results of this experiment. All averages for all domain-
distance values tend to the same constant objective function value. This tells
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Figure 5.8 Distance and dominance relations. The PPX operator is applied to
non-dominated solutions only.
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Figure 5.9 Distance and dominance relations. The 2PX operator is applied to
non-dominated solutions only.

us that close/far random solutions, in average, produce similar distances in the
objective function space. The noisy behaviour in both extremes of the curve
is due to the small number of individuals that are present for these values of
domain distance, as it is shown in Figure 5.2.

This result does not give much information on how close/far solutions in the
domain space are mapped in the objective function space. One would, at first
glance, expect that close/far solutions in the domain space produce close/far
mappings in the objective function space. But, this is not the case for randomly
generated solutions.

The objective of the second experiment is to study how move operators in
the domain space move in the objective function space. A set of 2000 random
solutions is generated, and the move operators are applied to each solution.
The distance between the original solution o (origin) and the new solution n
(neighbour) is measured along with their objective function distances.
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Figure 5.10 Distance and dominance relations. The OBX operator is applied
to non-dominated solutions obtained after one GA run.
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Figure 5.11 Distance and dominance relations. The PPX operator is applied
to non-dominated solutions obtained after one GA run.

Figure 5.3 shows the results for each move operator defined in section 5.2.2.
We see that, as expected, the move operator SWAP1 (a single step in the do-
main space) produces neighbours which are close to each other in the objective
function space. The point to learn is that if we need to go few steps in the objec-
tive function space we can use SWAPI, or to choose those solutions generated
by SWAP2 or SWAP3 which are close to their origins in the domain space.

Now, we just need to know about the non-dominance relations generated
by these move operators. To study these relations we propose the following
experiment. Again, a set of 2000 random solutions is generated. Each solution
is modified with each of the three move operators, then the dominance relation
between the original and the modified solution is counted. The experiment is
repeated 100 times and the mean is computed.

If the origin o dominates the neighbour n, then (o > n) is used. If o and
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Figure 5.12 Distance and dominance relations. The 2PX operator is applied
to non-dominated solutions obtained after one GA run.
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Figure 5.13 Tardiness-Makespan relations. Non-dominated solutions in the
last generation.

n produce the same objective function values, then (o = n) is used. Neigh-
bour dominance of the origin and non-dominance of neither the origin nor the
neighbour are expressed by (o < n) and (o >~ n), respectively.

Table 5.1 shows the results for random solutions. We see that the three
operators behave similarly except for the number of solutions where no dom-
inance relation can be determined. Swap2 and Swap3 produce higher values
than Swapl.

Table 5.2 shows the results when only non-dominated solutions are selected
(from the set of random solutions) as origin points. Here we observe that Swap3
produces more promising results than the other operators. This is because
Swap3 accounts for 54.95% for cases where (o < n) and (o =< n), while the
others do not reach 50%.

Table 5.3 presents the results when the move operators are applied to non-
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Figure 5.14 Mean Flow Time-Makespan relations. Non-dominated solutions
in the last generation.
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Figure 5.15 Tardiness-Mean Flow Time relations. Non-dominated solutions in
the last generation.

dominated individuals obtained after a 1000-generations-run of a GA. The re-
sults are the average over 100 runs. These results show how good or bad the
used GA is. If we can easily find any dominating neighbour after a GA run,
then it means that the algorithm performs poorly. However, if it is difficult to
find new dominating solutions then it means that our algorithm performs well
(i.e. converges to the Pareto-optimal set). Table 5.3 shows that it is difficult to
find a dominating solution by using Swap2 or Swap3.

The analysis of move operators presented here gives us the idea of exploiting
what can be called the “non-dominated local search” procedure. Here, move
operators as well as move decisions can be studied to see their influence in the
quality of the final set of non-dominated solutions.
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Table 5.4 Dominance relations. The operators are applied to random solutions.

Crossover | (p>=c) | (p=c) | (p<c) | (p>=<¢)
OBX 29.23 0 29.25 41.53
PPX 28.31 0 28.81 42.88
2PX 28.65 1.31 28.84 41.19

Table 5.5 Dominance relations. The operators are applied to non-dominated
solutions only.

Crossover | (p>c) | (p=c) | (p<c) | (p>=<c)
OBX 42.52 0 29.82 27.66
PPX 42.42 0 33.26 24.32
2PX 29.00 2.04 53.05 15.91

Table 5.6 Dominance relations. The operators are applied to non-dominated
solutions obtained after one GA run.

Crossover | (p>=c) | (p=c) | (p=<c) | (p>=<¢)
OBX 93.59 0.86 0.46 5.09
PPX 89.77 0.67 0.60 8.96
2PX 79.45 4.11 0.83 15.61

Table 5.7 Comparison of non-dominated solutions (NDS) for the best and the
worst combination of operators.

Crossover % of NDS | dn ofd
Swap3-2PX (best) 58.42 0.048 | 47.75
Swap1-PPX (worst) 26.16 0.016 | 27.36

5.4.2 Crossover Operators

Crossover operators are in charge of information interchange among individuals.
Therefore, it is important to know which individuals are to be chosen, and how
the information should be interchanged among these chosen individuals.

As a first step in the study of crossover operators we analyze the relations
between the domain distance of the parents and the dominance relations between
the parents and the offsprings. For doing this we use a set of randomly generated
solutions, non-dominated solutions from the set of random solutions, and a set
of non-dominated solutions of the last generation after a 1000-generations-run
of a GA. In all cases the experiment is repeated 100 times and the average is
computed.

Figures 5.4 to 5.6 show the relations of dominance against the parental dis-
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tance when the parents come from the set of random solutions. The three
operators, i.e. OBX, PPX, and 2PX have similar characteristics. For all dis-
tance values, cases where non-dominance relation can be establish between the
offspring and at least one of the parents, are always greater than the other cases.

Table 5.4 shows the overall average results for each operator. We see that
all operators have very similar averages.

Figures 5.7 to 5.9 show the results when the parents come from non-dominated
solutions in the set of random solutions.

Table 5.5 corresponds to the average results regardless the distance between
the parents. It is observed from this table and Figure 5.9 that the superior
characteristic of 2PX crossover over the other two types is clearly appreciated.
The number of cases where the child dominates at least one parent is larger over
all domain distance values. This could be the reason to explain why Isibuchi
and Murata [49] found that this operator was adequate when dealing with the
MO flow-shop problem.

Figures 5.10 to 5.12 and Table 5.6 present the results when the parents come
from non-dominated solutions after one GA run.

We can see that for these experiments the number of cases where at least one
parent dominates the offspring increases with increasing values of the domain
distance. Again, the 2PX operator seems to outperform the others as it is also
shown in Figure 5.12 and Table 5.6.

5.4.3 Comparative Results

Based on the experiments outputs in previous subsections we select the ap-
propriate operators to use in Algorithm 6, and compare our results with those
presented in [6].

Swap3 and 2PX are selected as the genetic operators. The population size is
set as ¢ = 100 individuals. The maximum number of generations is 7,4, = 1000.
The crossover and mutation rates are p. = 1.0 and p,, = 0.01, respectively.

Table 5.7 shows comparative results for the best (Swap3-2PX) and the worst
(Swap1l-PPX) combinations of operators. The number of non-dominated solu-
tions, the average domain distance and objective value distance are shown. As
expected the combination Swap3-2PX gives better results than those given by
Swapl-PPX.

Finally we compare our results with those reported in [6]. The projection
of the solutions are shown in Figures 5.13 to 5.15. We can see that our results
(MOGAT1) clearly outperforms those of Bagchi (MOGA2) [6].

5.5 Summary

A detailed analysis of mutation and crossover operators is presented for a multi-
objective flow-shop problem. The analysis is focused on how the operators
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influence the generation of non-dominated solutions according to the parental
distance.

Based on this analysis we are able to design a high performance GA and
applied it to a problem presented by Bagchi in [6]. The simulation results show
that our results clearly outperform (in solution quality) the ones presented in
[6]. The relevance of this work is in the procedure proposed for choosing the
right operators to use and not much in the superiority of our results over those
presented in [6]. The analysis of mutation operators also gives some insight on
how to perform effective moves when a “non-dominated local search” is to be
designed.

There are still many open questions related to the landscape of multi-objective
combinatorial optimization problems, specifically for multi-objective scheduling
problems. Our results present just a little but motivating step in answering the
open questions.
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Chapter 6

Conclusions and Future
Research

Genetic Algorithms have been extensively used as efficient procedures in solving
complex scheduling problems. Their suitabilities for solving scheduling problems
has been shown through various implementations. In spite of these results, there
are still questions related to: the algorithm robustness, the existence of system-
atic design procedures for solving multi-objective problems, and the existence
of problem-oriented approaches to tackle real-world problems. This thesis gives
some insights on the possible answer to these questions. The results concerning
these remaining questions are summarized as follows:

e A detailed exposition of the scheduling problems we deal with in this
thesis is presented. Available methodologies to tackle these problems are
briefly described. A general genetic algorithm representing most of the
algorithms available for scheduling problems is presented. Limitations for
the proof of convergence properties of such algorithm are described.

e A method for controlling selection pressure and diversity by partial enu-
meration of solutions in a neighborhood has been presented. The method
outperforms the SGA in terms of makespan for a set of non-trivial JSSP’s.
The price for this better performance is a higher computational cost.

A framework for the study of diversity and robustness when dealing with
the classical job-shop problem has been established. Experiments to study
relations between diversity and robustness have been proposed.

It was shown by counter-examples that neither diversity nor accuracy
defines the relative robustness of a given algorithm.

Better accuracy at higher diversity ensures the success of a robust design
for the JSSP, under processing time and number of job perturbations. The
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existence of a counter-example for this belief is left as an interesting open
problem.

e An efficient decoding strategy that uses knowledge of the problem for a
GA-based method applied to a tough combinatorial optimization problem
has been presented. This procedure generates high quality solutions. In
fact, the best initial solutions on the literature available for this problem
are obtained here.

Numerical results show that the decoding method helps to generate good
solutions in short computing time.

Differences between the classical JSSP and its real-world generalization
have been highlighted through a detailed description of the restrictions
involved in a real problem. This shows that the classical model is still far
away from real-world models.

e A detailed analysis of mutation and crossover operators is presented for a
multi-objective flow-shop problem.

Based on this analysis a high performance GA is constructed and applied
to a problem presented by Bagchi in [6]. The simulation results show that
our results clearly outperform the ones presented in [6].

As a general statement of conclusion we can say that: “Genetic Algo-
rithms with random sampling and partial enumeration emerge as a valid
alternative to tackle complex shop scheduling problems”.

As future work, based on the outcome of this research, we can enumerate
the following points:

e The non-approximability results say about the non-existence of algorithms
delivering a worst case schedule with less than 20% over the problem op-
timum. It seems to me that, for a certain class of problems, our proposed
GA may systematically deliver worst case performance below the 20%
limit recently proved [92]. This situation gives some insight into the con-
servative nature of the non-approximability results. Thus, a new limit
on non-approximability results can be studied for more specific problem
structures.

e In Chapter 3 we showed the high diversity property of our proposed
method, the PESM. This method may be well suitable for MO problems.
Furthermore, if we think of the MO flow-shop problem, the neighborhood
construction method, Step 4 in Algorithm 3, can be done following the
results obtained in Section 5.4 of Chapter 5.

e In subsection 4.2.2 of Chapter 4, a new decoding strategy has been pro-
posed. The probability we assign to each product should be more in
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accordance to the time each product has left before its due date expires.
In order to do this a better computation of the head (eq. 4.2) and a better
a; need to be proposed.
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