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Abstract. While genetically inspired approaches to multi-objective optimization
have many advantages over conventional approaches, they do not explicitly ex-
ploit directional/gradient information. This paper describes how steepest-
descent, multi-objective optimization theory can be combined with EC concepts
to produce improved algorithms. It shows how approximate directional infor-
mation can be efficiently extracted from parent individuals, and how a multi-
objective gradient can be calculated, such that children individuals can be placed
in appropriate, dominating search directions. The paper describes and intro-
duces the basic theoretical concepts as well as demonstrating some of the con-
cepts on a simple test problem.


1 Introduction


Multi-objective optimization is a challenging problem in many disciplines, from prod-
uct design to planning [2][3][7][9][10]. Evolutionary computation (EC) approaches to
multi-objective problems have had many successes in recent years. In the realm of
real-valued, single-objective optimization, recent results with EC algorithms that more
explicitly exploit gradient information have shown distinct performance advantages
[4]. However, as will be shown in this paper, the rationale employed in these EC algo-
rithms must be adjusted for multi-objective EC. This paper provides a theoretical
framework and some empirical evidence for these adjustments.


This paper describes how evolutionary multi-objective optimization can efficiently
utilize approximate, local directional (gradient) information. The local gradients asso-
ciated with each point in the population can be combined to produce a multi-objective
gradient (MOG). The MOG indicates whether the design is locally Pareto optimal, or
if the design can be improved further by altering the parameters along the direction
defined by the negative MOG.


The main problem associated with the conventional approach to steepest-descent
optimization is the need to estimate the local gradient for each design at each iteration.
Therefore, viewing the problem from an EC perspective (where a population of de-
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signs is maintained at every iteration) allows the directional information to be obtained
from neighboring samples (mates), thus lowering the number of design evaluations
that must be performed. This paper presents theory on how this information should be
used. In describing the theory, insight is gained into the structure of the multi-
objective problem by analyzing the geometry of the directional cones at different
stages of learning. Reasons for the apparently rapid rate of initial convergence (but
poor rate of final convergence) in typical multi-objective EC algorithms are also de-
scribed.


2 Directional Multi-objective Optimization


In recent years, there have been a number of advances in steepest descent-type algo-
rithms applied to differentiable, multi-objective optimization problems [1][5]. While
they suffer from the same disadvantages as their single objective counterparts (slow
final convergence, convergence to local minima), they possess both an explicit test for
convergence and rapid initial convergence both of which are desirable properties in
many practical design problems. This section reviews the basic concepts of these gra-
dient-based, multi-objective algorithms, describing how to calculate a multi-objective
gradient, how it can be used to test for optimality and how it can be used to produce a
dominating search direction. In addition, insights are given into the structure of the
multi-objective EC optimization problem during initial and final convergence, and
reasons for the change in the convergence rate are provided. It should be acknowl-
edged that the concepts described in this paper are only directly applicable to differen-
tiable multi-objective design problems. However, a large number of complex shape
and formulation optimization problems [7][8] are differentiable. Moreover, the theory
presented may aid the reasoning used in EC algorithm design on a broader class of
problems.


2.1 Single-Objective Half-Spaces


One way to generalize the conventional, single-objective steepest descent algorithms
to a multi-objective setting is by considering which search directions simultaneously
minimize each objective. For any single objective (for instance, the jth objective, fj,) a
search direction will reduce the objective’s value if it lies in the corresponding nega-
tive half-space, H-, whose normal vector is the negative gradient vector, as illustrated
in Fig. 1. This fact is exploited when second-order, single-objective optimization algo-
rithms are derived, because (as long as the Hessian is positive definite) the search
direction will lie in the negative half-space. Therefore, the objective function will
decrease in value when points are moved into this half space. It is interesting to note
that this concept of a half-space is independent of the objective function’s form and
does not depend on whether the point is close to the local minima or not. It simply
states that a small step in any direction will either increase or decrease the objective.
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Fig. 1. The half-spaces defined for single-objective f
j
. The objective’s contours are illustrated as


well as the gradient for the current design x.


Also, although one must appeal to probabilistic notions to do so, this idea can be
related to modern, real-valued EC, typified by [4]. In such algorithms one can consider
those population members selected to survive and recombine to be on one side of an
approximate half-space division in the search space, and those deleted from the popu-
lation without recombination to be on the other side of this division. Note that in the
high-performance real-valued EC algorithm introduced in [4], the new individuals
generated by GA operators are biased to lie near the selected “parents”, thus enforcing
the idea of exploiting the preferred side of this approximate half-space.


2.2 Directional Cones and Multi-objective Search


For the multi-objective space, any search direction that lies in the negative half-space
of all the objectives will simultaneously minimize them, and the search direction will
be “aligned” with the negative gradients associated with each objective. This is illus-
trated in Fig. 2.
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Fig. 2. Directional cones for a 2 variable, 2 objective optimization problem. The Pareto set is
the curve between dotted centers, and the directional cone that simultaneously minimizes both
objectives is shaded gray.
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This region is known as a “directional cone” and in fact, the m half-spaces partition
the n-dimensional variable space into 2m directional cones, within which each objec-
tive either increases or decreases in value. This is illustrated in Fig. 3. This interpreta-
tion is useful to define search directions that span the Pareto set, rather than converg-
ing to it, where some objectives will increase in value and others decrease.


It is also useful to consider the size of the directional cone during initial and final
stages of optimization process. When a point is far from the local optima, typically the
objective gradients are aligned and the directional cone is almost equal to the half-
spaces associated with each objective. Therefore, if the search directions are randomly
chosen, there is a 50% chance that a search direction will simultaneously reduce all
the objectives. However, when a point is close to the Pareto set/front, the individual
objective gradients are contradictory and in almost opposite directions. This follows
directly from the definition of Pareto optimality, where, if one objective is decreased,
another objective must increase. The size of the directional cone is small. Therefore, if
a search direction is selected at random, there is only a small probability that it will lie
in this directional cone and thus simultaneously reduce all the objectives. The likeli-
hood is that it will lie in a cone such that some of the objectives will increase and the
others decrease, thus spanning the Pareto front, rather than converging to it. This is
one of the main differences between single and multi-objective design problems.


Appealing once again to probabilistic notions, this reasoning suggests that the chil-
dren individuals in a multi-objective EC algorithm should be created to lie within the
directional cone. Early in the search process, this is likely to be the same as any given
single-objective half space, suggesting that children individuals should be placed near
the parents, as in [4]. Later in the search process, this is not the case, and one could
expect that locating children near parents will not lead to efficient convergence to-
wards the Pareto front.
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Fig. 3. The directional cones for a 2 parameter, 2 objective design problems during initial (a)
and final (b) stages of convergence. The cones are labeled with the sign of the corresponding
change in objectives and as can be seen, the descent cone {-,-} shrinks to zero during the final
stages of convergence.
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2.3 Test for Local Pareto Optimality


The interpretation of multi-objective optimization described in the last section is ap-
propriate, as long as the design is not Pareto optimal (i.e., as long as there exists a
descent cone that will simultaneously reduce all the objectives). To test whether a
design is locally Pareto optimal [5] is an important part of any design process and this
can be formulated as:


))((N xJ∈
for any non-zero vector 0≥ , where N(J) is the null space of the Jacobian matrix, J,
and R(JT) is the range of JT. The Jacobian is the matrix of derivative of each variable
with respect to each objective. The equation above is equivalent to:


0xJ =)(
The geometric interpretation of this test in objective space (shown in Fig. 4) is that
there exists a non-negative combination of the individual gradients that produces an
identically zero vector. When this occurs, any changes to the design parameters will
affect only R(JT), which is orthogonal to �. Therefore, no changes to the design pa-
rameters will produce a descent direction that simultaneously reduces all the objec-
tives. This is the limiting case of the situation described in Section 2.2, during the final
stages of convergence, when the gradients become aligned, but in the opposite direc-
tion. When the alignment is perfect (local Pareto optimality), any change to the design
parameters will increase at least one of the objectives, so the movement will be along
the Pareto front, rather than minimizing all the objectives. In fact, for an optimal de-
sign, R(JT) defines the local tangent to the Pareto front and thus defines the space that
must be locally sampled in order to generate the complete local Pareto set/front.
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Fig. 4. Geometrical interpretation of the Null space and Range of the Jacobian matrix when a
design is Pareto optimal. The vector � specifies the local normal to the Pareto front.


Once again appealing by analogy to [4], note that concentration of “children” indi-
viduals in an EC algorithm near “parents” is not likely to result in individuals within
the appropriate directional cone, in a way that is analogous to points being biased to
the appropriate half-space in single-objective search. Therefore, to exploit analogous
advantages offered by modern, real-valued EC in multi-objective settings, it is appro-
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priate to consider further operations as a part of the search process. These are outlined
in the following section.


2.4 Multi-objective Steepest Descent


A multi-objective steepest descent search direction must lie in the directional cone that
simultaneously reduces all the objectives. This specification can be made unique
[1][5] by requiring that the reduction is maximal which can be formulated as:
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where J is the local Jacobian matrix, s is the calculated search direction and � repre-
sents the smallest reduction in the objectives’ values. This is the primal form of the
Quadratic Programming (QP) problem in (n+1) dimensions. It requires as large a
reduction in the objectives as possible for a fixed sized variable update. When all the
constraints are active, the primal form of the multi-objective optimization problem
reduces each objective by the same amount and thus the current point is locally pro-
jected towards the Pareto front at 45o in objective space (assuming that the objectives
have been scaled to a common range).
It can be shown that when the current point is not Pareto optimal, this problem has a
solution such that �* is negative, and the calculated search direction s* therefore lies
in the appropriate directional cone. However, it may be easier to solve this problem in
the dual form [1][5]:
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This is now a QP problem in m variables. Once it has been solved, the corresponding
search direction is given by:


** Js −=
This search direction will simultaneously reduce all objectives and do so in a maximal
fashion, as described by the primal problem. Hence, it is known as the multi-objective
steepest descent algorithm. The Multi-Objective Gradient (MOG) that is given by:


*Jg = (3)


is calculated from a non-negative linear combination of the individual gradients.
Therefore, the multi-objective search direction will be “aligned” with the individual
gradients, although it should be noted that the degree of alignment, �*, will dynami-
cally change as the point moves closer to the Pareto set. The link with weighted opti-
mization should also be noted, but it should be stressed that this procedure is valid for
both convex and concave Pareto fronts.
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In order to implement this calculation, it is necessary to obtain the Jacobian J. This
can be an expensive operation, especially for practical design problems where it is
necessary to perform some form of local experimental design. This is considered fur-
ther in the next section.


2.5 Dimensionality Analysis


This theory also provides some relevant results about the problem’s dimensionality.
Firstly, the dimension of both the Pareto set and front has the upper bound min(n,m-1).
This can be derived by simply considering the rank of the Jacobian when a point is
Pareto optimal. The dimension of the parameter-objective space mapping is locally
rank(J) = min(n,m). When a point is Pareto optimal, this reduces the dimension of the
objective space by one. In fact, rank(J) is the actual local dimension which is bounded
above by min(n,m-1). This is an important result, as it specifies the dimension of the
sub-space that a population-based EC algorithm must sample. An EC population must
be large enough to adequately sample a space of this size. It is also important as it
provides an approximate bound of how the number of objectives and variables should
be balanced. The dimension of the actual Pareto set and front is bounded by min(n,m-
1), so it may be unnecessary to have either n >> m or n << m. Secondly, it is not al-
ways necessary to consider all the design parameters in order to whether a descent
direction can be calculated. Suppose that only a single variable is considered for ad-
aptation. As long as this change, either positive or negative, simultaneously reduces all
the objectives, it is possible to state that the current point is not Pareto optimal and
there exists a descent direction in the current sub-space. This is true for any sub-set of
the design parameters considered, and is important as it may allow sparse Jacobian
estimates to be used in certain situations.


3 Directional Evolutionary Computation


The work described in this section addresses the question of how to estimate a domi-
nating search direction, based on the information contained in a local neighborhood of
designs. In the language of EC, this essentially examines how to perform an “intelli-
gent” crossover in order to produce new designs that dominate the old ones in the
population (by placing children in the directional cone). The aim is to minimize the
number of actual objective evaluations, by maximally re-using information contained
in the population. For each point in the population, a set of local neighbors is used to
approximate the local Jacobian and thus calculate the MOG. By searching along this
path, a new point will be found that dominates the starting point. In the worst case,
each recombination of this sort involves estimating the Jacobian, which is an order
n*m computation, and the solution of a quadratic program, which is approximately an
O(min{m,n}3) calculation. However, while this is computationally expensive com-
pared to many conventional crossover operations, this computational expensive is
likely to be vastly outweighed by the expense of evaluating fitness values for the
population (as is usually the case in EC).
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3.1 Population-Based Estimation of the Multi-objective Gradient


To begin to understand how the local population can help to determine an “intelligent”
crossover operation, consider the trivial case where the local population consists of a
point that is dominated by the current point, see Figure 6. By moving along the path s,
where s = x-x1, a new design will be found such that it dominates the current design
f(x).
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Fig. 5. Calculating a descent direction when the local neighborhood about a design, x, consists
of a single dominated design x1.


In general, the situation is rarely this simple. During the latter stages of conver-
gence, designs rarely dominate each other as they are spread out along the local esti-
mate of the Pareto set/front. In this situation, it is possible to use the primal/dual
steepest descent theory described in Section 2.4, as long as the Jacobian information
can be generated efficiently. Suppose that a set of r, = min{m,n}, linearly independent
designs in the local neighborhood have been identified. Typically, these would be
closest set of designs to the current design of interest. As illustrated in Fig. 6, the dif-
ferences in the design parameters and the objectives along the search directions si can
be measured. Two matrices then represent this difference information:
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and the local Jacobian can be estimated by
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Therefore, the differences between the point of interest and each member of the local
neighborhood is used to estimate gradient information, which is then utilized (2) to
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calculate the MOG. This relies on the local neighborhood being sufficiently small so
that the gradients can be estimated sufficiently accurately.
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Fig. 6. Estimating the Jacobian matrix by using difference information along the indicated
search directions si.


3.2 Population-Based Pareto Optimality


When the local Jacobian is calculated using the members of the local population to
estimate difference information, it is assumed that the designs are sufficiently well
distributed such that they span the necessary r, dimensions (note that this may be a
subset of the complete design space) and that they are sufficiently close to the central
point so that any estimation error is small. When this is true, the test for Pareto opti-
mality is described in Section 2.3 and can be (naively) implemented by testing
whether the MOG is sufficiently small.


It should be noted that while this paper has concentrated on describing techniques
for testing for optimality and calculating descent directions, it is possible to use the
geometric insights about the shape of the Pareto set/front in order to specify search
directions that span the Pareto set/front as specified by R(JT). This will be described in
a later paper that analyses the complete algorithm.


4 Example


The use of directional information for multi-objective optimization will now be dem-
onstrated on a simple test problem with 2 variables and 2 objectives. Specifically, we
consider two quadratic objective functions, centered on [0.25, 0.75] and [0.75, 0.25]
and with Hessian matrices are [80 40; 40 40] and [40 40; 40 80], respectively. It
should be noted that the aim is not to provide a full and rigorous comparison with
other approaches, as a complete algorithm has not been described in this paper. Rather
the aim is to demonstrate how the theory provides the basis for such an approach, and
to give an indication of the power of using directional information.
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This concepts described above were implemented as a simple multi-objective opti-
mization procedure where the initial population of 50 points approximately lay along a
line with a small amount of random noise added, as illustrated in Fig. 7.


Fig. 7. Using the directional MOG to drive a population towards the Pareto set (left) and front
(right). Each progressive population is shown with points in a different color, progressing to-
wards the indicated front.


In Fig. 7, it can be clearly seen that successive iterations produce new “child” values
that dominate their parents. Convergence to the Pareto set/front occurred after around
6 iterations. It should be noted that a fixed step size was used here and it would be
expected that a more intelligent line search method would produce faster convergence.
It should also be noted that the spanning of the Pareto set/front occurs because of the
diversity in the initial population. While there is no diversity component in the method
described in this paper, it can be clearly seen that the approximate MOG descent cal-
culation projects the points directly towards the Pareto set/front in a rapid and efficient
manner. In addition, the development of the diversity component [6] is the subject of
current research.


As a final, simple comparison, a naïve genetic multi-objective procedure was de-
veloped. A simplex-type scheme was used to adapt the points, where each point was
tested against neighboring values, and if the point was dominated or it was too close to
a neighboring point (within a threshold distance), it was replaced by a combination of
its n neighboring values (thus using averaging of parents as a form of recombination),
else it was subject to a small random mutation (addition of Gaussian noise), with a
standard deviation = 0.01. The results of this procedure are shown in Fig. 8. The same
initial population is used as in Fig. 7. It should be noted that the final population now
occurs after 60 iterations and the convergence in variable space is poor. While it is
readily acknowledged that more sophisticated combination/selection processes could
be used, the aim was to demonstrate that an “intelligent” use of directional information
can dramatically improve the rate of convergence for suitably smooth, differentiable
design problems. Moreover, we feel that this reasoning can be extended for the for-
mulation of recombination operators in a much broader class of problems.







788         M. Brown and R.E. Smith


Fig. 8. Using a genetic multi-objective optimization process to solve the simulated problem.


5 Conclusions and Further Work


One must consider how to efficiently estimate a dominating search direction for a
multi-objective problem, based on the information contained in a local neighborhood
of designs, to properly apply EC to such problems. The theory developed in this paper
clarifies how to logically use such information in multi-objective EC. The theory can
be both used to explain the performance of current techniques, and gain insights into
the problem’s dimensionality. Also, the concepts developed (of convergence, direc-
tional cones and MOG) are directly applicable to differentiable multi-objective prob-
lems, and may be useful in EC algorithm design for a broader class of problems. In
particular, a key aspect of EC algorithm design is the specification of recombination
and mutation operators. When points are close to the optimal front/set children should
be placed in the descent cone, or convergence should be expected to be poor in many
cases. This paper shows that appropriate, informed use of direction information in
MOEAs will improve performance. Moreover, the authors believe that the theory can
both be extended to more logically design operators in non-continuous problems and
also to understanding how diversity [6] can be integrated into such schemes, which is
a subject of their current research.
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