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Abstract. Evolutionary Algorithms are a standard tool for multi-objective
optimization that are able to approximate the Pareto front in a single
optimization run. However, for some selection operators, the algorithm
stagnates at a certain distance from the Pareto front without conver-
gence for further iterations.

We analyze this observation for different multi-objective selection opera-
tors. We derive a simple analytical estimate of the stagnation distance for
several selection operators, that use the dominance criterion for the fit-
ness assignment. Two of the examined operators are shown to converge
with arbitrary precision to the Pareto front. We exploit this property
and propose a novel algorithm to increase their convergence speed by in-
troducing suitable self-adaptive mutation. This adaptive mutation takes
into account the distance to the Pareto front. All algorithms are analyzed
on a 2- and 3-objective test function.

1 Introduction

Real-world optimization problems often include multiple and conflicting objec-
tives. A solution to such a problem is often a compromise between the objectives,
since no solution can be found that is ideal to all objectives. The set of the best
compromise solutions is referred to as the Pareto-ideal set, characterized by the
fact that starting from a solution within the set, one objective can only be im-
proved at the expense of at least one other objective.

Evolutionary Algorithms (EAs) are a standard tool for Pareto optimization, since
their population-based search allows approximating the Pareto front in a single
optimization run. EAs operate by evolving the population in a cooperative search
towards the Pareto front. They incorporate biologically inspired operators such
as mutation, recombination, and fitness-based selection.

In Pareto optimization, recent research has focused on multi-objective selection
operators and in particular fitness assignment techniques. Various selection op-
erators are compared in the literature [1-3] and according to Van Veldhuizen
and Lamont [4], the dominance criterion in combination with niching techniques
is one of the most efficient techniques for the fitness assignment. This group
of algorithms is referred to by Horn [5] as “Cooperative Population Searches



with Dominance Criterion” and two prominent representatives are SPEA [1]
and NSGA-II [6].

While these algorithms perform well in a number of test problems, we observe
a stagnation in the convergence of these algorithms at a certain distance from
the Pareto front. The distance is dependent on the selection operator as usually
these algorithms do not employ any mutation or recombination operators. In this
paper we estimate this stagnation distance by deriving an analytical solution for
a simplified Pareto front. This raises the question, which selection operators are
able to converge to the Pareto front and in addition, which operators converge
efficiently?

Two alternatives to the dominance criterion are the Constraint Method-based
Evolutionary Algorithm (CMEA) [2] and Subdivision Method (SDM) [7]. These
algorithms perform selection by optimizing one objective, while the other objec-
tives are treated as constraints. They are able to converge to the Pareto front
for certain test cases.

In conjunction with the selection operator, the mutation and recombination op-
erators are important for an efficient convergence and should adapt while con-
verging towards the Pareto front. In recent years, some efforts have been made
in order to apply adaptation in multi-objective optimization. Kursawe [8] and
Laumanns et al. [9] developed two implementations of self-adaptation [10]. Kur-
sawe performs selection based on a randomly chosen objective. In his work each
individual contains a separate vector of design variables and step sizes for each
objective (polyploid individuals). Laumanns et al. assign a single step size to
each individual, which yields an isotropic mutation distributions.

Sbalzarini et al. [11] use a simple self-adaptation scheme for mutating step sizes.
Each individual in the population is assigned an individual step size for each
design variable. Abbass [12] implemented a Pareto optimization algorithm with
recombination and mutation based on the Differential Evolution of Storn and
Price [13]. He used self-adaptation in order to find appropriate crossover and
mutation rates (probabilities). Biiche et al. [14] trained self-organizing maps
(SOMs) [15] on the currently nondominated solutions, and recombination was
performed within the network. The mutation strength was related to the dis-
tance between the neurons in the SOM.

Compared to single objective optimization, applying self-adaptive mutation to
multi-objective selection operators reveals an additional difficulty. Self-adaptation
contains several strategy parameters, which describe the mutation distribution.
These parameters benefits from the recombination (interpolation) of several par-
ent solutions. However, in multi-objective optimization, the individuals of the
population converges towards different areas of the Pareto front and efficient
strategy parameters differ between the individuals. Thus, recombination will
also be discussed for the different selection operators.

In the next section, the multi-objective optimization problem is introduced and
we briefly outline the basic concepts of multi-objective evolutionary algorithms,
which will also be used later on for comparison. Self-adaptation is presented
for multi-objective optimization and the key properties of suitable selection and



recombination operators are discussed. Different multi-objective algorithms are
analyzed in terms of their ability to converge to the Pareto front. In addition,
the implementation of self-adaptive mutation into these algorithms is discussed.
Finally, the performance of the proposed algorithms is analyzed on a 2- and
3-objective test function. In the performance comparison, the number of result-
ing nondominated solutions of the different algorithms is allowed to be small,
since in real-world applications, analyzing these solutions is often an expensive
process.

2 Multi-Objective Optimization

2.1 Definition of Multi-Objective Optimization

A multi-objective optimization problem can be formulated by an objective vec-
tor f and a corresponding set of design variables x. Without loss of generality
minimization of all objectives is considered:

find mlnf(x) = (fl(x)7f2(x)7" ,fm(X)) € F
where x = (21,%2,...,%,) € X, (1)

where X € R" is the n-dimensional design space, F' € R™ is the m-dimensional
objective space. A partial ordering can be applied to solutions to the problem
by the dominance criterion. A solution a in X is said to dominate a solution b
in X (a > b) if it is superior or equal in all objectives and at least superior in
one objective. This is expressed as:

a>b, if Vi€{1,2,...,m}: fila) < fi(d) A
E|j€{1,2,...,m}: fj(a)<fj(b) (2)

The solution a is said to be indifferent to a solution ¢, if neither solution is
dominating the other one. When no a priori preference is defined among the
objectives, dominance is the only way to determine, if one solution performs
better than the other [16]. The best solutions to a multi-objective problem are
the Pareto ideal solutions, which represent the nondominated subset among all
feasible solutions. In other words, starting from a Pareto solution, one objective
can only be improved at the expense of at least one other objective.

2.2 Self-Adaptation in Multi-objective Optimization

Self-adaptation [10] is associated with mutation or recombination operators and
has been mainly used in Evolution Strategies (ES) and Evolutionary Program-
ming (EP) for single objective optimization. In the following we outline the basic
principles of self-adapting the mutation distribution of ES as described in [17].
These concepts are subsequently implemented into multi-objective optimization.
The optimization of objective functions f(x), which depend on a set of design



variables x € R" is considered. In ES, mutation is performed by adding a nor-
mally distributed random vector to the design variables x:

x'=x+1z, z~N(0,C), (3)

where z is a realization of a normally distributed random vector with zero mean
and covariance matrix C. Choosing a constant covariance matrix might be ef-
ficient in the beginning of the optimization, but can become inefficient close to
the optimum. Adaptation of the mutation distribution has been show to be nec-
essary for efficient optimization algorithms [17].

The elements c;; of the covariance matrix are strategy parameters, which can be
build by a set of n standard deviations o; and n (n — 1)/2 rotation angles ay,
where:

0'1-2 = Cj; (4)
201']' . 1 NP .
tan(2ay) = =, with k= -(2n —i)(i+ 1) —2n +j (5)
o; —0j 2

The mutation of the strategy parameters is performed similarly to the mutation
of the design variables by:

o; = 0;exp(roN(0,1) + 7N;(0,1)) (6)
a;c =ao + IBNk(Oa 1)7 (7)

where 79, 7 and  are the learning rates and recommended values are:

T0 = 50 (8)

1 1 3

= T =
V2n' \/ 2\/5’

This mutation is referred to as correlated mutation or rotation angle mutation.
Simplifications of the covariance matrix can be obtained in a first step by re-
moving the correlation (i. e., ¢;j, ;2 = 0) and in a second step by reducing all
standard deviations to a single one, i. e., 0; = 0.
To promote the adaptation of the strategy parameters, the following procedure
is recommended [17]:

1. Non-elitist selection operators should be preferred:
Although an elitist strategy ((u + \)-strategy) guarantees a continuous im-
provement of the objective value of the parent population, it inhibits the risk
of getting stuck in parents with inappropriate strategy parameters with a
low chance of generating better offspring. Thus, non-elitist (u, &, A)-strategies
with a limited lifetime k are preferred. A typical population size for parents
and offspring are g = 15 and A = 100, respectively [17].

2. Recombination of a parent population is necessary:.
A further improvement is obtained by recombination: The design variables
are usually recombined by discrete or intermediate recombination of always
two parents and the standard deviations are recombined by computing the
mean of all parents (global intermediate recombination). No recombination
is usually applied to the rotation angles.



2.3 Multi-Objective Evolutionary Algorithms

We consider multi-objective evolutionary algorithms, performing a population-
based search in order to find a set of approximately Pareto-ideal solutions along
the Pareto front. Promising methods have been proposed and evaluated by sev-
eral researchers [1,4,18]. The various multi-objective evolutionary algorithms
mainly employ a selection operator. In the following we classify different ap-
proaches as proposed by Horn [5] and discuss the applicability of these algo-
rithms to self-adaptation. In particular, we focus on the ability of an algorithm
to converge with arbitrary precision to the Pareto front.

Independent Sampling: An approximation of the Pareto front can be ob-
tained by performing several independent runs with different aggregation of the
objectives by e.g. a weighted sum or a constraint approach. This leads to a dis-
crete approximation of the Pareto front, with each optimization run converging
to a different point of the Pareto front. Independent sampling is an ideal candi-
date for self-adaptation as the multi-objective problem is transformed to a set
of single objective problems, thus self-adaptation is directly applicable.
Ranjithan et al.[2] proposed to use a constraint method-based evolutionary al-
gorithm (CMEA) for aggregating the objectives. One objective f, is selected for
optimization, while all other objectives f; ;x5 are treated as constraints:

min fy,, while fi <utVi=1,...,m;i#h, (9)
where u! are the constraint values. For varying the constraint values, different
Pareto solutions are obtained.

In order to find appropriate constraint values, the algorithm searches for the
extreme corners of the Pareto front by separately optimizing all objectives f;, i #
h [5]. Then, for each objective, a certain number of different constraint values u!
is chosen uniformly within the extreme corners. For each possible combination
of one constraint value per objective, an optimization run is performed and the
Pareto front is approximated.

Some knowledge of previous runs can be exploited by using the best solution(s)
obtained so far as initial solution(s) for the next run [2].

Cooperative Population Searches with Dominance Criterion: Cooper-
ative population searches converge in a single run towards the Pareto front. The
dominance criterion in combination with niching techniques is used in order to
select on average the less dominated solutions and preserve diversity in the pop-
ulation, respectively. According to Van Veldhuizen and Lamont [4] this class
of fitness assignment is most efficient. Two recent performance comparisons [7]
[2] show however that other classes of optimization approaches can also lead to
comparable results. One of the most prominent representative is the Strength
Pareto Evolutionary Algorithm (SPEA) [1]. SPEA uses the nondominated solu-
tions for the fitness assignment. First, the fitness of each nondominated solution
is computed as the fraction of the population, which it dominates. The fitness



of a dominated individual is equal to one plus the fitness of each nondominated
solution by which it is dominated. This fitness assignment promotes solutions in
sparse areas.

Elitism is a key element in this class of algorithms and represents a technique
of preserving always the best solutions obtained so far. It is often performed by
preserving the nondominated solutions in an archive. In order to preserve diver-
sity in the archive and to keep its size limited, clustering algorithms are applied.
SPEA does not employ a mutation or recombination operator. To compare the
performance on continuous problems, Zitzler and Thiele [3] use the polynomial
distributed mutation and the simulated binary crossover proposed by Deb et al.
[19]. Both methods do not implement any adaptation process. So they do not
exploit explicitly any knowledge available from the evolution of the population.
We discuss these methods in order to analyze their limited convergence towards
the Pareto front:

In Fig. 1, a simple example for a 2-objective minimization problem is given
with the Pareto front being a straight line between f = {1,0} and f = {0,1}.
For a limited archive size (or number of parents) s, the objective space cannot
be completely dominated. For the ideal case, that all archive solutions are uni-
formly distributed along the Pareto front, the nondominated area is described
by the Pareto front and the dashed lines. This area contains, from the aspect of
dominance, indifferent solutions, i. e. solutions of the same quality as the con-
sidered archive solutions, and the maximal distance of a nondominated solution

to the Pareto front can be calculated as m Thus, the minimal number

of archive solutions in order to dominate a solution with a certain distance to
the Pareto front scales with s~! and in order to converge to the Pareto front,
an infinite number of archive solutions is necessary. For 3 objectives, it can be
shown that the maximal distance of a nondominated solution scales with s~2 and
the dominance criterion as selection criterion becomes less efficient. The domi-
nance criterion works well for the approximation of the Pareto front, but fails in
the final convergence since the archive size of this class of algorithms is usually
limited. This is a general problem of selection operators, using the dominance
criterion, e. g., SPEA, SPEA2 [3] and NSGA-II [6], as it will be experimentally
shown in Section 3.

Cooperative Population Searches without Dominance Criterion: This
class of optimization approaches converges towards the Pareto front in a single
optimization run, but does not use the dominance criterion within the selection
operator. Moreover, it could be considered as performing several Independent
Sampling optimizations within a single optimization. Several selections are per-
formed from one population with different aggregation of the objectives. This
might be beneficial compared to Independent Sampling, since information can
be exchanged while converging as one individual can be preferred by several dif-
ferent aggregations.

One example is the Subdivision Method (SDM) [7], an optimization approach
with some similarities to the CMEA. In the following, the algorithm is briefly



Fig. 1. Disadvantage of the dominance as selection criterion: for a limited number
of archive solutions [+ symbols], which may be on the Pareto front [solid line], the
objective space cannot be completely dominated, e.g. the solution [z symbol] is not
dominated, even though it is still far from the Pareto front.

described and an example for a 2-objective minimization problem is given in
Fig. 2. In the objective space, the SDM performs several local (p, %, A) selections
and then unifies all selected solutions to the parent population. Similar to the
CMEA one objective f;, is selected for optimization, while all other objectives
fi,i#n are treated as constraints. However, a lower and upper constraint value is
set:

min fy, while I! < fi <ul, Vi=1,...,m ;i# h. (10)

The constraints I¢ and u! are set such that they divide the objective axis of f; in k
intervals t = 1,..., k of equal width, where the upper constraint u! of an interval
t is always the lower constraint lﬁ“ of the adjacent interval t+1, i. e., lf“ =ul.
The lower constraint value I} of the first interval and the upper value of the k"
interval u¥ are set equal to the minimal and maximal value for objective i of
the current nondominated front, respectively. Thus, the constraints change along
the optimization process as the current nondominated front changes. For each
possible combination of choosing one interval ¢ for each of the objectives f; ;xp,
a separate selection is performed with respect to fj, where the constraints are
hard, i. e., a solution which violates the constraints is not considered. Then, this
process is repeated until each objective is chosen once as a selection criterion,
in order to avoid a preference between the objectives. In total m - k™! local
selections are performed.

Self-adaptation can be implemented in this selection operator by the follow-
ing procedure: The selection process can be considered as performing several
local selections in a “subdivided” objective space. The mean distance of the se-
lected individuals to the Pareto front may differ between the local selections,
resulting in different sets of efficient strategy parameters. Thus, recombination
as described in Sec. 2.2 is always performed within a local selection. Finally,
self-adaptive mutation is applied to the recombined individuals.
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Fig. 2. Selection by SDM for 2 objectives: The objective space is divided along fi
into two intervals by specifying a hard lower and upper constraint value ! and u for fi,
respectively [dash-dotted lines]. From all solutions [+ symbols] in an interval, always the
1 best solutions [bold + symbols] with respect to f2 are selected. Then the procedure
is repeated by dividing the space along f» and considering fi as selection criterion.

3 Experimental Analysis

A simple test function for an arbitrary number of objectives is considered, which
is a generalization of the sphere model to multiple objectives [9]. It allows to
analyze the convergence of optimization algorithms as a function of the number
of objectives:

n
fi=(zi—172+ Z x?, i=1,....m Am<n (11)
=15

with z1,..., € [-2.0;2.0], ¢ is the index of the objective and the number of

variables is set to n = 10. For two objectives the Pareto front is given by:
1 +22=1, 23, . n=0AT12 >0, (12)

and for 3 objectives by:

z1+x2+x3=1, 34 n=0Az1232>0. (13)

In the design space, the Pareto fronts of the 2- and 3-objective problem describes
a straight line or a plane, respectively.

3.1 Performance Measures

The definition of the quality of the results from a Pareto optimization considers
two aspects. The first aspect is the convergence of the solutions towards the
Pareto front, and will be addressed by the mean distance D of solutions to the
Pareto front. The second aspect reflects the distribution of the solutions, whereas
a uniform distribution along the Pareto front is desired. This will be addressed
by plotting the objective space.



3.2 Results

In the following we analyze the performance of the 3 different classes of multi-
objective algorithms. For simplicity, just one representative of each class is con-
sidered in order to focus on the general convergence properties and not on the
exact convergence speed.

Independent Sampling: The CMEA is analyzed as a representative of Inde-
pendent Sampling on a 2-objective sphere. In total 6 independent optimization
runs are performed with a (15,3,100) strategy, implementing correlated muta-
tion. All initial step sizes are set to 0.1 and 17.000 solutions are evaluated for
each run, leading in total to about 100.000 evaluated solutions.

First, 2 single objective optimization runs are started for f; and f; from random
initial solutions. Then, 4 constraint optimization runs are performed, where f5 is
optimized and f; is treated as constraint. Since the f; value of the best solution
of the two single objective runs is about 0 and 2, respectively, the constraints
for f; for the 4 remaining runs are set to 0.4, 0.8, 1.2, and 1.6.

For the constraint optimization runs, some knowledge of previous runs is ex-
ploited by using the best solutions obtained so far as initial solutions for the
next run [2]. We consider a hard constraint: If solutions violate the constraint,
they are not considered for selection. This constraint ensures a convergence to
a point on the Pareto front. A soft penalty with a gradient smaller than the
gradient of f, may converge to a point in the neighborhood of the Pareto front.
Fig. 3a shows the performance measure for all 6 optimization runs, which rep-
resents the mean distance of the parent population at each generation to the
Pareto front. The figure shows large differences in the convergence between the
different runs. While the two single objective optimizations converge linearly, the
convergence of the constraint optimizations slows down at a distance of about
D = 0.01 to the Pareto front. Fig. 4 addresses this aspect and shows the contour
lines for f; and f» and the Pareto front in the (z1,22) space. Each contour line
of fi represents a different constraint setting. The optimum for each constraint
optimization is located in the intersection of a f; contour line with the Pareto
front. In the vicinity of the optimum, the topology is badly scaled and oriented
such that it is difficult to optimize it with the given self-adaptation scheme (com-
pare Hansen et al. [20], Fig. 2).

Fig. 7a shows the best solution of each optimization run and the Pareto front.
While the solutions are equally spaced in f; direction, the distribution is nonuni-
form along the Pareto front, with a concentration on the part of the Pareto front,
which is almost parallel to the f; axis. This results from treating f; and fo dif-
ferently as constraint and objective, respectively.

Cooperative Population Searches with Dominance Criterion: For SPEA,
different archive sizes of 30, 100, and 300 are analyzed for the 2- and 3-objective
sphere. Here, the focus is on the maximal convergence of a limited archive size
to the Pareto front and not on the actual convergence speed of SPEA. The num-
ber of parents and offspring is set equal to the archive size and in total 100.000
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Fig. 3. Mean distance D of the parent population (a) and mean standard deviation
o of the mutation distribution (b) for single objective optimizations [solid lines] and
constraint optimizations [dash-dotted lines] for CMEA.

solutions are evaluated. Discrete and intermediate recombination of 2 parents is
considered with 33% probability each. In order to analyze just the effect of the
archive, a normally distributed mutation with zero mean and standard devia-
tion of 0.0005 and 0.002 is used with a mutation probability of 15% per variable,
which lead to the best results.

Fig. 5 shows the convergence measure D, which represents the mean distance of
the solutions in the archive to the Pareto front. It can clearly be seen that the
convergence stagnates at a certain value of D and this value is decreasing with
an increase of the archive size. Comparing the 2- and 3-objective optimization
results, a second observation can be made. The final mean distance D for the
3-objective problem is significantly larger than for the 2-objective problem and
the increase in the archive size leads to a smaller relative decrease in D. This
underlines the previously stated rule that for a limited archive size an evolution-
ary algorithm, which considers the dominance criterion for selection in a similar
way than SPEA, cannot converge to the Pareto front. In addition, in order to
obtain the same mean distance D from the Pareto front, the necessary number
of archive solutions rises with the number of objectives. The distribution of the
solutions of the final archive is shown for the 2-objective problem with an archive
size of 300 in Fig. 7b and shows the uniform approximation of the Pareto front
with a large number of archive solutions.

Cooperative Population Searches without Dominance Criterion: The
SDM is now analyzed on the multi-objective sphere. Always 8 solutions are se-
lected in each local selection and a maximal lifetime k = 3 is assigned to each
solution. The convergence measure D for the SDM is set to the mean distance
of all selected parents of a generation to the Pareto front. For the 2-objective
problem, 3 intervals are chosen along each objective axis, leading in total to 6 lo-



Fig. 4. Convergence difficulty in the CMEA for optimizing f» and setting fi as con-
straint. The optimum for a specific constraint value for f; is located at the intersection
of the Pareto front [bold solid line], with the contour line of f; [solid line]. In the
vicinity of the optimum, the topology is badly scaled and oriented as shown above.

cal selections and a maximal number of 48 parents. For the 3-objective problem,
each objective axis is divided into 2 intervals, leading to a total number of 12
local selections and a maximal number of 96 parents. The bounds of the intervals
are obtained from the current nondominated front of the optimization run and
thus need no user specification. For self-adaptation, a ratio of 7 offspring per
parent is recommended, leading to a total number of 336 and 772 offspring for
the 2- and 3-objective problem, respectively. Similar to CMEA, a global inter-
mediate recombination of the parents from one local selection is performed for
the variables and step sizes. No recombination is applied to the rotation angles.
In total 100.000 solutions are evaluated and the convergence measure is plotted
in Fig. 6. In addition, the mean step size of the mutation distribution is given.
The convergence speed decreases at a value of about 1072 for the same reason
as for the CMEA: The convergence becomes difficult due to the constraint op-
timization. Here, the convergence speed for the 3-objective problem is about a
factor of 2 smaller than for the 2-objective problem. This results mainly due to
the doubled number of local selections. The parents of the final population are
plotted in Fig. 7c and are uniformly distributed along the Pareto front.

4 Conclusions

Evolutionary Algorithms for multi-objective optimization should implement ef-
ficient techniques in order to improve convergence towards the Pareto front,
while maintaining diversity spanning the front. We study three different classes
of multi-objective algorithms and compare a representative of each class with
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Fig. 5. Mean distance D of the archive solutions of SPEA for the 2-objective (a) and
3-objective (b) sphere problem. The archive sizes is varied between 30 [solid line], 100
[dashed line] and 300 [dash-dotted line].

each other. The question is which of these algorithms is able to converge to the
Pareto front with an arbitrary precision.

We found that cooperative population searches like SPEA, which use the dom-
inance criterion in the fitness assignment, cannot approximate the Pareto front
with arbitrary precision. For a 2-objective optimization problem, the necessary
number of archive solutions to assign fitness by dominance scales inversely with
the distance of solutions to the Pareto front. For 3 objectives, convergence be-
comes even more difficult, since the necessary number of archive solutions scales
inversely with the square of the distance. This result holds for other algorithms
using the dominance criterion and a limited population (e. g. NSGA-II, SPEA2).
The algorithms CMEA and SDM do not use dominance. In these algorithms,
one objective is selected for optimization, while the other objectives are treated
as constraints. Both algorithms converge to a fixed number of discrete points on
the Pareto font, which can be reached in arbitrary precision. For the considered
test functions, this number is significantly smaller than the number of nondom-
inated solutions of SPEA. However, the limited number of converged solutions
of CMEA and SDM is often sufficient in real-world applications, especially if
the analysis of these solutions is expensive. Thus, algorithms like CMEA and
SDM are interesting alternatives to the well established algorithms based on the
dominance criterion.

CMEA finds one optimal point in each optimization run and thus needs to be
run for several times in order to find an approximation of the Pareto front. In
contrast, SDM finds an approximate Pareto front in a single optimization run.
It is shown that self-adaptation can easily be applied to CMEA and SDM and
that both algorithms converge successfully to the Pareto front and outperform
SPEA in terms of the final distance to the Pareto front. Comparing CMEA and
SDM in terms of convergence speed, CMEA is faster on the considered test func-



Fig. 6. Convergence of the SDM for the 2-objective [solid line] and 3-objective [dash-
dotted line] sphere problem. The mean distance of the parents to the Pareto front is
given (a) as well as the mean standard deviation for the mutation (b).
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Fig. 7. Location of the best solution from each independent run of CMEA (a), the final
archive of SPEA (b) and final parent population of SDM (c) [z] on the Pareto front
[bold line].

tion, although it is not known if this generalizes to other functions and to other
adaptation schemes. For CMEA, one has to decide before optimization, which
objective is optimized subject to the other objectives, which are then treated as
constraints. This is in contrast to SDM that gives no a-priori preference to any
of the objectives.

Some difficulty in converging has been found for CMEA and SDM. CMEA and
SDM transfer the multi-objective sphere problem into a difficult constraint op-
timization problem: While optimizing a single objective of the sphere problem
converges linearly (see Fig. 3a, solid lines), the convergence speed of the con-
straint optimization problem decreases over the number of function evaluations
(see Fig. 3a, dash-dotted lines). In general the question arises if objectives could
be aggregated by a different method, leading to a linear convergence also in
the constraint case. In addition, Hansen et al. [20] stated some difficulty of self-
adaptation in generating arbitrary correlation distributions and thus methods
like the Covariance Matrix Adaptation [20] might perform better on the con-



straint problem.
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