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An evolutionary algorithm for multi-objective
optimization of combustion processes


By Dirk Büche †, Peter Stoll‡ AND Petros Koumoutsakos ¶


1. Motivation and objectives


We study the optimization of the spatial distribution of fuel injection rates in a gas
turbine burner. An automated procedure is implemented for the optimization. The pro-
cedure entails an evolutionary optimization algorithm and an automated interface for
the modification of the parameters in the experimental setup for the fuel injection and
for the post-processing.
The evolutionary algorithm is capable of handling multiple objectives in a Pareto setup
and of efficiently accounting for noise in the objective function. The parameterization
considers eight analogue valves for controlling the fuel distribution, and the evaluation
tool is an experimental test-rig for a gas turbine burner. A measurement chamber and
a microphone are used to analyze the emissions and the pulsation of the burner, re-
spectively. These two values are taken as objectives for the evolutionary algorithm. The
algorithm is shown to converge to a Pareto front and the analysis of the resulting pa-
rameters elucidates further relevant physical processes.


2. Accomplishments


2.1. Evolutionary algorithms
Evolutionary Algorithms (EAs) such as Genetic Algorithms and Evolution Strategies are
biologically-inspired optimization algorithms, imitating the process of natural evolution,
and are becoming important optimization tools for several real-world applications. They
use a set of solutions (population) to converge to the optimal design(s). The population-
based search allows easy parallelization, and information can be accumulated so as to
generate accelerated algorithms. EAs are robust optimization methods. They do not re-
quire gradients of the objective function, they can handle noisy objective functions, and
they may avoid premature convergence to local minima.


2.1.1. Multi-objective evolutionary algorithms for noisy objectives
Real-world applications, like product-design optimization, often imply multiple objec-


tives. For example, the cost and the quality of products are two conflicting objectives,
usually tackled by interdisciplinary design teams. Hence no single best solution exists,
but a set of compromise solutions. The complete set of compromise solutions is referred
to as the nondominated or Pareto set of solutions. They represent the best solutions to
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Figure 1. Illustration of noise and outliers in an experiment. For repeated measurements of the
same operating point, the objective value f (marked by an ×) changes, governed by a normal
distribution with mean E and standard deviation σ. An outlier solution is added to the figure
and marked with a +.


the problem and are characterized by the definition that no other solution exists that is
superior in all objectives.
The Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler & Thiele (1999) is a
well-established Pareto-optimization algorithm, which uses the dominance criterion for
the fitness assignment and selection of solutions. Noise may change the dominance re-
lation between different solutions. Dominated solutions may become nondominated and
the selection may be missleaded. Noise is addressed in two recent publications of Teich
(2001) and Hughes (2001), which adapt the Pareto ranking scheme of Goldberg (1989) by
defining probabilities of dominance between noisy solutions. Both methods assume either
a uniform or a normal distribution of the noise and can benefit from a priori knowledge
of its magnitude.
In addition, a measurement may fail completely, producing outliers, i.e. arbitrary non-
physical results. This is illustrated in Fig. 1. SPEA is an elitistic algorithm, i.e. it keeps
the best solutions found so far until superior successors are found. Elitism is critical for
optimizing experimental setups. The optimization algorithm might get stuck in an outlier
solution which dominates all present solutions. Thus we propose three modifications for
an extended multi-objective algorithm to overcome the problem of noise and outliers:
(a) domination dependent lifetime: In contrast to elitism, which may preserve elitist


(nondominated) solutions for an infinite time, a maximal lifetime κ is assigned to each
individual. For evolution strategies, algorithms with implemented lifetime κ are referred
to as (µ, κ, λ) algorithms (Bäck, Hoffmeister & Schwefel 1991). The novel approach is
that the lifetime is variable and related to the dominance of a solution. The lifetime is
shortened if the solution dominates a major part of the present nondominated solutions.
This limits the impact of a solution.
(b) re-evaluation of solutions: In EAs, solutions with expired lifetime are usually


deleted. In contrast, we re-evaluate all nondominated solutions whose lifetime has expired,
and add them to the population. This enables good solutions to stay in the evolutionary
process, but their objective values will change due to the noise in the re-evaluation.
(c) extended update of the secondary population: The SPEA algorithm updates the


elitist solutions always with the current population. We propose to extend the update to
all solutions with non-expired lifetime. This reduces loss of information.


2.1.2. Performance comparison
The performance of the extended SPEA is analyzed on a set of test functions. The


extended algorithm is compared with the standard SPEA of Zitzler & Thiele (1999) and
with a non-elitistic SPEA. The non-elitistic SPEA is obtained from the standard SPEA
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Figure 2. Convergence of the extended SPEA [circular symbol] on the noise-free test function
1, compared with the standard SPEA [cross symbol] and a non-elitistic SPEA [plus symbol].
The mean distance P of the present nondominated solutions to the analytical Pareto front is
plotted over the number of function evaluations N .


by setting the lifetime of all individuals to one. Three test functions are considered. From
Deb (1999), a two-objective minimization problem for an arbitrary number of real design
variables xi, i=1...n is chosen as the first test function:


f1 = x1


f2 =
1
x1


(
1 +


n∑
i=2


x2
i


)
, (2.1)


The number of design variables n is set to 7, and the design variables are bounded with
x1 ∈ [0.5, 2] and xi, i �=1 ∈ [−1, 1]. The second test function is obtained by adding, to the
first test function, normally distributed noise with zero mean and a standard deviation of
0.8. The third test function is identical to the first function except for generating outliers
that replace the original solutions. With a probability of 1% per objective function, the
objective value is divided by a factor of 10, hence producing an outlier with an improved
value. The convergence of the extended, non-elitistic and standard SPEA algorithm is
given for the three test functions in Figs. 2, 3 and 4. As a convergence measure, the
mean distance P to of the present nondominated solutions to the analytical Pareto front
is plotted over the number of function evaluations N . The comparison shows that the
performance of the extended algorithm is equal to the standard algorithm if no noise
occurs, but superior to the standard and non-elitistic algorithm if noise or outliers are
involved.


2.2. Atmospheric combustor test-rig
Air entering a gas turbine flows through a compressor, then reacts with fuel in a com-
bustion chamber, and is finally expanded in a turbine. The difference in power between
the turbine output and the compressor input is the net power that can be used, say, to
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Figure 3. Convergence of the extended SPEA [circular symbol] on test function 2 with normal
distributed noise, compared with the standard SPEA [cross symbol] and a non-elitist SPEA
[plus symbol]. The mean distance P of the present nondominated solutions to the analytical
Pareto front is plotted over the number of function evaluations N .


generate electricity. The combustion chambers of Alstom’s larger gas turbines, e.g. GT24
and GT26, are annular around the turbine axis, with a set of burners aligned in the
annulus. We consider the optimization of a single burner in an atmospheric test-rig as
illustrated in Fig. 5. Preheated air enters through the plenum chamber and is mixed with
fuel in the low-emission burner by swirl. The burner stabilizes the combustion flame in
a predefined combustion area by a controlled vortex breakdown. The burned air leaves
the test-rig through an exhaust. The burner exit temperature is about 1600 to 1700K.
The fuel is natural gas or oil and enters though injection holes, which are uniformly
distributed along the burner. The fuel mass flows through the injection holes are the
design variables of the setup. The mass-flow distribution is controlled by 8 continuous
valves. Each valve controls the mass flow through a set of adjacent injection holes along
the burner axis. In order to keep the operating conditions constant, the total fuel mass
flow is fixed, reducing the number of free design variables for the optimization from 8
to 7. The NOx emissions and the pulsation of the burner are the two objectives to be
minimized.


2.3. Optimization results
An optimization run is performed using the extended SPEA algorithm and evaluating
a total of 326 different burner settings. All solutions are plotted in Fig. 6. The initial
solution is marked in the figure, and represents a setting with equal mass flow through
all valves. The solutions found by the optimization process dominate the initial solution,
i.e. are superior in both objectives. The occurrence of a wide Pareto front underlines the
conflict in minimizing both objectives and just (Pareto) compromise solutions can be
found.
In the figure, boxes mark five different areas along the Pareto front. For the solutions
within the boxes, the valve settings are printed in Fig. 7. For better illustration, the
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Figure 4. Convergence of the extended SPEA [circular symbol] on test function 3 with outliers,
compared with the standard SPEA [cross symbol] and a non-elitistic SPEA [plus symbol]. The
mean distance P of the present nondominated solutions to the analytical Pareto front is plotted
over the number of function evaluations N .
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Figure 5. Sketch of the atmospheric combustion test rig with a low-emission swirl stabilized
burner. The rates of fuel mass flow through the injection holes are the design variables of the
setup. The NOx emissions and the pulsation of the burner are the two objectives to be minimized.
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Figure 6. All measured solutions of the burner optimization run [plus symbol] and initial
solution [circular symbol]. 5 boxes mark different areas along the Pareto front


settings are connected with a line.
Box 1 and 5 are at the extreme ends of the Pareto front. Box 1 represents Pareto solutions
with high NOx emissions, but low pulsation. The corresponding valve settings show an
increased fuel mass flow at valves 1, 2 and 4, while the flow at valves 5 and 6 is reduced.
(Refer to Fig. 5 for a sketch of the valve placement.) The basic physics behind these
settings is that the increased mass flow through valves 1 and 2 leads to rich combustion
in the center of the burner.
The rich combustion zone stabilizes the flame, but increases the NOx emissions. The


lean zones are in the middle of the burner, at valves 5 and 6.
Box 5 contains solutions with minimal NOx emissions, but high pulsation. The mass flow
through each valve is about the same, generating no rich combustion zones. Compared
to the initial solution, the small mass flow increase at valves 5 and 8 leads to lower NOx


emissions, while the pulsation is unchanged.
This burner optimization follows a series of successful application of optimization tools
in the field of turbomachinery design (Dornberger, Büche & Stoll 2000; Dornberger et
al. 2000; Müller, Walther & Koumoutsakos 2001).


2.3.1. Statistical analysis
One of the interesting features of the resulting Pareto front is the almost linear change


in valve settings along the front. At Box 1 five valves have either strongly increased or
decreased mass flow and the amplitude is constantly decreasing from Box 1 to 5 until
it reaches an almost equal mass flow for all valves in Box 5. This indicates simple de-
pendencies of the valves on the objective functions. Fig. 8 contains a scatterplot for the
valve settings and objective functions of all measured solutions. A scatterplot contains
all possible 2D subspace plots for all design variables and objectives. The plot in column
9 and row 10 contains the objective space with the Pareto front. Most interesting are
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Figure 7. Mass flow ṁ through the valves Vi,i=1...8 for solutions along the Pareto front,
marked by 5 boxes of Fig. 6.


the last two rows, containing the correlation of the valves with the objective functions.
For example, the horizontal and vertical axis of the plot in row 9, column 1 represent
valve 1 and the NOx emission, respectively. Strong correlation is expressed by narrow
stripes at ±45◦ to the axis. No correlation is implied by an axially symmetrical area
of solutions. Strong correlation can be observed between valves 1, 2, 5, 6 and the two
objective functions.
The correlation coefficients for the design variables and objectives are given in Fig. 9.
They complement the results from the scatterplot. For all valves, the correlation coeffi-
cients have opposite signs for the two objectives. Therefore, changing the fuel injection
in any of the valves always improves one objective while the other is worsened. Large
coefficients indicate a strong correlation and occur between valves 1, 2, 5, 6 and the two
objective functions. On increasing the mass flow through valve 1 and 2, the emissions
increase while the pulsation decreases, and conversely for valves 5 and 6.
It has to be remembered that these observations hold for solutions obtained through
an optimization process. The distribution of the solution in the scatterplot in Fig. 8 il-
lustrates that they do not cover the whole design space. Hence, these solutions are not
uniformly distributed in the design space and may not be representative.


2.3.2. Noise analysis


The extended SPEA algorithm that is used for burner optimization contains the special
feature of re-evaluating solutions after their lifetime expires (Sec. 2.1.1). Among the 326
evaluated solutions, 40 were re-evaluated at least once by the optimizer. Comparing the
difference in NOx between a solution and the re-evaluated one, the maximal difference
is about 8% of the objective range and the mean difference is 2%. For the pulsation,
the maximal and mean differences are 13% and 4%, respectively. Thus the noise in the
pulsation is more critical to the optimization. The large ratio of the maximal to the
mean difference indicate the rare occurrence of outliers and the presence of noise in the
objective measurement of all solutions.
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Figure 8. Scatterplot representing all possible combinations of 2D plots for the valves
Vi,i=1...8 and the two objectives NOx and pulsation.
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Figure 9. Correlation coefficient r between the mass flow through the 8 valves V and the two
objectives NOx and pulsation.
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3. Conclusions


The present work demonstrates the capabilities of an automated optimization applied
to the design process of gas turbine burners. The process, which includes an evolutionary
algorithm, produces in an automated fashion an experimental Pareto front for minimizing
pulsation and emissions of the burner. Automated optimization can be considered a
supporting tool in a design process, complementing physical understanding as well as
trial-and-error design. As a next step, the number of valves will be increased. This allows
more flexibility in the fuel distribution and also allows non-axisymmetric distribution.
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