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Abstract

This work introduces novel recombination
and mutation operators for multi-objective
evolutionary algorithms using self-organizing
maps in the context of Pareto optimization.
The self-organizing map is actively learning
from the evolution path in order to adapt the
mutation step size. Standard selection oper-
ators can be used in conjunction with these
operators.

1 Introduction

Evolutionary Algorithms (EAs) are a standard tool for
multi-objective optimization. The appealing property
of EAs is the population-based search, which allows
approximating the Pareto front in a single optimiza-
tion run by evolving a population of solutions in a
cooperative search towards the Pareto front.

While most of the effort has been used in the develop-
ment of selection operators and especially fitness as-
signment techniques for Pareto optimization, the re-
combination and mutation operators are often copied
from standard single-objective algorithms and are non-
adaptive over the optimization run. This leads to a
lack in performance, since the mutation operator does
not exploit any knowledge from prior successful muta-
tions for the adaptation of the mutation step size.

In single objective optimization, knowledge exploita-
tion is prominent and leads to a significant perfor-
mance gain. The Covariance Matrix Adaptation of
Hansen and Ostermeier (2001) embeds information
about the path of successful mutations (evolution
path) in a covariance matrix.

The CMA cannot be easily transferred to multi-
objective optimization, since different solutions in the
population converge towards different locations along
the Pareto front and not towards a single optimum.

Thus we introduce a new adaptation method for
the mutation step size in multi-objective optimiza-
tion using the self-organizing maps (SOM) of Kohonen
(2001). The method is inspired by the work of Milano
et al. (2001), who applied SOM to single objective op-
timization. The SOM is continuously trained with the
current best solutions and thus is tracking the evolu-
tion path. The SOM adapts the step size such that
it focusses on areas of promising solutions in order to
generate an accelerated convergence.

2 Multi-Objective Evolutionary
Algorithms

2.1 Overview

The selection operator is often considered the key
operator for multi-objective evolutionary algorithms
(MOEAS). It consists of the fitness assignment and the
selection mechanism itself. The dominance criterion
in combination with niching techniques is widely used
for the fitness assignment, in order to select in average
the less dominated solutions and preserve diversity in
the population, respectively. A further substantial el-
ement is elitism, a technique of storing always the cur-
rent best solutions in an archive. For a multi-objective
problem, the elite solutions are the nondominated so-
lutions. The archive is then participating in the selec-
tion process.

The Nondominating Sorting Genetic Algorithm
(NSGA-II) of Deb et al. (2000) and the Strength
Pareto Evolutionary Algorithm (SPEA2) of Zitzler et
al. (2001) are two common representatives of MOEAs
and implement all previously stated techniques.
These algorithms however, do not describe a mutation
or recombination operator. To compare the perfor-
mance on continuous problems, the authors of SPEA2
and NSGA-IT use the polynomial distributed muta-
tion and the simulated binary crossover of Deb et al.



(1995). Both methods do not implement any learning
process, so they do not exploit any knowledge from the
evolution path.

2.2 Self-Organizing Map Multi-objective
Evolutionary Algorithms

Self-organizing maps (SOMs) are used to approximate
a distribution of points by means of a clustering pro-
cess. A SOM defines a mapping of an input space R"
onto a regular lattice of m reference vectors (neurons).
A fixed h-dimensional connectivity between the neu-
rons is defined on the lattice. Figure 1 illustrates a
SOM with 25 neurons and a two-dimensional quadri-
lateral lattice, i.e. n = 2, m = 25, and h = 2. A
reference vector w; € R™ is associated to each neuron
i. The response of the network to an input z; € R” is
defined as the best matching neuron ¢:

c(z;) = argmin{|lz; —wi||} (1)

After the neuron ¢ has been determined, all SOM neu-
rons are updated so as to become closer to the input
z; (Kohonen, 2001):

winew — wqud+aH(c’ wz) (-rg _wi), 7= ]_, R 1) (2)

where a €]0,1[ is the learing rate and H(c,w;) is
the so-called meighborhood function, defined so as
H(e,e) = 1, H(e,w;) > 0 Vuwy, and its value de-
creases with the distance between ¢ and w; as mea-
sured on the h-dimensional topology (Kohonen, 2001).
The neighborhood function allows the SOM to approx-
imate a given distribution in an ordered fashion, by
preserving neighborhood relationships.

Here we approximate the Pareto front with a SOM, by
modifying its training algorithm. To this aim we set
the SOM connectivity h of the lattice to one dimen-
sion less than the objective space, that is the same
dimension of the Pareto front; also, since the SOM is
defined in design space, the dimension n of its refer-
ence vectors is equal to the number of design variables.
The SOM is trained by the update procedure on the
current parent population of the optimization process
in order to approximate the parent population in an
ordered fashion. Any selection operator like SPEA2 or
NSGA-II can select the parent population.

A common recombination operator is the intermediate
recombination, which computes the design variables
of a new solution u € R" by recombining two parents
a,be R":

ugp = Pay+(1—=B8) b, k=1...n, (3)

where § is a uniform random number within [0, 1].
We define a recombination operator by using the

SOM. The SOM is trained on the design variables
of the parent population. Thus choosing a random
point within the area that is covered by the SOM
represents an intermediate recombination of the
parent population. The recombination procedure
starts by randomly choosing a simplex of adjacent
neurons in the lattice, and finally the random point
is obtained from a uniform probability distribution
within the simplex (Figure 1).

In addition, a mutation operator is defined in order to
generate points outside the area covered by the SOM.
Normally distributed random numbers are added to
the new point u by:

up — up + %N(O, 1), k=1.n, (4)
where ¢ is the step size and is set equal to the Eu-
clidean length of a randomly chosen edge of the sim-
plex. This step size definition includes a step size adap-
tation. At the beginning of the optimization run, the
SOM is initialized with random values and thus large
distances between neighboring neurons in the lattice.
The average distance of the neighboring neurons is de-
creasing over the optimization run, since the SOM is
aligning along the Pareto front in an ordered fashion
and the step size is decreasing.

Figure 1: SOM with 25 neurons [circles] and 2D
quadrilateral lattice [thin lines]. A random simplex
of adjacent neurons is created [bold line]. Within the
simplex a uniformly distributed random point [plus
symbol] is generated.

3 Experimental Results

The performance of the SOM-MOEA is analyzed for
the two-objective test function of Fonseca and Fleming
(1995):

fijp=1—exp (—Z (o0 \/l/—n)2> (5)

i=
with z1.., € [-1,1]. The exact Pareto front can be
derived as:

fijp=1—exp (—n (t:l: 1/n)2)



with 1., = t, —\/1/n <t < y/1/n. The number
of design variables is set to n = 10. An optimization
run is started with the SOM-MOEA and a population
size of 60 individuals. A simple selection operator was
generated by selecting only the current nondominated
solutions in an elitistic fashion. In order to keep diver-
sity within the selected set, the clustering algorithm
of SPEA2 is used, allowing a maximum number of 30
nondominated solutions.

A one-dimensional SOM was initialized with 20 neu-
rons, and random values for the reference vectors. Af-
ter each generation, the SOM is trained with 30 train-
ing steps on the current parent population. The initial
population was randomly generated. Figure 2 shows
the initial population and SOM for two dimensions of
the design space and for the objective space. Consider
that a simplex for this SOM is a straight line.

The optimization run was started computing in total
3.000 solutions. The final population is shown in Fig-
ure 3. The figure shows that the SOM is aligned along
the analytical Pareto front in design space, and the
objective values of the final population are well dis-
tributed along the Pareto front. The step size of the
normally distributed mutation in Equation 4 is related
to the length of a simplex, i.e. for this one-dimensional
network it is equal to the distance between two adja-
cent neurons. The ratio of the initial and final step
size is equal to the distance between adjacent neurons
of the SOM in Figure 2 and Figure 3.

Design Space

Objective Space

Figure 2: Intitialization of the SOM-MOEA for the
two-objective problem of Fonseca and Fleming with
10 design variables: Random population [crosses], ran-
dom 1-dim. SOM [connected circles] and analytical
Pareto front [line] in a 2-dim subspace of the design
space and in the objective space.

4 Conclusions

In this report, a self-organizing network is introduced
for the first time in a multi-objective optimization con-
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Figure 3: SOM-MOEA after 50 generations (3000 eval-
uated solutions). The SOM alignes in the design space
along the Pareto front.

text. The network comprises the principle of coopera-
tive search by interpolating the current nondominated
front, thus it is sharing information about successful
design variables values along the Pareto front. In ad-
dition, the network describes a novel principle for the
adaptation of the step size for the mutation operator.
The step size is related to the distance of neighbor-
ing neurons in the network and thus varies along the
network. This allows different adaptation for different
areas along the Pareto front.
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