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Abstract—Evolutionary Algorithms have been applied to single and mul-
tiple objectives optimization problems, with a strong emphasis on problems,
solved through numerical simulations. However in several engineering
problems, there is limited availability of suitable models and there is need
for optimization of realistic or experimental configurations. The multi-
objective optimization of an experimental set-up is addressed in this work.
Experimental setups present a number of challenges to any optimization
technique including: availability only of pointwise information, experimen-
tal noise in the objective function, uncontrolled changing of environmental
conditions and measurement failure.
This work introduces a multi-objective evolutionary algorithm capable
of handling noisy problems with a particular emphasis on robustness
against unexpected measurements (outliers). The algorithm is based on the
Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele and
includes the new concepts of domination dependent lifetime, re-evaluation
of solutions and modifications in the update of the archive population. Sev-
eral tests on prototypical functions underline the improvements in conver-
gence speed and robustness of the extended algorithm.
The proposed algorithm is implemented to the Pareto optimization of the
combustion process of a stationary gas turbine in an industrial setup. The
Pareto front is constructed for the objectives of minimization of NOx emis-
sions and reduction of the pressure fluctuations (pulsation) of the flame.
Both objectives are conflicting affecting the environment and the lifetime
of the turbine, respectively. The optimization leads a Pareto front corre-
sponding to reduced emissions and pulsation of the burner. The physical
implications of the solutions are discussed and the algorithm is evaluated.


Keywords—evolutionary algorithms, multi-objective optimization, noisy
objective functions, gas turbine combustion, emission reduction, combus-
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I. I NTRODUCTION


AUTOMATED optimization is an important aspect of tech-
nical product design. In an engineering environment it usu-


ally implies the development of an optimization algorithm inte-
grated in an automated setup for the modification of parameters
of the design. For complex problems such as the combustion
process, numerical simulations are not widely used as a predic-
tive tool due to the complexity of the physical phenomena under
investigation. Although intensive research efforts are underway
on this front, experimental setups are widely used for the study
and optimization of combustion processes.
The optimization of the combustion process of a stationary gas
turbine is a challenging real-world application with conflict-
ing objectives. New governmental laws on emission taxes and
global agreements on emission reduction such as the Kyoto res-
olution on greenhouse-gases (1997, 2001) demand expensive,
highly thermodynamically efficient power plants with low emis-
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sions. On the other hand, the liberalization of the electric power
market puts pressure on overall production costs.
In recent years the use of gas turbines among new power plants
has significantly increased due to a number of appealing prop-
erties: Using natural gas instead of coal or oil leads to a cleaner
combustion, while moderate installation and operating costs and
a high thermodynamically efficiency reduce overall energy pro-
duction costs. Moreover, using the exhaust heat for a steam tur-
bine in a combined cycle is one way to increase power output
and efficiency of the plant.
A central component in the design of a gas turbine is the de-
sign of the burners in the combustion chamber. The burners mix
air and fuel and combust them continuously. This is different
to Diesel engines, which combust in a cyclic manner. The de-
sign of a burner addresses two main objectives: First, the burner
should mix air and fuel uniformly for low emissions, since the
presence of areas of rich combustion results in increased NOx


emissions and a non-homogeneous temperature distribution may
damage the turbine blades. Second, the burner should produce a
stable combustion flame, avoiding undesired pulsations. Pulsa-
tions are due to thermo acoustic waves, which occur in particular
for lean combustion when operating under part load condition.
They reduce the lifetime of the turbine by fatigue and by de-
stroying the film cooling along the blades surface. These two
objectives are conflicting, thus motivating the requirement for a
variety of designs as manifested on a Pareto front. The lack of
viable analytical models and the limited information about the
underlying physical processes involved, makes combustion pro-
cesses a suitable candidate for the optimization using stochastic
optimization techniques such as evolutionary algorithms [8].
Evolutionary Algorithms(EAs) are biologically inspired opti-
mization algorithms, incorporating operators such as mutation,
recombination and fitness based selection of parameters. EAs
use a set of solutions (population), to converge to the optimal
design(s). The population-based search allows easy paralleliza-
tion and information can be accumulated so as to generate ac-
celerated algorithms [12]. EAs are robust optimization methods,
which do not require gradients of the objective function and may
avoid termination at local minima.
EAs operate so as to continuously obtain an improvement of
the objective function by exploiting progressively acquired in-
formation. While EAs have found several applications for sin-
gle objective optimization, industrial applications often entail
multiple, conflicting objectives. In this context, the concept of
dominance allows a partial ordering of solutions. A solution is
dominating another solution, if it is superior or equal in all ob-
jectives, but at least superior in one objective. The complete set
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of nondominated solutions is referred to the Pareto set of so-
lutions, after the work of the engineer and economist Vilfredo
Pareto [18] and represents the best solutions to the problem.
A classical and still widely employed approach to handle mul-
tiple objectives is the aggregation [13] of all objectives into a
single, a priori defined figure of merit. Objectives are usually
aggregated by a weighted-sum or a constraint approach. This
weighting behavior implies prior knowledge about the problem
and is dependent on the a priori unknown shape of the Pareto
front. While point-to-point search methods converge to one
Pareto solution at a time, evolutionary algorithms can exploit the
population-based feature and converge to the Pareto-set in a sin-
gle optimization run. Therefore much effort has been spent over
the past twenty years on the development and application of evo-
lutionary algorithms for Pareto optimization. Promising meth-
ods have been proposed and compared by several researchers
[26] [25] [3]. An exhaustive list of references can be found on
the web page of Coello [4]. The various multi-objective evo-
lutionary algorithms are usually distinguished by their fitness
assignment operators, while the mutation, and the crossover op-
erators are usually adopted from standard single-objective al-
gorithms. Pareto optimization methods, which use the domi-
nance criterion for the fitness assignment are widely used as
Pareto dominance is key issue in determining, if one solution
performs better than the other [9]. Two of the most prominent
multi-objective evolutionary algorithms are the Nondominated
Sorting Genetic Algorithm (NSGA) of Srinivas and Deb [21],
and the Strength Pareto Evolutionary Algorithm (SPEA) of Zit-
zler and Thiele [26].
NSGA assigns fitness by nondominated sorting of the popula-
tion as described by Goldberg [10]. The nondominated solu-
tions of the population are assigned the highest fitness and are
removed from the population. Then, the nondominated solu-
tions of the remaining population are assigned a lower fitness.
This is repeated until all solutions are sorted. Within each layer
of nondominated solutions phenotypic fitness sharing is used in
order to preserve diversity.
SPEA uses the nondominated solutions for the fitness assign-
ment. The nondominated solutions are assigned the highest fit-
ness. The fitness of a dominated solution decays with the num-
ber of nondominated solutions by which it is dominated. A main
difference of SPEA to NSGA is the use of elitism, a technique
of preserving always the best solutions obtained so far. In multi-
objective optimization, elitism is performed by preserving the
nondominated solutions in an archive [25]. The parents of the
next generation are selected out of the current population and
the archive.
Although the number of applications in the field of multi-
objective (Pareto) optimization is increasing, problems with
noisy objective functions are rarely considered, even though
noise is present in almost every real-world application. As evo-
lutionary algorithms do not require gradient information, they
are already inherently robust to small amounts of noise, a fea-
ture which is sufficient for many problems. In several experi-
ments however, large-amplitude noise is induced from various
sources, such as unsteady operating conditions, limited mea-
surement precision, and time averaging in restricted sampling
time. In addition, measurements may fail, leading to erro-


neous outliers, characterized by nonphysical objective values.
Standard multi-objective evolutionary algorithms cannot handle
these difficulties, and there is a need to extend their basic com-
ponents to overcome these difficulties.
While for single objective optimization, several studies of noisy
objective functions have already been performed [20] [17], for
multi-objective optimization, limited results are available in lit-
erature. Averaging the parent population, a remedy for noisy
single objective problems, is not useful in this case since a
diverse population is desired to converge towards the Pareto
front. Two recent publications [22] [14] adapt the Pareto rank-
ing scheme [10] to noisy solutions by defining probabilities of
dominance between them. Both methods assume either a uni-
form or normal distribution of the noise and can benefit from a
priori knowledge of its magnitude.
In this paper we introduce three new principles in order to im-
prove robustness against noise. First, a dominance-dependent
lifetime is assigned to each individual. The lifetime is inversely
proportional to the number of solutions it dominates. This limits
the impact of a solution in the overall population. In addition,
we enable nondominated solutions to be re-evaluated after their
lifetime expires and define an extended update mechanism for
the archive.
This paper is organized as follows: First, the principles of multi-
objective optimization are described and the SPEA algorithm is
presented. Then we present an overview on modifications for
SPEA in order to handle noise and introduce a new approach
called the noise-tolerant SPEA (NT-SPEA). All algorithms are
analyzed on noisy and noise-free test functions. The analyzed
noise reflects the characteristics of the intended application. Fi-
nally the application of NT-SPEA to the optimization of a gas
turbine burner is presented, showing the capabilities of the new
approach. The optimization leads a Pareto front corresponding
to reduced emissions and pulsation of the burner. The physical
implications of the solutions are discussed.


II. M ULTI -OBJECTIVE EVOLUTIONARY ALGORITHMS


A. Definition of Multi-Objective Optimization


A multi-objective optimization problem can be described by
an objective vectorf and a corresponding set of design variables
x. Without loss of generality we can consider the minimization
of f . Formally:


min f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ F


wherex = (x1, x2, . . . , xn) ∈ X, (1)


whereX ∈ Rn is the n-dimensional design space,F ∈ Rm


is the m-dimensional objective space. Here both the design and
objective space are real spaces, as they correspond to continuous
variables and measured objectives for the proposed application.
A partial ordering can be applied to solutions in the objective
spaceF by the dominance criterion. A solutiona in X is said
to dominate a solutionb in X (a � b), if it is superior or equal
in all objectives and at least superior in one objective. This is
expressed as:


a � b, if ∀ i ∈ {1, 2, . . . ,m} : fi(a) ≤ fi(b) ∧
∃ j ∈ {1, 2, . . . ,m} : fj(a) < fj(b) (2)
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The solutiona is said to be indifferent to a solutionc, if neither
solution is dominating the other one. When no a priori prefer-
ence is defined among the objectives, dominance is the only way
to determine, if one solution performs better than the other [9].
The complete set of Pareto ideal solutions represents the best
solutions to a problem. In other words, starting from a Pareto
solution, one objective can only be improved at the expense of at
least one other objective. From the Pareto definition, two targets
have to be considered by the formulation of an evolutionary op-
timization algorithm for Pareto optimization. On one hand, the
algorithm must be able to converge sufficiently fast towards the
Pareto front, while on the other, it must preserve diversity among
its population in order to be able to spread over the whole Pareto
front. A common difficulty is the focusing of the population on
a certain part of the Pareto front, which is known as genetic drift
[11]. In single objective optimization the latter issue is unimpor-
tant, since convergence to a single (global) optimum is desired.


B. Basic Elements of a Multi-objective Evolutionary Algorithm


Evolutionary Algorithms are optimization algorithms, incor-
porating concepts such as fitness based selection, recombination
and mutation. EAs start with a set ofλ randomly generated so-
lutions, which are referred to as the populationP . For a multi-
objective problem, aselection operatorselects in average the
less dominated solutions fromP and places them in a parent
populationPp of sizeµ. A selection operator is described in
SectionII-C.
Therecombination operatorchooses randomly individuals from
the parent populationPp and recombines them into a child. With
50% probability each, uniform recombination with two parents
or no recombination is chosen for all performed optimizations
in this paper.
For themutation operator, the variables of a child are mutated
by adding normally distributed random numbers with a standard
deviationσ of 0.1, relative to the interval size in which the vari-
able is defined, and a mutation probabilitypM of 20%. This
normally distributed mutation reflects the natural principle that
small mutations occur more often than large ones.
A termination criterion for the evolution may be the maximal
allowed number of generations.


C. Strength Pareto Evolutionary Algorithm


The Strength Pareto Evolutionary Algorithm (SPEA) of Zit-
zler and Thiele [26] is a well-established Pareto-optimization
algorithm. The advantages and drawbacks of the method have
been extensively discussed [27] [26]. SPEA describes a selec-
tion operator, while the recombination and mutation operator
can be used from a single objective algorithm or e.g. from Sec-
tion II-B.
The algorithm entails a fitness assignment and selection mecha-
nism based on the concept of elitism. SPEA uses the nondom-
inated solutions for the fitness assignment. First, the fitness of
each nondominated solution is computed as the fraction of the
population, which it dominates. The fitness of a dominated in-
dividual is equal to one plus the fitness of each nondominated
solution by which it is dominated. This fitness assignment guar-
antees that the fitness of nondominated solutions is always lower
than the fitness of the dominated.


Elitism is a technique of preserving always the best solutions
obtained so far. In multi-objective optimization, elitism is per-
formed by storing the nondominated solutions in an archiveA
[25]. In the selection process individuals of the current popu-
lation P and of the archiveA are competing in a binary tour-
nament where contrary to the standard tournament selection the
solution with the lower fitness wins.
In order to preserve diversity in the archive and to keep its size
limited, a clustering algorithm is used. Clustering removes solu-
tions in areas of high density as measured in the objective space.
The studies of Zitzler and Thiele [26] have illustrated that
elitism improves the performance of multi-objective evolution-
ary algorithms on noise-free test problems. Elitism is inserting
nondominated solutions in the selection process, and thus in-
creasing the selection pressure. An increasing number of multi-
objective algorithms followed this observation. For example,
NSGA was updated by its inventors to NSGA-II, which con-
tains “controlled elitism” [6]. Some researchers state elitism as
a necessity for multi-objective optimization [25], since informa-
tion may be lost by the stochastic selection operator. However,
this advantage is debatable for noisy objective functions.
Selection is performed by a binary tournament. All solutions of
the populationP and the archiveA are put in one pot. Then, al-
ways two solutions are taken from the pot without replacement.
These two solutions participate in a tournament. The winner is
the solution with the lower fitness, which is copied into the par-
ent populationPp. If the pot is empty, it gets refilled until the
desired sizeµ of Pp is reached.
With the SPEA algorithm, a multi-objective evolutionary algo-
rithm can be written as:


Algorithm 1


1. begin
2. Generate an initial populationP of random individuals


and an empty archiveA.
3. Evaluate the objectives of the individuals inP .
4. while termination criterion is not fulfilleddo
5. Update archiveA: Add a copy of the current


populationP to A and remove the dominated
from A. Limit the size ofA by clustering.


6. Fitness assignment: Assign fitness to the
individuals inP andA.


7. Selection: Use tournament selection for selecting
the parent populationPp from P ∪A.


8. Recombination: Generate a new populationP by
recombination of the individuals inPp.


9. Mutation: Mutate the individuals inP .
10. P is the population of the next generation.
11. Evaluate the objectives of the individuals inP .
12. end while
13. end


III. M ULTI -OBJECTIVE EVOLUTIONARY ALGORITHMS FOR


NOISY APPLICATIONS


For optimization noisy applications like real-world problems
and experimental setups, modifications are needed to the stan-
dard multi-objective evolutionary algorithms in order increase
their robustness. This section starts with the definition of noise,
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and then different modifications for SPEA in order to be more
robust to noise are presented.


A. Definition of Noise in Applications


In experiments and industrial configurations we can always
detect different results for repeated measurements of the same
operating point. The differences are attributed to noise and un-
observed factors in the setup.
Noise may occurs in various areas in the experiment: The set-
ting of the operating conditions is within a limited precision. In
the realization, the operating condition may vary over time and
finally measurement errors occur. It is up to the careful setup by
the experimenter to keep the noise within a limited range. We
define this noise, which is present in all measured experiments,
asexperimental noise. It is often modeled by a normal distri-
bution with defined mean and standard deviation, which define
a priori knowledge of the processes involved.
In addition, during an automated optimization cycle, an exper-
imental measurement may fail completely, producingoutliers,
i.e. arbitrary nonphysical results. This occurs very rarely, but
may have large impact on the automated process optimization
if not recognized by a supervisor or captured by some penalty
function. Outliers cannot be described by a statistical model
with given mean and deviation, but are best modeled by a prob-
ability of occurrence. Noise and outliers influence the multi-
objective optimization process by misleading the selection op-
eration. Hence unrealistic inferior solutions may dominate su-
perior ones, thus delaying or completely misleading the conver-
gence to an unrealistic Pareto front.


B. Non-Elitistic Strength Pareto Evolutionary Algorithm


The presence of noise affects the fitness assigned to an indi-
vidual. This may cause inferior solutions to occasionally win in
the selection process. Multi-objective evolutionary algorithms,
which implement elitism, would then select these solutions into
the archive, thus misleading the entire optimization run by par-
ticipating in the selection process. More important, these so-
lutions may dominate other solutions in the archive and in the
worst case all other solutions in the archive are then removed.
In order to avoid this, a first and simple modification oforigi-
nal SPEAof Zitzler and Thiele [26] is proposed. We define a
non-elitisticSPEA algorithm. In each generation, the archive
is filled with the nondominated solutions of the current popula-
tion. Nondominated solutions from previous generations are not
considered.


C. Statistical Strength Pareto Evolutionary Algorithm


Re-evaluating a solution several times and taking the mean as
a statistical estimate can decrease the level of noise in an objec-
tive function. Implementing this approach into SPEA is simple
and is in the following referred to asstatistical SPEA. The dis-
advantage of this concept is the increased evaluation cost per
solution. A lower limit for a statistical estimate is 7 evaluations.
This number is used for the performance comparison in the next
section.


D. Estimate Strength Pareto Evolutionary Algorithm


The Estimate Strength Pareto Evolutionary Algorithm (ES-
PEA) of Teich [22] modifies the SPEA algorithm in order to be
more robust to noise by introducing aprobability of dominance.
It is assumed that each objective valuef cannot be computed
exactly, but can be bounded within aproperty interval[fL, fU ],
wherefL andfU are the lower and upper bound of the interval,
respectively. In addition, the probability of the function value
is assumed to be uniform within the interval. These assump-
tions lead to the new definition of a probability of dominance. If
two solutions with overlapping property intervals are compared,
the dominance has to be assigned by a probability. Teich com-
puted the probability for minimizing an arbitrary number ofm
objectives. If two solutionsa andb with the property intervals
[aL


i , aU
i ] and[bL


i , bU
i ], i = 1, . . . ,m, respectively, are compared,


the probability thata dominatesb is given by


P (a � b) =


m∏
i=1



0 , if aL


i > bU
i ,


1 , if aU
i < bL


i ,
1


aU
i −aL


i


∫ bL
i


y=min{aL
i ,bL


i }
dy


+
∫ min{aU


i ,bU
i }


y=max{aL
i ,bL


i }
bU


i −y


bU
I −bL


i
dy , otherwise.


(3)


Three different cases can be distinguished from the equation.
The solutiona does not dominatedb (P (a � b) = 0) if at least
one lower bound of the property intervalsaL


i is larger than the
corresponding the upper boundbU


i . Second, the solutiona dom-
inatesb (P (a � b) = 1), if the upper bound of all the property
intervalaU


i are smaller than the lower boundsbL
i for all objec-


tives. In the third case,a dominatesb with a certain probability
P (a � b) ∈]0, 1[, if for all objectivesi the lower boundaL


i is
smaller thanbU


i and at least one boundaU
i is larger thanbL


i


Assuming that the values fora andb, obtained by test functions
or real applications, are in the middle of the property intervals
and both intervals are of size2δ, the interval bounds can be com-
puted asaL


i = ai−δ, aU
i = ai +δ, bL


i = bi−δ andbU
i = bi +δ


and Eq.3 can be rewritten as


P (a � b) =


m∏
i=1



0 , if ai > (bi + 2δ),
1 , if ai < (bi − 2δ),
1
2δ (bi − ai + δ)
+ 1


8δ2 sgn(ai − bi) (ai − bi)
2 , otherwise,


(4)


where sgn is the signum function. With the probability of dom-
inance, solutions are nondominated with a certain probability,
making modifications of the archive update necessary. For each
solutiona(i), the mean probabilityR of being dominated by a
solutiona(j) is computed by:


R(i) =
1


N − 1


∑
j∈{P∪A}:j 6=i


P (a(j) � a(i)), (5)


whereN is the number of solutions of the unification of the pop-
ulationP and the archiveA.
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Here, a simplification of Teich’s update of the archive is used.
First, the current populationP is added to the archiveA. Then,
all solutions withR(i) > α are removed from the archive. For
increasing the parameterα, more solutions are added to the
archive and the archive changes from the nondominated front
to a fuzzy nondominated front. This approach corresponds with
the results of Arnold and Beyer [1]. They computed the progress
rates of the (µ, λ) evolution strategy for noisy single objective
problems and found that selecting a set ofµ parents out ofλ
individuals leads to a higher convergence speed than just select-
ing the best individual. This observation is in contrast to the
noise-free case, where selecting the best solution leads to the
highest convergence speed. The (µ, λ) strategy harmonizes with
the fuzzy nondominated front.
For better comparison, we use the standard clustering algorithm
of SPEA. This is valid, since the core aspect of the ESPEA is
the concept of a dominance probability and not the clustering.
The fitness is assigned in two steps. First, the fitnessS of the
archive solutions is computed as:


S(i) =
1


N + 1


∑
j∈{P∪A}


P (a(i) � a(j)) (6)


The fitness of a solution in the population is equal to one plus the
fitness of the archive solutions, by which it is dominated with a
probability larger than a thresholdα. ESPEA contains several
strategy parameters, which are the thresholdα and the size of
the property intervals. A drawback is the necessary knowledge
of the interval sizes a priori of the optimization, such that the
intervals reflect the size of the noise in the objective functions.


E. Noise-tolerant Strength Pareto Evolutionary Algorithm


We propose new modifications for SPEA and define this re-
sulting algorithm as the Noise-tolerant Strength Pareto Evolu-
tionary Algorithm (NT-SPEA). In SectionIII-B , we described a
non-elitistic SPEA in order to avoid the risk of getting stuck in
outliers of the optimization process. One disadvantage of this
algorithm is that noise reduces the selection pressure [17], sug-
gesting that elitism, which is increasing the selection pressure
by conserving nondominated solutions, should be used to com-
pensate. To successfully use elitism in a noisy environment, fur-
ther modifications are needed to ensure fast convergence while
maintaining robustness to noise.
We propose three modifications for an extended multi-objective
algorithm for noisy environments:
1. Domination dependent lifetime:In contrast to elitism, which
may preserve elite (nondominated) solutions for an infinite time,
a lifetimeκ is assigned to each individual. For evolution strate-
gies, algorithms with implemented lifetimeκ are referred to as
(µ, κ, λ) algorithms [2]. In this work this concept is extended to
multiple objectives such that the lifetime is variable and related
to the dominance of a solution. The lifetime is shortened, if the
solution dominates a major part of the archive. This limits the
impact of a solution and safeguards against outliers.
2. Re-evaluation of solutions:It is common to delete solutions
with expired lifetime. We propose to re-evaluate archive so-
lutions with expired lifetime and add them to the population.
This enables good solutions to stay in the evolutionary process,


but their objective values will change due to the noise in the
re-evaluation.
3. Extended update of the archive:The SPEA algorithm up-
dates the archive always by adding the current population to
the archive and removing the dominated solutions. We extend
the update toall solutions with non-expired lifetime. This hin-
ders loss of information, since solutions which were removed by
clustering or domination may reenter the archive.
With these features NT-SPEA uses the advantage of an archive
as convergence accelerator, but it reduces the risk induced by
outliers.
The dominance-dependent lifetime of an individual is assigned
according to Fig.1. The lifetime is measured in generations. For
dominating less than a fractionc1 of the archiveA, the maximal
lifetime κ = κmax is assigned to the individual. For dominat-
ing more than a fractionc2 of A, the minimal lifetime ofκ = 1
is assigned. In-between these two fractions, the lifetime is in-
terpolated in discrete steps of one generation. The dominance-
dependent lifetime reduces the impact of a solution. An indi-
vidual that dominates a large fraction of the archive has a high
chance of being selected in the selection process, but is assigned
the shortest lifetime.
While the principle of limited lifetime is a key element to re-
move outliers, the re-evaluation allows good solutions to stay
in the selection process by re-entering the archive. In the case
of an outlier, it is not likely, that the re-evaluated copy is again
an outlier with good objective values and hence it would not re-
enter the archive. On the other hand, solutions with good design
variable settings are likely be nondominated again, if the effect
of noise is limited.
The extended update considers the nondominated solutions
among all solutions with non-expired lifetime for the update of
the archive. Since the assigned lifetime differs between the so-
lutions, the set of nondominated solutions changes. Dominated
solutions become nondominated, if the lifetime of their domina-
tor expires. This is especially important if a noisy solution or an
outlier dominates a large fraction of the archive. The dominated
solutions are then removed from the archive. The noisy solution
or outlier is assigned a short lifetime. After the lifetime expires
the removed nondominated solutions may be re-selected to the
archive. With the original update of SPEA, their information is
lost. After the update of the archive, the clustering algorithm
of SPEA is used in order to get a limited number of uniformly
distributed archive solutions. Solutions of the population and
archive participate in the selection process.
With these three modifications, the noise-tolerant SPEA is given
by:


Algorithm 2


1. begin
2. Generate an initial populationP of random individuals


and an empty archiveA.
3. Define a maximal lifetimeκmax for individuals (in genera-
tions).
4. Evaluate the objectives of the individuals inP .
5. while termination criterion is not fulfilleddo
6. Assign lifetime: Compute for each individual inP


the fraction of the archive that it dominates.
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The lifetimeκ of the individual is inverse
proportional to the fraction (see Fig.1).


7. UpdateA: Remove all solutions fromA and refill
it with all solutions, whose lifetime is not expired.
Then remove all dominated solutions.
Limit the size ofA by clustering.


8. Fitness assignment: Assign fitness to the
individuals inP andA.


9. Selection: Use tournament selection for selecting
the parent populationPp from P ∪A.


10. Recombination: Generate a new populationP by
recombination of the individuals inPp.


11. Mutation: Mutate the individuals inP .
12. Re-evaluation: Select the solutions fromA


with expiring lifetime and add a copy
for re-evaluation to the populationP


13. P is the population of the next generation.
14. Evaluate the objectives of the individuals inP .
15. end while
16. end


c c 1 c


κmax


κ


1


21


Fig. 1


DEPENDENCE OF THE LIFETIMEκ OF AN INDIVIDUAL ON THE FRACTION c


OF THE ARCHIVE, WHICH IT DOMINATES. κ DECREASES FROM A MAXIMAL


VALUE κmax , IF THE INDIVIDUAL DOMINATES MORE THAN THE FRACTION


c1 UNTIL IT REACHES A LIFETIME OF κ = 1 AT c2 .


IV. PERFORMANCECOMPARISON


A. Generation of Test Functions


A wide variety of noise-free test problems for multi-objective
optimization can be found in the literature. A number of review
articles have been listed by van Veldhuizen and Lamont [23] and
Deb [5]. From Deb, a two-objective minimization problem for
an arbitrary number of design variablesx1,...,n is chosen and
implemented as the first noise-freetest function 1:


f (1) =


[
f


(1)
1


f
(1)
2


]
=


[
x1


1
x1


(
1 +


∑n
j=2 x2


j


) ]
(7)


with x1 ∈ [0.5; 2] andx2,...,n ∈ [−2.0; 2]. For theexperimental
noise, we assume a normal distribution with zero mean and stan-
dard deviationσN . A noisy test function is generated by adding
this noise to test function 1, leading totest function 2:


f
(2)
i = f


(1)
i + N(0, σ2


N ), i = 1, 2, (8)


whereN(0, σ2
N ) is a normally distributed random number with


zero mean and standard deviationσN . The standard deviation is


set toσN = 0.8 and the random number is computed separately
for each objective and individual in the evolution.
A second type of noise was introduced in SectionIII-A as the
random occurrence ofoutliers. For the modeling in a test func-
tion, we define a probabilitypo for the occurrence. Since we
consider the minimization of positive functions, reducing the
objective value has a stronger influence on the optimization pro-
cess by giving a solution a higher chance to survive. Therefore
we divide the objective value by a factor of 10, if an outlier oc-
curs. The large factor is chosen in order to produce a significant
change in the objective value. In mathematical form, we define
test function 3as:


f
(3)
i =


{
1
10f


(1)
i , if p < po, p ∈ U(0, 1)


f
(1)
i , otherwise


, i = 1, 2, (9)


where U(0, 1) is a uniform distribution of random numbers
within the interval[0, 1]. The probability of an outliner is small
and set topo = 0.01.
For analyzing the scaling of the optimization algorithms over the
number of objectives, a three-objective test function is defined
astest function 4, which is a generalization of the sphere model
to multiple objectives [16]:


f
(4)
i = (1− xi)2 +


n∑
j=1,j 6=i


x2
j , i = 1, 2, 3, (10)


with x1,...,n ∈ [−2.0; 2]. Analog to the generation of test func-
tion 2 and 3, we add theexperimental noiseandoutliers to test
function 4 and obtaintest function 5:


f (5i) = f
(4)
i + N(0, σ2


N ), i = 1, 2, 3 (11)


andtest function 6:


f (6i) =


{
1
10f


(4)
i , if p < po, p ∈ U(0, 1)


f
(4)
i , otherwise


, i = 1, 2, 3.


(12)


B. Performance Measures


In order to compare different optimization algorithms on the
6 test functions, performance measures are needed. In multi-
objective optimization, the definition of the quality of an opti-
mization usually considers two different aspects. The quality
is dependent on the convergence speed of the optimization as
well as on the wide and uniform distribution of the solutions
along the Pareto front. This is different from single objective
optimization where convergence is sufficient, since there exists
a single global optimum.
In literature several performance measures are proposed. Van
Veldhuizen and Lamont [24] present an overview with perfor-
mance measures in the design and objective space. Since the
test functions contain noise in their objective functions, measur-
ing the performance in objective space is difficult. Instead the
performance of the optimizer is measured in design space. Here,
the performance measureP is defined as the distance in design
space of evaluated solutions to the analytical Pareto front.
To evaluate this performance measure, 10 pointsx′(k), k =
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1, . . . , 10 are distributed uniformly in design space along the
analytical Pareto front. To each pointx′(k) the closest of all so-
lutionsx(j) of an optimization run is searched and the distance
is computed. The mean of the resulting 10 distances is taken as
performance measureP :


P =
1
10


10∑
k=1


min
j


(‖x(j)− x′(k)‖) (13)


For the test functions 1, 2 and 3 the analytical Pareto front is
given byx1 ∈ [0.5; 2] andx2,...,n = 0 [5]. The 10 uniformly
distributed points are:


x′1(k) =
1
2


+
1
6
(k − 1), x′2,...,n(k) = 0, (14)


The analytical Pareto front of test functions 4 is convex. Thus, it
can be computed by performing a weighted-sum aggregation of
all objectives into one function. The derivation of this function
with respect to all variablesxj leads ton equations. An elimi-
nation of the weighting factors from this set of equations leads
to the analytical Pareto front, given by


x1 + x2 + x3 = 1, x4,...,n = 0, with x1,2,3 ≥ 0. (15)


10 approximately uniform distributed points on the Pareto front
of test function 4, 5 and 6 are obtained by computing all combi-
nations ofx′1,2,3 ∈ [0, 1/3, 2/3, 1], such that Eq.15 is fulfilled.


C. Performance Analysis of Original and Modified Algorithms


In the following, the performance of the algorithms intro-
duced in SectionIII are numerically analyzed on the 6 test func-
tions. For all optimization algorithms, a parent and child pop-
ulation ofµ = λ = 60 is used, with an archive size of 20 for
the two-objective test function 1, 2 and 3 and a size of 50 for the
three-objective test functions 4, 5 and 6.
The recombination and mutation operators of SectionII-B are
used. The number of design variablesn is set ton = 7. This
number is equal to the number of design variables of the burner
optimization problem, which is addressed in the next section.
Since evolutionary algorithms are stochastic algorithms, the re-
sult of 100 optimization runs is averaged for each test function.
Some of the analyzed algorithms contain heuristic parame-
ters. No heuristic parameters have to be set for SPEA, the
non-elitistic SPEA and the statistical SPEA. For NT-SPEA,
the fractionsc1 and c2 are set to 0.1 and 0.3, respectively
and a maximal lifetimeκmax = 4 is used. A discus-
sion of these settings is introduced in the next section. For
ESPEA, a performance analysis is made for all combina-
tions of α ∈ [0.008, 0.01, 0.015, 0.02, 0.04, 0.07, 0.1, 0.2, 0.5]
and a property interval size of(aU


i − aL
i ) = 2δ ∈


[0, 0.2, 0.4, 1.0, 2.0, 3.0, 4.0]. In average, the best results of ES-
PEA on all test problems is obtained withα = 0.04 andδ = 0.2.
For the two-objective and noise-free test function 1, the results
are given in Fig.2. The performance measureP is plotted in
a logarithmic scale over the number of evaluated solutionsN .
The measureP reflects distance of the optimization to uniformly
distributed points along the analytical Pareto front. In the begin-
ning of the optimization run,P drops rapidly and levels off at


the end of the run. The optimization levels off, since a lim-
ited population and archive size cannot exactly approximate the
Pareto front, thus the distance to the uniform distributed Pareto
points stagnates at a certain level.
The performance of the different algorithms varies significantly.
The slowest convergence is observed for the statistical SPEA.
Evaluating a solution is 7 times more expensive than for the
other algorithm, since the mean of 7 function evaluations is com-
puted (Sec.III-C). Within the same number of computed solu-
tion the statistical SPEA proceeds just by1/7 of the number of
possible generations.
The second slowest is the non-elitistic SPEA, due to the lack
of an archive for storing the nondominated solutions. ES-
PEA shows better performance since the algorithm contains an
archive. In addition to the original SPEA, the archive can con-
tain a fraction of dominated solutions. Increasingα and the
property interval size raises this fraction and the selection pres-
sure decreases. The best performance can be found for NT-
SPEA and the original SPEA. In contrast to the ESPEA, for
which the archive can contain dominated solutions, the archive
of NT-SPEA and the original SPEA contain just nondominated
solutions and thus a higher selection pressure. According to the
theoretical analysis of Arnold and Beyer [1], high selection pres-
sure is an advantage on noise-free and unimodal functions.
The NT-SPEA re-evaluates solutions, although this is not nec-
essary for a noise-free test function. Since the fraction of re-
evaluated solutions is small, however, this disadvantage is small
and the algorithm performs well even on noise-free test prob-
lem.
Test function 2 includes normally distributed noise. The stan-
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Fig. 2


CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON THE


NOISE-FREE TEST FUNCTION1, COMPARED WITH THE ORIGINAL SPEA


[CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE


STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


dard deviation is set toσN = 0.8 and is about the same magni-
tude as the objective values of the analytical Pareto front, which
are within 0.5 and 2. The convergence behavior of the differ-
ent algorithms is illustrated in Fig.3. The convergence speed







IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 32, NO. 4, MONTH 2002 8


for the noisy test function is drastically reduced compared to
the noise-free test function 1 and the convergence levels off at a
higher value ofP . Excluding the statistical SPEA, the difference
in performance between the algorithms is smaller compared to
test function 1. Here, elitism in form of the original SPEA is
a disadvantage. The non-elitistic SPEA performs superior to
the original SPEA. ESPEA converges about equally to the non-
elitistic SPEA. NT-SPEA converges best, due to the compromise
between using an archive and limiting the risk of getting stuck in
noisy solutions by a limited and dominance-dependent lifetime
of solutions.


For the test function 3, an error probability ofpo = 1% per
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Fig. 3


CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST


FUNCTION 2 WITH NORMALLY DISTRIBUTED NOISE, COMPARED WITH THE


ORIGINAL SPEA [CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS


SYMBOL], THE STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


objective is defined. For this two-objective problem, the prob-
ability that at least one objective contains an error is therefore
about2%. In other words about one individual in the population
of 60 individuals contains an error and is thus an outlier.
The results of the numerical analysis are given in Fig.4. Again,
NT-SPEA performs best and the non-elitistic SPEA performs
better than the original SPEA. Analysis of the convergence of
the original SPEA shows that the algorithm gets stuck in the out-
liers. Outliers occur with a small probability and it is unlikely
that they are removed from the archive. This explains why the
non-elitistic SPEA performs significantly better than the origi-
nal one. ESPEA shows no advantage for this test function, com-
pared to the original SPEA.
The performance of the NT-SPEA is superior to all other algo-
rithms. It avoids getting stuck in outliers. The shortest lifetime
is assigned to outliers, which dominate a large part of the Pareto
front. Since they are re-evaluated after their lifetime has expired
and the probability that an error occurs again is low, they will
be removed from the archive. This allows solutions with larger
lifetime than the outliers to reenter the archive after the outlier
is removed.


The test functions 4, 5 and 6 contain 3 objectives. Obtain-
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Fig. 4


CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST


FUNCTION 3 WITH OUTLIERS, COMPARED WITH THE ORIGINAL SPEA


[CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE


STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


ing a solution of the same quality as for the two-objective test
functions 1, 2 and 3 in terms of the performance measureP
needs noticeable more iterations. The convergence tendencies
between the different algorithms are still comparable to the two-
objective test functions. Especially the relative convergence of
the different algorithms on the noise-free test function 4 (Fig5
is similar test function 1. SPEA and NT-SPEA perform demon-
stratively best on this function.
NT-SPEA, ESPEA and the non-elitistic SPEA show equal con-


vergence on the noisy test function 5, as illustrated in Fig.6. The
differences are within the sampling tolerance. Slightly inferior
convergence is obtained with the original SPEA, demonstrating
again the disadvantage of elitism in form of an archive of non-
dominated solutions with infinite lifetime.
Test function 6 contains similar to test function 3, an error prob-


ability of 1% per objective. For the three-objective problem,
the probability that an individual contains an error in at least on
objective is about 3%, thus about 2 of the 60 individuals in a
population are outliers. The convergence of the different algo-
rithms is plotted in Fig.7. Similar to test function 3, NT-SPEA
performs best, but here the original SPEA performs slightly su-
perior than the non-elitistic SPEA.


Summing the results from the 6 test functions, we found that
elitism, implemented by the archive of the original SPEA is
a convergence accelerator for noise-free problems. For noisy
problems it is a disadvantage and the non-elitistic SPEA per-
forms in average better.
The relative behavior of the different algorithms shows similar
tendencies for 2 and 3 objectives. For 3 objectives, however, the
differences are smaller.
The statistical SPEA includes the drawback of multiple func-
tion evaluation per solution and is except for test function 3 and
6 slower than all other implementation in the considered num-
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CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON THE


NOISE-FREE TEST FUNCTION4, COMPARED WITH THE ORIGINAL SPEA


[CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE


STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


ber of function evaluationsN , but will perform better for larger
valuesN as indicated by the largest slope inP for largerN ,
especially for test function 3 and 6. Again, the differences are
smaller for 3 objectives.
The settings of ESPEA forα andδ are very problem dependent
and lead to large performance differences. The best convergence
for the noise-free test function 1 is obtained forα = 0.008 and
δ = 0, a setting which leads to an algorithm and convergence
similar to the original SPEA. For test function 2, increasingα to
0.04, but keeping a property intervalδ = 0 leads to the best re-
sult. Increasingα introduces dominated solutions to the archive.
A positive effect of a property intervalδ > 0 for the noisy func-
tion could not be found. Test function 3 contains outliers and
the ideal settings areα = 0.2 andδ = 1.5. These settings differ
tremendously from the previous two settings, especially in the
property interval, but the performance on this function is still
poor. In addition, compared to the other algorithms, ESPEA
performs better for 2 objectives than for 3 objectives.
In contrast, a marginal problem dependence is found the param-
etersc1, c2 andkmax of NT-SPEA. This is analyzed in more
detail in the next section.
Comparing the mean behavior of the algorithms over all test
functions, NT-SPEA performs clearly best. One possibility for
a mean performance analysis for all 6 test functions is obtained
by summing the minimal value of P for each algorithm over all
test function. NT-SPEA clearly results in the smallest value with∑6


i=1 Pi(N = max) = 1.75, where max= 10000 for test func-
tion 1, 2 and 3 and max= 20000 for test function 4, 5 and
6. NT-SPEA is followed by the original SPEA (1.97), ESPEA
(2.02) and the non-elitistic SPEA (2.17) and finally the statisti-
cal SPEA (3.21).
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CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST


FUNCTION 5 WITH NORMALLY DISTRIBUTED NOISE, COMPARED WITH THE


ORIGINAL SPEA [CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS


SYMBOL], THE STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


D. Discussion of the Heuristic Parametersc1, c2 andkmax


The NT-SPEA algorithm, which is described in Sec.III-E
includes the heuristic parametersc1, c2 andkmax. Such param-
eters are often set by experimental analysis of various settings
on different test functions. We proposed to set the parameters
asc1 = 0.1, c2 = 0.3 andkmax = 4. The guiding concepts
behind the settings are the following: The value for the maximal
lifetime kmax is a trade-off between noise-free and noisy test
functions. For noise-free functions, re-evaluating does not lead
to new information, since the re-evaluated solution equals the
original. Thus, a larger maximal lifetime (and increased values
for c1 andc2) is preferable avoiding the re-evaluation of solu-
tions.
In contrast, for noisy problems, it is reasonable to limit the life-
time of a solution in the archive, in order to avoid a misleading
of the entire optimization process by noisy archive solutions.
Here, we store a solution in the archive for at most 4 genera-
tions. The time has to be short enough to avoid that the op-
timization is misled by very noisy archive solutions (outliers).
In addition the time has to be larger than one generation, since
solutions should be able to re-enter the archive after an outlier,
which dominates these solutions, is removed after his shorter
lifetime has expired. We assume that a solution, which domi-
nates less than 10% of the archive (= c1), should be assigned
the maximal lifetimeκ = κmax, while a solution, which dom-
inates more than 30% (= c2) should be re-evaluated already in
the next generation.
The following parameter analysis underlines that the parame-
ter settings are robust and their influence on the algorithm per-
formance is minor over a large range. The performance anal-
ysis of Sec. IV-C is repeated with all possible combinations
of c1, c2 ∈ [0.05, 0.1, 0.15, 0.2, 0.3, 0.5] andkmax ∈ [2, 4, 8],
while the constraintc1 < c2 is observed. For all combinations
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CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST


FUNCTION 6 WITH OUTLIERS, COMPARED WITH THE ORIGINAL SPEA


[CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE


STATISTICAL SPEA [DIAMOND ] AND ESPEA [TRIANGLE].


and all test functions, the performance measureP was com-
puted as the mean of 100 independent runs. TableIV-D contains
the obtained performance measures min(P ) and max(P ) for the
best and worst parameter combination, respectively and the re-
ferring heuristic parameters for all test functions.
For the noise-free test functions 1 and 4, all settings performed
almost identical and all settings performed better than the non-
elitistic SPEA, the statistical SPEA and ESPEA. Re-evaluation
is not necessary, since the original and re-evaluated solution are
identical. Thus re-evaluating many solutions will decrease the
performance. Beneath influencing the number of re-evaluated
solutions, the maximal lifetimekmax has a second effect. Since
the archive is updated with all solutions with non-expired life-
time, solutions may re-enter the archive after they were removed
by clustering. This seems to have a negative effect on the noise-
free function, since one setup withkmax = 8 performed worst.
Differences in the performance are also small for the test func-
tions 2 and 5, which contain experimental noise. In general,
on these two test functions the differences between the different
implementations of SPEA are the smallest.
Test function 3 and 6 contain a small percentage of outliers. This
seems to have a major effect on the performance of the differ-
ent algorithms. Since SPEA performs poor on this problem, the
setting of the NT-SPEA algorithm, which is closest to SPEA,
performs worst in this comparison. Due to the large maximal
lifetime kmax = 8 together with the large valuesc1 = 0.2,
c2 = 0.5, the algorithm is in danger of getting stuck in outliers
with a long maximal lifetime, thus misleading the algorithm.


Summarizing the results of for all test functions, the heuristic
parametersc1, c2 andkmax can be set general enough in order
to perform well on noise-free and noisy problems, as well as
problems with a rare occurrence of outliers. Varying the settings


test result Heuristic Parameters
function c1 c2 kmax


1 min(P )=0.099 0.10 0.20 2
max(P )=0.113 0.15 0.30 8


2 min(P )=0.804 0.10 0.20 4
max(P )=0.835 0.05 0.10 2


3 min(P )=0.346 0.10 0.20 4
max(P )=0.661 0.20 0.50 8


4 min(P )=0.174 0.05 0.15 4
max(P )=0.218 0.10 0.20 2


5 min(P )=0.345 0.10 0.20 4
max(P )=0.449 0.10 0.15 2


6 min(P )=0.583 0.10 0.30 8
max(P )=0.669 0.10 0.15 2


TABLE I


SENSITIVITY ANALYSIS OF NT-SPEAON THE HEURISTIC PARAMETERSc1 ,


c2 AND kmax . NT-SPEASHOWS SMALL PERFORMANCE VARIATION OVER


A WIDE RANGE OF PARAMETER SETTINGS.


over a large range has minor effect on the performance. Beneath
the better performance, this is a major advantage to the ESPEA
algorithm, which is very sensitive on the settings of the heuristic
parameters.


V. OPTIMIZATION OF A BURNER IN A GAS TURBINE


COMBUSTION TEST-RIG


A. Atmospheric combustor test-rig


Gas turbines operate by compressing air in a compressor,
which then reacts with fuel in a combustion chamber and is fi-
nally expanded in a turbine. The difference in power between
the turbine output and the compressor input is the net power
to generate electricity. The combustion chambers of Alstom’s
larger gas turbines, e.g. GT24 and GT26, are annular around the
turbine axis with a set of burners aligned in the annulus.
We consider the optimization of a single burner in an atmo-
spheric test-rig as illustrated in Fig.8. Preheated air enters the
test-rig from the plenum chamber and is mixed with fuel in the
low-emission burner by swirl. The burner stabilizes the com-
bustion flame in a predefined combustion area by a controlled
vortex breakdown. The fuel is natural gas or oil and is injected
through injection holes, which are uniformly distributed along
the burner. A detailed description is given by Jansohnet al.
[15].
Various investigations have been made in order to reduce pulsa-
tions and emissions of the burner by active and passive control
mechanisms. Paschereitet al. [19] reduced the pulsations in the
experimental test-rig by an acoustic actuation in a closed con-
trol loop. We consider a passive control mechanism, choosing
the fuel flow rates through the injection holes of the burner as
design variables of the setup, due to the low modification cost
for the gas turbine compared to an active control system. 8 con-
tinuous valvesVi,i=1,...,8 are used to control the fuel rates. Each
valveVi controls the mass floẇmi through a set of adjacent in-
jection holes along the burner axis.
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SKETCH OF THE ATMOSPHERIC COMBUSTION TEST-RIG WITH A


LOW-EMISSION SWIRL STABILIZED BURNER. THE FUEL FLOW THROUGH


THE INJECTION HOLES ARE THE DESIGN VARIABLES OF THE SETUP. THE


NOx EMISSIONS AND THE PULSATION OF THE BURNER ARE THE


OBJECTIVES TO BE MINIMIZED.


In order to keep the operating conditions constant, the total fuel
mass flowṁt =


∑8
i=1 ṁi is fixed, reducing the number of free


design variables for the optimization from 8 to 7. Fig.9 shows
the implemented encoding for the 8 valuesVi by 7 virtual valves
V ′


j, j=1,...,7. The total mass flow is split by a first virtual valveV ′
1


into two flows, with each of the flows feeding either the first or
second half of the real valves. The next layer consists of two vir-
tual valvesV ′


2 andV ′
3 and splits the two flow into four. Finally,


the virtual valvesV ′
4 , V ′


5 , V ′
6 , andV ′


7 feed the real valvesVi and
determine the fuel flowsmi. While the evolutionary algorithm
operates with the seven virtual valves, the real valves are used in
the test-rig. A detailed description about the experimental setup
and the fuel control can be found in [7]. In the following, we
refer to the real valvesVi and the real fuel flowsmi.
The NOx emissions and the pulsation of the burner are the
two objectives to be minimized in a Pareto optimization setup.
Pulsations are thermo-acoustic combustion instabilities, involv-
ing feedback cycles between pressure, velocity and heat release
fluctuations. The NOx emissions occur at high combustion tem-
perature, which arise in centers of rich combustion due to inho-
mogeneous mixing of fuel and air. No constraints are imposed
on the objective functions.


B. Optimization results


An optimization run is performed using NT-SPEA with a pop-
ulation and archive size of 15 and evaluating a total of 326 dif-
ferent burner settings within one working-day. All solutions are
plotted in Fig.10 in order to show the possible decrease in NOx


emissions and pulsations by the optimization compared to the
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ENCODING OF THE FUEL FLOWṁi THROUGH THE8 VALVES Vi OF THE


TEST-RIG. SINCE THE TOTAL MASS FLOWṁt IS FIXED, THE 8 FUEL FLOWS


CAN BE ENCODED BY7 VIRTUAL VALVES V ′
j .


given standard burner configuration and between the best and
worst designs.
The given standard burner configuration is marked in the figure
and represents a setting with equal mass flow through all valves.
Some solutions found by the optimization process dominate the
standard configuration, i.e. are superior in both objectives. Thus
the optimization run is successful, delivering improved solutions
for both objectives. The occurrence of a wide nondominated
front underlines the conflict in minimizing both objectives and
just (Pareto) compromise solutions can be found.
In the figure, the objectives are noisy. Thus, drawing just the
nondominated front and picking one solution from the front is
risky from the point of view, that an inferior solution is picked,
which is nondominated due to the noise in its objective values.
Picking an area close to the nondominated front increases the
confidence in the front, especially if the valve settings are quite
similar for the solutions in the area. A second reason for not
drawing just the nondominated front is the possible shift of the
front towards smaller objective values. The objectives contain
noise and the selected nondominated solutions may improve due
to noise leading to smaller objective values. In addition we are
more interested in the valve settings than in the exact objective
values, since the valve settings indicate the included physics.
Five areas along the nondominated front are picked and marked
by boxes. For the solutions within the boxes, the valve set-
tings are printed in Fig.11. Fig. 8 shows the arrangement of
the valves in the combustor. For better illustration, the settings
are connected with a line and the dash-dotted line shows the
standard burner configuration with equal mass flow through all
valves. Within each box, the settings of the different solutions
are in deed quite similar.
Box 1 and 5 are at the extreme ends of the Pareto front. Box
1 represents Pareto solutions with high NOx emissions, but low
pulsation. The corresponding valve settings show an increased
fuel mass flow at valves 1, 2 and 4, while the flow at valves 5
and 6 is reduced. The fundamental mechanism corresponding
to these settings is the fact that the increased mass flow through
valves 1 and 2 leads to rich combustion in the center of the
burner. The rich combustion zone stabilizes the combustion like
a pilot flame, but increases the NOx emissions. The lean zones
are close to the middle of the burner at valves 5 and 6.
Box 5 contains solutions with minimal NOx emissions, but high
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pulsation. The mass flow through each valve is about equal,
generating no rich combustion zones. Compared to the standard
burner configuration, the small mass flow increase at valves 5
and 8 and decrease at 3 and 4 leads to lower NOx emissions,
while the pulsation is unchanged.


C. Statistical analysis


One of the interesting features of the resulting nondominated
front is the almost linear change in valve settings along the front.
At Box 1, five valves have either strongly increased or decreased
mass flow and their amplitude is constantly decreasing from Box
1 to 5 until it reaches an almost equal mass flow for all valves
in Box 5. This indicates simple dependencies of the valves with
the objective functions. Fig.12 contains a scatterplot for the
valve settings and objective functions of all measured solutions.
A scatterplot contains all possible 2D subspace plots for all de-
sign variables and objectives. The plot in column 9 and row 10
contains the objective space with the nondominated front. Most
interesting are the two last rows, containing the correlation of
the valves with the objective functions. For example, the hori-
zontal and vertical axis of the plot in row 9, column 1 represent
valve 1 and the NOx emission, respectively. Strong correlation
is expressed by narrow stripes under±45◦ to the axis. An axi-
ally symmetrical area of solutions implies no correlation. Strong
correlation can be observed between valves 1, 2, 5, 6 and the
two-objective functions.
The correlation coefficientsrVi, NOx


andrVi, pulsation for the
design variables and objectives are given in Fig.13. They
complement the results from the scatterplot. For all valves,
the correlation coefficients have opposite signs for the two ob-
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jectives. Therefore, changing the fuel injection in any of the
valves improves always one objective while the other is wors-
ened. Large coefficients indicate a strong correlation and occur
between valves 1, 2, 5, 6 and the two objective functions. For
increasing the mass flow through valve 1 and 2, the emissions
increase while the pulsation decreases. For valves 5 and 6, this
is vice versa.
It has to be considered that these observations hold for the solu-
tions obtained through an optimization process. The distribution
of the solutions in the scatterplot in Fig.12 illustrates that they
do not cover the whole design space. Hence, these solutions are
not uniformly distributed in the design space and may not be
representative.


D. Noise analysis


The NT-SPEA algorithm that is used for the burner optimiza-
tion contains the special feature of re-evaluating solutions after
their lifetime expires. Among the 326 evaluated solutions, 40
were re-evaluated at least once by the optimizer. Comparing the
difference in NOx between a solution and the re-evaluated one,
the maximal difference is about 8% of the objective range and
the mean difference is 2%. For the pulsation, the maximal and
mean difference is 13% and 4%, respectively. Thus, the noise
in the pulsation is more critical to the optimization. The large
ratio between the maximal and mean difference indicate the rare
occurrence of outliers and the presence of noise in the objective
measurement of all solutions.


VI. CONCLUSIONS


A novel noise-tolerant multi-objective evolutionary algorithm
(NT-SPEA) is introduced with increased robustness for applica-
tions prone to noise and outliers. The algorithm introduces the
concepts of domination-dependent lifetime, the re-evaluation of
nondominated solutions and an extended update mechanism for
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the archive. These concepts have been applied to SPEA and can
be transferred to any elitistic multi-objective algorithm.
A convergence comparison for various implementations of
SPEA has been performed on noisy and noise-free test func-
tions. In general, a decrease in convergence is observed when
noise is introduced. The concept of elitism is analyzed in the
presence of noise. In the absence of noise, elitism can be used as
a convergence accelerator. However, for different types of noise,
elitism can imply a significant disadvantage, since the optimiza-
tion can get misled by outliers.
The NT-SPEA overcomes the problem by introducing
dominance-dependent lifetime and accelerates the convergence
by using an archive. The archive is modified by the re-evaluation


of nondominated solutions and an extended update. For the
noise-free test problems, NT-SPEA shows similar convergence
to the original SPEA, which converges best. This is a major ad-
vantage compared to a non-elitistic and a statistical implemen-
tation of SPEA and the ESPEA of Teich.
While NT-SPEA performs equal or superior to the best of the
other implementations for problems with normally distributed
noise, it clearly outperforms all algorithms for problems with
outliers. The discussion of the heuristic parameters shows that
they have minor influence on the performance over a wide pa-
rameter range. A further advantage, which is not discussed in
the paper, is that NT-SPEA can handle moving optima over
time or changing environmental conditions. The algorithm re-
evaluates solutions after a limited lifetime, therefore adapts the
objective values according to the changing values.
The algorithm is successfully applied to an automated optimiza-
tion of gas turbine burners. The process produces in an auto-
mated fashion an experimental nondominated front for minimiz-
ing pulsation and emissions of an industrial burner. Automated
optimization can be considered a supporting tool in the design
process, complementing physical understanding as well as trial-
and-error design. Future work will focus on using larger num-
bers of valves, leading to more flexibility in the fuel distribution
and allowing axially asymmetric distribution. In addition, bi-
nary valves (on/off) will be used, reducing the modification cost
for adapting a burner in a real machine according to the opti-
mization results. The present algorithm is under modification to
account for these discrete configurations.
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