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Abstract. Most of the available multiobjective evolutionary algorithms (MOEA)
for approximating the Pareto set have been designed for and tested on low dimen-
sional problems (≤ 3 objectives). However, it is known that problems with a high
number of objectives cause additional difficulties in termsof the quality of the
Pareto set approximation and running time. Furthermore, the decision making
process becomes the harder the more objectives are involved. In this context, the
question arises whether all objectives are necessary to preserve the problem char-
acteristics. One may also ask under which conditions such anobjective reduction
is feasible, and how a minimum set of objectives can be computed. In this pa-
per, we propose a general mathematical framework, suited toanswer these three
questions and corresponding algorithms, exact and heuristic ones. The heuristic
variants are geared towards direct integration into the evolutionary search pro-
cess. Moreover, extensive experiments for four well-knowntest problems show
that substantial dimensionality reductions are possible on the basis of the pro-
posed methodology.

1 Motivation

The field of multiobjective evolutionary algorithms (MOEA)has been rapidly growing
over the last decade, and most of the publications deal with two- or three-dimensional
problems [4]; however, studies addressing high-dimensional problems are rare [10, 3].
The main reason is that problems with a high number of objectives cause additional
challenges wrt low-dimensional problems. Current algorithms, developed for problems
with a low number of objectives, have difficulties to find a good Pareto set approxi-
mation for higher dimensions [7]. Even with the availability of sufficient computing
resources, some methods are practically not useable for a high number of objectives;
for example, algorithms based on the hypervolume indicator[8] have running times
exponential in the number of objectives [9, 13]. Moreover, the decision maker’s choice



of an appropriate trade-off solution from a set of alternative solutions, generated by a
MOEA, becomes difficult or infeasible with many objectives.In this context, several
questions arise. On the one hand, one may ask whether it is possible to omit some
of the objectives while preserving the problem characteristics, under which conditions
such an objective reduction is feasible, and how a minimum set of objectives can be
computed. On the other hand, if one allows changes in the problem structure while
omitting objectives, one may ask how to quantify such structural changes and how to
compute a minimum set of objectives according to such a qualitative measure. These
research topics have gained only little attention in the literature so far. In some studies
[5, 11, 12], the issue of objective conflicts has been discussed; however, the issue under
which conditions,in general, objectives can be omitted and how a minimum objective
subset can be computed has not been addressed. Deb and Saxena[6] proposed a method
for reducing the number of objectives, based on principal component analysis. Roughly
speaking, their method aims at keeping those objectives that can explain most of the
variance in the objective space. However, it is not clear (i)how the objective reduction
alters the dominance structure and (ii) what the quality of agenerated objective subset
is (no minimum guarantee).

In a previous work [2], we have tackled the above questions for the case that the
problem structure must not be changed. In particular, we have presented the minimum
objective subset problem (MOSS) which asks which objective functions are essential,
have introduced a general notion of conflicts between objective sets, and have proposed
an exact algorithm and a greedy heuristic for theNP hardMOSS problem. In practice,
though, one may be interested in “allowing errors”, i.e., slight changes of the dominance
structure, in order to obtain a smaller minimum set of objectives. This continuative
study addresses this issue. The key contributions are

– a generalized notion of conflicting objective sets extending [2],
– the introduction of a measure for variations of the dominance structure
– the definition of the problemsδ-MOSS andk-EMOSS, as an extension of theMOSS

problem to the objective reduction with allowed problem structure variations,
– an exact algorithm, capable to solve both, theδ-MOSS and thek-EMOSS problem,

as well as heuristics for both problems,
– experimental results on four different high-dimensional problems, and
– a comparison between our approach and Deb and Saxena’s method [6].

As such, this paper provides a basis for online dimensionality reduction in evolutionary
multiobjective algorithms.

2 A Measure for Changes of the Dominance Structure

Without loss of generality, in this paper we consider a minimization problem withk ob-
jective functionsfi : X → R, 1 ≤ i ≤ k, where the vector functionf := (f1, . . . , fk)
maps each solutionx ∈ X to an objective vectorf(x) ∈ R

k. Furthermore, we assume
that the underlying dominance structure is given by the weakPareto dominance relation
which is defined as follows:�F ′:= {(x,y) |x,y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)},
whereF ′ is a set of objectives withF ′ ⊆ F := {f1, . . . , fk}. For better readability,



we will sometimes only consider the objective functions’ indices, e.g.,F ′ = {1, 2, 3}
insteadF ′ = {f1, f2, f3}. We sayx weakly dominatesy wrt the objective setF ′

(x �F ′ y) if (x,y) ∈�F ′ . A solutionx
∗ ∈ X is calledPareto optimalif there is

no otherx ∈ X that weakly dominatesx∗ wrt the set of all objectives. The set of all
Pareto optimal solutions is calledPareto set, for which an approximation is sought. If
there exist two incomparable Pareto-optimal solutionsx1,x2, i. e., neither weakly dom-
inates the other one (x1||x2), then the cardinality of the Pareto front is greater than1. If
two solutionsx1,x2 are indifferent, i. e., they are mapped to the same objectivevector
(x1 ∼ x2), then the relation� is only a preorder1, but not a partial order onX .

In [2] we have proposed a method that computes for given solution setA ⊆ X

a minimum subsetF ′ of objectives withF ′ ⊆ {f1, . . . , fk} such that the dominance
structure is preserved. In other words, forF ′ holds thatx �F ′ y ⇐⇒ x �{f1,...,fk} y

for all x,y ∈ A. This is illustrated in the following example.

Example 1 Fig. 1 shows the parallel coordinates plot, cf. [11], of three solutionsx1

(solid line),x2 (dashed) andx3 (dotted) that are pairwise incomparable.
At a closer inspection, the objective functionsf1
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Fig. 1. Parallel coordinates plot for
three solutions and four objectives.

and f3 indicate redundancy in the problem for-
mulation, as the corresponding relations�f1

and
�f3

are the same:x3 �f1
x1 �f1

x2 as well as
x3 �f3

x1 �f3
x2. The approach of [2], there-

fore, computes the set{f1, f2, f4} as a minimum
objective set which preserves the dominance struc-
ture, i.e.,x �{f1,f2,f4} y if and only ifx �F y,
because all solutions are also pairwise incompa-
rable wrt to {f1, f2, f4}. That there is, for this
example, no objective subset with less than three
objectives, preserving the dominance structure,
can be easily checked by hand.

In practice, one is often interested in a further dimensionality reduction at the cost of
slight changes in the dominance structure. This poses the question how such a structural
change can be quantitatively measured and how one can compute a minimum objective
set for a given threshold on the degree of change.

A first attempt for a further objective reduction by using theε-dominance2 [16]
relation instead of the weak dominance relation, as proposed in [2], failed. The use of
theε-dominance relation yields larger objective sets when allowing a larger error, what
is both counterintuitive and impractical, cf. Fig. 2 for a random example. Nevertheless,
we give another intuitive approach of further dimensionality reduction, including the
definition of a measure for changes in the dominance structure.

Example 2 Consider, once again, Fig. 1 and the objective subsetF ′ := {f3, f4}. We
observe that by reducing the set of objectives toF ′, the dominances change: on the

1 A relationrel is called a preorder iff it is reflexive and transitive; a preorder that is antisym-
metric is denoted as partial order.

2 �ε
F′ := {(x,y) |x,y ∈ X ∧ ∀i ∈ F ′ ⊆ F : fi(x) − ε ≤ fi(y)}
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Fig. 2.The approach in [2] with differentε-dominance relations instead of the weak Pareto domi-
nance yields larger objective subsets for an instance of 32 randomly chosen objective vectors and
16 objectives.

one handx1 �F ′ x2; on the other handx1 6�F x2. In this sense, we make an error:
the objective values ofx1 had to be smaller by an additive term ofδ = 0.5, such that
x1 �F x2 would actually hold. Thisδ value can be used as a measure to quantify the
difference in the dominance structure induced byF ′ andF . By computing theδ values
for all solution pairsx,y, we can then determine the maximum error. The meaning of
the maximumδ value is that whenever we wrongly assume thatx �F ′ y, we also know
thatx is not worse thany in all objectives by an additive term ofδ. For F ′ := {f3, f4},
the maximum error isδ = 0.5; for F ′ := {f2, f4}, the maximumδ is 4.

In the following, we formalize the definition of error, according to the above exam-
ple. The background for that is provided by the (additive)ε-dominance relation and a
generalization of the notion of conflicts between objectivesets, defined in [2]. Before,
we introduce a general Pareto dominance relation. Subsequent observations on the new
dominance relation show the properties of the(δ1, . . . , δk)-dominance relation, which
are essential for the problems and algorithms proposed in the remainder of this paper.

Definition 1 Let δ1, . . . , δk ∈ R and F1, . . . ,Fk objective subsets. We define the
(δ1, . . . , δk)-dominance relation onX for all x,y ∈ X as

x �δ1,...,δk

F1,...,Fk
y :⇐⇒ ∀1 ≤ i ≤ k : ∀j ∈ Fi : fj(x) − δi ≤ fj(y).

Note, that the defined(δ1, . . . , δk)-dominance relation is a generalization of familiar
dominance relations on all objectivesF like the weak dominance relation�:=�0

F or
theε-dominance relation�ε:=�ε

F , defined above. Furthermore, we define�F ′ :=�0
F ′,

�i:=�0
{fi}

, and�δ
i :=�δ

{fi}
for arbitraryF ′ ⊆ F and{fi} ∈ F . The notion for a

relation’s restriction to an objective subsetF ′ will be used for any relation, such as||F ′

and∼F ′.

Observation 1 Let δ1, . . . , δk, δ′1, . . . , δ
′
k ∈ R with ∀1 ≤ i ≤ k : δi ≤ δ′i, and

F1, . . . ,Fk,F ′
1, . . . ,Fk objective sets with∀1 ≤ i ≤ k : F ′

i ⊆ Fi. Then both

�δ1,...,δk

F1,...,Fk
⊆�

δ′

1
,...,δ′

k

F1,...,Fk
and�δ1,...,δk

F1,...,Fk
⊆�δ1,...,δk

F ′

1
,...,F ′

k

holds.



Observation 2 Furthermore,�δ1,...,δk

F1,...,Fk
=

⋂

1≤i≤k �δi

Fi
and�δ,...,δ

F1,...,Fk
=�δ

S

i
Fi

.

Observation 3 Let δ ∈ R andfi ∈ F for all 1 ≤ i ≤ k. Then
⋂

i∈F

�δ
i =�δ

F .

Now, we come to the mathematical definition of error, according to Example 2,
including a general definition of conflicting objective sets.

Definition 2 LetF1 andF2 two objective sets. We defineF1 ⊑δ F2 :⇐⇒�F1
⊆�δ

F2
.

Definition 3 LetF1 andF2 two objective sets. We call

– F1 δ-nonconflictingwith F2 iff
(

F1 ⊑δ F2

)

∧
(

F2 ⊑δ F1

)

.
– F1 weakly δ-conflicting with F2 if either ¬

(

F1 ⊑δ F2

)

∧
(

F2 ⊑δ F1

)

or
(

F1 ⊑δ F2

)

∧ ¬
(

F2 ⊑δ F1

)

.
– F1 stronglyδ-conflictingwith F2 if ¬

(

F1 ⊑δ F2

)

∧ ¬
(

F2 ⊑δ F1

)

.

The above definition ofδ-nonconflicting objective sets is useful for changing a problem
formulation by considering a different objective set. If a multiobjective optimization
problem uses the objective setF1 and one can prove thatF1 is δ-nonconflicting with
another objective setF2, one can easily replaceF1 with F2 and can be sure that in
the new formulation, for anyx,y ∈ X , x either weakly dominatesy wrt F2 or x ε-
dominatesy wrt F2 if x weakly dominatesy wrt F1 andε = δ. In the special case
of an objective subsetF ′ ⊆ F , δ-nonconflicting with all objectivesF , the definition
fits the intuitive measure of error in Example 2. If an objective subsetF ′ ⊂ F is δ-
nonconflicting with the setF of all objectives,x δ-dominatesy, i.e.,∀i ∈ F : fi(x) −
δ ≤ fi(y), wheneverx weakly dominatesy wrt the reduced objective setF ′. We, then,
can omit all objectives inF \ F ′ without making a larger error thanδ in the omitted
objectives.

The following theorems on the definitions ofδ-conflicts are essential for the algo-
rithms, we present in Sec. 3.2. The proofs are omitted here but can be found in Ap-
pendix A.

Theorem 1. LetF ′ ⊆ F . ThenF ′ is δ-nonconflicting withF if and only if�F ′ ⊆�δ
F .

Theorem 2. LetF1,F2 two objective sets andX a decision space. If

δ′ := max
x,y∈X∧x�F1

y

i∈F2

{fi(x) − fi(y)} and δ′′ := max
x,y∈X∧x�F2

y

i∈F1

{fi(x) − fi(y), }

then,F1 is δ-nonconflicting withF2 wrt X for all δ ≥ max(δ′, δ′′) and noδ <

max{δ′, δ′′} exists such thatF1 is δ-nonconflicting withF2.

Note, that ifF1 ⊆ F2, the theorem can be shortened toF1 is δ-nonconflicting withF2

for all δ ≥ δ′ but for noδ < δ′ if δ′ := maxx,y∈X∧x�F1
y,i∈F2

{fi(x) − fi(y)}.
Based on the above conflict definitions, we will now formalizethe notion ofδ-

minimal andδ-minimum objective sets including the corresponding notion for δ = 0 in
[2] and, furthermore, present a condition under which an objective reduction is possible.



Definition 4 Let F be a set of objectives andδ ∈ R. An objective setF ′ ⊆ F is
denoted as

– δ-minimal wrt F iff (i) F ′ is δ-nonconflicting withF , (ii) F ′ is δ′-conflicting with
F for all δ′ < δ, and (iii) there exists noF ′′ ⊂ F ′ that isδ-nonconflicting withF ;

– δ-minimum wrt F iff (i) F ′ is δ-minimal wrt F , and (ii) there exists noF ′′ ⊂ F
with |F ′′| < |F ′| that isδ-minimal wrt F .

A δ-minimal objective set is a subset of the original objectives that cannot be further
reduced without changing the associated dominance structure with an error of at most
δ. A δ-minimum objective set is the smallest possible set of original objectives that
preserves the original dominance structure except for an error of δ. By definition, every
δ-minimum objective set isδ-minimal, but not allδ-minimal sets are at the same time
δ-minimum.

Definition 5 A setF of objectives is calledδ-redundantif and only if there existsF ′ ⊂
F that isδ-minimal wrt F .

This definition ofδ-redundancy represents a necessary and sufficient condition for the
omission of objectives while the obtained dominance relation preserve the most of the
initial dominance relation according to the definition of error in Example 2.

3 Identifying Minimum Objective Subsets

After the definition of an objective subset’s error regarding its dominance structure,
we present the two problemsδ-MOSS andk-EMOSS, dealing with the two questions,
mentioned in the introduction: On the one hand, the computation of an objective subset
of minimum size, yielding a (changed) dominance structure with given error, and, on
the other hand, the computation of an objective subset of given size with the minimum
error. Furthermore, we present an exact algorithm, capableof solving both theδ-MOSS
and thek-EMOSS problem, and afterwards approximation algorithms for eachof the
two problems, that are fast and designed for the integrationinto the search process.

3.1 Theδ-MOSS and k-EMOSS Problems

Based on the definitions in Sec. 2, the problemMINIMUM OBJECTIVE SUBSET
(MOSS), proposed in [2], can be characterized as follows. Given a multiobjective opti-
mization problem, a given instance consists of the setA of solutions, the generalized
weak Pareto dominance relation�F , and for all objective functionsfi ∈ F the sin-
gle relations�i, where

⋂

1≤i≤k �i =�F . We then ask for a0-minimum objective set
F ′ ⊆ F wrt F . This problem can easily be generalized to the following problem, when
allowing an errorδ.

Definition 6 Given a multiobjective optimization problem, the problemδ-MINIMUM
OBJECTIVE SUBSET (δ-MOSS) is defined as follows.

Instance: The objective vectorsf(x1), . . . , f(xm) ∈ R
k of the solutions

x1, . . . ,xm ∈ A ⊆ X and aδ ∈ R.

Task: Compute aδ-minimum objective subsetF ′ ⊆ F wrt F .



Note, that the limitation of the instances to the whole search space description is not
essential here. Since the objective values are only known for a small set of solutions in
practice, and not for the entire search space, Pareto set approximations, e.g., given by a
MOEA’s population, can also be the underlying setA of solutions. Note also, that the
setA and the relations�i, �F �i are only given implicitly in aδ-MOSS instance. Nev-
ertheless,δ-MOSS is a generalization ofMOSS and thereforeNP hard, as the following
theorem shows.

Theorem 3. δ-MOSS isNP-hard, since0-MOSS=T MOSS.

Proof. The only difference between the problems0-MOSS andMOSS are their input instances.
Thus, we can show a Turing reduction0-MOSS ≤T MOSS as well asMOSS ≤T 0-MOSS, and
we solely have to show an efficient transformation from one instance into the other and vice
versa. (≤T ) If we pool together indifferent solutions in the relations�i first, we can compute the
objective values for theδ-MOSS instance with a topological sorting of the relations�i, simplified
this way. The topological number of solutionx in the topological sorting of�i yields its ith
objective value, i.e., two indifferent solutions wrt relation �i get the same objective value and a
solutionx gets a higher value in objectivefi thany iff x �i x∧y 6�i x. The topological sorting
needs timeO(k · m2) and the required search for indifferent solutions before timeO(m2) for
each of thek relations�i. The whole instance transformation, thus, needs timeO(k2 · m2).
(≥T ) We can compute the relations�i and�F simply from the given objective vectors in time
O(k · m2) by considering each pairx,y ∈ X successively.

Since we know from [2] thatMOSS isNP-hard,0-MOSS isNP-hard as a result of the above
transformation, i.e.,δ-MOSS, in general, isNP-hard, too. �

As a variation of theδ-MOSS problem, we introduce the problem of finding an objective
subset of size≤ k with minimum error according toF .

Definition 7 Given a multiobjective optimization problem, the problemMINIMUM
OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR (k-EMOSS) is de-
fined as follows.

Instance: The objective vectorsf(x1), . . . , f(xm) ∈ R
k of the solutions

x1, . . . ,xm ∈ A ⊆ X and ak ∈ R.

Task: Compute an objective subsetF ′ ⊆ F which has size|F ′| ≤ k and is
δ-nonconflicting withF with the minimal possibleδ.

3.2 Algorithms

An Exact Algorithm. Algorithm 1, as a generalization of the exact algorithm for the
MOSS problem [2], solves both theδ-MOSS and thek-EMOSS problem exactly in ex-
ponential time. Thus, it can only solve small problem instances in reasonable time.
The basic idea is to consider all solution pairs(x,y) successively and store inSM

all minimal objective subsetsF ′ together with the minimalδ′ value such thatF ′ is
δ′-nonconflicting with the setF of all objectives when taking into account only the
solution pairs inM , considered so far.

The algorithm uses a subfunctionδmin(F1,F2), that computes the minimalδ error
for two solutionsx,y ∈ X , such thatF1 is δ-nonconflicting withF2 wrt x,y according



Algorithm 1 An exact algorithm forδ-MOSS andk-EMOSS
1: Init:
2: M := ∅, SM := ∅
3: for all pairsx,y ∈ X, x 6= y of solutionsdo
4: S{(x,y)} := ∅
5: for all objective pairsi, j ∈ F , not necessaryi 6= j do
6: computeδij := δmin({i} ∪ {j},F) wrt x,y

7: S{(x,y)} := S{(x,y)} ⊔ ({i} ∪ {j}, δij)
8: end for
9: SM∪{(x,y)} := SM ⊔ S{(x,y)}

10: M := M ∪ {(x,y)}
11: end for
12: Output forδ-MOSS: (smin, δmin) in SM with minimal size|smin| andδmin ≤ δ

13: Output fork-EMOSS: (s, δ) in SM with size|s| ≤ k and minimalδ

to Theorem 2. Furthermore, Algorithm 1 computes the union⊔ of two sets of objective
subsets with simultaneous deletion of notδ′-minimal pairs(F ′, δ′):

S1 ⊔ S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ 6∃(F ′
1, δ

′
1) ∈ S1, (F

′
2, δ

′
2) ∈ S2 :

`

F ′
1 ∪ F ′

2 ⊂ F1 ∪ F2 ∧ max{δ′1, δ
′
2} ≤ max{δ1, δ2}

´

∧ 6∃(F ′
1, δ

′
1) ∈ S1, (F

′
2, δ

′
2) ∈ S2 :

`

F ′
1 ∪ F ′

2 ⊆ F1 ∪ F2 ∧ max{δ′1, δ
′
2} < max{δ1, δ2}

´¯

The correctness proof of Algorithm 1—as well as the proof of its running time of
O(m2 · k · 2k)—can be found in Appendix B. Note, that the exact algorithm can be
easily parallelized, as the computation of the setsS{(x,y)} are independent for different
pairs(x,y). It also can be accelerated if line 9 of Algorithm 1 is tailored to either the
δ-MOSS or thek-EMOSS problem by including a pair(F ′, δ′) into SM∪{(x,y)} only if
δ′ ≤ δ, and|F ′| ≤ k respectively.

A Greedy Algorithm for δ-MOSS. Algorithm 2, as an approximation algorithm for
δ-MOSS, computes an objective subsetF ′, δ-nonconflicting with the setF of all objec-
tives in a greedy way. Starting with an empty setF ′, Algorithm 2 chooses in each step
the objectivefi which yields the smallest set�F ′ ∩ �i without considering the rela-
tionships in�0,δ

F ′∪{i},F until F ′ is δ-nonconflicting withF . For the correctness proof

of Algorithm 2 and the proof of its running time ofO(min{k3 ·m2, k2 ·m4}) we once
again refer to Appendix B. Note, that Algorithm 2 not necessarily yields a δ-minimal
or evenδ-minimum objective set wrtF .

A Greedy Algorithm for k-EMOSS. Algorithm 3 is an approximation algorithm for
k-EMOSS. It supplies always an objective subset of sizek but does not guarantee to
find the set with minimalδ. The greedy algorithm needs timeO(m2 · k3) since at most
k ≤ k loops with k calls of theδmin subfunction are needed. One call of theδmin

function needs timeΘ(m2 · k) and all other operations need timeO(1) each. Note, that
Algorithm 3 can be accelerated in a concrete implementationas the while loop can be
aborted if either|F ′| = k or δmin(F ′,F) = 0.



Algorithm 2 A greedy algorithm forδ-MOSS.
1: Init:
2: compute the relations�i for all 1 ≤ i ≤ k and�F

3: F ′ := ∅
4: R := X × X\ �F

5: while R 6= ∅ do
6: i∗ = argmin

i∈F\F′

{|(R∩ �i)\ �0,δ

F′∪{i},F\(F′∪{i}) |}

7: R := (R∩ �i∗)\ �0,δ

F′∪{i∗},F\(F′∪{i∗})

8: F ′ := F ′ ∪ {i∗}
9: end while

Algorithm 3 A greedy algorithm fork-EMOSS
1: Init:
2: F ′ := ∅
3: while |F ′| < k do
4: F ′ := F ′ ∪ argmin

i∈F\F′

{δmin (F ′ ∪ {i},F) wrt X }

5: end while

4 Experiments

In the following experiments, we apply the suggested algorithms to Pareto set approx-
imations, generated by a MOEA, in order to investigate (i) whether the proposed di-
mensionality reduction method yields noticeable smaller sets of objectives, (ii) how the
greedy algorithms perform, compared to the exact counterparts, and (iii) how our ap-
proach compares to the method proposed by Deb and Saxena. Theexperimental results
indicate that our method is not only useful to analyze the output of MOEAs but also
qualified for using it within an evolutionary algorithm. ThePareto set approximations,
used in the experiments, are generated with the IBEA algorithm [14] on a linux com-
puter (SunFireV60x with 3060MHz).
Are all objectives necessary?This issue has been studied for 9 different 0-1-knapsack
problem instances [15] and 3 instances for three different continuous test problems,
namely DTLZ2, DTLZ5, and DTLZ7 [7]. The populations of the indicator-based al-
gorithm IBEA after 100 generations were used as inputs for the greedy algorithms on
the δ-MOSS and thek-EMOSS problem. The population size was increased for higher
dimensional problems (5 objectives/ 100 solutions, 15 objectives/ 200 solutions, 25 ob-
jectives/ 300 solutions), where the other parameters of IBEA were chosen according to
the standard settings in the PISA package [1]. To compare the18 instances with their
different numbers of objectives and their different rangesof objective values, we choose
the δ values in percent of the population’s spread3 and thek values in percent of the
instance’s objective numberk.

The results in Table 1 show for all instances that an objective reduction is pos-
sible without changing the dominance structure between thesolutions, except for the

3 We define the maximal spreadS of a populationP as the maximal difference of the solutions’
objective values:S = maxfi∈F maxx,y∈P {|fi(x) − fi(y)|}.



δ-MOSS k-EMOSS

0% 10% 20% 40% 30% 60% 90%

knapsack: 100 items, 5 objectives, 100 solutions 5 5 5 5 0.9260.516 0.486
knapsack, 100 items, 15 objectives, 200 solutions 11 10 10 9 0.818 0.348 0.000
knapsack, 100 items, 25 objectives, 300 solutions 13 13 13 110.597 0.000 0.000
knapsack: 250 items, 5 objectives, 100 solutions 5 5 5 4 0.8590.697 0.280
knapsack, 250 items, 15 objectives, 200 solutions 11 11 10 9 0.762 0.342 0.000
knapsack, 250 items, 25 objectives, 300 solutions 12 12 12 110.575 0.000 0.000
knapsack: 500 items, 5 objectives, 100 solutions 5 5 5 4 0.7480.504 0.237
knapsack, 500 items, 15 objectives, 200 solutions 15 15 14 100.643 0.435 0.278
knapsack, 500 items, 25 objectives, 300 solutions 25 23 17 130.472 0.320 0.138
DTLZ2: 5 objectives, 100 solutions 5 5 5 5 0.991 0.970 0.920
DTLZ2: 15 objectives, 200 solutions 13 13 13 13 0.942 0.891 0.000
DTLZ2: 25 objectives, 300 solutions 18 18 18 18 0.832 0.782 0.000
DTLZ5: 5 objectives, 100 solutions 5 5 5 5 0.952 0.906 0.896
DTLZ5: 15 objectives, 200 solutions 11 11 11 11 0.860 0.803 0.000
DTLZ5: 25 objectives, 300 solutions 13 13 13 13 0.820 0.000 0.000
DTLZ7: 5 objectives, 100 solutions 5 5 1 1 0.135 0.134 0.132
DTLZ7: 15 objectives, 200 solutions 10 1 1 1 0.078 0.070 0.000
DTLZ7: 25 objectives, 300 solutions 11 1 1 1 0.050 0.000 0.000

Table 1. Sizes (forδ-MOSS) and relative errors (fork-EMOSS) of objective subsets for different
problems, computed with the greedy algorithms. Forδ-MOSS, theδ value is chosen relatively to
the maximum spread of the IBEA population after 100 generations; in the case ofk-EMOSS the
specified sizek of the output subset is noted relatively to the problem’s number of objectives.

5-objective-instances and the knapsack instances with 500items. It turns out that the
number of omissible objectives becomes the greater, the more objectives an instance
posesses. If we allow changes of the dominance structure within the dimensionality
reduction, further objectives can be omitted. However, theinfluence of a greater error
on the resulting objective set size depends significantly onthe problems. For example,
only small errors yield fundamentally smaller objective sets for the DTLZ7 instances,
while even a large error produces no further reduction for all DTLZ2 and DTLZ5 in-
stances. Similar results for theδ-MOSS problem apply for another study, regarding the
dominance structure on the whole search space for a small knapsack instance, cf. Fig. 3
and the next paragraph. By examining thek-EMOSS problem for the 18 instances in
Table 1, we see similar results in a different manner. The smaller the chosen size of the
resulting objective sets, the larger the error in the corresponding dominance structure.

Does the exact algorithm outperform the greedy one?Fig. 3 shows both the resulting
objective set sizes and the running times for the exact and the greedy algorithm on theδ-
MOSS problem for the 0-1-knapsack problem with four different numbers of objectives
and 7 items. The small number of items allows the examinationof the whole search
space instead of a Pareto set approximation. We performed the dimensionality reduction
for four different objective numbersk, five differentδ values, and five independant
instances for eachk-δ combination. For all four choices of the objective set size and all
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Fig. 3.Analysis of the whole search space for the knapsack problem with 7 items and comparison
between the exact algorithm (solid lines) and the greedy algorithm (dashed lines). The sizes of the
computed objective subsets are shown in the left plot and therunning times of the two algorithms
in the right one. Each data point is the average of five independent knapsack instances.

allowed errorsδ, the exact algorithm yields smaller objective subsets thanthe greedy
algorithm, while the running times, however, are considerably smaller for the greedy
algorithm. Note in this context, that Fig. 3 shows a log scaleplot for the running times.
Also note, that the running time of the greedy algorithm decreases with higherδ which
is not self-evident but significant, e.g., in a Wilcoxon ranksum test. Altogether, the
results confirm the above observation, that more objectivescan be omitted, the more
error is allowed. This effect strengthens with instances ofhigher dimension.
Is our method comparable to the dimensionality reduction method by Deb and
Saxena? Last, we compare our approach to the method of Deb and Saxena [6] onk-
EMOSS for a knapsack instance with 20 objectives. We apply both methods on a Pareto
front approximation for a knapsack instance with 100 items and 20 objectives, generated
with an IBEA run (100 generations, population size 50). Deb and Saxena’s approach is
implemented according to [6]. Because the principal-component-analysis-based objec-
tive reduction method of Deb and Saxena cannot handle thek-EMOSS problem directly,
we choose different threshold cuts (TC) such that all possible sizes of objective subsets
are computed, where the TC determines the number of examinedeigenvectors. Because
an additional eigenvector causes either 0, 1, or 2 additional objectives in the objective
subset, objective subsets with 1, 5, 6, and 10 objectives cannot be generated by the
method for the considered knapsack instance. Note, that Deband Saxena’s method also
performs an additive reduction of objectives using a reduced correlation matrix. Never-
theless, the method does not necessary yield, in general,δ-minimal sets, similar to our
greedy algorithm.

Table 2 shows the computed objective subsets together with the absolute and rela-
tive4 δ failures for the objective subsets computed with the methodof Deb and Saxena,
the exact and the greedy algorithm. In addition, Table 2 presents the used TC vales for

4 The relative failureδrel is the absolute failureδabsdivided by the spread of the IBEA popula-
tion.



the method of Deb and Saxena and Fig. 4 provides parallel coordinates plots for the
computed sets,0-nonconflicting with the set of all objectives. With more objectives, the
δ failure gets smaller for all methods. Although the exact algorithm shows, that only
7 objectives are necessary to yield no failure, the other twoapproaches perform no-
ticeable reductions of objectives. But since Deb and Saxena’s method is not especially
developed for k-EMOSS, the resulting objective sets causeslarger errors in the domi-
nance structure than the corresponding sets, computed withthe greedy algorithm. Note,
that the method of Deb and Saxena yields a0-nonconflicting subset of size 11 if one
chooses the proposed TC of95% [6].

5 Conclusions

In this paper we covered the problem of objective reduction in multiobjective optimiza-
tion. We presented a necessary and sufficient condition for the possibility of an omission
of objectives with a small change in the dominance structure. Besides that, we defined
a measure of the dominance structure’s variation when omitting a certain objective set
and gave a general notion of conflicts between objective sets. We introduced the prob-
lem of finding a minimum objective subset, maintaining the given dominance structure
with a given error and the problem of finding an objective subset with given size, chang-
ing the dominance structure least. In addition, we proposedan exact algorithm and fast
heuristics for both problems. The capability of this objective reduction method was
shown in experiments for outcomes of an MOEA on four different test problems and in
comparison with a recently published dimensionality reduction approach.

The presented approach is useful for reducing the number of objectivesafter a
MOEA run to simplify the decision maker’s process, and we arecurrently working
on the adequate integration of the presented dimensionality reduction method into an
existing MOEA to reduce the number of objectives adaptivelyduringan EA run.
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PCA-based k-EMOSS exact k-EMOSS greedy

# obj TC δabs δrel objective set δabs δrel objective set δabs δrel objective set

1 - - - - 552 0.9154 18 552 0.9154 18
2 0.0000-0.5410 603 1.0000 4,14∗ 485 0.8043 8,9 508 0.8425 6,18
3 0.5411-0.6704 546 0.9055 4,7,14 447 0.7413 6,12,15 462 0.7662 6,9,18
4 0.6705-0.7702 546 0.9055 4,14,16,19 363 0.6020 7,8,9,11 418 0.6932 6,9,14,18
5 - - - - 289 0.4793 3,4,8,9,20 369 0.6119 4,6,9,14,18
6 - - - - 129 0.2139 3,4,5,8,9,18 356 0.5904 2,4,6,9,14,18
7 0.7703-0.8442 466 0.7728 2,4,7,12,14,16,19 0 0.0000 1,5,8,11,15,17,20 324 0.5373 2,4,6,9,13,14,18
8 0.8443-0.9235 466 0.7728 2,4,5,7,12,14,16,19 0 0.0000 1,5,8,11,15,17,20 287 0.4760 2,4,6,8,9,13,14,18
9 0.9236-0.9472 357 0.5920 1,2,4,5,7,12,14,16,19 0 0.00001,5,8,11,15,17,20 0 0.0000 2,3,4,6,8,9,13,14,18

≥11 ≥ 0.9473 0 0.0000 1,2,4,5,7,12,13,14,16,19,20 0 0.0000 1,5,8,11,15,17,20 0 0.0000 2,3,4,6,8,9,13,14,18

Table 2. Comparison between the PCA-based approach of Deb and Saxena[6] with the exact and greedy algorithm fork-EMOSS on a Pareto front
approximation of a knapsack instance with 20 objectives.∗Note, that for0.3983 ≤ TC ≤ 0.5410, the original set is4, 7, 14, but the final reduction using
the reduced correlation matrix omits objective 7.
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(a) original problem formulation with 20 objectives
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(b) output of PCA-based approach
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(c) output of greedy algorithm
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(d) output of exact algorithm

Fig. 4. Visualization of the results from Table 2. The plots show theobjective values for the 50
solutions computed by an IBEA run on a knapsack instance with20 objectives. Figure (a) shows
the values for the complete set of 20 objectives. The other figures show the objective subsets,0-
nonconflicting with the whole objective set, computed by theapproach of Deb and Saxena (b), the
greedy algorithm (c), and the exact algorithm (d). Note, that instead of the real objective values,
the negative values−f(x) are shown.



A Proofs omitted in Section 2

Theorem 1. LetF ′ ⊆ F . ThenF ′ is δ-nonconflicting withF if and only if�F ′ ⊆�δ
F .

Proof. Let F ′ ⊆ F . Then for allδ ≥ 0 �F⊆�F ′⊆�δ
F ′, because∀i ∈ F : x �i y ⇒

∀i ∈ F ′ ⊆ F : x �i y ⇒ ∀i ∈ F ′ : fi(x) ≤ fi(y) ⇒ ∀i ∈ F ′ : fi(x)− δ ≤ fi(y) ⇒
∀i ∈ F ′ : x �δ

i y for all x, y ∈ X andδ > 0. But thenF ′ δ-nonconflicting withF
⇐⇒ F ′ ⊑δ F ∧ F ⊑δ F ′ ⇐⇒�F ′⊆�δ

F ∧ �F⊆�δ
F ′ ⇐⇒ �F ′⊆�δ

F . �

Theorem 2. LetF1,F2 two objective sets andX a decision space. If

δ′ := max
x,y∈X∧x�F1

y

i∈F2

{fi(x) − fi(y)} and δ′′ := max
x,y∈X∧x�F2

y

i∈F1

{fi(x) − fi(y)},

then,F1 is δ-nonconflicting withF2 wrt X for all δ ≥ max(δ′, δ′′) and no δ <

max{δ′, δ′′} exists such thatF1 is δ-nonconflicting withF2.

Proof. Let δ′, δ′′ ∈ R as defined above. Then

∀x,y ∈ X : [x �F1
y ⇒ ∀i ∈ F2 : fi(x) − fi(y) ≤ δ′]

∧ [x �F2
y ⇒ ∀i ∈ F1 : fi(x) − fi(y) ≤ δ′′]

⇐⇒ ∀x,y ∈ X : [x �F1
y ⇒ ∀i ∈ F2 : fi(x) − δ′ ≤ fi(y)]

∧ [x �F2
y ⇒ ∀i ∈ F1 : fi(x) − δ′′ ≤ fi(y)]

(∗)
=⇒ ∀δ ≥ max{δ′, δ′′} : ∀x,y ∈ X :

[

x �F1
y ⇒ ∀i ∈ F2 : fi(x) − δ ≤ fi(y)

]

∧
[

x �F2
y ⇒ ∀i ∈ F1 : fi(x) − δ ≤ fi(y)

]

⇐⇒ ∀δ ≥ max{δ′, δ′′} : ∀x,y ∈ X : [x �F1
y ⇒ x �δ

F2
y] ∧ [x �F2

y ⇒ x �δ
F1

y]

⇐⇒ ∀δ ≥ max{δ′, δ′′} :�F1
⊆�δ

F2
∧ �F2

⊆�δ
F1

⇐⇒ ∀δ ≥ max{δ′, δ′′} : F1 ⊑δ F2 ∧ F2 ⊑δ F1

⇐⇒ F1 δ-nonconflicting withF2 for all δ ≥ max{δ′, δ′′}

As a result of implication(∗) , it is clear thatF1 is either weaklyδ-conflicting or
stronglyδ-conflicting with F2 for any δ < max{δ′, δ′′} if δ′ andδ′′ are defined as
above. �



B Correctness proofs

In this section we provide the correctness proofs for the algorithms proposed in Sec. 3.2.

B.1 Greedy Algorithm for δ-MOSS

Before proving the correctness of Algorithm 2, we prove the next useful Lemma.

Lemma 1. LetF ′ ⊆ F andδ > 0. Then
(

∀x,y ∈ X : x �F ′ y ⇐⇒ x �0,δ

F ′,F\F ′ y

)

=⇒ F ′ is δ-nonconflicting withF .

Proof. Let F ′ ⊆ F andA :=
(

∀x,y ∈ X : x �F ′ y ⇐⇒ x �0,δ

F ′,F\F ′ y
)

. Then�F ′

=�0
F ′

A
=�0,δ

F ′,F\F ′ = (�0
F ′ ∩ �δ

F\F ′) ⊆�δ
F ′ ∩ �δ

F\F ′ =�δ
F , i.e., F ′ is δ-non-

conflicting withF according to Theorem 1. �

Theorem 3. Given the objective vectorsf(x1), . . . , f(xm) ∈ R
k and aδ ∈ R, Al-

gorithm 2 always provides an objective subsetF ′ ⊆ F , δ-nonconflicting withF :=
{1, . . . , k} in timeO(min{k3 · m2, k2 · m4}).

Proof. If we show that the invariant

∀(x,y) ∈ R := (X × X) \ R : x �F ′ y ⇐⇒ x �0,δ
F ′,F y (I)

holds during each step of Algorithm 2, the theorem is proved,due to Lemma 1 and the
fact thatx �F ′ y ⇐⇒ x �0,δ

F ′,F\F ′ y holds for all(x,y) ∈ X × X if Algorithm 2

terminates, i.e., ifR = ∅. We proof the invariant with induction over|R|.
Induction basis: When the algorithm starts,R = X × X\ �F , i.e.,R =�F . For

each(x,y) ∈ R =�F with x �F ′ y, i.e., x �∅ y with �∅= X × X , x �F y

holds and thereforex �0,δ

F ′,F\F ′ y. The other directionx �0,δ

F ′,F\F ′ y ⇒ x �F ′ y

always holds trivially. Thus, the invariant is correct for the smallest possible|R|, after
the initialization of the algorithm.

Induction step: Now let|F ′| > 0. Then, the invariant can only become false, if
we changeR (and with it R) in line 7 of Algorithm 2. Note, first, thatR becomes
only smaller by-and-by, i.e.,R contains more and more pairs(x,y) ∈ X × X . Such
a pair (x,y), already contained inR, stays inR forever and fulfills the implication
in the invariant (I) for everyF ′′ ⊇ F ′ if the pair fulfills it for at least oneF ′ ⊆ F .
If an {i} is inserted inF ′ to gainF ′′ ⊇ F ′, two possibilities for a pair(x,y) ∈ R

exist. First, ifx 6�F ′ y, thenx 6�F ′′ y for anyF ′′ ⊇ F ′ and alsox 6�0,δ

F ′′,F\F ′′ y.

Second, ifx �F ′ y, thenx �0,δ

F ′,F\F ′ y by induction hypothesis. Thus,x �δ
F\F ′ y

andx �δ
F\F ′′ y for anyF ′′ ⊇ F ′. If x �F ′′ y for anyF ′′ ⊇ F ′, thenx �0,δ

F ′′,F\F ′′ y

and if x 6�F ′ y for anyF ′′ ⊆ F ′ thenx 6�0,δ

F ′′,F\F ′′ y. Thus, a pair(x,y) ∈ R will
always fulfill the implication in (I) for anyF ′′ ⊇ F ′ if it fulfills it for F ′. Beyond, a
pair (x,y) ∈ X × X will only be included inR during the update ofR in line 7 if



(i) (x,y) 6∈ (R∩ �i∗) or if
(ii) (x,y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗})

In case (i), the invariant stays true because for all new pairs (x,y) in R, (x,y) ∈
R∧ (x,y) 6∈�i∗ holds. Thus,(x,y) 6∈ ∩i∈(F ′∪{∗}) �i =�F ′ and, therefore,(x,y) 6∈

�0,δ

F ′∪{i∗},F\(F ′∪{i∗}) as well. In the case (ii),(x,y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗}) and triv-
ially (x,y) ∈�F ′∪{i∗}, i.e., the invariant remains true, too.

The running time of Algorithm 2 results mainly from the computation of the re-
lations in line 6. The initialization needs timeO(k · m2) altogether. As the relation
�0,δ

F ′∪{i∗},F\(F ′∪{i∗}) is known from line 6, the calculation of the newR in line 7

needs timeO(m2); line 8 needs only constant time. The computation of the relations
�0,δ

F ′∪{i},F\(F ′∪{i}) in line 6 needs timeO(k · m2) for eachi, thus, line 6 needs time

O(k2 · m2) altogether. Hence, the computation time for each while loopcycle lasts
time O(k2 · m2). Because in each loop cycle,|F ′| increases by one, there are at most
k cycles before Algorithm 2 terminates. On the other hand, Algorithm 2 terminates if
R = ∅, i.e., after at most|X × X | = O(m2) cycles of the while loop, if in each cycle
|R| decreases by at least one—what is true due to Theorem 3. The total running time of
Algorithm 2 is, therefore,O(max{k, m2} · k2 · m2) = O(max{k3 · m2, k2 · m4}). �

B.2 Exact Algorithm

Theorem 4. Algorithm 1 solves both theδ-MOSS and thek-EMOSS problem exactly in
timeO(m2 · k · 2k).

Proof. To prove the correctness of Algorithm 1, we use Lemma 2. It states that Algo-
rithm 1 computes for each considered setM of solution pairs a set of pairs(F ′, δ′)
of an objective subsetF ′ ⊆ F with the corresponding correctδ′ value (i, ii) that are
minimal (iii, iv). Moreover, the algorithm computes solelyminimal pairs (v, vi). With
Lemma 2, the correctness of Algorithm 2 follows directly from the lines 12 and 13.

The upper bound on the running time of Algorithm 1 results from the size of the
setSM . For all of theO(m2) solution pairs, the setS{(x,y)} can be computed in time
O(k2) = o(k · 2k), but the computation time forSM ⊔ S{(x,y)} can be exponential in
k. As SM contains at mostO(2k) objective subsets of sizeO(k), the computation of
SM ⊔S{(x,y)} in line 9 is possible in timeO(k ·2k) and, therefore, the whole algorithm
runs in timeO(m2 · k · 2k). �

For the following Lemma, we need a new short notation forδ failures regarding a
setM of solution pairs.

Definition 8 LetF ′ ⊆ F andM ⊆ X × X . Thenδ(F ′, M) := δmin(F ′,F) wrt all
solution pairs(x,y) ∈ M .

Lemma 2. Given an instance of theδ-MOSS or thek-EMOSS problem. LetF ′ ⊆ F ,
F ′ 6= ∅, an arbitrary objective set and

M := {(x,y) ∈ X × X | (x,y) considered in Algorithm 1 so far}.



Then there exists always a(F ′′ ⊆ F ′, δ′′) ∈ SM , such that the following six statements
hold.

(i) δ(F ′′, M) = δ′′

(ii) δ(F ′, M) = δ′′

(iii) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊂ F ′ ∧ δ′′′ ≤ δ′′

(iv) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊆ F ′ ∧ δ′′′ < δ′′

(v) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊃ F ′ ∧ δ′′′ ≥ δ′′

(vi) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊇ F ′ ∧ δ′′′ > δ′′

Proof. The statements (iii)-(vi) hold for anyM due to the definition of the⊔-union in
line 9. We, therefore, prove only (i) and (ii) by mathematical induction on|M |.

Induction basis: Let|M | = 1, i.e.,M := {(x,y)}.

(a) x ∼F y: Thus,∀i ∈ F : fi(x) = fi(y) and ∀F ′ ⊆ F ,F ′ 6= ∅ :
δ(F ′, {(x,y)}) = 0. By definition of⊔, Algorithm 2 computesS{(x,y)} =
{({i}, 0) | 1 ≤ i ≤ k} correctly according to (i) and (ii).

(b) WLOG x �F y ∧ ¬(y �F x): We can divideF into two disjoint sets
F=,F< with F= ∪ F< = F , F< 6= ∅, ∀i ∈ F= : x �i y ∧ y �i x,
and∀i ∈ F< : x �i y ∧ ¬ (y �i x), i.e.,∀i ∈ F= : fi(x) = fi(y) and
∀i ∈ F< : fi(x) < fi(y). Furthermore,∀i ∈ F< : δ({i}, {(x,y)}) = 0 and
∀i ∈ F= : δ({i}, {(x,y)}) = δ > 0 with δ := maxj∈F<

{fj(y) − fj(x)}
independent of the choice ofi. Therefore,S{(x,y)} contains all pairs({i}, δi)

with 1 ≤ i ≤ k andδi :=

{

0 if i ∈ F<

δ if i ∈ F=
. (i) and (ii) hold, because for any

F ′ ⊆ F , F ′ 6= ∅, δ′ := δ(F ′, {(x,y)}) is either0 or δ, depending on
F ′ ⊆ F= (⇒ δ′ = δ > 0) orF ′ 6⊆ F= (⇒ δ′ = 0).

(c) x ‖F y: We can divideF into three well-defined disjoint setsF<, F>, and
F= with F< ∪F> ∪ F= = F , F< 6= ∅, F> 6= ∅, ∀i ∈ F< : fi(x) < fi(y),
∀i ∈ F> : fi(x) > fi(y), and∀i ∈ F= : fi(x) = fi(y). For all singletons
{i} with 1 ≤ i ≤ k, δi := δ({i}, {(x,y)}) > 0 holds, i.e.,({i}, δi) ∈
S{(x,y)} for all i ∈ F and

δi :=







δ< := maxj∈F>
{fj(x) − fj(y)} if i ∈ F<

δ> := maxj∈F<
{fj(y) − fj(x)} if i ∈ F>

δ= := maxj∈F\{i}{|fj(x) − fj(y)|} if i ∈ F=

.

In addition,S{(x,y)} contains only those pairs({i, j}, 0) with i ∈ F< ∧ j ∈
F>. Other pairs({i, j}, δ) with i 6= j ∧ δ > 0 are not inS{(x,y)} due to the
⊔-union in line 7.
Now, letF ′ ⊆ F . ThenF ′

<,F ′
>,F ′

= ⊆ F ′ can be defined similarly toF>,
F>, andF= for F . The statement (i) holds due to the⊔-union and (ii) holds
sinceδ(F ′, {(x,y)}) can only take a valueδ′ ∈ {0, δ<, δ>, δ=} and a pair
(F ′′ ⊆, δ′) exists inS{(x,y)}:
1. δ(F ′, {(x,y)}) = 0 if F ′

> ≤ ∅∧F ′
< ≤ ∅. But then,i ∈ F ′

> andj ∈ F ′
<

exist and({i, j}, 0) ∈ S{(x,y)}.
2. WLOG δ(F ′, {(x,y)}) = δ< if F ′

> = ∅ ∧ F ′
< 6= ∅. Then there exists

ani ∈ F ′
< and({i}, δ<) ∈ S{(x,y)}



3. δ(F ′, {(x,y)}) = δ= if F ′
> = ∅∧F ′

<∅. ThenF ′ ⊆ F= and there exists
at least onei ∈ F ′

= such that({i}, δ=) ∈ S{(x,y)}.

Induction step: LetF ′ ⊆ F an arbitrary objective set withδ(F ′, M ∪ {(x,y)}).
Assume that (i)-(vi) holds forM and{x,y}. Thus,∃(F ′′′, δ′′′) ∈ SM with F ′′′ ⊆ F ′

and (i)-(vi) and∃(F ′′′′, δ′′′′) ∈ S{(x,y)} with F ′′′′ ⊆ F ′ and (i)-(vi).
To show that an(F ′′ ⊆ F ′, δ′′) exists inSM∪{(x,y)} := SM ⊔ S{(x,y)} that fulfills

(i) and (ii), we defineF ′′ := F ′′′ ∪ F ′′′′ ⊆ F ′ andδ′′ := max{δ′′′, δ′′′′}. Because
δ(F ′′′, M) = δ(F ′, M), δ(F ′′′, M) = δ(F̂ , M) holds for anyF ′′′ ⊆ F̂ ⊆ F ′ and
because ofδ(F ′′′′, {(x,y)}) = δ(F ′, {(x,y)}), δ(F ′′′, {(x,y)}) = δ(F̂ , {(x,y)})
holds for anyF ′′′ ⊆ F̂ ⊆ F ′. Together withF ′′′ ∪ F ′′′′ ⊆ F ′, this yieldsδ(F ′′′ ∪
F ′′′′, M) = δ(F ′, M) = δ′′′ as well asδ(F ′′′ ∪ F ′′′′, {(x,y)}) = δ(F ′, M) = δ′′′′.
This follows (i) and (ii):

δ′′ = max{δ(F ′′′ ∪ F ′′′′, M), δ(F ′′′ ∪ F ′′′′, {(x,y)})}

= δ(F ′′′ ∪ F ′′′′, M ∪ {(x,y)}) (i)

= max{δ(F ′, M), δ(F ′, {(x,y)})} = δ(F ′, M ∪ {(x,y)}) (ii)

�


