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Abstract. A common approach in multiobjective optimization is to perform
the decision making process after the search process: first, a searchheuristic
approximates the set of Pareto-optimal solutions, and then the decision maker
chooses an appropriate trade-off solution from the resulting approximation set.
Both processes are strongly affected by the number of optimization criteria. The
more objectives are involved the more complex is the optimization problem and
the choice for the decision maker. In this context, the question arises whether
all objectives are actually necessary and whether some of the objectives may be
omitted; this question in turn is closely linked to the fundamental issue of con-
flicting and non-conflicting optimization criteria. Besides a general definitionof
conflicts between objective sets, we here introduce the problem of computing a
minimum subset of objectives without losing information (MOSS) and showthat
this is anNP-hard problem. Furthermore, we present for MOSS both an ap-
proximation algorithm with optimum approximation ratio and an exact algorithm
which works well for small input instances. The paper concludes with experi-
mental results for random sets and the multiobjective 0/1-knapsack problem.

1 Motivation

With the availability of sufficient computing resources, generating methods for identify-
ing or approximating the set of Pareto-optimal solutions have become increasingly pop-
ular for tackling multiobjective optimization problems. The advantage of these meth-
ods is that the decision making process is postponed after the optimization process: the
decision maker can choose an appropriate trade-off solution from a set of alternative
solutions generated by the corresponding search algorithm. However, the complexity of
both processes is strongly affected by the number of objectives involved. On the one
hand, the running time of generating methods may be exponential in the number of
objectives as, e. g., for algorithms based on the hypervolume indicator [14, 5, 10], and
on the other hand comparing even only a few alternative solutions may become diffi-
cult or infeasible for a human decision maker, if too many objectives are considered
simultaneously. In the light of this discussion, the question arises whether it is possible



to omit some of the objectives without changing the characteristics of the underlying
problem. Furthermore, one may ask under which conditions such an objective reduction
is feasible and how a minimum set of objectives can be computed.

These questions have gained only little attention in the literature so far. There are
closely related research topics such as principal component analysis [4] and dimension
theory [9], which have a different focus though. Transferred to the multiobjective op-
timization setting, the corresponding methods aim at determining a (minimum) set of
arbitrary objective functions that preserves (most of) the problem characteristics; how-
ever, here we are interested in determining a minimum subsetof original objectives
that maintains the order on the search space. Furthermore, there a few studies that in-
vestigate the relationships between objectives in terms ofconflicting and nonconflicting
optimization criteria. Deb [2] defines a set of objectives asconflicting, if there exists one
solution that simultaneously achieves for each criterion the optimal value; otherwise the
set is nonconflicting. Tan, Khor, and Lee [8] presented a refinement of this definition
where a conflict denotes the existence of incomparable1 solutions in the search space.
A similar notion of conflict has been suggested by Purshouse and Fleming [6] who con-
sider conflict as a binary relation between single objectives. However, these definitions
are not sufficient to indicate whether objectives can be omitted or not as the following
example demonstrates; although all objectives are conflicting according to [2, 6, 8], one
of the three objectives can be removed while preserving the search space order.

Example 1 Fig. 1 shows the parallel coordinates plot, cf. [6], of threesolutionsx1

(solid line),x2 (dotted) andx3 (dashed) that are pairwise incomparable.
Assuming thatx1,x2,x3 represent the en-
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Fig. 1. Parallel coordinates plot for three solu-
tions and three objectivesf1, f2, f3.

tire search space, the original objective
set{f1, f2, f3} is conflicting according to
[2, 8] and all objective pairs “exhibit evi-
dence of conflict” as defined in [6]. Never-
theless, the objective set{f1, f2, f3} con-
tains redundant information: the objective
f2 can be omitted, and all solutions re-
main incomparable to each other with re-
gard to the objective set{f1, f3}.

This paper addresses two open issues: (i) deriving general conditions under which
certain objectives may omitted and (ii) computing a minimumsubset of objectives
needed to preserve the problem structure. In particular, we

– propose a generalized notion of objective conflicts which comprises the definitions
of Deb [2], Tan et al. [8], and Purshouse and Fleming [6],

– specify on this basis a necessary and sufficient condition under which objectives
can be omitted,

– introduce the problem of minimum objective subsets (MOSS),
– show thatMOSS is NP-hard,
– provide an approximation algorithm with optimum approximation ratio as well as

an exact algorithm which has polynomial runtime in the decision space size, and
1 Two solutions are incomparable iff either is better than the other one in some objectives.



– validate our approach on both random problems and the 0/1-knapsack problem by
comparing the algorithms and investigating the influence ofthe number of objec-
tives and the search space size.

In addition, extensions of the proposed approach will be discussed in the last section.

2 A Notion of Objective Conflicts

2.1 The Relation Between Objectives and Orders

A general optimization problem can be considered as a quadruple (X,Z, f, rel) where
X denotes the search space or decision space,Z represents the objective space,f :
X → Z is a function that assigns to each solution or decision vector x ∈ X a corre-
sponding objective vectorz = f(x) ∈ Z, andrel ⊆ Z × Z represents a partial order2

over Z. The goal is to find a solutionx∗ ∈ X that is mapped to a minimal element3

z
∗ = f(x∗) of f(X) := {z ∈ Z|∃x ∈ X : z = f(x)} regarding the partially ordered

set(Z, rel).
In the scenario considered in this paper,f consists of one or several objective func-

tionsf1, f2, . . . , fk that are all to be minimized wheref = (f1, . . . , fk), fi : X → R

for 1 ≤ i ≤ k, andZ = R
k. Furthermore, we assume thatrel is the relation≤ on

real vectors withz ≤ z
′ :⇐⇒ ∀1 ≤ i ≤ k : zi ≤ z′i which induces a corresponding

preorder� onX with x1 � x2 :⇐⇒ f(x1) ≤ f(x2). The relation� is also known as
weak Pareto dominance, and we sayx1 weakly dominatesx2 wheneverx1 � x2; other
dominance relations such as epsilon dominance, cf. [14], could be taken as well, and the
following discussions applies to any preorder onX that is defined by a corresponding
partial order onRk. The minimal elements off(X) with respect to(Rk,≤) form the
so-called Pareto front, and solutions that are mapped to elements of the Pareto front are
denoted as Pareto-optimal and constitute the Pareto set. Ifthere exist two incomparable
Pareto-optimal solutionsx1,x2, i. e., neither weakly dominates the other one (x1||x2),
then the cardinality of the Pareto front is greater than1. If two solutionsx1,x2 are in-
different, i. e., they are mapped to the same objective vector (x1 ∼ x2), then the relation
� is only a preorder, but not a partial order onX. However, we can define a partial order
- on the setX/∼ of equivalence classes regarding(X,∼) as follows:

∀[p], [q] ∈ X/∼: [p] - [q] :⇐⇒ p � q ∧ p 6∼ q.

The remainder of this paper addresses the issue of finding a minimum subset of the
objectives that induces the same preorder on the decision space as the complete set of
objectives. To this end, we here introduce a generalizationof the weak Pareto domi-
nance relation defined above: a decision vectorx1 ∈ X weakly dominates a decision
vectorx2 ∈ X w. r. t. the setF ⊆ {f1, f2, . . . , fk} of objective functions (written as

2 A relationrel is called a preorder iff it is reflexive and transitive; a preorder that is antisym-
metric is denoted as partial order. We call a partial order total order or linear order if it is total;
a preorder that is total is called total preorder.

3 Given a partial ordered set(Z, rel), an elementz∗ ∈ Z′ with Z′ ⊆ Z is called minimal
element ofZ′ iff for all z ∈ Z′ holds:z rel z∗ ⇒ z = z

∗.



x1 �F x2) iff ∀f ∈ F : f(x1) ≤ f(x2). We will write �i if we mean the weak
dominance relation w. r. t.F = {fi}; in addition, we define�∅:= X × X for the case
thatF is empty. The following theorem shows that for any objectivefunction set the
generalized weak Pareto dominance relation can be derived from the objective-wise less
than or equal relation onR.

Theorem 1. LetF = {f1, . . . , fk} be a set ofk different objective functions. Then it
holds:

�F =
⋂

1≤i≤k

�i

Proof: For allx, y ∈ X:

(x, y) ∈�F ⇐⇒ x � y w. r. t.F ⇐⇒ ∀i ∈ {1, . . . , k} : fi(x) ≤ fi(y)

⇐⇒ ∀i ∈ {1, . . . , k} : x � y w. r. t. fi

⇐⇒ ∀i ∈ {1, . . . , k} : (x, y) ∈�i

Note that the above equivalence also holds for the strict dominance relation and the
multiplicative ε-dominance relation, cf. [14], but does not apply to the regular Pareto
dominance relation≺ defined asx1 ≺ x2 :⇐⇒ x1 � x2 ∧ ¬(x2 � x1). �

Finally, we will use a graphical notation for relations, called relation graphs. Given
a certain ordered set(Z, rel), the relation graph for(Z, rel) has a vertex per element in
Z and a directed edge between the verticesz andz′ only if z rel z′. For a partial ordered
set, the relation graph can be reduced to a Hasse diagram, with an edge between vertices
z andz

′ iff z is a lower cover4 of z′. The relation graph is only another description of a
relation but helps us to visualize our ideas.

Example 2 Let (X := {A,B,C,D,E}, R2, f = (f1, f2),≤) be a multiobjective op-
timization problem wheref is specified by the objective values in the following table.
Fig. 2 shows the relation graph of(X,�{f1,f2}) and the relation graph and Hasse dia-
gram for(f(X),≤).

x A B C D E

f1(x) 1 2 3 4 4
f2(x) 2 1 4 5 5

The solutionsA andB are the minimal elements of(X,�{f1,f2}), i. e., the Pareto set,
whereasf(A) and f(B) form the Pareto front, i. e., they are the minimal elements of
f(X) with respect to(R2,≤). A andB are the only incomparable andD andE the
only indifferent decision vectors according to the relation�{f1,f2}.

2.2 Partial Orders on Sets of Objectives

In this section, we introduce a general concept of conflicts between sets of objectives.
On the basis of the following definitions, two algorithms to exactly resp. approximately
compute a minimum set of objectives, which induces the same preorder onX as the
whole set of objectives, will be proposed in Sec. 3.

4 We sayz is a lower cover ofz′ iff ∀z∗ ∈ Z : z rel z∗ ∧ z
∗ rel z′ ⇒ z

∗ = z ∨ z
∗ = z

′.
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Fig. 2. (a) Relation graph of(X,�{f1,f2}), (b) relation graph of(f(X),≤), and (c) Hasse dia-
gram of(f(X),≤) from Example 2.

Definition 1 LetF1,F2 ⊆ F be two sets of objectives. ThenF1 ⊑ F2 :⇔�F1
⊆�F2

.

Definition 2 LetF1,F2 ⊆ F be two sets of objectives. We call

– F1 nonconflictingwith F2 iff F1 ⊑ F2 ∧ F2 ⊑ F1

– F1 weakly conflictingwithF2 iff (F1 ⊑ F2 ∧ F2 6⊑ F1)∨ (F2 ⊑ F1 ∧ F1 6⊑ F2)
– F1 strongly conflictingwith F2 iff F1 6⊑ F2 ∧ F2 6⊑ F1

By definition,⊑ is a preorder since⊆ is a preorder. Two sets of objectivesF1,F2 are
called nonconflicting if and only if the corresponding relations�F1

and�F2
are iden-

tical but not necessarilyF1 = F2; in other words,F1 andF2 are indifferent w. r. t.
⊑. If F1 ⊂ F2 andF1 is nonconflicting withF2 we can simply omit all objectives in
F2 \ F1 without influencing the preorder onX. Furthermore, the term “strongly con-
flicting” corresponds to incomparability w. r. t.⊑, while “weakly conflicting” means
neither indifferent nor incomparable w. r. t.⊑. These two types of conflicts are mutu-
ally exclusive which is useful in the context of the following result.

Theorem 2. Let F be a set of objectives. Then⊑ is a total preorder onP(F) if and
only if there are no strongly conflicting pairsF1,F2 ∈ P(F).

Proof: By definition, it is clear that⊑ is always reflexive and transitive. Assume that
there are no strongly conflicting pairsF1,F2 ∈ P(F), i. e.

6 ∃F1,F2 ∈ P(F) : F1 6⊑ F2 ∧ F2 6⊑ F1

⇐⇒ ∀F1,F2 ∈ P(F) : F1 ⊑ F2 ∨ F2 ⊑ F1 ⇐⇒ ⊑ is total

Thus,⊑ is total iff there are no strongly conflicting pairs of objective sets. �

Note that the above formulation of conflicting objectives can be regarded as a gen-
eralization of Purshouse and Fleming’s definition [6] whichonly considers pairs of
objectives; moreover, it also comprises the notions by Deb [2] and Tan et al. [8]. For a
more detailed discussion of the connection to previous definitions of objective conflicts,
we refer to the appendix.



2.3 Minimal, Minimum, and Redundant Objective Sets

Based on the above conflict relations, we will now formalize the notion of redundant
objective sets.

Definition 3 LetF be a set of objectives. An objective setF ′ ⊆ F is denoted as

– minimal w. r. t. F iff (i) F ′ is nonconflicting withF , and (ii) there exists noF ′′ ⊂
F ′ that is nonconflicting withF ;

– minimum w. r. t. F iff (i) F ′ is minimal w. r. t. F , and (ii) there exists noF ′′ ⊂ F
with |F ′′| < |F ′| that is minimal w. r. t.F .

A minimal objective set is a subset of the original objectives that cannot be further re-
duced without changing the associated preorder. A minimum objective set is the small-
est possible set of original objectives that preserves the original order on the search
space. By definition, every minimum objective set is minimal, but not all minimal sets
are at the same time minimum.

Definition 4 A setF of objectives is calledredundantif and only if there existsF ′ ⊂ F
that is minimal w. r. t.F .

This definition of redundancy represents a necessary and sufficient condition for the
omission of objectives.

3 The Minimum Objective Subset Problem

Given a multiobjective optimization problem with the setF of objectives, the ques-
tion arises whether objectives can be omitted without changing the order on the search
space. If an objective subsetF ′ ⊆ F can be computed andx �F ′ y holds for all so-
lutionsx,y ∈ X if and only if x �F y, we can omit all objectives inF \ F ′ while
preserving the preorder onX. Concerning the last section, we are interested in identi-
fying a minimum objective subset with respect toF , yielding a slighter representation
of the same multiobjective optimization problem. Formally, this problem can be stated
as follows.

Definition 5 The search problemMINIMUM OBJECTIVE SUBSET (MOSS) is de-
fined as follows.

Given: A multiobjective optimization problem(X,Z,F = {f1, . . . , fk},≤)

Instance: The setX of solutions, the generalized weak Pareto dominance relation
�F and for all objective functionsfi ∈ F the single relations�i where
⋂

1≤i≤k �i =�F .

Task: Compute an indexI ⊆ {1, . . . , k} of minimum size with
⋂

i∈I �i =�F .

Note that the limitation of the instances to the whole searchspace description is not
essential here. One can think of situations where the underlying set is the Pareto set or an
approximation of it. The restriction to the partial order≤ and its corresponding preorder
�F is not essential as well, but instead of any partially ordered set(Z, rel) we consider



only (Rn,≤) here. Note that we are not interested in a minimal objective subset but
in a minimum objective set w. r. t. the set of all objectives. The approach of finding a
minimum objective subset is related to dimension theory [9]. Given a partial orderrel,
the dimension ofrel is defined as the minimum number of linear extensions5 of rel, the
intersection of which isrel. A set of linear extensions the intersection of which isrel is
called a realizer forrel. The main difference between the computation of the dimension
of a partial order and our approach of finding the size of a minimum objective subset
w. r. t. the set of all objectives is the fact, that the corresponding realizer contains linear
extensions which do not bear relation to the relations�i. Instead in a realizer for the
partial order-, we are interested in a set of given relations�i the intersection of which
is�F . For simplification, let us assume that there are no indifferent solutions, i. e.,�F

is a partial order. The dimension of�F gives us only a lower bound for the size of a
minimum subset of objectives w. r. t.F . For example, the dimension of�F is always 2
if all decision vectors are incomparable, but the size of theminimum objective set can be
greater than 2. Instead of the computation of a minimum realizer in dimension theory,
which isNP-hard [11], we are interested in a shorter description of ourproblem with
a selection of the given objectives, the complexity of whichwill emerge asNP-hard,
too, in the next section.

3.1 Proof ofNP-hardness

That MOSS is a set problem does not directly arise from the definition ofthe MOSS
problem but, obviously, the relations�i in Def. 5 as well as�F are subsets ofX ×X.
Considering the complementary sets�C

F ′ := (X × X) \ �F ′ for anyF ′ ⊆ F and De
Morgan’s laws, the task of theMOSS problem can be restated as finding a minimum in-
dexI such that

⋃

i∈I �C
i =�C

F . Hence, theNP-hard problemSET COVER introduced
in [5] is closely related to theMOSS problem.

Definition 6 We define the search problemSET COVER, or SCP for short, as follows.

Instance: A CollectionC = {C1, . . . , Ck} of subsets of a finite setS = {1, . . . ,m}.

Task: Compute an indexI ⊆ {1, . . . , k} of minimum size with
⋃

i∈I Ci = S.

The setS in anSCP instance complies with the relation�C
F in a MOSS instance just

as each subsetCi corresponds to the relation�C
i . Just as theCi’s are subsets ofS,

the�i’s are supersets of�F , i. e., the complementary relations�C
i are subsets of�C

F .
Nevertheless,SCP andMOSS are not identical problems due to the fact that the allowed
instances forMOSS have to ensure that the relations correspond to preorders onX
whereas forSCP, instances with arbitrary sets are allowed. More precisely, the relations
�i in an allowedMOSS instance are always linear orders, written as[x1,x2, . . . ,xn]
with xi ∈ X, augmented with additional relations between indifferentsolution pairs,
thus, the relations�i are preorders, cf. Fig. 3 for an example. Because of the similarity
betweenSCP andMOSS it is not surprising that alsoMOSS isNP-hard. In the following
we use a Turing reductionSCP ≤T MOSS to prove theNP-hardness ofMOSS.

5 A linear extension of a relationrel ⊆ Z × Z is a linear order onZ × Z, containingrel.



Theorem 3. The problemMOSS is NP-hard.

Sketch of Proof: To simplify the notations below, we denote the input size ofMOSS
by n, wheren = Θ(k · m2), k denotes the number of objectives, andm := |X|. For
theNP-hardness proof, a Turing reductionSCP ≤T MOSS is required. Due to space
limitations, we only provide a sketch of the transformationand refer for the correctness
proof of this transformation to the appendix. For a small instance, Fig. 3 visualizes the
basic idea of the transformation.

Starting from anSCP instance, consisting of the setS = {s1, . . . , sm} and the
subsetsCi with 1 ≤ i ≤ k, all relations�i as well as�F in the MOSS instance
are defined as subsets ofX × X with X := {x1, . . . ,xm,x′

1, . . . ,x
′
m}. According

to the similarity of the two problems, each set in theSCP instance has its counter-
part in the generatedMOSS instance. The relation�F corresponds to the setS and
is the reflexive closure of the antichain6 on X, i. e., �F only contains the elements
(xj ,xj) and(x′

j ,x
′
j) for 1 ≤ j ≤ m. For each subsetCi of S with 1 ≤ i ≤ k we

create the relation�i in the MOSS instance. The relation�i includes the linear or-
der [x1,x

′
1,x2,x

′
2, . . . ,xm,x′

m] and additionally, the relation�i contains the element
(x′

j ,xj) iff sj 6∈ Ci. In addition to thek relations�i, we compute the relation�k+1

which is the reverse linear order[x′
m,xm,x′

m−1,xm−1, . . . ,x
′
1,x1]. After this trans-

formation, we question ourMOSS oracle once. The resulting indexISCP for theSCP
problem will be thenISCP := Ioracle\ {k + 1} if the oracle producesIoracleas its output.
The whole transformation takes timeO(km2) and produces anMOSS instance of size
O(km2). �

3.2 An Approximation Algorithm

As the computation of a minimum objective subset of objectives isNP-hard, we cannot
expect to find an exact deterministic algorithm for the problem with polynomial running
time, unlessP = NP. Instead, we present an approximation algorithm with polyno-
mial running time in the following; an exact algorithm will be proposed in Sec. 3.3.
With Algorithm 1, we propose a greedy strategy for theMOSS problem. ForSCP, an
approximation algorithm with a similar greedy strategy is already known the approxi-
mation ratio of which islnm − ln lnm + Θ(1) wherem is the number of elements in
the setS [7]. This knowledge is useful for proving the following result on Algorithm 1.

Theorem 4. Algorithm 1 is an approximation algorithm for theMOSS problem with
approximation ratioΘ(log m) and needs timeO(k · m2) = O(n).

Proof: First, we show that Algorithm 1 always computes a correct solution for the
MOSS problem, i. e., an indexI with

⋂

i∈I �i= �F . By construction, Algorithm 1
provides always an indexI with

⋃

i∈I �C
i ⊇�C

F , i. e.,
⋂

i∈I �i⊆�F . As
⋂

1≤i≤k �i=
�F , and thus

⋂

1≤i≤k �i⊇ �F holds, the equivalence
⋂

i∈I �i= �F is always true.
To show the upper bound on the approximation ratio, we sketchthe proof of a Tur-

ing reductionMOSS ≤T SCP and refer to the appendix for the correctness proof. Given

6 The reflexive closure of an antichain is simply a relation with only reflexiveedges in their
graph representation.
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Fig. 3.An example for the Turing reduction fromSCP toMOSS. The reflexive and transitive edges
are omitted for clarity.

an instance forMOSS, consisting of the relations�F⊆ X × X and�i⊆ X × X with
⋂

1≤i≤k �i=�F , we can compute anSCP instance as follows. The setS in theSCP
instance contains an elementsx,y for each(x,y) ∈�F . A subsetCi of S in theSCP
instance contains an elementsx,y iff x 6�i y. The output for theMOSS problem, is the
indexI, computed by theSCP oracle. The Turing reduction needs timeO(n) and pro-
duces anSCP instance of sizeO(n). Since Algorithm 1 uses this transformation and
then acts like the greedy algorithm forSCP, the upper boundO(log m) for the approx-
imation ratio of the greedy algorithm forSCP is directly translated to Algorithm 1.

For proving that Algorithm 1 has an approximation ratio ofΩ(log m), we use con-
clusions made forSCP. Feige showed in [3], that there is noε > 0 such that an ap-
proximation algorithm can solveSCP with approximation ratio(1 − ε) ln m, unless
NP ⊂ TIME(mO(log log m)). With our transformation fromSCP to MOSS, Feige’s
lower bound forSCP yields to a lower bound ofΩ(log 2m) = Ω(log m) for MOSS.
This is due to the fact that in the transformation fromSCP to MOSS the sizem of the
setS is transformed into the setX of size2m. Assuming, that there is a polynomial
approximation algorithm forMOSS with an approximation ratio ofo(log m), we get a
contradiction to Feige’s results, because we can transformeachSCP instance in poly-
nomial time into aMOSS instance withX of size2m and solveSCP via theo(log m)
algorithm forMOSS.

The worst-case running time of Algorithm 1 isO(k ·m2) = O(n): The computation
of the complementary relations during initialization needs timeO(k ·m2) and the total
runtime—amortized over allO(m2) loop cycles—isO(k · m2) for the update of the
�C

i ’s, and�C
i ∩E respectively, together with the computation ofE. Furthermore, each



Algorithm 1 A greedy algorithm forMOSS
Init:

E := �C
F where�C

F := (X × X)\ �F

I := ∅
while E 6= ∅ do

choose ani ∈ ({1, . . . , k} \ I) such that| �C
i ∩E| is maximal

E := E \ �C
i

I := I ∪ {i}
end while

of theO(m2) steps of the while loop costs additionally timeO(k) for the calculation of
the maximum and the update ofI. �

3.3 An Exact Algorithm

In this section, we present an exact algorithm for theMOSS problem, the running time
of which is polynomial in the size ofX but exponential in the number of objectives. In
order to solve theMOSS problem exactly it is in general not sufficient to take informa-
tion about conflicts between pairs of objectives into account. Example 1 shows a simple
instance with three objectives. Even though all pairs of objective functions are strongly
conflicting according to Def. 2, the whole set of objectives is redundant, i. e.,f2 can
be omitted. Almost the same situation emerges, if we want to solve theMOSS problem
with the help of information about conflicts between pairs ofsets with larger but con-
stant size. The observation that there is no possibility fora correct predication whether
a set of objectives is redundant, by observing only relations between objective subsets
of constant size, can be likewise derived from theNP-hardness of theMOSS prob-
lem. Thus, we are forced to examine the type of conflict between all possible objective
subsets if we want to solve theMOSS problem exactly.

Algorithm 2 examines all possible objective subset pairsF1,F2 ∈ P(F)7 in com-
bination with all solution pairsx,y ∈ X separately by calculating the setSxy of all
minimal objective subsets w. r. t.F explaining the relation betweenx andy w. r. t. �F .
The setS of objective subsets always contains all minimal subsets assolutions for the
MOSS problem restricted to the solution pairs considered so far.S is updated whenever
a new solution pair is observed. To simplify the notation, weuse the symbol⊔ for a
union of two setsS1, S2 ⊆ P(F) containing themselves objective subsets.S1 ⊔ S2

contains the pairwise unions1 ∪ s2 of setss1 ∈ S1 ands2 ∈ S2 only if there is no
subset ofs1 ∪ s2 in S1 ∪ S2:

S1 ⊔ S2 := {s1 ∪ s2 | s1 ∈ S1 ∧ s2 ∈ S2 ∧ (6 ∃p1 ∈ S1, p2 ∈ S2 : p1 ∪ p2 ⊂ s1 ∪ s2)}

When all solution pairs are processed,S contains all minimal objective subsets w. r. t.
F from which Algorithm 2 chooses a minimum one as an exact solution for theMOSS
problem.

7 With P(F) we denote the power set ofF := {f1, . . . , fk}.



Algorithm 2 An exact algorithm forMOSS
Init:

S := ∅
for each pairx,y ∈ X of solutionsdo

Sx := { {i} | i ∈ {1, . . . , k} ∧ x �i y ∧ y 6�i x}
Sy := { {i} | i ∈ {1, . . . , k} ∧ y �i x ∧ x 6�i y}
Sxy := Sx ⊔ Sy

if Sxy = ∅ then Sxy := {1, . . . , k}
S := S ⊔ Sxy

end for
Output:

smallest setsmin in S

Theorem 5. Algorithm 2 solves theMOSS problem exactly in timeO(m2 · k · 2k).

Proof: For a correctness proof, we have to ensure that Algorithm 2 computes the sets in
Sxy correctly. Then, the invariant, thatS contains all minimal sets of objectives which
explain the relationships between all considered pairs of solutions, is always correct.
The sets are always minimal, because we delete all supersetsduring theS := S ⊔ Sxy

command. For the first pairx,y of solutions,S = Sxy is computed correctly and the
invariant holds as a result of induction. We now distinguishbetween the three possible
relationships between solution pairs and show for each typethat our algorithm computes
Sxy correctly. (i) In the case of an indifferent solution pairx ∼ y, i.,e.,∀fi ∈ F :
fi(x) = fi(y), bothSx andSy are empty sets, yielding toSxy = {1, . . . , k}. Because
indifferent vectorsx,y have the same objective vector, each single objectivefi is a
possible minimal set which explain the indifference. (ii) If we consider comparable
solutions, without loss of generalityx � y ∧ ¬ (x ∼ y), i. e., ∀f ∈ F : f(x) ≤
f(y) ∧ ∃f ′ ∈ F : f ′(x) < f ′(y), Algorithm 2 computesSy = ∅ and therefore
Sxy = Sx. Sx contains by definition only single objectivesfi, wherefi(x) < fi(y).
Thus,Sxy contains all objective sets, which explain the relationshipx �F y∧¬(x ∼ y)
w. r. t. �F . (iii) For an incomparable solution pairx||y, nofi ∈ F will be both inSx

and inSy. Thus,Sxy contains only sets of objectives{i, j} with cardinality 2 which
matches the minimal size ofSxy if x||y and for whichfi(x) < fi(y)∧ fj(x) > fj(y).

The computation ofSx andSy can be done in timeO(k) and the calculation of
Sxy is possible in timeO(k2), asSxy contains only|Sxy| ≤ |Sx| · |Sy| ≤ k2 sets.
Since we know thatS is a subset ofP({1, . . . , k}), S contains at most2k sets each of
sizeO(k). Hence, the computation ofS ⊔ Sxy needs timeO(k · 2k). Due to the fact
that Algorithm 2 computes the sets for each pair of individuals, the whole running time
results inO(m2 · k · 2k). �

As the last aspect of our theoretical analysis, we present aninstance forMOSS, for
which the exact algorithm needs timeΩ(m2 · 2k/3).

Theorem 6. The worst-case running time of Algorithm 2 for theMOSS problem is
Ω(m2 · 2k/3).

Proof: Fig. 4 shows the idea of an instanceI for which Algorithm 2 needs time
Ω(m2 · 2k/3). Let us assume thatI consists of an even number ofm solutionsX :=



{x1, . . . ,xm} together with the relation�F andk = 3/2 · m relations�i correspond-
ing to the objective functionsF := {f1, . . . , f3/2·m} where only the solutionsx2i−1

andx2i for 1 ≤ i ≤ m/2 are incomparable. The incomparability of such pairs is only
caused by their3ith, (3i + 1)th, and(3i + 2)th objective values, i. e., we need either
the objective pairf3i−2, f3i−1 or the pairf3i−1, f3i to describe the incomparability,
cf. Fig. 4. Thus, whenever Algorithm 2 considers a new pairx2i−1,x2i of incompa-
rable solutions, the size of the setS reduplicates. Because we havem/2 = k/3 of
those incomparable pairs,S is of size2k/3 after the algorithm considered all of thek/3
incomparable pairs. This is possible after the firstk/3 of altogether

(

m
2

)

steps of the al-
gorithm, which results in a running time of at least(

(

m
2

)

− k/3) · 2k/3 = Ω(m2 · 2k/3).
In addition, this restricted example can be easily extendedto the casem > k. �

objective values

objectivesf1 f2 f3 f3i

x2i−1

x2i

xm−1

xm

x1

x2

fm
f3i−1 fm−2fm−1f3i−2

Fig. 4. The parallel coordinates plot of an instance for which the exact algorithmneeds time
Ω(m2 · 2k/3).

4 Experiments

The following experiments serve two goals: (i) to investigate the size of a minimum
objective subset depending on the size of the search space and the number of original
objective functions, and (ii) to compare the approximativeand the exact algorithm with
respect to the size of the generated objective subsets and the corresponding running
times. Both issues have been considered both for a random problem and the multiob-
jective 0/1-knapsack problem.

4.1 Random Problem

In a first experiment we generated the objective values for a set of solutionsX at ran-
dom where the objective values were chosen uniformly distributed in[0, 1] ⊂ R. For
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each combination of search space size|X| and number of objectivesk, 100 independent
random samples were considered. The results for Algorithm 2are shown in Figure 5.
For different sizes of the search space, the numberkmin of objectives in a minimum
objective subset is plotted against the numberk of objectives used in the problem for-
mulation. Two main observations can be made. First, the minimum number of objectives
decreases the more objectives are involved as the fractionkmin/k decreases with rising
numberk of objectives in the problem formulation. Second, the larger the search space
the more objectives are in a minimum objective set. Althoughthere is no possibility
to determine the course of the curves for arbitrary large number k of objectives with
experiments, the question howkmin will behave withk increasing to infinity, arises. We
expect lim

k→∞
kmin =2 because the probability that an existing objective pair occurs, the

intersection of which fits the preorder onX, increases with higherk.
Concerning the comparison of the two algorithms, Fig. 6 reveals that the greedy

algorithm yields similar sizes of the computed sets in comparison to the exact algorithm
but is much faster than the latter. Already for a small searchspace of 32 solutions, the
exact algorithm is only usable fork smaller than 15, whereas the running time of the
greedy algorithm is competitive even for 50 objectives.

4.2 Knapsack Problem

We did further experiments on the 0/1-knapsack problem [13]with 10 items, the im-
plementation was taken from the PISA package [1]. Instead ofexamining the whole



numberk of objectives
in problem formulation

5 10 15 20 25 30

exact algorithm:
size of computed objective subset

4 5 8 13 16 13

greedy algorithm:
size of computed objective subset

4 5 8 13 16 14

exact algorithm:
running time in milliseconds

196 2,27187,11390,524≈ 2.5 · 106 ≈ 15 · 106

greedy algorithm
running time in milliseconds

47 46 67 88 78 87

Table 1.The number of objectives in the computed subsets and the runtimes for anapproximation
of the Pareto Front, generated with SPEA2 after 1000 generations for theknapsack problem. The
running times correspond to experiments on a linux computer (SunFireV60x with 3060 Mhz).

search space as in the random example, we generated an approximation of the Pareto
set with a multiobjective evolutionary algorithm, namely SPEA2 [12] with the standard
settings (population sizeµ = 50, offspring population sizeλ = 50, X = {0, 1}10,
1000 generations). Both the exact and the approximation algorithm were applied to the
generated Pareto set approximation. In addition, we recorded the running times of both
algorithms. Table 1 shows the results for different sizes ofthe objective space.

The experiments show that the omission of objectives without information loss is
possible even for a structured problem as the 0/1-knapsack problem. In comparison to
the exact algorithm, the greedy algorithm shows nearly the same output quality for the
used knapsack instances regarding the size of the computed objective set but is much
faster. Due to the sizes of the computed subsets which are—in all of our experiments—
less than one objective away from the optimum, the greedy algorithm seems to be ap-
plicable for more complex problems, particularly by virtueof its small running time.

5 Discussion

This paper has investigated the minimum objective subset problem (MOSS) that asks
which objective functions are essential for a given multiobjective optimization prob-
lem. To this end, we have introduced a general notion of conflicts between objective
sets and showed that the answer to the above question can generally not be deduced
from the information about conflicts between single objectives or objective sets of a
predefined limited size. The latter observation motivates whyMOSS turns out to be NP-
hard. Furthermore, we have proposed an exact algorithm forMOSS, the running time of
which is polynomial in the sizem of the decision space but exponential in the number
of objectives, and a polynomial greedy algorithm with an optimal approximation ratio
of Θ(log m).

From a practical point of view, the present study provides a first step towards di-
mensionality reduction of the objective space in multiple criteria optimization scenar-
ios. The proposed algorithms can be particularly useful to analyze Pareto sets or Pareto
set approximations generated by exact resp. heuristic search procedures, but it is clear
that an analysis of the entire search space is infeasible formost problems. Therefore, an
important issue is the conflict analysis if only partial information about the search space



is available as, e. g., during the optimization process. Furthermore, the experimental re-
sults for random objective functions as well as for the knapsack problem have revealed
that a high percentage of objective can be omitted, especially if the number of objectives
is high (10 or more). However, one may also be interested in a substantial reduction of
the objective set in the case of few objectives; here, a modifiedMOSS problem where
the search space order needs to be preserved only partially would be of high practical
relevance.
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A Proofs of NP-hardness

Here, we additionally provide the proofs omitted in Sec. 3.

Theorem 3. The problemMOSS is NP-hard.

Proof: First, we denote the input size ofMOSS by n, wheren = Θ(k · m2) with m :=
|X|. We refer to Fig. 3 for a visualization of the ideas behind theTuring transformation
SCP≤T MOSS, which we recapitulate first.

Starting from theSCP instance consisting of the setS = {s1, . . . , sm} and the
subsetsCi with 1 ≤ i ≤ k, all relations�i as well as�F in theMOSS instance are
defined on the basic setX := {x1, . . . ,xm,x′

1, . . . ,x
′
m}. The relation�F will be the

reflexive closure of the antichain onX, i. e.,�F only contains the elements(xj ,xj)
and(x′

j ,x
′
j) for 1 ≤ j ≤ m. The relations�i with 1 ≤ i ≤ k are all constructed in

the same way. They include the linear order[x1,x
′
1,x2,x

′
2, . . . ,xm,x′

m] as well as the
reflexive relations. Additionally, relation�i contains the element(x′

j ,xj) iff sj 6∈ Ci.
In addition, we have to compute another relation�k+1 which is the reverse linear order
[x′

m,xm,x′
m−1,xm−1, . . . ,x

′
1,x1]. After this transformation, we question ourMOSS

oracle once. The resulting indexISCP for theSCP problem will be thenISCP := Ioracle\
{k + 1} if the oracle producesIoracleas its output.

It remains to show that the transformation yields to an exactalgorithm forSCP
with polynomial running time, under the assumption that there is an exact polynomial
time algorithmA for MOSS. Let us assume that(S = {s1, . . . , sm}, C1, . . . , Cl) is the
SCP instance withCi = {c1, . . . , c|Ci|} ⊆ S. Via the described transformation and the
hypothetical algorithmA, we can compute the indexISCP := IA \{k +1} as the output
corresponding to theSCP instanceS. Obviously, the computation ofISCP is possible
in polynomial time using a polynomial algorithm forMOSS. To complete the proof, we
still have to show (i) why alwaysk + 1 ∈ IA, (ii) why IA \ {k + 1} is a correct output
for ourSCP instance, and (iii) why the computed indexIA \ {k + 1} is minimum.

First, we will take a look at the question (i) why alwaysk + 1 ∈ IA for an exact
MOSS algorithmA, i. e., why�k+1 is always needed to yield�F as the intersection of
some�i. Because in�F no pairx,y ∈ X with x 6= y is comparable, for each pair
x,y ∈ X, x 6= y, there has to be at least onei ∈ IA wherex 6�i y and at least onej ∈
IA with y 6�j x. Considering a pairx,y, for all �i with i ∈ {1, . . . , k} x �i y holds.
By construction, onlyx 6�k+1 y. Consequently,�k+1 is always needed, to construct
�F as the intersection of single�i’s. Now we show (ii) whyI := IA\{k+1} is always
a correct output for the givenSCP instance. As we have seen before,k + 1 ∈ IA and
therefore, the intersection of the�i’s does not contain any pairs(xν ,xµ) and(x′

ν ,x′
µ)

with 1 ≤ ν < µ ≤ m and no pairs(xν ,x′
ν) with 1 ≤ ν ≤ m. The construction of the

relations�i with i ∈ {1, . . . , k} results in the absence of pairs(xν ,xµ) and(x′
ν ,x′

µ)
with 1 ≤ µ < ν ≤ m in the intersection if there will be at least onei ∈ IA with
1 ≤ i ≤ k. There only remains the possibility of pairs(x′

ν ,xν) with 1 ≤ ν ≤ m
in the intersection. To avoid this, for eachν ∈ {1, . . . ,m} there must be at least one
i ∈ {1, . . . , k} in IA with x

′
ν 6�i xν . By construction of the Turing transformation, this

can only occur, ifcν ∈ Ci. Thus,
⋃

i∈IA\{k+1} Ci = {1, . . . ,m} = S. Last, we have to
show (iii) why the computed indexIA \ {k + 1} is a minimum index forSCP. Assume



thatIA \ {k + 1} is not a minimum index forSCP, i. e., there is a smaller indexJ with
|J | < |I| and

⋃

j∈J Cj = S. As one can easily see from the above transformation,
J ∪ {k + 1} would be a smaller index forMOSS thanIA. �

Theorem 7. TheMOSS problem is Turing reducable toSCP.

Proof: Given an instance forMOSS, consisting of the relations�F⊆ X × X and
�i⊆ X × X with

⋂

1≤i≤k �i=�F , a polynomial time algorithmA can compute an
SCP instance as follows. The setS in theSCP instance contains one elementsx,y for
each(x,y) 6∈�F . A subsetCi of S in theSCP instance contains an elementsx,y iff
¬ (x �i y). The algorithmA can then use a hypothetical polynomial time bounded
exact algorithm forSCP, to compute the indexI as an output for theMOSS problem.

The indexI, computed by theSCP algorithm, is always a correct output for the
MOSS problem. To see that, we show∀1 ≤ i ≤ k : Ci ⊆ S, first. Letsx,y ∈ Ci for any
x,y ∈ X and any1 ≤ i ≤ k. By definition,¬ (x �i y), i. e.,¬(fi(x) ≤ fi(y)) ⇐⇒
fi(x) > fi(y) holds. But then¬(x �F y), thus,sx,y ∈ S by definition.

Now, we are able to show thatI is always a correct output for theMOSS problem.
We only have to use the rules of deMorgan and the fact thatCi ⊆ S holds for all
1 ≤ i ≤ k.

⋃

i∈I

Ci = S ⇐⇒ ∀sx,y ∈ S : ∃i ∈ I : sx,y ∈ Ci

⇐⇒ ∀x,y ∈ X : [(∃i ∈ I : sx,y ∈ Ci) ⇔ sx,y ∈ S]

⇐⇒ ∀x,y ∈ X : [(∃i ∈ I : ¬ (x �i y)) ⇔ ¬ (x �F y)]

⇐⇒ ∀x,y ∈ X :
[(

∃i ∈ I : x �C
i y

)

⇔ x �C
F y

]

⇐⇒
⋃

i∈I

�C
i =�C

F⇐⇒
⋂

i∈I

�i=�F

By construction, it is clear that a minimumI is always a minimum index forMOSS. �

B Relations between the different definitions of conflict

Before we present the relations between the different concepts of conflict, mentioned
in Sec. 1, we restate the definitions of conflict according to the notation in Sec. 2 and
prove a lemma we use later.

Definition 7 (Conflict by Deb [2]) A multiobjective optimization problem(X,Z, f, rel)
contains conflicting objectives if and only if there are trade-offs, i. e., the partially or-
dered set(f(X), rel) has no unique minimal element.

Definition 8 (Conflict by Tan et al. [8]) A setF of objective functions is said to be
nonconflicting according to the weak dominance relation�F

8 if and only if there are
no incomparable solution pairs, i. e.,∀x,y ∈ X : x �F y ∨ y �F x.

8 Instead of�, the dominance relation≺ is used in the original definition in [8].



Definition 9 (Conflict by Purshouse and Fleming [6]) Two objectivesfi and fj are
conflicting if there exists at least one solution pairx,y ∈ X with fi(x) < fi(y) ∧
fj(x) > fj(y). If fi(x) < fi(y) ∧ fj(x) > fj(y) holds for all pairs,fi andfj are
totally conflicting. There is no conflict betweenfi andfj if no such pairx,y exist.

Lemma 1. For any set of objectivesF , there is no subsetF ′ ⊆ F which is strongly
conflicting withF according to Def. 2.

Proof: With Theorem 1 it is clear that
⋂

1≤i≤k �i=�F and therefore∀F ′ ⊆ F :
(x,y) ∈�F ′ holds for all(x,y) ∈�F . For this reason it is impossible that

�F ⊃�F ′ ⇐⇒ �F 6⊆�F ′ ⇐⇒ F 6⊑ F ′,

i. e.,F ′ cannot strongly conflicting withF according to Def. 2. �

B.1 The relation to Deb’s definition of conflict [2]

Theorem 8. If a multiobjective optimization problem(X,Z, f := (f1, . . . , fk),≤)
contains conflicting objectives according to Def. 7 it is possible that there is an ob-
jective setF ′ ⊂ F := {f1, . . . , fk} which is nonconflicting or weakly conflicting with
F but noF ′ which is strongly conflicting withF . The same holds if the optimization
problem contains no conflicts according to Def. 7

Proof: Due to the fact that Def. 7 defines a conflict globally and only depending on
the small set of minimal elements of the dominance relation,there is only weak re-
lation between Def. 7 and our definition of conflict in Def. 2. Given a multiobjective
optimization problem(X,Z, f := (f1, . . . , fk),≤) with F := {f1, . . . , fk}, we know
from Lemma 1 that there is noF ′ ⊆ F which is strongly conflicting withF . Fig. 7
shows for the case of a conflicting problem (a) and for a nonconflicting problem (b) that
subsetsF ′ ⊆ F can be either nonconflicting or weakly conflicting withF . �

Theorem 9. If all subsetsF ′ ⊆ F are nonconflicting withF w. r. t. Def. 2,F contains
no conflicting objectives according to Def. 7.

Proof: If all subsetsF ′ ⊆ F := {f1, . . . , fk} of a multiobjective optimization prob-
lem (X,Z, f := (f1, . . . , fk),≤) are nonconflicting withF according to Def. 2,f(X)
cannot contain incomparable solutions w. r. t.�F . Otherwise the relations�i corre-
sponding to single objective functions cannot be nonconflicting with �F , because the
�i’s are always total preorders, i. e., all solution pairs are comparable w. r. t. each�i. �

B.2 The relation to the conflict definitions of Tan, Khor, and Lee [8]

Theorem 10. If a setF of objective functions is not conflicting according to Def. 8it
is possible that a subsetF ′ ⊆ F is nonconflicting withF or weakly conflicting withF
according to Def. 2.
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nonconflicting withF whereas{f2} is weakly conflicting withF . (b) shows the corresponding
relation graphs of the involved relationsF ′ ⊆ F .



Proof: Starting from a setF of objective functions which is not conflicting according
to Def. 8, conclusions about the type of conflict (weak conflict or no conflict) between
subsets ofF ′ ⊆ F andF itself are impossible. Fig. 8 shows that for an objective setF
it is possible to have both a subsetF ′ ⊆ F which is nonconflicting withF and a subset
F ′′ ⊆ F which is weakly conflicting withF . �

Theorem 11. If all subsetsF ′ ⊆ F are nonconflicting withF according to Def. 2,F ′

is nonconflicting according to Def. 8.

Proof: Given a multiobjective optimization problem(X,Z, f := (f1, . . . , fk),≤)
where all subsetsF ′ ⊆ F := {f1 . . . , fk} are nonconflicting withF acoording to
Def. 2. Then, there cannot be incomparable solutionsx,y ∈ X with respect to�F ,
i. e.,F is nonconflicting according to Def. 8 as at least one set{fi} will be strongly
conflicting withF , because two solutionsx andy are always comparable with respect
to each�i and

⋂

1≤i≤k �i=�F . �

B.3 The relation to the definitions of conflict by Purshouse and Fleming [6]

Theorem 12. Between the two objectivesfi andfj is no conflict according to Def. 9 if
and only iffi andfj are nonconflicting according to Def. 2

Proof: Let there be no conflict between the two objectivesfi and fj according to
Def. 9, i. e.,

6 ∃x,y ∈ X : (fi(x) < fi(y)) ∧ (fj(x) > fj(y))

⇐⇒ ∀x,y ∈ X : [(fi(x) ≤ fi(y) ∧ fj(x) ≤ fj(y))

∨ (fi(x) ≥ fi(y) ∧ fj(x) ≥ fj(y))]

⇐⇒ ∀x,y ∈ X : [(x �i y ∧ x �j y) ∨ (y �i x ∧ y �j x)]

⇐⇒ ∀x,y ∈ X : [(x,y) ∈�i ⇔ (x,y) ∈�j ]

⇐⇒�i=�j ,

which is the same thanfi andfj are nonconflicting according to Def. 2. �

Theorem 13. Two objectivesfi andfj are in conflict according to Def. 9 if and only if
fi andfj are either strongly conflicting or weakly conflicting according to Def. 2.

Proof: By definition,fi andfj are in conflict according to Def. 9 if and only if

∃x, y ∈ X : [fi(x) < fj ∧ fj(x) > fj(y)]

⇐⇒ ¬ ( 6 ∃x, y ∈ X : [fi(x) < fj ∧ fj(x) > fj(y)]) ,

which is, by Theorem 12, the same as

¬ (fi andfj are nonconflicting according to Def. 2) .

Because the different kinds of conflict in Def. 2 are disjoint, this is the same asfi and
fj are either weakly conflicting or strongly conflicting. �


