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Abstract. A common approach in multiobjective optimization is to perform
the decision making process after the search process: first, a deardhtic
approximates the set of Pareto-optimal solutions, and then the deciskar ma
chooses an appropriate trade-off solution from the resulting apprtigimset.
Both processes are strongly affected by the number of optimizationiaritdre
more objectives are involved the more complex is the optimization probleim an
the choice for the decision maker. In this context, the question arises evheth
all objectives are actually necessary and whether some of the obgentas be
omitted; this question in turn is closely linked to the fundamental issue of con-
flicting and non-conflicting optimization criteria. Besides a general definigfon
conflicts between objective sets, we here introduce the problem of ¢ogeu
minimum subset of objectives without losing information (MOSS) and stihaiv

this is anAP-hard problem. Furthermore, we present for MOSS both an ap-
proximation algorithm with optimum approximation ratio and an exact algorithm
which works well for small input instances. The paper concludes wigleex
mental results for random sets and the multiobjective 0/1-knapsacleprob

1 Motivation

With the availability of sufficient computing resourcesngeating methods for identify-
ing or approximating the set of Pareto-optimal solutiongeHzecome increasingly pop-
ular for tackling multiobjective optimization problemshd& advantage of these meth-
ods is that the decision making process is postponed a#teptimization process: the
decision maker can choose an appropriate trade-off solditem a set of alternative
solutions generated by the corresponding search algaritomwever, the complexity of
both processes is strongly affected by the number of obginvolved. On the one
hand, the running time of generating methods may be expiahémtthe number of
objectives as, e. g., for algorithms based on the hyperwelindicator [14, 5, 10], and
on the other hand comparing even only a few alternative isolsitmay become diffi-
cult or infeasible for a human decision maker, if too manyeatiyes are considered
simultaneously. In the light of this discussion, the quesarises whether it is possible



to omit some of the objectives without changing the chargsttes of the underlying
problem. Furthermore, one may ask under which conditiool an objective reduction
is feasible and how a minimum set of objectives can be condpute

These questions have gained only little attention in thegdiure so far. There are
closely related research topics such as principal compga@melysis [4] and dimension
theory [9], which have a different focus though. Transfén® the multiobjective op-
timization setting, the corresponding methods aim at daténg a (minimum) set of
arbitrary objective functions that preserves (most of) the problearatteristics; how-
ever, here we are interested in determining a minimum sudfsetiginal objectives
that maintains the order on the search space. Furthernhere & few studies that in-
vestigate the relationships between objectives in termsioflicting and nonconflicting
optimization criteria. Deb [2] defines a set of objectives@sflicting, if there exists one
solution that simultaneously achieves for each critedi@ndptimal value; otherwise the
set is nonconflicting. Tan, Khor, and Lee [8] presented a eefient of this definition
where a conflict denotes the existence of incompatagb@tions in the search space.
A similar notion of conflict has been suggested by Purshonddé-&eming [6] who con-
sider conflict as a binary relation between single objestittowever, these definitions
are not sufficient to indicate whether objectives can betechibr not as the following
example demonstrates; although all objectives are canfiietccording to [2, 6, 8], one
of the three objectives can be removed while preservingahech space order.

Example 1 Fig. 1 shows the parallel coordinates plot, cf. [6], of threelutionsx;
(solid line), x5 (dotted) andxs (dashed) that are pairwise incomparable.
values Assuming thakq, x5, x3 represent the en-
tire search space, the original objective
set{ f1, f2, f3} is conflicting according to
[2, 8] and all objective pairs “exhibit evi-
. dence of conflict” as defined in [6]. Never-
1 1 1 theless, the objective s€f, fo, f3} con-
tains redundant information: the objective
h F2 fs f> can be omitted, and all solutions re-
main incomparable to each other with re-
gard to the objective seltf1, f5}.

Fig. 1. Parallel coordinates plot for three solu-
tions and three objectives, f2, fs.

This paper addresses two open issues: (i) deriving genendlittons under which
certain objectives may omitted and (ii) computing a minimeuabset of objectives
needed to preserve the problem structure. In particular, we

— propose a generalized notion of objective conflicts whiaimjgoses the definitions
of Deb [2], Tan et al. [8], and Purshouse and Fleming [6],

specify on this basis a necessary and sufficient conditiaeiuwhich objectives
can be omitted,

introduce the problem of minimum objective subs&tSgS),

show thatVOSS is A"P-hard,

provide an approximation algorithm with optimum approxiioa ratio as well as
an exact algorithm which has polynomial runtime in the decispace size, and

! Two solutions are incomparable iff either is better than the other one in sbjeetives.



— validate our approach on both random problems and the Gfpdack problem by
comparing the algorithms and investigating the influencthefnumber of objec-
tives and the search space size.

In addition, extensions of the proposed approach will beudised in the last section.

2 A Notion of Objective Conflicts

2.1 The Relation Between Objectives and Orders

A general optimization problem can be considered as a qpbfX, Z, f, rel) where
X denotes the search space or decision spdaepresents the objective spage;
X — Zis a function that assigns to each solution or decision vecta X a corre-
sponding objective vecter = f(x) € Z, andrel C Z x Z represents a partial order
over Z. The goal is to find a solutior* € X that is mapped to a minimal elemént
z" = f(x*) of f(X):={z € Z|3x € X : z = f(x)} regarding the partially ordered
set(Z,rel).

In the scenario considered in this papégonsists of one or several objective func-
tions f1, fa, ..., fx that are all to be minimized whete= (f1,...,fx), fi : X = R
for1 < i < k,andZ = R*. Furthermore, we assume thatl is the relation< on
real vectors withe < z’ <= V1 < i < k : z; < z/ which induces a corresponding
preorder< on X with x; < x5 :<= f(x1) < f(x2). The relation< is also known as
weak Pareto dominance, and we sayweakly dominates, wheneverk; < x»; other
dominance relations such as epsilon dominance, cf. [1d]ddee taken as well, and the
following discussions applies to any preorderXrthat is defined by a corresponding
partial order oriR*. The minimal elements of (X) with respect taR*, <) form the
so-called Pareto front, and solutions that are mapped toegits of the Pareto front are
denoted as Pareto-optimal and constitute the Pareto sle¢ré exist two incomparable
Pareto-optimal solutions,, x», i. €., neither weakly dominates the other ore|[x2),
then the cardinality of the Pareto front is greater that two solutionsx, x, are in-
different, i. e., they are mapped to the same objective végio~ x5), then the relation
=<is only a preorder, but not a partial order & However, we can define a partial order
= on the setX/~ of equivalence classes regardifg, ~) as follows:

VIpl, gl € X/~ [p] S lq] = p=qApH#q

The remainder of this paper addresses the issue of findingianomin subset of the
objectives that induces the same preorder on the decisamesgs the complete set of
objectives. To this end, we here introduce a generalizaifathe weak Pareto domi-
nance relation defined above: a decision vegtore X weakly dominates a decision
vectorxy, € X w.r.t. the setF C {fi, f2,..., fx} of objective functions (written as

2 Arelationrel is called a preorder iff it is reflexive and transitive; a preorder thanisgm-
metric is denoted as partial order. We call a partial order total ordereadiorder if it is total;
a preorder that is total is called total preorder.

% Given a partial ordered séiZ, rel), an element* € Z’ with Z’ C Z is called minimal
element ofZ’ iff forall z € Z’ holds:zrel z* = z = z*.



x1 =F x9) iff Vf € F: f(x1) < f(x2). We will write <; if we mean the weak
dominance relation w.r.tF = {f;}; in addition, we define<y:= X x X for the case

that F is empty. The following theorem shows that for any objecfivection set the

generalized weak Pareto dominance relation can be derwatthe objective-wise less
than or equal relation oR.

Theorem 1. Let F = {f1,..., fx} be a set of different objective functions. Then it
holds:

Proof: Forallz,y € X:

(x,y) EXrp<= s yW.rLt.F<=Vie{l,....k}: fi(z) < fi(y)
—Vie{l,...,k} :z Syw.r.t f;
—=Vie{l,...,k}:(z,y) €=

Note that the above equivalence also holds for the stricticince relation and the
multiplicative e-dominance relation, cf. [14], but does not apply to the t@gRareto
dominance relatior defined as; < x5 (<= x1 = x2 A 7(x2 = X1). O

Finally, we will use a graphical notation for relations, ledlrelation graphs. Given
a certain ordered s€%, rel), the relation graph fofZ, rel) has a vertex per element in
Z and a directed edge between the verticaadz’ only if z rel z’. For a partial ordered
set, the relation graph can be reduced to a Hasse diagramamvédge between vertices
z andz’ iff z is a lower covef of z’. The relation graph is only another description of a
relation but helps us to visualize our ideas.

Example 2 Let (X := {A, B,C, D, E},R% f = (f1, f2), <) be a multiobjective op-
timization problem wherg¢ is specified by the objective values in the following table.
Fig. 2 shows the relation graph ¢oX, <, 1) and the relation graph and Hasse dia-
gram for (f(X), <).

x | A [ Bl C[ D] E |
Fi(x) 1 2 3 4 4
F2(x) 2 1 4 5 5

The solutionsA and B are the minimal elements 6K, <, 1), i. €., the Pareto set,
whereasf(A) and f(B) form the Pareto front, i.e., they are the minimal elements of
f(X) with respect taR?, <). A and B are the only incomparable anB and E the
only indifferent decision vectors according to the relatig s, 7,

2.2 Partial Orders on Sets of Objectives

In this section, we introduce a general concept of conflietsvben sets of objectives.
On the basis of the following definitions, two algorithms x@etly resp. approximately
compute a minimum set of objectives, which induces the samerger onX as the
whole set of objectives, will be proposed in Sec. 3.

* We sayz is a lower cover ot iff Vz* € Z :zrelz" Nz"relz’ = z* =zVz" =27,
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Fig. 2. (a) Relation graph of X, <(y, 1,1), (b) relation graph of f(X), <), and (c) Hasse dia-
gram of (f(X), <) from Example 2.

Definition 1 LetF;, 72 C F be two sets of objectives. Thén C F, & <7 C <x7,.

Definition 2 Let F, 7>, C F be two sets of objectives. We call

— JF1 nonconflictingwith 7 iff 71 C Fo A Fo T Fy
— F1 weakly conflictingwith 75 iff (Fi C Fa AFs L F1)V (Fa T FLAFy L Fo)
— JF1 strongly conflictingwith F5 iff 71 L Fo A Fo L Fy

By definition, C is a preorder sinc€ is a preorder. Two sets of objectivgs, 7, are
called nonconflicting if and only if the corresponding redat <, and=y, are iden-
tical but not necessarily; = F»; in other words,F; and 7, are indifferent w.r.t.
C. If 7/ C F; andF; is nonconflicting with/7 we can simply omit all objectives in
F» \ F1 without influencing the preorder oli. Furthermore, the term “strongly con-
flicting” corresponds to incomparability w. r. t=, while “weakly conflicting” means
neither indifferent nor incomparable w.r. E. These two types of conflicts are mutu-
ally exclusive which is useful in the context of the followinesult.

Theorem 2. Let F be a set of objectives. Thénis a total preorder orP(F) if and
only if there are no strongly conflicting pairg;, F» € P(F).

Proof: By definition, it is clear thatC is always reflexive and transitive. Assume that
there are no strongly conflicting paifs , 7» € P(F), i.e.

/3.7:1,.7:2 S 7)(.7:) : Fi Zfz N Fo Z]‘H
VR, FeP(F): ALEFRVFRLCF < L istotal

Thus,C is total iff there are no strongly conflicting pairs of objeetsets. O

Note that the above formulation of conflicting objectives t& regarded as a gen-
eralization of Purshouse and Fleming’s definition [6] whanfly considers pairs of
objectives; moreover, it also comprises the notions by R2¢lafid Tan et al. [8]. For a
more detailed discussion of the connection to previous idiefits of objective conflicts,
we refer to the appendix.



2.3 Minimal, Minimum, and Redundant Objective Sets

Based on the above conflict relations, we will now formalize hotion of redundant
objective sets.

Definition 3 LetF be a set of objectives. An objective $&tC F is denoted as

— minimal w.r.t. F iff (i) 7’ is nonconflicting with7, and (ii) there exists n” C
F’ that is nonconflicting wittF;

— minimum w. r.t. F iff (i) 7 is minimal w.r.t. F, and (ii) there exists n&” c F
with | 7| < |F'| that is minimal w.r.t. F.

A minimal objective set is a subset of the original objectitieat cannot be further re-
duced without changing the associated preorder. A minimbjective set is the small-
est possible set of original objectives that preserves tlggnal order on the search
space. By definition, every minimum objective set is minineit not all minimal sets
are at the same time minimum.

Definition 4 A setF of objectives is callededundanif and only if there exist&’ C F
that is minimal w.r.t. F.

This definition of redundancy represents a necessary affidisnf condition for the
omission of objectives.

3 The Minimum Objective Subset Problem

Given a multiobjective optimization problem with the sEtof objectives, the ques-
tion arises whether objectives can be omitted without chmenthe order on the search
space. If an objective subs#&t C F can be computed and </ y holds for all so-
lutionsx,y € X if and only if x <+ y, we can omit all objectives itF \ F’ while
preserving the preorder aki. Concerning the last section, we are interested in identi-
fying a minimum objective subset with respect&o yielding a slighter representation
of the same multiobjective optimization problem. Formaths problem can be stated
as follows.

Definition 5 The search problenM NI MUM OBJECTI VE SUBSET (MOSS) is de-
fined as follows.

Given: A multiobjective optimization proble(X, Z, F = {f1,..., fx}, <)

Instance: The setX of solutions, the generalized weak Pareto dominance oati
<z and for all objective functiong; € F the single relations<; where
ﬂlgigk == j}'-

Task: Compute an index C {1, ..., k} of minimum size witf,.; <; = <.

Note that the limitation of the instances to the whole seamdice description is not
essential here. One can think of situations where the wyidgrset is the Pareto set or an
approximation of it. The restriction to the partial ordeand its corresponding preorder
=< is not essential as well, but instead of any partially ordeset( Z, rel) we consider



only (R™, <) here. Note that we are not interested in a minimal objectiesst but
in a minimum objective set w.r.t. the set of all objectiveheTapproach of finding a
minimum objective subset is related to dimension theory@Yen a partial orderel,
the dimension ofel is defined as the minimum number of linear extensiaisel, the
intersection of which igel. A set of linear extensions the intersection of whichdsis
called a realizer forel. The main difference between the computation of the dinoensi
of a partial order and our approach of finding the size of a mimh objective subset
w.r.t. the set of all objectives is the fact, that the coroegting realizer contains linear
extensions which do not bear relation to the relatiefasInstead in a realizer for the
partial orderz, we are interested in a set of given relatiefysthe intersection of which
is <. For simplification, let us assume that there are no indiffesolutions, i.e. =< =

is a partial order. The dimension efz gives us only a lower bound for the size of a
minimum subset of objectives w. r. . For example, the dimension efr is always 2
if all decision vectors are incomparable, but the size ohti@mum objective set can be
greater than 2. Instead of the computation of a minimumzealh dimension theory,
which is N'P-hard [11], we are interested in a shorter description ofpmablem with

a selection of the given objectives, the complexity of whigh emerge as\P-hard,
too, in the next section.

3.1 Proof of 'P-hardness

That MOSS is a set problem does not directly arise from the definitiotthefMOSS
problem but, obviously, the relations; in Def. 5 as well as<  are subsets ok x X.
Considering the complementary set§,:= (X x X)\ <z for any 7 C F and De
Morgan’s laws, the task of tHdOSS problem can be restated as finding a minimum in-
dex/ suchthat J,.; <¢==%. Hence, the\"P-hard problenSET COVERintroduced

in [5] is closely related to th&OSS problem.

Definition 6 We define the search problesET COVER, or SCP for short, as follows.
Instance: A CollectionC = {C4,...,C}} of subsets of a finite sét= {1,...,m}.

Task: Compute an index C {1, ..., k} of minimum size withJ,., C; = S.

The setS in an SCP instance complies with the relation% in a MOSS instance just
as each subset; corresponds to the relatios{’. Just as the”;’s are subsets of,
the <,’s are supersets of , i. e., the complementary relationt’ are subsets ok%.
NeverthelessSCP andMOSS are not identical problems due to the fact that the allowed
instances foMOSS have to ensure that the relations correspond to preordets on
whereas foSCP, instances with arbitrary sets are allowed. More preciskegrelations
=; in an allowedMOSS instance are always linear orders, written[®8 xo, . . ., X,]
with x; € X, augmented with additional relations between indiffersgittion pairs,
thus, the relations:; are preorders, cf. Fig. 3 for an example. Because of theasiityil
betweerSCP andMOSS it is not surprising that alsBOSS is NP-hard. In the following
we use a Turing reductioBCP <7 MOSS to prove the\P-hardness oMOSS.

5 Alinear extension of a relatiorel C Z x Z is a linear order ot x Z, containingrel.



Theorem 3. The problenMOSS is NP-hard.

Sketch of Proof: To simplify the notations below, we denote the input sizé/06S
by n, wheren = ©(k - m?), k denotes the number of objectives, and:= | X|. For
the N'P-hardness proof, a Turing reducti@CP <, MOSS is required. Due to space
limitations, we only provide a sketch of the transformatiom refer for the correctness
proof of this transformation to the appendix. For a smalianse, Fig. 3 visualizes the
basic idea of the transformation.

Starting from anSCP instance, consisting of the sét = {si,..., s,,} and the
subsetsC; with 1 < i < k, all relations=; as well as=<r in the MOSS instance
are defined as subsets &f x X with X = {x1,...,x,,%},...,x/,}. According

to the similarity of the two problems, each set in tB€P instance has its counter-
part in the generateMOSS instance. The relatio  corresponds to the s& and
is the reflexive closure of the antich&ion X, i.e., <+ only contains the elements
(x5,%;) and(x;.,x;.) for 1 < 5 < m. For each subset; of Swith1 < i < k we
create the relatior<; in the MOSS instance. The relatior; includes the linear or-

der[xy,x],x2,%5, ..., Xm,x,,] and additionally, the relatior; contains the element
(x3»7x]-) iff s; ¢ C;. In addition to thek relations=;, we compute the relatiof ;1
which is the reverse linear ordét,,, X, X}, _1,Xm—1, - .., X}, X1]. After this trans-

formation, we question ouviOSS oracle once. The resulting indexcp for the SCP
problem will be theNscp := Ioracie\ {k + 1} if the oracle produces,acie as its output.
The whole transformation takes tini®km?) and produces aNOSS instance of size
O(km?). O

3.2 An Approximation Algorithm

As the computation of a minimum objective subset of objestia\/P-hard, we cannot
expect to find an exact deterministic algorithm for the peoblvith polynomial running
time, unless? = N'P. Instead, we present an approximation algorithm with pelyn
mial running time in the following; an exact algorithm wilelproposed in Sec. 3.3.
With Algorithm 1, we propose a greedy strategy for M&SS problem. ForSCP, an
approximation algorithm with a similar greedy strategylieady known the approxi-
mation ratio of which idnm — Inlnm + ©(1) wherem is the number of elements in
the setS [7]. This knowledge is useful for proving the following résan Algorithm 1.

Theorem 4. Algorithm 1 is an approximation algorithm for theOSS problem with
approximation ratio®(log m) and needs timé&(k - m?) = O(n).

Proof: First, we show that Algorithm 1 always computes a correctitsmh for the
MOSS problem, i.e., an index with (,., =;= =<z. By construction, Algorithm 1
provides always an indekwith | ., <¢2 2%, i.e.,N;c; =€ 2r. AS() <y Si=
=r,and thuf, ., ., ;2 =< holds, the equivalendg),., =;= = is always true.

To show the upper bound on the approximation ratio, we skibeelproof of a Tur-
ing reductionMOSS <1 SCP and refer to the appendix for the correctness proof. Given

8 The reflexive closure of an antichain is simply a relation with only reflexigiges in their
graph representation.



S ={a,b,c,d} Ci={a,b} Co={bc} Cs3={a,cd}

Transformation

de d

=F =1

Fig. 3. An example for the Turing reduction fro8CP to MOSS. The reflexive and transitive edges
are omitted for clarity.

an instance foMOSS, consisting of the relations C X x X and=<;C X x X with
Ni<i<r =i==F, Wwe can compute aBCP instance as follows. The sétin the SCP
instance contains an element,, for each(x,y) €=x. A subsetC; of S in the SCP
instance contains an element, iff x A; y. The output for theMOSS problem, is the
index I, computed by th&CP oracle. The Turing reduction needs tirén) and pro-
duces arSCP instance of sizé)(n). Since Algorithm 1 uses this transformation and
then acts like the greedy algorithm f8€P, the upper bound (log m) for the approx-
imation ratio of the greedy algorithm f&CP is directly translated to Algorithm 1.

For proving that Algorithm 1 has an approximation ratia&flog m), we use con-
clusions made foBCP. Feige showed in [3], that there is o> 0 such that an ap-
proximation algorithm can solv8CP with approximation ratio/1 — ¢) Inm, unless
NP C TIME(mCUoglee™)) With our transformation fronSCP to MOSS, Feige'’s
lower bound forSCP yields to a lower bound of2(log 2m) = §2(logm) for MOSS.
This is due to the fact that in the transformation fr&@P to MOSS the sizem of the
setS is transformed into the seY of size2m. Assuming, that there is a polynomial
approximation algorithm foMOSS with an approximation ratio of(logm), we get a
contradiction to Feige’s results, because we can transéachSCP instance in poly-
nomial time into aMOSS instance withX of size2m and solveSCP via theo(log m)
algorithm forMOSS.

The worst-case running time of Algorithm 1G5 k-m?) = O(n): The computation
of the complementary relations during initialization neéicneO(k - m?) and the total
runtime—amortized over alD(m?) loop cycles—isO(k - m?) for the update of the
=%"s, and=¢ NFE respectively, together with the computationfafFurthermore, each



Algorithm 1 A greedy algorithm foMOSS

Init:
E:==<%where<% := (X x X)\ <#
I:=0
while E # () do
choose ani € ({1,...,k} \ I) such that <& NE|is maximal
E:=E\={
I:=T1U{i}
end while

of theO(m?) steps of the while loop costs additionally tifk) for the calculation of
the maximum and the update bf O

3.3 An Exact Algorithm

In this section, we present an exact algorithm for @SS problem, the running time
of which is polynomial in the size ok but exponential in the number of objectives. In
order to solve thé&/0SS problem exactly it is in general not sufficient to take infarm
tion about conflicts between pairs of objectives into actddxample 1 shows a simple
instance with three objectives. Even though all pairs oéctije functions are strongly
conflicting according to Def. 2, the whole set of objectivesedundant, i.e.f; can
be omitted. Almost the same situation emerges, if we wanblicesheMOSS problem
with the help of information about conflicts between pairsets with larger but con-
stant size. The observation that there is no possibilityfoorrect predication whether
a set of objectives is redundant, by observing only relatioetween objective subsets
of constant size, can be likewise derived from tkié>-hardness of th&OSS prob-
lem. Thus, we are forced to examine the type of conflict betvadiepossible objective
subsets if we want to solve tiMOSS problem exactly.

Algorithm 2 examines all possible objective subset p&irsF, € P(F)’ in com-
bination with all solution pairsc,y € X separately by calculating the s§f, of all
minimal objective subsets w. r.E explaining the relation betweenandy w.r.t. <z.
The setS of objective subsets always contains all minimal subsesohgions for the
MOSS problem restricted to the solution pairs considered sosf@s.updated whenever
a new solution pair is observed. To simplify the notation, wge the symboll for a
union of two setsSy, Se C P(F) containing themselves objective subseis.l Sy
contains the pairwise uniosy U s, of setss; € S; ands, € Sy only if there is no
subset ofs; U sy in S; U Ss:

S U Sy :Z{SlUSQ\Sl651/\82ESQ/\(ﬂpl651,p2652:p1Up2C81U82)}

When all solution pairs are processéticontains all minimal objective subsets w.r.t.
F from which Algorithm 2 chooses a minimum one as an exact gwidor the MOSS
problem.

" With P(F) we denote the power set &F := {f1, ..., fr}.



Algorithm 2 An exact algorithm foMOSS

Init:
S:=0

for each pairx,y € X of solutionsdo
Se={{i}|ie{l,...,k}Ax =y Ay Ai x}
Sy ={{i}|ie{l,...k} ANy ixAx Ay}
Szy 1= Sz U Sy
if Szy = 0then Sy, :={1,...,k}
S =SSy

end for

Output:
smallest setmin in S

Theorem 5. Algorithm 2 solves th&0SS problem exactly in imé&(m? - k - 2%).

Proof: For a correctness proof, we have to ensure that Algorithnmioces the sets in
Szy correctly. Then, the invariant, thatcontains all minimal sets of objectives which
explain the relationships between all considered pairohftions, is always correct.
The sets are always minimal, because we delete all supeisttg theS := S U S,
command. For the first pait, y of solutions,S = S,, is computed correctly and the
invariant holds as a result of induction. We now distingusitween the three possible
relationships between solution pairs and show for eachthgteur algorithm computes
Szy correctly. (i) In the case of an indifferent solution pair~ y, i..e.,Vf; € F :
fi(x) = fi(y), bothS, andsS, are empty sets, yielding 16, = {1,...,k}. Because
indifferent vectorsx, y have the same objective vector, each single objectivis a
possible minimal set which explain the indifference. (fie consider comparable
solutions, without loss of generality < y A = (x ~y), i.e,Vf € F : f(x) <
fly) N3f e F: f'(x) < f'(y), Algorithm 2 computesS, = () and therefore
Szy = Sz. S, contains by definition only single objectivgs, wheref;(x) < fi(y).
Thus,S,,, contains all objective sets, which explain the relatiopshix z yA—(x ~ y)
w.r.t. <z. (iii) For an incomparable solution pait|y, no f; € F will be both in S,
and inS,. Thus,S,, contains only sets of objectives, j} with cardinality 2 which
matches the minimal size 6f,, if x|y and for whichf;(x) < f;(y) A f;(x) > f;(y).

The computation of5,, and S, can be done in tim& (k) and the calculation of
S,y 1s possible in timeO(k?), as S,, contains only|S,,| < [S.| - |S,] < k? sets.
Since we know tha$ is a subset oP({1,...,k}), S contains at mos?* sets each of
sizeO(k). Hence, the computation &f U S, needs timeD(k - 2¥). Due to the fact
that Algorithm 2 computes the sets for each pair of individuée whole running time
results inO(m? - k - 2F). O

As the last aspect of our theoretical analysis, we presemsaance foMOSS, for
which the exact algorithm needs tinfigm? - 2+/3).

Theorem 6. The worst-case running time of Algorithm 2 for tMOSS problem is
2(m? - 2F/3),

Proof: Fig. 4 shows the idea of an instanéefor which Algorithm 2 needs time
2(m? - 2%/3). Let us assume thdtconsists of an even number of solutionsX :=



{x1,...,%xm,} together with the relatiorx » andk = 3/2 - m relations=; correspond-
ing to the objective functiong™ := {fi,..., f3/2.,,} where only the solutiong,; ;
andxo; for 1 < ¢ < m/2 are incomparable. The incomparability of such pairs is only
caused by theiBith, (3i + 1)th, and(3: + 2)th objective values, i.e., we need either
the objective pairfs;_o, f3;_1 or the pairf3;_1, f3; to describe the incomparability,
cf. Fig. 4. Thus, whenever Algorithm 2 considers a new pair 1, x2; of incompa-
rable solutions, the size of the s&treduplicates. Because we hawg/2 = k/3 of
those incomparable pairs,is of size2*/? after the algorithm considered all of thg3
incomparable pairs. This is possible after the firét of altogether(”; ) steps of the al-
gorithm, which results in a running time of at le@ét) — k/3) - 2%/% = 2(m? - 2+/3).

In addition, this restricted example can be easily externdéelde casen > k. O

A objective values

Xm—1

—+ e . Xm
———t————+—F—H————
fi f2  f3 f3i—2f3i—1f3;

fm—2fm—1 fm objectives

Fig. 4. The parallel coordinates plot of an instance for which the exact algoniteeds time
Q2(m? - 2%/3).

4 Experiments

The following experiments serve two goals: (i) to investigthe size of a minimum
objective subset depending on the size of the search spddb@mumber of original
objective functions, and (ii) to compare the approximasine the exact algorithm with
respect to the size of the generated objective subsets ancbthesponding running
times. Both issues have been considered both for a randdbtepraand the multiob-
jective 0/1-knapsack problem.

4.1 Random Problem

In a first experiment we generated the objective values fet afssolutionsX at ran-
dom where the objective values were chosen uniformly dhsted in[0,1] C R. For
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Fig. 5. Random model: The size of a minimum subset plotted against the numblejeatives in
the problem formulation.

each combination of search space $¥éand number of objectives 100 independent
random samples were considered. The results for Algoritrarezshown in Figure 5.
For different sizes of the search space, the nunihgr of objectives in a minimum
objective subset is plotted against the numberf objectives used in the problem for-
mulation. Two main observations can be made. First, thermim number of objectives
decreases the more objectives are involved as the fraktign' k decreases with rising
numberk of objectives in the problem formulation. Second, the latbe search space
the more objectives are in a minimum objective set. Althotlgdre is no possibility
to determine the course of the curves for arbitrary largebermh of objectives with
experiments, the question hawy,;, will behave withk increasing to infinity, arises. We
expectklim kmin = 2 because the probability that an existing objective paiucsche

intersectico)on of which fits the preorder 66, increases with highek.

Concerning the comparison of the two algorithms, Fig. 6 akv¢hat the greedy
algorithm yields similar sizes of the computed sets in camspa to the exact algorithm
but is much faster than the latter. Already for a small seapate of 32 solutions, the
exact algorithm is only usable fdr smaller than 15, whereas the running time of the
greedy algorithm is competitive even for 50 objectives.

4.2 Knapsack Problem

We did further experiments on the 0/1-knapsack problem yii8j 10 items, the im-
plementation was taken from the PISA package [1]. Insteagkamining the whole



numberk of objectives

in problem formulation
exact algorithm:

5|10 | 15 20 25 30

size of computed objective subset4 5 8 13 16 13
greedy algorithm:
size of computed objective subset4 5 8 13 16 14

exact algorithm:

running time in milliseconds
greedy algorithm

running time in milliseconds

196(2,27187,11390,524~ 2.5 - 10°|~ 15 - 10°

47/ 46 67 88 78 87

Table 1. The number of objectives in the computed subsets and the runtimesdppesximation
of the Pareto Front, generated with SPEA2 after 1000 generations fomaipsack problem. The
running times correspond to experiments on a linux computer (SunFseWth 3060 Mhz).

search space as in the random example, we generated an iapgiior of the Pareto
set with a multiobjective evolutionary algorithm, nameREA2 [12] with the standard
settings (population size = 50, offspring population size. = 50, X = {0,1}1°,
1000 generations). Both the exact and the approximatiarigthgn were applied to the
generated Pareto set approximation. In addition, we recbtite running times of both
algorithms. Table 1 shows the results for different sizethefobjective space.

The experiments show that the omission of objectives witlh@formation loss is
possible even for a structured problem as the 0/1-knapsaiigm. In comparison to
the exact algorithm, the greedy algorithm shows nearly dmeesoutput quality for the
used knapsack instances regarding the size of the compbjective set but is much
faster. Due to the sizes of the computed subsets which arelahaaur experiments—
less than one objective away from the optimum, the greedyritthgn seems to be ap-
plicable for more complex problems, particularly by virfats small running time.

5 Discussion

This paper has investigated the minimum objective subgssilgm (MOSS) that asks
which objective functions are essential for a given mujgckive optimization prob-
lem. To this end, we have introduced a general notion of asaflietween objective
sets and showed that the answer to the above question caraljjenet be deduced
from the information about conflicts between single objexgior objective sets of a
predefined limited size. The latter observation motivathg MOSS turns out to be NP-
hard. Furthermore, we have proposed an exact algorithidd86, the running time of
which is polynomial in the sizen of the decision space but exponential in the number
of objectives, and a polynomial greedy algorithm with animopt approximation ratio

of ©(logm).

From a practical point of view, the present study providesst §itep towards di-
mensionality reduction of the objective space in multipiéecia optimization scenar-
ios. The proposed algorithms can be particularly usefuhtdyeze Pareto sets or Pareto
set approximations generated by exact resp. heuristicls@aocedures, but it is clear
that an analysis of the entire search space is infeasibladst problems. Therefore, an
important issue is the conflict analysis if only partial inf@tion about the search space



is available as, e. g., during the optimization processtheamore, the experimental re-
sults for random objective functions as well as for the kaaggproblem have revealed
that a high percentage of objective can be omitted, espeifitie number of objectives
is high (10 or more). However, one may also be interested in a substaadaction of
the objective set in the case of few objectives; here, a neathiDSS problem where
the search space order needs to be preserved only partialiwe of high practical
relevance.
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running times over 100 runs on a linux computer (SunFireV60x with 308@)Vare shown.
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A Proofs of NP-hardness

Here, we additionally provide the proofs omitted in Sec. 3.
Theorem 3. The problenMOSS is NP-hard.

Proof: First, we denote the input size MOSS by n, wheren = O(k - m?) with m :=
| X|. We refer to Fig. 3 for a visualization of the ideas behindTheng transformation
SCP<y MOSS, which we recapitulate first.

Starting from theSCP instance consisting of the sét = {s1,...,s,,} and the
subsetx”; with 1 < 7 < k, all relations=; as well as<r in the MOSS instance are
defined on the basic séf := {x1,...,xm,X],...,x},}. The relation<x will be the
reflexive closure of the antichain oX, i.e., <+ only contains the elements;, x;)
and (x;-,x;-) for 1 < j < m. The relations<; with 1 < ¢ < k are all constructed in
the same way. They include the linear orfler, x/, x2,x5, ..., X, x,.] as well as the
reflexive relations. Additionally, relatior; contains the elememk;,xj) iff s; & C;.

In addition, we have to compute another relation,; which is the reverse linear order
(X)) Xm, X1, Xim—1, - - - , X1, X1]. After this transformation, we question olMOSS
oracle once. The resulting indéxcp for the SCP problem will be thenscp := Ioracle\
{k + 1} if the oracle producefacie @s its output.

It remains to show that the transformation yields to an exégbrithm for SCP
with polynomial running time, under the assumption thatéhie an exact polynomial
time algorithmA for MOSS. Let us assume th&t = {s1,...,sm},C1,...,C}) is the
SCP instance with”; = {c1,...,¢|¢,|} € S. Via the described transformation and the
hypothetical algorithmd, we can compute the indexcp := 14\ {k + 1} as the output
corresponding to th&CP instanceS. Obviously, the computation dfscp is possible
in polynomial time using a polynomial algorithm f&OSS. To complete the proof, we
still have to show (i) why always + 1 € I4, (i) why T4 \ {k + 1} is a correct output
for our SCP instance, and (iii) why the computed indéx \ {k + 1} is minimum.

First, we will take a look at the question (i) why alwayst 1 € I, for an exact
MOSS algorithm A, i. e., why =<y, is always needed to yield » as the intersection of
some=;. Because i<z no pairx,y € X with x # y is comparable, for each pair
x,y € X, x #y, there has to be at least ohe 14 wherex A; y and at least ong €
I4 with y #; x. Considering a paix, y, for all <; withi € {1,...,k} x <; y holds.
By construction, onlyx Ax11 y. Consequently=;. is always needed, to construct
= as the intersection of singte;’s. Now we show (ii) whyl := I4\{k+1} is always
a correct output for the give8CP instance. As we have seen befoket+ 1 € 14 and
therefore, the intersection of the;’s does not contain any pai(s,,x,) and(x,,, x},)
with 1 < v < pu < m and no pairgx,,x;,) with 1 < v < m. The construction of the
relations=; with i € {1,...,k} results in the absence of pafs,,x,) and(x;,,x;,)
with 1 < p < v < m in the intersection if there will be at least onez 1,4 with
1 < i < k. There only remains the possibility of paifg/,x,) with1 < v < m
in the intersection. To avoid this, for eache {1,...,m} there must be at least one
ie{l,...,k}in I, withx] #A; x,.By construction of the Turing transformation, this
can only occur, it:, € C;. Thus,U,cr,\ 5413 Ci = {1,...,m} = S. Last, we have to
show (iii) why the computed indek, \ {k + 1} is a minimum index folSCP. Assume



thatZ \ {k + 1} is not a minimum index foBCP, i. e., there is a smaller indekwith
|J| < [I] and{J,c, C; = S. As one can easily see from the above transformation,
J U {k + 1} would be a smaller index favi0SS thani 4. O

Theorem 7. TheMOSS problem is Turing reducable t8CP.

Proof: Given an instance foMOSS, consisting of the relationsC X x X and
=,C X x X with (), ,, 2i==z, a polynomial time algorithmd can compute an
SCP instance as follows. The sétin the SCP instance contains one element, for
each(x,y) ¢=r. A subsetC; of S in the SCP instance contains an element,, iff

- (x <; y). The algorithmA can then use a hypothetical polynomial time bounded
exact algorithm folSCP, to compute the index as an output for th&OSS problem.

The indexI, computed by theSCP algorithm, is always a correct output for the
MOSS problem. To see that, we shoit < i < k: C; C S, first. Lets, , € C; for any
x,y € X and anyl < i < k. By definition,— (x <; y), i.e.,~(fi(x) < fi(y)) <
fi(x) > fi(y) holds. But then-(x <r y), thus,s,.,, € S by definition.

Now, we are able to show thétis always a correct output for tHdOSS problem.
We only have to use the rules of deMorgan and the fact ¢hatt S holds for all
1 <i<k.

UCi=S«=Vs,yeS:3iel:s,,eC
el
= VxyeX:[(Fel:s,,€Ci) e sz, €S|
=V yeX: [(Fel:~(x=y)) e (x=ry)
— Vx,y € X : [(Elielzxj?y)(:)xjgy]
= J 0=xF= N =zi==#
el el

By construction, it is clear that a minimuiis always a minimum index faviosSS. [

B Relations between the different definitions of conflict

Before we present the relations between the different queaaf conflict, mentioned
in Sec. 1, we restate the definitions of conflict accordinghtoriotation in Sec. 2 and
prove a lemma we use later.

Definition 7 (Conflict by Deb [2]) A multiobjective optimization proble(X, Z, f, rel)
contains conflicting objectives if and only if there are teaoffs, i. e., the partially or-
dered set f(X), rel) has no unique minimal element.

Definition 8 (Conflict by Tan et al. [8]) A setF of objective functions is said to be
nonconflicting according to the weak dominance relatiog® if and only if there are
no incomparable solution pairs, i.&/x,y € X : x 2z yVy <r Xx.

8 Instead of=, the dominance relatior is used in the original definition in [8].



Definition 9 (Conflict by Purshouse and Fleming [6]) Two objectivesf; and f; are
conflicting if there exists at least one solution pairy € X with f;(x) < f;(y) A
fi(x) > fi(y). If fi(x) < fi(y) A f;(x) > f;(y) holds for all pairs, f; and f; are
totally conflicting. There is no conflict betwegnand f; if no such pairx, y exist.

Lemma 1. For any set of objective$, there is no subset’ C F which is strongly
conflicting withF according to Def. 2.

Proof: With Theorem 1 it is clear thaft), ., , =<;==7 and thereforer 7" C F :
(x,y) €=# holds for all(x, y) €=x. For this reason it is impossible that

=FD2p &= =rpl=p = FUF,

i.e., 7’ cannot strongly conflicting wittF according to Def. 2. O

B.1 The relation to Deb’s definition of conflict [2]

Theorem 8. If a multiobjective optimization problertX, Z, f = (f1,..., fx), <)
contains conflicting objectives according to Def. 7 it is gibke that there is an ob-
jective setF” C F :={f1,..., fr} which is nonconflicting or weakly conflicting with
F but noF’ which is strongly conflicting wittF. The same holds if the optimization
problem contains no conflicts according to Def. 7

Proof: Due to the fact that Def. 7 defines a conflict globally and ordpehding on
the small set of minimal elements of the dominance relatibare is only weak re-
lation between Def. 7 and our definition of conflict in Def. 2v& a multiobjective
optimization problem(X, Z, f := (f1, ..., fx), <) with F := {f1, ..., fr}, we know
from Lemma 1 that there is nd’ C F which is strongly conflicting withF. Fig. 7

shows for the case of a conflicting problem (a) and for a nofticting problem (b) that
subsets?’ C F can be either nonconflicting or weakly conflicting with O

Theorem 9. If all subsetsF’ C F are nonconflicting withF w.r.t. Def. 2,F contains
no conflicting objectives according to Def. 7.

Proof: If all subsets?” C F := {fi,..., fx} of a multiobjective optimization prob-
lem(X,Z, f = (f1,.-., fx), <) are nonconflicting with¥ according to Def. 2f(X)
cannot contain incomparable solutions w.r#.. Otherwise the relations:; corre-
sponding to single objective functions cannot be noncdirfticwith < =, because the
=<;'s are always total preorders, i. e., all solution pairs amjparable w.r.t. eack;.

B.2 The relation to the conflict definitions of Tan, Khor, and Lee [8]
Theorem 10. If a setF of objective functions is not conflicting according to Deft 8

is possible that a subsgt’ C F is nonconflicting with7 or weakly conflicting withF
according to Def. 2.



(@) (b)

Fig. 7. Parallel coordinates plots of two multiobjective optimization problems with thbgec-
tivesF := {f1, f2, fs} which contain (a) a conflict and (b) no conflict according to Def. 7. The
multiobjective optimization problem in (a) contains only two solutions and theleno in (b)
three, where the dotted solution is the unique minimal element.ef Independant of Def. 7,
there are subset&’, 7 C F which are both weakly conflicting wittF (' := {fi}) and
nonconflicting withF (F” := {fi1, f2}).

A values

IS
IS
o
IS
o
o
IS
o

~ ‘ b
C
® - e
C C C
I —
fi P =F =1 =2 =0
(a) (b)

Fig. 8. (a) Parallel coordinates plot for an example with three solutiofsolid line),b (dashed),
andc (dotted) and two objectiveg := {f1, f2} with no conflict according to Def. 8 f1} is
nonconflicting with7 whereas{ f-} is weakly conflicting with7. (b) shows the corresponding
relation graphs of the involved relatior® C F.



Proof: Starting from a sef of objective functions which is not conflicting according
to Def. 8, conclusions about the type of conflict (weak conéiicno conflict) between
subsets ofF” C F andF itself are impossible. Fig. 8 shows that for an objective/Set
it is possible to have both a subs€t C F which is nonconflicting with” and a subset
F" C F which is weakly conflicting withF. O

Theorem 11. If all subsets?’ C F are nonconflicting witt#F according to Def. 2’
is nonconflicting according to Def. 8.

Proof: Given a multiobjective optimization probletX, Z, f := (f1,..., fx), <)
where all subsets” C F := {f;..., fx} are nonconflicting with7 acoording to
Def. 2. Then, there cannot be incomparable solutiong € X with respect to<r,
i.e., F is nonconflicting according to Def. 8 as at least one{ge} will be strongly
conflicting with 7, because two solutionsandy are always comparable with respect
to each=; and(), ., Si==~r. O

B.3 The relation to the definitions of conflict by Purshouse ad Fleming [6]

Theorem 12. Between the two objectivgsand f; is no conflict according to Def. 9 if
and only if f; and f; are nonconflicting according to Def. 2

Proof: Let there be no conflict between the two objectivesand f; according to
Def. 9, i.e.,

Axy € X : (filx) < fily)) A(f5(x) > f;
—= Vxy € X [(fi(x) < fily) A fi(x) <
V (fi(x) = fiy) A f3(x) = f;(y))]
= VY eEX (X[ yAXZ YY)V (Y i xAY =5 X)]
= Vx,y e X :[(x,y) €Xi & (x,y) €=5]
— 2=y,
which is the same thaf and f; are nonconflicting according to Def. 2. O

Theorem 13. Two objectives; and f; are in conflict according to Def. 9 if and only if
fi and f; are either strongly conflicting or weakly conflicting accioglto Def. 2.

Proof: By definition, f; and f; are in conflict according to Def. 9 if and only if

dz,y € X2 [fix) < fy A fi (@) > f3(y)]
= ~(Bry e X [filz) < fi A fi(e) > ;)]

which is, by Theorem 12, the same as
- (f; and f; are nonconflicting according to Def) 2

Because the different kinds of conflict in Def. 2 are disjpthts is the same af and
f; are either weakly conflicting or strongly conflicting. d



