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Abstract. Most of the available multiobjective evolutionary algbrits (MOEA)
for approximating the Pareto set have been designed forestetton low dimen-
sional problems< 3 objectives). However, it is known that problems with a high
number of objectives cause additional difficulties in temwhshe quality of the
Pareto set approximation and running time. Furthermome décision making
process becomes the harder the more objectives are invéhveds context, the
question arises whether all objectives are necessary semethe problem char-
acteristics. One may also ask under which conditions sudgattive reduction
is feasible, and how a minimum set of objectives can be coeapun this pa-
per, we propose a general mathematical framework, suitadswer these three
questions and corresponding algorithms, exact and hieuoisés. The heuristic
variants are geared towards direct integration into théutiemary search pro-
cess. Moreover, extensive experiments for four well-kno@st problems show
that substantial dimensionality reductions are possibléehe basis of the pro-
posed methodology.

1 Motivation

The field of multiobjective evolutionary algorithms (MOEA#s been rapidly growing
over the last decade, and most of the publications deal with or three-dimensional
problems [4]; however, studies addressing high-dimeradiproblems are rare [10, 3].
The main reason is that problems with a high number of objestcause additional
challenges wrt low-dimensional problems. Current altoni, developed for problems
with a low number of objectives, have difficulties to find a dd@areto set approxi-
mation for higher dimensions [7]. Even with the availalild@f sufficient computing

resources, some methods are practically not useable fagyrarhimber of objectives;
for example, algorithms based on the hypervolume indicgphave running times

exponential in the number of objectives [9, 13]. Moreovee, decision maker’s choice



of an appropriate trade-off solution from a set of altenetolutions, generated by a
MOEA, becomes difficult or infeasible with many objectivés.this context, several
questions arise. On the one hand, one may ask whether it @bjw$o omit some
of the objectives while preserving the problem charadiessunder which conditions
such an objective reduction is feasible, and how a minimuno&ebjectives can be
computed. On the other hand, if one allows changes in thelgmobtructure while
omitting objectives, one may ask how to quantify such stmaitchanges and how to
compute a minimum set of objectives according to such a @tiak measure. These
research topics have gained only little attention in thexditure so far. In some studies
[5,11,12], the issue of objective conflicts has been dismlidsowever, the issue under
which conditionsjn genera) objectives can be omitted and how a minimum objective
subset can be computed has not been addressed. Deb and [Bapenposed a method
for reducing the number of objectives, based on principaiponent analysis. Roughly
speaking, their method aims at keeping those objectivescraexplain most of the
variance in the objective space. However, it is not cleandi) the objective reduction
alters the dominance structure and (ii) what the quality géaerated objective subset
is (N0 minimum guarantee).

In a previous work [2], we have tackled the above questionshfe case that the
problem structure must not be changed. In particular, we Ipagsented the minimum
objective subset problenMOSS) which asks which objective functions are essential,
have introduced a general notion of conflicts between olbgsets, and have proposed
an exact algorithm and a greedy heuristic for i@ hardMOSS problem. In practice,
though, one may be interested in “allowing errors”, i.eglgichanges of the dominance
structure, in order to obtain a smaller minimum set of olijest This continuative
study addresses this issue. The key contributions are

— a generalized notion of conflicting objective sets extegd#j,

— the introduction of a measure for variations of the domimestoucture

— the definition of the problem&MOSS andk-EMOSS, as an extension of tHdOSS
problem to the objective reduction with allowed problenusture variations,

— an exact algorithm, capable to solve both, dA&IOSS and thek -EMOSS problem,
as well as heuristics for both problems,

— experimental results on four different high-dimensionakpems, and

— a comparison between our approach and Deb and Saxena’schiéiho

As such, this paper provides a basis for online dimensityn@duction in evolutionary
multiobjective algorithms.

2 A Measure for Changes of the Dominance Structure

Without loss of generality, in this paper we consider a mination problem witht: ob-
jective functionsf; : X — R, 1 < i < k, where the vector functiofi := (f1,..., fx)
maps each solutior € X to an objective vectof (x) € R*. Furthermore, we assume
that the underlying dominance structure is given by the vRsaketo dominance relation
which is defined as follows= r:= {(x,y) |x,y € X AVf; € F': fi(x) < fi(y)},
whereF’ is a set of objectives wittF" C F := {fy,..., fi}. For better readability,



we will sometimes only consider the objective functiondlies, e.g..F' = {1,2,3}
insteadF’ = {f1, fo, f3}. We sayx weakly dominatey wrt the objective sefF’
(x =7 y)if (x,y) €=X#. A solutionx* € X is calledPareto optimalif there is
no otherx € X that weakly dominateg™* wrt the set of all objectives. The set of all
Pareto optimal solutions is calldareto setfor which an approximation is sought. If
there exist two incomparable Pareto-optimal solutiensk,, i. ., neither weakly dom-
inates the other onex(||x2), then the cardinality of the Pareto front is greater thalf
two solutionsx;, xo are indifferent, i. e., they are mapped to the same objegteeor
(x1 ~ X3), then the relatiorx is only a preordét but not a partial order oiX .

In [2] we have proposed a method that computes for givenisolgetA C X
a minimum subsef”’ of objectives with# C {f1,..., fi} such that the dominance
structure is preserved. In other words, JBrholds thatx <7 y <= x =¢7, 51 Y
forallx,y € A. Thisis illustrated in the following example.

Example 1 Fig. 1 shows the parallel coordinates plot, cf. [11], of tereolutionsx;
(solid line), x5 (dashed) ancs (dotted) that are pairwise incomparable.
At a closer inspection, the objective functigfis  vaiues

and f3 indicate redundancy in the problem for- D
mulation, as the corresponding relatiogs, and s . ;
=y, are the samexs <y x; <y, xpaswellas e

X3 <y, X1 3, X2. The approach of [2], there- ./?\.—.

fore, computes the séff, f2, f4} as a minimum
objective set which preserves the dominance struic-

ture, i.e.x =4 5, 7,y yifandonlyifx <y, 14 e
because all solutions are also pairwise incompa- } } } | -
rable wrt to { f1, f2, f4}. That there is, for this n f2 f3 gq OVl
example, no objective subset with less than three

objectives, preserving the dominance structuré&;ig. 1. Parallel coordinates plot for

can be easily checked by hand. three solutions and four objectives.

In practice, one is often interested in a further dimendign@duction at the cost of
slight changes in the dominance structure. This poses tgign how such a structural
change can be quantitatively measured and how one can cempuinimum objective
set for a given threshold on the degree of change.

A first attempt for a further objective reduction by using thdominancé [16]
relation instead of the weak dominance relation, as praposf?], failed. The use of
thee-dominance relation yields larger objective sets whemaiig a larger error, what
is both counterintuitive and impractical, cf. Fig. 2 for mad@m example. Nevertheless,
we give another intuitive approach of further dimensiayaleduction, including the
definition of a measure for changes in the dominance streictur

Example 2 Consider, once again, Fig. 1 and the objective sutfSet= {fs, f4}. We
observe that by reducing the set of objectives/p the dominances change: on the

L A relationrel is called a preorder iff it is reflexive and transitive; a pd= that is antisym-
metric is denoted as partial order.
2z = {xy)|xyEXAVie F CF: fi(x)—ec < fi(y)}
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Fig. 2. The approach in [2] with different-dominance relations instead of the weak Pareto domi-
nance yields larger objective subsets for an instance ofi8@amly chosen objective vectors and
16 objectives.

one handx; <z x2; on the other hand; Az x». In this sense, we make an error:
the objective values of;, had to be smaller by an additive term &f= 0.5, such that

x1 =<F xo would actually hold. Thig value can be used as a measure to quantify the
difference in the dominance structure inducedfyand F. By computing thé values

for all solution pairsx,y, we can then determine the maximum error. The meaning of
the maximuna value is that whenever we wrongly assume that = y, we also know
thatx is not worse thary in all objectives by an additive term 6f For 7/ := { f5, f4},

the maximum error i$ = 0.5; for 7' := { f2, f1}, the maximuna is 4.

In the following, we formalize the definition of error, acdarg to the above exam-
ple. The background for that is provided by the (additsx&lominance relation and a
generalization of the notion of conflicts between objectigts, defined in [2]. Before,
we introduce a general Pareto dominance relation. Subeséeghservations on the new
dominance relation show the properties of thg . .., d;)-dominance relation, which
are essential for the problems and algorithms proposectinetimainder of this paper.

Definition 1 Let 01,...,0r € R and F,...,F, objective subsets. We define the
(01,...,0,)-dominance relation oX for all x,y € X as

x j?;;::jé}k yi=V1<i<k:YjeF:fix)—0d<fily)

Note, that the defined, ..., d;)-dominance relation is a generalization of familiar
dominance relations on all objectivéslike the weak dominance relation:==<% or
thee-dominance relatior®:==<%, defined above. Furthermore, we defit /::jof,,
ji::j?fi}, andjf::jf,ffi} for arbitrary 7/ C F and{f;} € F. The notion for a
relation’s restriction to an objective subs€twill be used for any relation, such dg
and~ gz,

Observation 1 Let 61,...,6;,07,...,6, € RwithVl < i < k : §; < ¢, and

Fi, ..., Fr, Fi,...,Fr objective sets withvl < ¢ < k : F/ C F,;. Then both

01,0k 5 01,..,0k 01,-,0k
2E R C2A s and = C =FF holds.



. 01,0050k & 3y..0s0 )
Observation 2 Furthermore <" "7 = (<, X%, and=z"" » == =

Observation3 Leté e Rand f; € Fforall1 <: < k. Then

M =i==5%.
i€F
Now, we come to the mathematical definition of error, acaggdio Example 2,
including a general definition of conflicting objective sets

Definition 2 Let 7, and 7> two objective sets. We defifie C° F :«<==5 C=<%..

Definition 3 LetF; andF; two objective sets. We call

— Fi §-nonconflictingwith F, iff (F C° Fo) A (Fo T2 Fy).

— F1 weakly é-conflicting with 7, if either — (F, C° F,) A (F2 C° Fi) or
(.7:1 o .7:2) AN (.7:2 co .7:1).

— Fi stronglys-conflictingwith 7 if - (Fy 20 7)) A = (Fa2 E° F).

The above definition of-nonconflicting objective sets is useful for changing a jeob
formulation by considering a different objective set. If altiobjective optimization
problem uses the objective s€t and one can prove thdf; is 5-nonconflicting with
another objective sef,, one can easily replacg; with 7, and can be sure that in
the new formulation, for anyk,y € X, x either weakly dominateg wrt 7> or x &-
dominatesy wrt >, if x weakly dominatesy wrt 7; ande = 4. In the special case
of an objective subsef’ C F, §-nonconflicting with all objectivesF, the definition
fits the intuitive measure of error in Example 2. If an objeetsubsetF’ C F is 4-
nonconflicting with the sef of all objectivesx -dominatey, i.e.,Vi € F : fi(x) —
0 < fi(y), whenevex weakly dominateg wrt the reduced objective s&t'. We, then,
can omit all objectives i \ F’ without making a larger error thanin the omitted
objectives.

The following theorems on the definitions &fconflicts are essential for the algo-
rithms, we present in Sec. 3.2. The proofs are omitted heredu be found in Ap-
pendix A.

Theorem 1. Let 7' C F. ThenF' is §-nonconflicting withF if and only if <z C j‘}.

Theorem 2. Let 71, F, two objective sets andl a decision space. If

o= max {fi(x) - fily)} and¢":= = max  {fi(x) - fi(y),}
X, YEXAX=ZFY X, YyEXNX=S 7,y
i€F2 1€F,

then, 7, is d-nonconflicting with7, wrt X for all § > max(¢’,46"”) and nog <
max{d’, "} exists such thaf; is d-nonconflicting with7.

Note, that if 7; C F3, the theorem can be shortenedApis 6-nonconflicting withF,
forall § > ¢’ but for nod < ¢ if &' := maxxnyXijflyyiefz{fi(x) — fily)}-

Based on the above conflict definitions, we will now formalike notion ofé-
minimal andd-minimum objective sets including the corresponding nofar § = 0 in
[2] and, furthermore, present a condition under which aeatbje reduction is possible.



Definition 4 Let F be a set of objectives antl € R. An objective sefF’ C F is
denoted as

— d-minimal wrt F iff (i) ' is §-nonconflicting withF, (ii) F’ is ¢’-conflicting with
Fforall &' < 4, and (iii) there exists n7”  F’ that is5-nonconflicting with7;

— §-minimum wrt F iff (i) ' is §-minimal wrt F, and (ii) there exists n&&” c F
with |F”| < |F'| that isé-minimal wrt F.

A §-minimal objective set is a subset of the original objeditieat cannot be further
reduced without changing the associated dominance steuafith an error of at most
0. A 6-minimum objective set is the smallest possible set of nabbbjectives that
preserves the original dominance structure except forram efd. By definition, every
d-minimum objective set ig-minimal, but not alls-minimal sets are at the same time
d-minimum.

Definition 5 A setF of objectives is called-redundanif and only if there exist§’ C
F thatisd-minimal wrt F.

This definition ofs-redundancy represents a necessary and sufficient canébtiche
omission of objectives while the obtained dominance retatireserve the most of the
initial dominance relation according to the definition ofcgrin Example 2.

3 Identifying Minimum Objective Subsets

After the definition of an objective subset’s error regagdits dominance structure,
we present the two problendsMOSS andk-EMOSS, dealing with the two questions,
mentioned in the introduction: On the one hand, the comjmutaff an objective subset
of minimum size, yielding a (changed) dominance structuita given error, and, on
the other hand, the computation of an objective subset eingbize with the minimum
error. Furthermore, we present an exact algorithm, capsltdelving both the)-MOSS
and thek-EMOSS problem, and afterwards approximation algorithms for eafctne
two problems, that are fast and designed for the integratitmrthe search process.

3.1 Thed-M3SS and k-EMOSS Problems

Based on the definitions in Sec. 2, the problsNI MUM OBJECTI VE SUBSET
(MOSS), proposed in [2], can be characterized as follows. Giveruliobjective opti-
mization problem, a given instance consists of the4ef solutions, the generalized
weak Pareto dominance relatiefy=, and for all objective functiong; € F the sin-
gle relations=<;, where(, -, ., =i = <#. We then ask for &-minimum objective set
F' C Fwrt F. This problem can easily be generalized to the followindpgm, when
allowing an errow.

Definition 6 Given a multiobjective optimization problem, the problésvi NI MUM
OBJECTI VE SUBSET (6-MOSS) is defined as follows.

Instance: The objective vectorsf(xi),...,f(x,») € RF of the solutions
X1,...,Xm € AC X andad € R.

Task: Compute a@-minimum objective subsgt’ C F wrt F.



Note, that the limitation of the instances to the whole deamace description is not
essential here. Since the objective values are only knowa $mnall set of solutions in
practice, and not for the entire search space, Pareto sebapyations, e.g., given by a
MOEA's population, can also be the underlying gebf solutions. Note also, that the
setA and the relations;, <= =<; are only given implicitly in &-MOSS instance. Nev-
ertheless§-MOSS is a generalization d¥0SS and thereforéVP hard, as the following
theorem shows.

Theorem 3. §-MOSS is N'P-hard, sinced-MOSS =+ MOSS.

Proof. The only difference between the problet$/0SS and MOSS are their input instances.
Thus, we can show a Turing reductioAMOSS <, MOSS as well asMOSS <1 0-MOSS, and
we solely have to show an efficient transformation from orstaince into the other and vice
versa. Kr) If we pool together indifferent solutions in the relatiofis first, we can compute the
objective values for thé-MOSS instance with a topological sorting of the relatiots simplified
this way. The topological number of solutionin the topological sorting of<; yields itsith
objective value, i.e., two indifferent solutions wrt rétat <; get the same objective value and a
solutionx gets a higher value in objectivé thany iff x <; x Ay A; x. The topological sorting
needs timeD(k - m?) and the required search for indifferent solutions befameetD (m?) for
each of thek relations=;. The whole instance transformation, thus, needs tinge* - m?).
(>71) We can compute the relations; and <~ simply from the given objective vectors in time
O(k - m?) by considering each pait,y € X successively.

Since we know from [2] thaOSS is A/P-hard,0-MOSS is N'P-hard as a result of the above
transformation, i.e §-MOSS, in general, is\P-hard, too. O

As a variation of thé-MOSS problem, we introduce the problem of finding an objective
subset of size< k with minimum error according tg .

Definition 7 Given a multiobjective optimization problem, the problémNI MUM
OBJECTI VE SUBSET OF SIZE k WTH M NI MUM ERROR (k-EMOSS) is de-
fined as follows.

Instance: The objective vectorsf(x;),...,f(xm) € RF of the solutions
X1,...,Xm € AC X andak € R.
Task: Compute an objective subsgt C F which has sizd 7’| < k and is

0-nonconflicting withF with the minimal possiblé.

3.2 Algorithms

An Exact Algorithm. Algorithm 1, as a generalization of the exact algorithm fo t
MOSS problem [2], solves both thé&MOSS and thek-EMOSS problem exactly in ex-
ponential time. Thus, it can only solve small problem instmin reasonable time.
The basic idea is to consider all solution paissy) successively and store ifiy,
all minimal objective subsetg’ together with the minimad’ value such thatF’ is
¢’-nonconflicting with the sefF of all objectives when taking into account only the
solution pairs inM, considered so far.

The algorithm uses a subfunctién, (F1, F2), that computes the minimalerror
for two solutionsx, y € X, such thatF; is §-nonconflicting with7; wrt x, y according



Algorithm 1 An exact algorithm fop-MOSS andk -EMOSS
1: Init:

M:=0, Sy:=10

: for all pairsx,y € X, x # y of solutionsdo

Sty =0

for all objective pairs, j € F, not necessary# j do
computed;; == dmin({i} U {4}, F) wrtx,y
Sty 7= Sy U {IF U7} di5)

end for

SmufGey)y = M U Sy

100 M :=MU{(x,y)}

11: end for

12: Output ford-MOSS:  (Smin, Omin) IN Sar With minimal size|smin| anddmin < §

13: Output fork-EMOSS: (s, 0) in Sar with size|s| < k and minimald

©oNORr®N

to Theorem 2. Furthermore, Algorithm 1 computes the uniaf two sets of objective
subsets with simultaneous deletion of abminimal pairs(F’, §’):

S USy = {(.7:1 Ufz,max{51,62}) | (.7:1,(51) €51 A (.7:2,52) €S
A B(F1,01) € St, (F5,65) € So (.7—"{ UFy C Fi1 UFe Amax{d, d5} < max{51,62})
A A(F1,61) € S1, (F3,085) € So (.7-'{ UF5 C Fi1UFe Amax{d], 65} < Inax{51,52})}

The correctness proof of Algorithm 1—as well as the prooftefrunning time of
O(m? - k - 2¥)—can be found in Appendix B. Note, that the exact algorithm ba
easily parallelized, as the computation of the $gts ), are independent for different
pairs(x,y). It also can be accelerated if line 9 of Algorithm 1 is taildte either the
d-MOSS or thek-EMOSS problem by including a paifF”, 0") into Sysug(x,y)y only if
¢’ < 4, and|F’| < k respectively.

A Greedy Algorithm for §-MOSS. Algorithm 2, as an approximation algorithm for
0-MOSS, computes an objective subsgt, 6-nonconflicting with the sef of all objec-
tives in a greedy way. Starting with an empty $&t Algorithm 2 chooses in each step
the objectivef; which yields the smallest set= N =<; without considering the rela-

tionships injo’fsu{i} ~ until 7" is 6-nonconflicting with7. For the correctness proof

of Algorithm 2 and the proof of its running time 6f(min{k3 - m?, k% - m*}) we once
again refer to Appendix B. Note, that Algorithm 2 not nece§ggields ad-minimal
or evend-minimum objective set wif.

A Greedy Algorithm for k-EMOSS. Algorithm 3 is an approximation algorithm for
k-EMCSS. It supplies always an objective subset of sizbut does not guarantee to
find the set with minimad. The greedy algorithm needs timEm? - k3) since at most
k < k loops with k calls of thed,,;, subfunction are needed. One call of thg,
function needs tim&(m? - k) and all other operations need tirf&1) each. Note, that
Algorithm 3 can be accelerated in a concrete implementat#otie while loop can be
aborted if eithetF’| = k or 6,50 (F', F) = 0.



Algorithm 2 A greedy algorithm fos-MOSS.

1: Init:
2. compute the relations; forall 1 < i < kand=<x
3 F=0
4. R:=XxX\=r
5: while R # () do
. -k . 0,6
6: " =argmin{|(RN <)\ 2RO A (FUL)) I}

IEF\F/
. . 0,0
T B= (RO 2\ 22000 Ao
8 Fi=Fu{}

9: end while

Algorithm 3 A greedy algorithm fok-EMOSS

Init:

2. Fl=0

3: while | 7’| < k do

4 F'i=F Uargmin {dmin (F' U {i}, F) wrt X }
5

i€F\F!
. end while

4 Experiments

In the following experiments, we apply the suggested atbors to Pareto set approx-
imations, generated by a MOEA, in order to investigate (iethler the proposed di-
mensionality reduction method yields noticeable sma#¢s sf objectives, (ii) how the
greedy algorithms perform, compared to the exact countes;pand (i) how our ap-
proach compares to the method proposed by Deb and Saxenexpé&émental results
indicate that our method is not only useful to analyze th@uoubdf MOEAS but also
qualified for using it within an evolutionary algorithm. TRareto set approximations,
used in the experiments, are generated with the IBEA algor[tL4] on a linux com-
puter (SunFireV60x with 3060 MHz).
Are all objectives necessary?This issue has been studied for 9 different 0-1-knapsack
problem instances [15] and 3 instances for three differentiouous test problems,
namely DTLZ2, DTLZ5, and DTLZ7 [7]. The populations of thedinator-based al-
gorithm IBEA after 100 generations were used as inputs feigieedy algorithms on
the §-MOSS and thek-EMOSS problem. The population size was increased for higher
dimensional problems (5 objectives/ 100 solutions, 15ahjes/ 200 solutions, 25 ob-
jectives/ 300 solutions), where the other parameters ofAlBEre chosen according to
the standard settings in the PISA package [1]. To comparé&&hastances with their
different numbers of objectives and their different rangfezbjective values, we choose
the § values in percent of the population’s spréaad thek values in percent of the
instance’s objective numbér

The results in Table 1 show for all instances that an objeat@duction is pos-
sible without changing the dominance structure betweersthgions, except for the

% We define the maximal spreatiof a populationP as the maximal difference of the solutions’
objective valuesS = maxy,er maxx,yepr{|fi(x) — fi(y)|}.



6-MOSS k-EMOSS
0% 10% 20% 40% 30% 60% 90%

knapsack: 100 items, 5 objectives, 100 solutons 5 5 5 5 0®366 0.486
knapsack, 100 items, 15 objectives, 200 solutions 11 10 10 .81800.348 0.000
knapsack, 100 items, 25 objectives, 300 solutions 13 13 13 01997 0.000 0.000
knapsack: 250 items, 5 objectives, 100 solutons 5 5 5 4 0697 0.280
knapsack, 250 items, 15 objectives, 200 solutions 11 11 10 .96200.342 0.000
knapsack, 250 items, 25 objectives, 300 solutions 12 12 12 01975 0.000 0.000
knapsack: 500 items, 5 objectives, 100 solutions 5 5 5 4 00884 0.237
knapsack, 500 items, 15 objectives, 200 solutions 15 15 14 01843 0.435 0.278
knapsack, 500 items, 25 objectives, 300 solutions 25 23 17 014872 0.320 0.138

DTLZ2: 5 objectives, 100 solutions 5 5 5 5 0.991 0.970 0.920
DTLZ2: 15 objectives, 200 solutions 13 13 13 13 0.942 0.89000.
DTLZ2: 25 objectives, 300 solutions 18 18 18 18 0.832 0.78M00.
DTLZ5: 5 objectives, 100 solutions 5 5 5 5 0.952 0.906 0.896
DTLZ5: 15 objectives, 200 solutions 11 11 11 11 0.860 0.80X0.
DTLZ5: 25 objectives, 300 solutions 13 13 13 13 0.820 0.00m00.
DTLZ7: 5 objectives, 100 solutions 5 5 1 1 0.135 0.134 0.132
DTLZ7: 15 objectives, 200 solutions 10 1 1 1 0.078 0.070 0.000
DTLZ7: 25 objectives, 300 solutions 11 1 1 1 0.050 0.000 0.000

Table 1. Sizes (for6-MOSS) and relative errors (fok-EMOSS) of objective subsets for different
problems, computed with the greedy algorithms. &&/0SS, the § value is chosen relatively to
the maximum spread of the IBEA population after 100 genanatiin the case d-EMOSS the
specified sizé& of the output subset is noted relatively to the problem’s beinof objectives.

5-objective-instances and the knapsack instances withté0ts. It turns out that the
number of omissible objectives becomes the greater, the wigectives an instance
posesses. If we allow changes of the dominance structurenwtite dimensionality
reduction, further objectives can be omitted. However,itifleence of a greater error
on the resulting objective set size depends significantl{herproblems. For example,
only small errors yield fundamentally smaller objectivésser the DTLZ7 instances,
while even a large error produces no further reduction fob@alZz2 and DTLZ5 in-
stances. Similar results for tlleMOSS problem apply for another study, regarding the
dominance structure on the whole search space for a smalskok instance, cf. Fig. 3
and the next paragraph. By examining tEMOSS problem for the 18 instances in
Table 1, we see similar results in a different manner. Thdlenthe chosen size of the
resulting objective sets, the larger the error in the cpwasding dominance structure.

Does the exact algorithm outperform the greedy oneFig. 3 shows both the resulting
objective set sizes and the running times for the exact angréedy algorithm on the
MOSS problem for the 0-1-knapsack problem with four differentmhers of objectives
and 7 items. The small number of items allows the examinaifathe whole search
space instead of a Pareto set approximation. We perforneatirtrensionality reduction
for four different objective numbers, five differentd values, and five independant
instances for each-6 combination. For all four choices of the objective set sizé all



b f >~ exact —+— exact
number o TR greedy ---x--- i greedy ---x-—-
objectives needed AN runtimes [ms]

16
14
12

1e+09
1e+08
1e+07
1e+06
100000

Fig. 3. Analysis of the whole search space for the knapsack problighiAitems and comparison
between the exact algorithm (solid lines) and the greedyrdlgn (dashed lines). The sizes of the
computed objective subsets are shown in the left plot andutivging times of the two algorithms
in the right one. Each data point is the average of five indépeinknapsack instances.

allowed errorgy, the exact algorithm yields smaller objective subsets thargreedy
algorithm, while the running times, however, are considgramaller for the greedy
algorithm. Note in this context, that Fig. 3 shows a log sgdd¢ for the running times.
Also note, that the running time of the greedy algorithm dases with highef which
is not self-evident but significant, e.g., in a Wilcoxon rasum test. Altogether, the
results confirm the above observation, that more objectaesbe omitted, the more
error is allowed. This effect strengthens with instancesigifier dimension.
Is our method comparable to the dimensionality reduction méhod by Deb and
Saxena? Last, we compare our approach to the method of Deb and Sa&goa k-
EMOSS for a knapsack instance with 20 objectives. We apply bothhouds on a Pareto
front approximation for a knapsack instance with 100 itents20 objectives, generated
with an IBEA run (100 generations, population size 50). Deth 8axena’s approach is
implemented according to [6]. Because the principal-congod-analysis-based objec-
tive reduction method of Deb and Saxena cannot handle-HH&0SS problem directly,
we choose different threshold cuts (TC) such that all pdssizes of objective subsets
are computed, where the TC determines the number of examigedvectors. Because
an additional eigenvector causes either 0, 1, or 2 additimijactives in the objective
subset, objective subsets with 1, 5, 6, and 10 objectivesatdre generated by the
method for the considered knapsack instance. Note, thaabeél$axena’s method also
performs an additive reduction of objectives using a redwgrelation matrix. Never-
theless, the method does not necessary yield, in gerenghimal sets, similar to our
greedy algorithm.

Table 2 shows the computed objective subsets together gtakisolute and rela-
tive* § failures for the objective subsets computed with the metifddeb and Saxena,
the exact and the greedy algorithm. In addition, Table 2etssthe used TC vales for

4 The relative failure’,q is the absolute failuré,,s divided by the spread of the IBEA popula-
tion.



the method of Deb and Saxena and Fig. 4 provides paralledowaes plots for the
computed setg)-nonconflicting with the set of all objectives. With more etfjives, the
o failure gets smaller for all methods. Although the exacbathm shows, that only
7 objectives are necessary to yield no failure, the otherdpproaches perform no-
ticeable reductions of objectives. But since Deb and Sagemethod is not especially
developed for K-EMOSS, the resulting objective sets calasger errors in the domi-
nance structure than the corresponding sets, computedheitireedy algorithm. Note,
that the method of Deb and Saxena yield&@onconflicting subset of size 11 if one
chooses the proposed TC%f% [6].

5 Conclusions

In this paper we covered the problem of objective reductianiltiobjective optimiza-
tion. We presented a necessary and sufficient conditioh&possibility of an omission
of objectives with a small change in the dominance strucBesides that, we defined
a measure of the dominance structure’s variation when imi#t certain objective set
and gave a general notion of conflicts between objective ¥étsntroduced the prob-
lem of finding a minimum objective subset, maintaining theegidominance structure
with a given error and the problem of finding an objective stilbgth given size, chang-
ing the dominance structure least. In addition, we propasegikact algorithm and fast
heuristics for both problems. The capability of this objeetreduction method was
shown in experiments for outcomes of an MOEA on four diffétest problems and in
comparison with a recently published dimensionality reiucapproach.

The presented approach is useful for reducing the numbebjefctivesafter a
MOEA run to simplify the decision maker’s process, and we @argently working
on the adequate integration of the presented dimensigmaliuction method into an
existing MOEA to reduce the number of objectives adaptigeisingan EA run.
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PCA-based k-EMOSS exact k-EMOSS greedy

# obj TC dabs  Orel objective set dabs  Orel objective set  daps  Orel objective set

1 - - - - 552 0.9154 18 552 0.9154 18

2 0.0000-0.5410 603 1.0000 4714 485 0.8043 8,9 508 0.8425 6,18

3 0.5411-0.6704 546 0.9055 4,7,14 447 0.7413 6,12,15 462660.76,9,18

4  0.6705-0.7702 546 0.9055 4,14,16,19 363 0.6020 7,8,9,11 18 0.6932 6,9,14,18

5 - - - - 289 0.4793 3,4,8,9,20 369 0.6119 4,6,9,14,18

6 - - - - 129 0.2139 3,4,5,8,9,18 356 0.5904 2,4,6,9,14,18

7 0.7703-0.8442 466 0.7728 2,4,7,12,14,16,19 0 0.00008,1B15,17,20 324 0.5373 2,4,6,9,13,14,18

8 0.8443-0.9235 466 0.7728 2,4,5,7,12,14,16,19 0 0.00098,11,15,17,20 287 0.4760 2,4,6,8,9,13,14,18
9 0.9236-0.9472 357 0.5920 1,2,4,5,7,12,14,16,19 0 0.00088,11,15,17,20 0 0.0000 2,3,4,6,8,9,13,14,18
>11 > 0.9473 0 0.0000 1,2,4,5,7,12,13,14,16,19,20 0 0.00008,1515,17,20 0 0.0000 2,3,4,6,8,9,13,14,18

Table 2. Comparison between the PCA-based approach of Deb and SE{enéh the exact and greedy algorithm farEMOSS on a Pareto front

approximation of a knapsack instance with 20 objectivbiate, that fo10.3983 < T'C' < 0.5410, the original set ig, 7, 14, but the final reduction using
the reduced correlation matrix omits objective 7.
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(a) original problem formulation with 20 objectives
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(c) output of greedy algorithm (d) output of exact algorithm

Fig. 4. Visualization of the results from Table 2. The plots show abgective values for the 50
solutions computed by an IBEA run on a knapsack instance 2@tbbjectives. Figure (a) shows
the values for the complete set of 20 objectives. The othardgyshow the objective subseis,
nonconflicting with the whole objective set, computed bydpproach of Deb and Saxena (b), the
greedy algorithm (c), and the exact algorithm (d). Notet thstead of the real objective values,
the negative values f(x) are shown.



A Proofs omitted in Section 2

Theorem 1. Let 7' C F. ThenF' is §-nonconflicting withF if and only if <z C j‘}.

Proof. Let 7 C F. Thenforalld > 0 <zC<zC=<%,, becaus&i € F:x <; y =
VieF CF:x=z,y=VieF : fix)< fily)=VieF : fi(x)— < fily) =
VieF i x jf y forall z,y € X andd > 0. But thenF’ §-nonconflicting withF
S F D FAFEF &= 25 C25 N 25C=l = 2pC=5 O

Theorem 2. Let F;, F> two objective sets andl a decision space. If

&= max {fi(x)— fi(y)} and &’ :=  max  {fi(x)— fi(y)},
X, yEXAX=Fy X, yEXAX=Fy ¥y
i€Fo i€ F1

then, 7, is §-nonconflicting with7, wrt X for all § > max(¢’,8”) and nod <
max{d’, "} exists such thaf; is d-nonconflicting with7s.

Proof. Let¥’,¢” € R as defined above. Then
Vx,y € X [x 2p y = Vi€ Fo: fi(x) — fily) <]
ANx 2py=VieFi: fi(x) = fily) <0"]
S VX yeX: [x2ny=>VieFa: filx) =8 < fily)]
ANx=2gpy=VieFi: filx) =8 < fily)]
YL vs > max{¢, 6"} :Vx,y € X : [x Xy = Vi€ Pt fi(x) =0 < fi(y)]
ANx=my=VieFi: fi(x)—6< fi(y)]
= V6 >max{d,§"} :Vx,y e X : [x X5y =X jgﬁ VINX=2py=x jgfl ]
V8 > max{d',6"} :=p C <% A <5, C <%
=V >max{d, 0"} FL O FoNFo C° F
<= F, 6-nonconflicting with7, for all § > max{d’, 6"}
As a result of implication(x) , it is clear thatF; is either weaklyj-conflicting or

strongly 0-conflicting with 7 for anyd < max{¢’,d"”} if ¢’ ando” are defined as
above. O



B Correctness proofs
In this section we provide the correctness proofs for therélyns proposed in Sec. 3.2.

B.1 Greedy Algorithm for §-MOSS

Before proving the correctness of Algorithm 2, we prove thgtuseful Lemma.

Lemmal. LetF’ C Fands > 0. Then

(VX yEX i x<py < x <% A y) = F’is §-nonconflicting with%.

Proof. Let 7/ C F andA := (VX yEX X =<py<=Xx <f, AF Y ) Then=<rz
A 0,6 .

==5 =20 pm= EF N =he) €% N =55 =25 le, F s é-non-

conflicting with F according to Theorem 1. O

Theorem 3. Given the objective vectors(x,), ..., f(x,) € R¥ and ad € R, Al-
gorithm 2 always provides an objective subgétC F, §-nonconflicting withF :=
{1,...,k} intime O(min{k3 - m?, k? - m*}).

Proof. If we show that the invariant
Vix,y) ER:==(X xX)\R: x=py<x=p3,y 0)

holds during each step of AIgorithm 2, the theorem is prodes,to Lemma 1 and the
fact thatx <z y < x <F AF Y holds for all(x,y) € X x X if Algorithm 2
terminates, i.e., i = (.. We proof the invariant with induction ovéR|.

Induction basis: When the algorithm staris,= X x X\ =, i.e,,R ==x. For
each(x,y) € R %;Withx <r y, le,x =<p y with -<@_ XxX,x 2y
holds and therefora <F AF Y The other directiorx <f, E Y = X_j]:/ y
always holds trivially. Thus, the invariant is correct foetsmallest possiblgr|, after
the initialization of the algorithm.

Induction step: Now let#’| > 0. Then, the invariant can only become false,
we changel? (and with it R) in line 7 of Algorithm 2. Note, first, thaf? becomes
only smaller by-and-by, i.e contains more and more paifs,y) € X x X. Such
a pair (x,y), already contained iR, stays inR forever and fulfills the implication
in the invariant (1) for everyr” 2 F' if the pair fulfills it for at least one’ C F.

If an {i} is inserted inF’ to gainF” 2 F’, two possibilities for a paifx,y) € R
exist. First, ifx A7 y, thenx Az y for any 7/ O F’ and alsox ﬁofi f\f,/ y
Second, ifx <z y, thenx <f, AF Y by induction hypothesis. Thus, <¢
andx <f\f,, y foranyF” O F'. If x <. y foranyF” O F’, thenx <f,, AFn Y
and ifx Az y forany 7’ C F' thenx ﬁf,,f\f,/ y. Thus, a pair(x,y) € R will
always fulfill the implication in (1) for any=" > F" if it fulfills it for 7. Beyond, a
pair (x,y) € X x X will only be included inR during the update oR in line 7 if

if

=RF Y



() (x,y) & (RN =) orif
N 0,6
(i) (x,¥) € 22upy,m@Fui

In case (i), the invariant stays true because for all newsgairy) in R, (x,y) €
R A (x,y) & Zi~ holds. Thus(x,y) & Nic(rug-}) =i = =7 and, therefore(x,y) ¢
jgﬁu{i*}f\(f,u{i*}) as well. In the case (ii)x,y) € j(;fsu{i*}f\(f,u{i*}) and triv-
ially (x,y) €27ug-}, i-€., the invariant remains true, too.

The running time of Algorithm 2 results mainly from the contgtion of the re-
lations in line 6. The initialization needs tim@(k - m?) altogether. As the relation
jgf’fu{i*}f\(f,u{i*}) is known from line 6, the calculation of the nef¥ in line 7
needs timeD(m?); line 8 needs only constant time. The computation of theticela
jgf’fu{i}f\(f,u{i}) in line 6 needs time(k - m?) for eachi, thus, line 6 needs time
O(k? - m?) altogether. Hence, the computation time for each while lopge lasts
time O(k? - m?). Because in each loop cyclegg’| increases by one, there are at most
k cycles before Algorithm 2 terminates. On the other handpAtgm 2 terminates if
R =0, i.e., after at mostX x X| = O(m?) cycles of the while loop, if in each cycle
| R| decreases by at least one—what is true due to Theorem 3. Hheuoning time of

Algorithm 2 is, thereforeQ (max{k, m?} - k? - m?) = O(max{k3 - m?,k? - m*}). O

B.2 Exact Algorithm

Theorem 4. Algorithm 1 solves both the MOSS and thek-EMOSS problem exactly in
timeO(m? - k - 2).

Proof. To prove the correctness of Algorithm 1, we use Lemma 2. testthat Algo-
rithm 1 computes for each considered 8étof solution pairs a set of pairgF’,d")
of an objective subset” C F with the corresponding correét value (i, ii) that are
minimal (iii, iv). Moreover, the algorithm computes soletyinimal pairs (v, vi). With
Lemma 2, the correctness of Algorithm 2 follows directlyrfréhe lines 12 and 13.
The upper bound on the running time of Algorithm 1 resultsrfrine size of the
setSy;. For all of theO(m?) solution pairs, the sefyx ), can be computed in time
O(k?) = o(k - 2%), but the computation time fo$; LI S{(x )} can be exponential in
k. As Sys contains at mosD(2*) objective subsets of siz@(k), the computation of
S US{(x,y)} inline 9is possible in im®(k - 2*) and, therefore, the whole algorithm
runs in timeO(m? - k - 2%). O

For the following Lemma, we need a new short notationfféailures regarding a
setM of solution pairs.

Definition 8 Let 7 C FandM C X x X.Thend(F’', M) := Spmin(F', F) wrt all
solution pairs(x,y) € M.

Lemma 2. Given an instance of th&MOSS or the k-EMOSS problem. LetF’ C F,
F' # (), an arbitrary objective set and

M :={(x,y) € X x X |(x,y) considered in Algorithm 1 so far



Then there exists always(&” C F',46”) € Sy, such that the following six statements
hold.

(I) 6(.7:”,M) ="
(i) o(F, M) =6"
(III) ﬁ(]_‘l/l,élll) c SM CFM c FLAST < 5"
(iv) A(F",8") € Sy F" CF A" <&
(V) ﬁ(]:///,él//) E SM . ]_‘/// :) ]_‘/ /\ é‘/// Z 6//
(V|) ﬁ(]_‘l/l,élll) E SM . ]_‘I/I ;) ]_‘/ /\ 6/// > 6//

Proof. The statements (iii)-(vi) hold for any/ due to the definition of thel-union in
line 9. We, therefore, prove only (i) and (ii) by mathemaltioduction on|M|.
Induction basis: LetM| =1, i.e.,M = {(x,y)}.

(@ x ~x y: Thus,Vi € F : fi(x) = fi(y) andVF C F,F # 0 :
S(F',{(x,y)}) = 0. By definition ofLJ, Algorithm 2 computesS(x )} =
{({i},0) |1 < i < k} correctly according to (i) and (ii).

(b) WLOG x =7 y A =(y =# x): We can divideF into two disjoint sets
Fo,FewWithF_UF. = F, Fc #0,Vie Fo : x 23 YAy =i X,
andvi € Fo :x X, yA-(y =i x), 1.e,Vi € Fo : fi(x) = fi(y) and
Vi e Fe: fi(x) < fi(y). Furthermoreyi € F. : §({i}, {(x,y)}) = 0 and
Vie Fo: 0({i}, {(x,y)}) = ¢ > 0Owith ¢ := maxjer_{f;(y) — f;(x)}
independent of the choice afTherefore Sy« ,; contains all pairg{i}, ;)

0ifieFe

0 ifie F-

F CF,F #0,8 = §F,{(x,y)}) is either0 or §, depending on

FCF_(=8=06>00F¢F_ (=6 =0).

x ||# y: We can divideF into three well-defined disjoint sef5., F-~, and

FoWthFoUFSUF- =F, Fe £ 0, Fs #0,Vi € Fo: fi(x) < fi(y),

Vi e Fs @ fi(x) > fi(y), andVi € F_ : f;(x) = fi(y). For all singletons

{i} with 1 < i < k, 0; := 0({i},{(x,¥)}) > 0 holds, i.e.,({i},d;) €

S{(x,y)} foralli € 7 and

{ 0c = maX;e r. {f]( j(y)} if i e Fe

with1 < i < kandd; := { . (i) and (ii) hold, because for any

(c

~—

x)— [
0; = 0 == maxjer_{f;(y) — fi(x)} ifieFs .

0= = maxjem\ (i} {15 (%) = f5(y)l} if i € Fo

In addition, Sy (x,y); contains only those pairfgi,j},0) withi € F- A j €
F-. Other pair{s,j},0) with i # j A § > 0 are not inSy(x ), due to the
L-unionin line 7.
Now, let 7" C F. ThenF., F_,FL C F' can be defined similarly t@-,
F-,andF_ for F. The statement (i) holds due to theunion and (ii) holds
sinced(F’,{(x,y)}) can only take a valu& € {0,d,0~,0-} and a pair
(.7:” G, 6/) exists inS{(xyy)}:
1. 0(F {(x,y)}) =0if FL <OAF. < 0.Butthen; € F. andj € F_
existand({i, j},0) € S{x,y)}-
2. WLOGH(F',{(x,y)}) = o< if FL = 0 A FL # 0. Then there exists
ani € F_ and({i},0<) € Syx,y)}



3. 0(F {(x,y)}) = o if FL. = OAFL0. ThenF’ C F_ and there exists
atleast oné € F_ such that{i},d-) € S{xy)-

Induction step: LetF” C F an arbitrary objective set with(F', M U {(x,y)}).
Assume that (i)-(vi) holds foM and{x,y}. Thus,3(F",§") € Sy with 7" C F’
and (i)-(vi) and3(F"",6"") € St(x,y)y With 7" C F" and (i)-(vi).

To show that afF"” C F',4") exists inSarug(x,y)} = Sur U Sqx,y)} that fulfills
(i) and (i), we definer” := F"” U F" C F" andd” := max{d",0""}. Because
S(F™, M) = &(F, M), 5(F", M) = §(F, M) holds for anyF" C ]-' C F' and
because of (7", {(x,y)}) = 0(F {(x.y)}), 0(F" {(xy)}) = 0(F {(xy)})
holds for anyF"”" C FCF. Together with 7" U F"" C F’, this yieldso (F"" U
F'" M) =6(F, M) =§" as well ass(F" U F" {(x,y)}) = 6(F', M) = §".
This follows (i) and (ii):

6" = max{§(F" UF" M), 5(F" UF" {(x,y)})}
_ 6(.7:/” Uf””,MU {(x,y)}) (|)
= maX{é(}",M),é(]:', {(xy)H} = 6(~7:/7MU {(x,¥)}) (i)



