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Abstract 


Some recent successful techniques to solve 
multiobjective optimisation problems are based 
on variants of evolutionary algorithms and use 
recombination and self-adaptation to evolve the 
population. We present an approach that 
incorporates a population of solutions into a 
hybrid metaheuristic with no recombination. The 
population is evolved using self-adaptation, a 
mutation operator and an information-sharing 
mechanism. Since the main component in our 
approach is a simulated annealing algorithm, the 
cooling schedule for the whole population 
becomes critical. A common cooling schedule 
for the whole population is determined based on 
an evolutionary process. Results are presented 
using a real-world multiobjective combinatorial 
optimisation problem, namely space allocation 
with two conflicting criteria. These results 
suggest that this approach is a suitable alternative 
not only for combinatorial multiobjective 
optimisation problems, but also for obtaining a 
population of locally optima solutions in single-
objective optimisation problems. 


1 INTRODUCTION 
In this paper, we present a population-based technique for 
multiobjective combinatorial optimisation problems. The 
approach is based in a hybrid metaheuristic that uses hill-
climbing, simulated annealing, tabu lists and a mutation 
operator. This technique has been extended to solve 
multiobjective combinatorial optimisation problems, by 
incorporating a population of solutions. The population of 
feasible solutions is initialised and improved using hill-
climbing. Self-adaptation is achieved using simulated 
annealing with a common cooling schedule for all 
individuals. The mutation operator is used to disrupt a 
solution so that a different area of the search space can be 
explored. Cooperation between individuals is induced 
using lists of tabu and attractive moves. 
The proposed approach has the ability to provide a 
diverse set of high quality solutions for a combinatorial 
optimisation problem. In our experiments, we consider 
both an aggregating function and the dominance relation 


to evaluate the solution fitness.  Although we present and 
discuss the results of applying this technique to a specific 
multiobjective combinatorial optimisation problem, we 
believe it can also be used for other multiobjective 
optimisation problems. This technique can also be used to 
find a diverse set of local optima in single-objective 
optimisation problems. 
There are a considerable number of papers about 
multiobjective optimisation including: theoretical studies, 
surveys, experimental comparative studies, test problem 
sets, analysis of future trends, and others. In the next 
section, we provide a brief summary of the recent work in 
this area. Our intention with this is to clarify the main 
concepts, identify the most important aspects of interest in 
multiobjective optimisation and define the scope of our 
contribution. Our approach is described in section 3. In 
section 4, the experiments and results are presented and 
discussed. Conclusions are established in section 5. 


2 MULTIOBJECTIVE OPTIMISATION 


2.1 EVOLUTIONARY APPROACHES 
It has been stated by Hertz & Klober (2000) that there is 
not a clear and widely accepted definition of an 
evolutionary algorithm. However, they suggest that in a 
strict sense, an evolutionary algorithm handles a 
population of solutions, evolves this population by means 
of cooperation (recombination) and self-adaptation 
(mutation) and uses a coded representation of the 
solutions. They introduce a framework to describe 
evolutionary algorithms. Some guidelines to classify 
evolutionary algorithms are proposed by Calegari et.al. 
(1999). 
Why begin with evolutionary algorithms? Some of the 
recent successful techniques proposed to solve 
multiobjective optimisation problems are of this type. For 
a comprehensive overview refer to Fonseca & Fleming 
(1995), Van Valdhuizen & Lamont (2000b) and Zitzler 
(1999). Additional surveys and comparative studies are 
presented by Coello Coello (1999), Coello Coello (2001), 
Horn (1997), Van Valdhuizen & Lamont (2000) and 
Zydallis et.al. (2001). Recent advances on evolutionary 
multiobjective optimisation are reported in Zitzler et.al. 
(2001). 







2.2 ALTERNATIVE APPROACHES 
Many authors use non-evolutionary approaches to solve 
multiobjective optimisation problems. An overview of 
some of these techniques is available in Miettinen (2001). 
Even some methods that have been classified as 
evolutionary by their creators may not be labelled as such 
if we use a strict definition of evolutionary algorithms 
(some of them do not use recombination). It is not our 
intention to argue whether an approach should be called 
evolutionary or not. In this section, we refer to some 
algorithms that use self-adaptation as the main tool to 
evolve the population rather than recombination. 
In recent years, the interest in these different approaches 
has become greater. For example, Menczer et.al. (2000) 
proposed the Evolutionary Local Search Algorithm in 
which they use agents with a  local selection scheme. The 
multiobjective A* is an approach for multiobjective 
combinatorial optimisation problems proposed by Stewart 
& White (1991) based on the A* algorithm. This 
multiobjective A* technique was extended by Dasgupta 
et.al. (1999) for those combinatorial problems that can be 
represented as search trees. The multiobjective simulated 
annealing algorithm by Tuyttens et.al. (2000) is an 
adaptation of simulated annealing to multicriteria 
problems. Their algorithm uses a vector of weights to 
induce a privileged direction in the search. An extension 
of the multiobjective simulated annealing algorithm was 
presented by Teghem et.al. (2000) for large-scale 
problems. In their technique, interaction with the 
decision-maker is required to adjust preference settings 
during the search. An approach called the Pareto 
Archived Evolution was recently introduced by Knowles 
& Corne (2000). This technique basically uses local 
search and makes comparisons to select among mutated 
individuals keeping an archive of previously seen 
solutions. 


2.3 FUNDAMENTALS 
A multiobjective optimisation problem can be thought of 
as a number of decision variables, a set of objectives and 
a number of constraints. In many real-world optimisation 
problems, the various objectives are conflicting and often 
incommensurable. In some cases, it is desirable to obtain 
those solutions that represent a tradeoff between the 
different objectives. These solutions are known as non-
inferior or non-dominated solutions. To be more precise 
we can define dominance as follows (where we aim to 
maximise each objective): 


Let V = ( v1, v2,…, vk ) and U = ( u1, u2,…, uk ) be two 
distinct k-dimensional vectors of objective function values 
for a k-objective problem where we aim to maximise each 
objective, then 
� V strictly dominates U if  vi > ui , for i = 1,2,..,k 
� V loosely dominates U if  vi ≥ ui , for i = 1,2,..,k 
� V and U are incomparable if neither V dominates U nor 


U dominates V 
For minimisation objectives these definitions are altered 
in the obvious way. Given a set S of feasible solutions, a 
solution is said to be non-inferior or non-dominated if its 
k-dimensional vector containing the values for the k-
objectives is non-dominated by any other vector in S. 


Then the Pareto optimal front is the set of non-dominated 
solutions in the whole solution space. Refer to Van 
Valdhuizen & Lamont (2000b) for a more detailed 
description of Pareto concepts.  
Three goals can be used to evaluate the effectiveness of a 
given multiobjective optimisation technique that attempts 
to find the Pareto optimal front (Zitzler,1999): 
� distance from the resulting non-dominated set of 


solutions to the true Pareto optimal front should be 
minimised 
� a good distribution of the set of solutions found is 


desirable, i.e. in any given non-dominated set the 
solutions should not be clustered together  
� the spread of the non-dominated set should be as large 


as possible, i.e. the set of solutions should cover as 
much of the non-dominated front as possible  


Three main problems arise when using and designing a 
multiobjective optimisation technique: how to combine 
search and decision-making, how to perform fitness 
evaluation to guide the search and how to maintain a 
diverse population (Horn,1997; Zitzler,1999). For the first 
problem, there are three alternative ways to combine the 
searching and decision-making processes:  
1. to perform decision-making before the search 
2. to search before decision-making 
3. to perform decision-making during the search 
In the first case, the relative importance of each criterion 
is established before the searching process. In the second 
alternative, after the searching process is completed a set 
of possible solutions is proposed and the decision-making 
process takes place. Finally, the last method refers to 
interactively modifying user preferences while the 
searching process is being performed. 
For the problem of fitness evaluation, many different 
solutions have been proposed such as: aggregating 
functions, Pareto-based selection or switching objectives 
(Coello Coello,1999). Aggregating functions combine 
multiple objectives into a single-objective, for example 
using a weighted sum of objectives. Pareto-based 
selection uses the concept of dominance to find the set of 
those solutions that represent a tradeoff among the 
multiple objectives. Switching objectives refers to the 
optimisation of one objective at a time while imposing 
constraints on the others.  
The problem of population diversity refers to the 
possibility of premature convergence of the population. A 
review of some alternatives to avoid this problem and 
accomplish the goal of maintaining a diverse population 
can be found in Zitzler (1999). 
In this paper, we analyse the performance of our approach 
upon a bi-criteria combinatorial optimisation problem: a 
real instance of the space allocation problem (Burke 
et.al.,2001). We show how both objectives are conflicting 
so that we must find a tradeoff between them. The 
algorithm is tested using different forms of fitness 
evaluation to guide the search: an aggregating function 
and dominance-ranking. From the results we make some 
observations about the set of solutions obtained using 
each form of fitness evaluation. Our approach allows us to 
produce a set of good solutions at the expense of more 
computation time, or a single high quality solution in a 
shorter time. 







3 THE ALGORITHM 


3.1 GENERAL DESCRIPTION 
There are three main components in the method: selection 
of parameters, heuristic hill-climbing initialisation and the 
hybrid simulated annealing algorithm (Fig. 1). The local 
search heuristic is problem dependent. This heuristic is 
part of both components, the initialisation (hill-climbing) 
and the evolution phase (simulated annealing). Therefore, 
the selection of parameters for the local search heuristic is 
also dependent on the specific problem. More details 
about the local search heuristic and corresponding 
parameters for our specific problem domain are in Burke 
et.al. (2000). 


1. Heuristic_Parameters_Selection 
2. For Individual = 1 To Population_Size Do 


2.1. Construct an initial Current_Solution 
2.2. Heuristic_Hill_Climbing on Individual 
2.3. Add Individual to Current_Population 


3. Best_Population = Current_Population 
4. While Termination_Criterion Not Satisfied Do 


4.1  For Individual = 1 To Population_Size Do 
4.1.1 Apply Hybrid_Simulated_Annealing 


4.2 Adjust Global Parameters  
4.3 Update Best_Population


Fig. 1. The Hybrid Population-Based Metaheuristic. 


In the initialisation phase (step 2, Fig. 1) feasible 
individuals are constructed and improved using heuristic 
hill-climbing. The population is evolved using our hybrid 
simulated annealing algorithm until a termination 
criterion is satisfied. After each iteration, the best solution 
achieved by each individual is updated in the best 
population. The final best population is composed of the 
best solutions achieved by each individual in the 
population during the evolution process. The feasibility of 
the individuals and the neighbourhood exploration are 
defined by the particular problem. For example in space 
allocation (the test problem is described in section 4.1) the 
neighbourhood is explored by making a move. A move is 
any change in the allocation of an object and by exploring 
moves new solutions can be constructed (Burke 
et.al.,2001; Burke et.al.,2000). Intensification is provided 
by our hybrid simulated annealing heuristic when the 
temperature is zero or near to zero. Diversification is 
achieved in the initialisation phase and since no direct 
recombination is used, premature convergence of the 
population is unlikely to occur. 
Given the features of multiobjective optimisation 
techniques (section 2.1), we can define our approach as a 
hybrid population-based metaheuristic. The hybridisation 
of metaheuristics has been studied for some time. For 
example Pirlot (1996) presents a brief tutorial on 
simulated annealing, tabu search and genetic algorithms 
and a survey on hybridisations of these techniques for 
solving single objective search problems. Other 
approaches using hybridisations can be found in Aarts 
et.al. (1997), Osman & Kelly (1996), Rayward-Smith 
et.al. (1996) and Reeves (1995). Since in our approach the 
local search heuristic and the fitness evaluation technique 
can be modified, it is possible to adapat this technique to 
other optimisation problems. 


3.2 THE HYBRID SIMULATED ANNEALING 
COMPONENT 


After presenting an overview of the algorithm, we use the 
pseudocode in Fig. 2 to describe how the hybrid simulated 
annealing component (step 4.1.1. in Fig. 1) operates upon 
the population. Each individual in the population has 
three attributes: BestIndividual, ReHeatCounter and 
NoImprovesCounter. BestIndividual is the 
memorised best instance of each individual found during 
the execution of the algorithm. ReHeatCounter and 
NoImprovesCounter are both initialised to zero. 


 If First Individual in the Population 
  If Temperature is zero                                                             (1) 
       If GlobalReHeatCounter ≥ ReHeatInterval 
                Temperature = InitialTemperature 


GlobalReHeatCounter  = 0 
              For Individual = 1 To Population_Size Do 
     Individual.ReHeatCounter  = 0 
      Else 
      If GlobalIntervalCounter  < Interval 


GlobalIntervalCounter = GlobalIntervalCounter + 1 
Else 


               Temperature = Temperature – Decrement 
               GlobalIntervalCounter = 1 
 SearchNewIndividual 
     If NewIndividual better than Individual                                        (2) 
          If  NewIndividual better than Individual.BestIndividual 
 Individual.BestIndividual = NewIndividual 
 Individual.ReHeatCounter = 0 
          Else  
 Increment Individual.NoImprovesCounter 
 If Temperature is zero 
      Increment Individual.ReHeatCounter 
 Else 
   Increment Individual.NoImprovesCounter 
   If Temperature is zero  
            AcceptProbability  = 0 
            Increment Individual.ReheatCounter 
   Else  AcceptProbability =  e− ( ∆ / Temperature ) 


   If AcceptProbability > Random   Accept  NewIndividual 
Else   Reject NewIndividual 


GlobalReHeatCounter = max of all ReHeatCounters                        (3) 
If SingleHighQualitySolution 
 GlobalImprovesCounter = max of all NoImprovesCounter 
If MultipleGoodSolutions  
 GlobalImprovesCounter = min of all NoImprovesCounter 


Fig. 2 In the Hybrid Simulated Annealing Phase, the Lists of 
Tabu and Attractive Moves and the Mutation Operator are 
Incorporated in SearchNewIndividual. 


There are four global parameters for the population in our 
hybrid simulated annealing algorithm: Temperature, 
GlobalImprovesCounter, GlobalIntervalCounter 
and GlobalReHeatCounter. The first three are 
initialised to zero, while Temperature is initialised to a 
value of InitialTemperature (values for our 
experiments are given in section 4.3).  


3.3 INFORMATION-SHARING AND THE 
MUTATION OPERATOR 


The neighbourhood of each individual is explored by 
using a local search heuristic (SearchNewIndividual). 
During this exploration to produce a NewIndividual 
from the current one, lists of moves are maintained and 
shared among all individuals. These lists contain tabu and 
attractive moves so that information-sharing within the 
population is encouraged. In our heuristic for the space 







allocation problem, one move is selected and carried out 
for the current individual. In Fig. 2 we can observe that 
once the NewIndividual is evaluated, it is compared 
with the current individual and with the best solution 
achieved by the individual so far (BestIndividual). 
Those moves that produced a NewIndividual which 
outperforms the BestIndividual are inserted in the list 
of attractive moves. The moves that generated a 
NewIndividual that worsens the current solution are 
inserted in the list of tabu moves. During the 
neighbourhood exploration, if a move is selected and it is 
in the list of tabu moves, then we reject the move and a 
new search in the neighbourhood is started. The list of 
attractive moves is used to select a move when it has not 
been possible to find a move that leads to a feasible 
NewIndividual. The size of both lists is determined by 
the size of the problem (Burke et.al.,2001). The last tabu 
or attractive move replaces the move that has been in the 
corresponding list for the longest number of iterations. If 
while exploring the neighbourhood, no feasible 
NewIndividual is found, the solution is modified 
through a mutation operator. The mutation operator 
modifies the current individual so that new moves are 
explored and a feasible NewIndividual can be found. In 
our problem, the modification consists of removing some 
allocated objects from their assigned room. Note that the 
local search heuristic can be modified according to the 
specific optimisation problem and hence, specific 
strategies to implement information-sharing and mutation 
can also be designed. 


3.4 GLOBAL TEMPERATURE - DISTRIBUTED 
COOLING SCHEDULE 


This population-based simulated annealing algorithm 
controls the cooling schedule by sensing the performance 
of each individual in the population. Note in code (1) of 
Fig. 2, that this control over the global Temperature is 
done only at the beginning of each iteration, i.e. before 
the algorithm is executed for all the individuals in the 
population. Interval is the number of iterations after 
which there is a decrement in the Temperature 
parameter. ReHeatInterval is the number of iterations 
after which if there is no improvement in the current 
solution, the Temperature is raised again to the value of 
InitialTemperature. These parameters are set at the 
beginning of the whole process and are defined by the 
size and type of problem (Burke et.al.,2001). If the 
process is being cooled, then the common Temperature 
is decremented constantly after Interval number of 
iterations. When the Temperature is equal to zero, the 
value for GlobalReHeatCounter indicates whether or 
not to reheat the process. 
In code (2) of Fig. 2, if after searching and finding a 
NewIndividual, this new solution improves the current 
one, then a second comparison is made with the best 
recorded performance so far for that individual. If this 
NewIndividual overcomes the best recorded 
performance for the present individual then the second 
population (the population containing the best solutions 
achieved by each individual) is updated. When the 
NewIndividual is not better than the current one, the 
current Temperature determines its acceptance. If this 
global Temperature is zero the solution is rejected since 
only improvements are accepted. But if the global 


Temperature is not zero, the new solution is accepted 
only if a calculated probability is greater than a random 
number chosen from the uniform distribution on the 
interval [0,1]. The probability is defined by −e− (∆ / 


Temperature) where ∆ is the fitness variation from the current 
to the new solution. 
At the end of each iteration in code (3) of Fig. 2, 
GlobalReHeatCounter is set to the highest 
ReHeatCounter of all individuals. This means that as 
soon as one of the individuals cannot be improved for a 
ReHeatInterval iterations, the common Temperature 
is raised again. The effect of this strategy is that while one 
(maybe more) individual is stuck in the improvement 
process, the others are not yet. Then switching to the 
random phase of the simulated annealing algorithm 
(Temperature not zero) the exploration of the search 
space can continue. Finally, we can see that there are two 
ways of setting GlobalImprovesCounter. This value is 
used as a termination criterion for the whole process. If 
the maximum of NoImprovesCounter over all 
individuals is used, the individual for which the best 
performance has not been improved for the longest 
number of iterations, determines the termination of the 
process. This quickly yields a varied population of 
solutions, although it might be possible to improve some 
of the solutions. On the other hand, if the minimum value 
of NoImprovesCounter is used, then all the individuals 
have been improved considerably. In this case a set of 
more uniform (in terms of fitness) solutions is obtained at 
the expense of longer computation time. 
To summarise, this hybrid population-based simulated 
annealing algorithm has a global Temperature for the 
whole population, but the control of this parameter is 
distributed over all individuals in the population. 
Additionally, deciding which individual determines the 
termination criterion, a single high quality solution or a 
group of good solutions can be achieved in less or more 
computation time respectively.  


4 EXPERIMENTS AND RESULTS 


4.1 THE SPACE ALLOCATION PROBLEM 
Results of our experiments using a real instance of the 
space allocation problem are presented in this section. 
This is a complex real-world combinatorial optimisation 
problem. It consists of the allocation of a number of 
objects with different sizes to a number of areas of space, 
subject to certain constraints. More formally, the space 
allocation problem can be described as follows:  
Given a set X = { x1, x2,…, xn } of n objects and a set of m 
available areas of space Y = { y1, y2,…, ym }, find the 
optimal allocation of the n objects into the m available 
areas of space, given by h : X → Y where, 
h (xi) = yj, if object xi has been allocated to area yj  
h (xi) = 0, if object xi has not been allocated  
to minimise the k functions f1, f2, f3,…, fk subject to a 
number of constraints.  
The instance of the space allocation problem that we have 
considered is the distribution of people to rooms. Given a 
number of rooms with different sizes, the problem is to 
distribute all people in the set of rooms. Constraints are 







set on the people and the size of rooms that they should be 
allocated to. In addition to specific space requirements, 
each person may have other requirements. These other 
requirements are expressed as constraints. Examples of 
constraints are: people that need to be allocated in certain 
rooms, people that need to be located in adjacent rooms, 
people that should not share their room with another 
person, people that need to be located far away from 
certain areas, etc. There are two objectives in this 
problem. The first objective is to minimise the misuse of 
the space so that people are allocated to areas of space 
that are neither too large nor too small. The second 
objective is to minimise the penalty for the violation of 
soft constraints in the problem. Given the examples of 
constraints mentioned before, a hard constraint is a 
requirement that must be satisfied so that the solution can 
be considered feasible. Soft constraints are those 
requirements that need not be satisfied but in that case 
should be penalised. A feasible solution in our space 
allocation problem must have all resources allocated and 
all hard constraints satisfied.  
In our test problem there are 55 human resources with 
different requirements of space (test data is available in 
Burke et.al.,2001). There are 55 rooms with different 
sizes, 15 hard constraints and 37 soft constraints. The 
types of constraints are for example: people that must be 
allocated in certain areas or in certain rooms; people that 
must be together, adjacent or close to each other; rooms 
that must not be empty or overused; and other similar 
constraints. 


4.2 THE BI-CRITERIA NATURE OF THE TEST 
PROBLEM 


The objectives “minimise the misuse of the space” and 
“minimise the violation of soft constraints” are often 
conflicting and incommensurable. For example, to 
achieve a better utilisation of the space, some constraints 
may need to be violated and vice versa. Space utilisation 
is expressed in terms of area while the constraints are 
expressed in terms of satisfaction or non-satisfaction and 
penalties. This means that it is complicated to evaluate 
and compare both objectives by combining them into a 
single objective. Let f1 and f2 be two functions that 
represent objectives and are defined as follows: 
� f1 is the function that represents the misuse of space 


which we wish to minimise 
� f2 is the function that represents the violation of soft 


constraints which we wish to minimise 
In order to show that both objectives in this problem are 
conflicting, we analysed the behaviour of each objective 
while the other was subject to improvement. We executed 
10 runs for each case, and in all runs the behaviour is 
similar. For clarity, we show three of these runs. In Fig. 3 
we observe that as a result of improvement on the space 
utilisation, the satisfaction of constraints is worsened. In 
the second one, Fig. 4, we notice that the effect is also 
present when the satisfaction of soft constraints is being 
improved. For these graphs, the numbers in the axis for f1 
are a measure of the amount of space misused, i.e. the 
sum of total space wasted and overused in the allocation. 
The numbers in the axis for f2 are a measure of the total 
penalty due to the violation of soft constraints in the 
allocation. 
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Fig. 3. Minimising Space Misuse. 
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Fig. 4. Minimising Soft Constraints Violation. 


Minimising the misuse of space affects the second 
objective but minimising the violation of soft constraints 
seems to have a lighter effect on the first objective. If we 
apply an approach in which the switching of objectives is 
used (see section 2.3), then we can obtain a deeper 
analysis of the correlation between the objectives in a 
multiobjective optimisation problem. 


4.3 MINIMISING BOTH OBJECTIVES 
SIMULTANEOUSLY 


Now we present the results of applying our approach to 
solve the test problem described in section 4.1. We used a 
population of 10 individuals. In reference to the 
pseudocode presented in Fig. 2, we used these parameters 
in our experiments: InitialTemperature equal to 
1000, Decrement set to 200, ReHeatInterval equal to 
550 and Interval  set to 55. Two ways of assigning 
fitness to the solutions were examined: aggregating 
functions and dominance-ranking (see section 2.3). For 
the first method we add the values of both f1 and f2 into 
one scalar value that represents the solution fitness. In the 
second method, the solution fitness is represented by a 2-
dimensional vector that contains the values for  f1 and f2.  
For example, suppose we have three solutions A, B and C 
with the objective values shown in Table 1. If we use the 
aggregated function approach then the sum given by f1+f2 
is an evaluation of the total penalty for each solution.  In 
the other case the solutions are ranked using the 
dominance concept defined in section 2.3. For the 
minimisation example shown in Table 1, if we use the 
aggregated function then solutions B and C are preferred 
over solution A (98<135). But with dominance-ranking, 
only solution B is preferred over solution A ([43,55] 
strictly dominates [45,90]), while C is incomparable with 
respect to A and B. 







Table 1. Comparing Two Ways of Evaluating Objectives: 
Aggregating Function and Dominance-Ranking. 


 A B C 
f1 45 43 5 
f2 90 55 93 


f1 + f2 135 98 98 
dominance [45,90] [43,55] [5,93] 


The aggregating function used in our experiments is given 
by equation (1) below. 
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Here, n is the number of objects (resources), m is the 
number or areas of space (rooms), WP is the penalty for 
area Ai if there is space wastage, OP is the penalty for 
area Ai if there is space overuse, SCP is the penalty for 
violating a soft constraint for object Oi. 


All the data for the test problem used here is available in 
Burke et.al. (2001), including the penalty parameters. In 
our experiments, we executed 200 runs using the 
aggregating function and dominance-ranking for fitness 
evaluation. We also used both strategies explained in 
section 3.4: single high quality solution and multiple good 
solutions and two termination criteria: no improvement 
after a maximum number of generations (1700 
generations) and a fixed execution time (1200 seconds of 
CPU time). Table 2 below shows the distribution of these 
200 runs in our experiments.  


Table 2. Distribution of Runs. 100 Runs Using Single High 
Quality Solution Strategy (SS) and 100 Runs Using Multiple 
Good Solutions Strategy (MS). 


 Aggregating Function Dominance Ranking 
 SS MS SS MS 


No Improvement 25 25 25 25 
Execution Time 25 25 25 25 


4.4 PERFORMANCE USING THE 
AGGREGATING FUNCTION 


In Fig. 5 below, we show the best populations obtained in 
each set of 25 runs when using the aggregating function to 
combine the two objectives. We can compare the 
populations obtained with the single high quality solution 
strategy (SS) and with the multiple good solutions 
strategy (MS). The comparison is made using both 
termination criteria mentioned in the last section. In each 
population, the best and worst solutions are marked with a 
solid and a blank bar respectively.  


The first observation we make is the effect of the control 
over the temperature for the hybrid simulated annealing 
algorithm as explained in section 3.4, and the termination 
criterion. The decision on whether to search for one good 
solution or a population of them produces quite different 
results. The single high quality solution strategy (SS) 
consumes less computation time and the rest of the 
population tend to be of poor quality. If we want a set of 
good solutions then we require a population where the 
sum of the objective values tends to be uniform among 
the individuals, this is produced by the multiple good 


solutions strategy (MS). The drawback is the increase in 
computation time. Note that the effect of deciding 
between the single solution and the multiple solution 
strategies holds over a fixed execution time. When both 
strategies are executed for a similar time, a much better 
solution is achieved by the single solution strategy, at the 
expense of the rest of the population being relatively poor. 
In this case, the population produced by the multiple 
solution strategy is uniform in terms of the objective 
values. 
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Fig. 5. Populations Using the Aggregating Function. 


In Table 3 we show the statistics for the best and worst 
populations (best and worst runs) obtained in each set of 
25 runs when using the aggregating function. The values 
shown are: best individual, worst individual, the average 
for the whole population and the total CPU time in 
seconds. The small difference between the best and worst 
runs with each strategy suggests that the algorithm is 
reliable. However, further experiments are required to 
provide more evidence of this. 


Table 3. Best and Worst Populations Obtained Using the 
Aggregated Function to Combine Both Objectives. 


Best and Worst Runs Using Aggregating Function 
Single Solution Runs Multiple Solutions Runs Population 


Statistics Best Worst Best Worst 
Average 4744.24 6807.94 2393.54 3500.13 


Best 2495.44 4604.55 1495.44 1976.33 
Worst 9082.24 9123.66 3905.44 6405.44 


CPU Time 252 secs 149 secs 1573 secs 1174 secs 


4.5 PERFORMANCE USING DOMINANCE-
RANKING 


The best populations obtained in each set of 25 runs when 
using dominance-ranking to evaluate the objectives, are 
shown in Fig. 6. Again, we can compare the populations 
produced with the single high quality solution strategy 
(SS) and with the multiple good solutions strategy (MM). 
The comparison is made using both termination criteria: 
no improvement for a maximum of 1700 generations and 
a fixed CPU execution time equal to 1200 seconds. Note 
that each population in Fig. 6 is a non-dominated set and 
no solution dominates the rest of the population. These 
non-dominated sets of solutions represent a tradeoff 
between both objectives, the minimisation of space 
misuse (f1) and the minimisation of soft constraints 
violation (f2). 
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We can observe that the two sets of non-dominated 
solutions produced by the strategy single high quality 
solution (SS) contain a very good solution, but the rest of 
the population has many other solutions with low quality. 
The non-dominated sets obtained with the multiple good 
solutions strategy (MS) contain more solutions with a 
good quality (but certainly no identical solutions). While 
the solutions produced by the multiple solutions strategy 
are closer to each other, the solutions produced by the 
single solution strategy have a bigger distance between 
them. Again, even with identical execution time, both 
strategies maintain the behaviour described here. 
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Fig. 6. Populations Using Dominance-Ranking. 


The final set of solutions is the result of the best 
performance achieved by each individual in the 
population independently from rest of the population. 
Then, there is no guarantee that the final set of solutions 
will always be non-dominated. It may occur that one or 
more individuals dominate the rest of the population. But 
as shown here, the resulting set is diverse and it represents 
a tradeoff between the objectives. To obtain a non-
dominated front (not the Pareto-optimal front) we can 
select those solutions in the final population that are non-
dominated. 


In Table 4 we present the statistics for the best and worst 
populations (best and worst runs) obtained in each set of 
25 runs when using dominance-ranking. An interesting 
aspect is that the computation time is improved because it 
is not necessary to calculate the aggregating function. 
Again, the sets of solutions obtained with both strategies 
reveal the effect of the control over the common 
temperature and the termination criterion discussed in 
section 3.4. As we said before, there is no solution 
dominating the rest of the population. Then the best 
individual in Table 4 refers to the solution in the 
population than dominates most of the other individuals. 
The worst individual refers to the solution that is 
dominated by most of the individuals in the population. 
The populations produced with the single solution 
strategy contain a very good solution, but the overall 


quality of the population is low. With the multiple 
solution strategy, the overall quality is better at the 
expense of longer computation time. 


Table 4. Cost Vectors for the Set of Solutions Obtained Using 
the Concept of Dominance for Fitness Evaluation. 


Best and Worst Runs Using Dominance-Ranking 
Single Solution Runs Multiple Solutions Runs Population 


Statistics Best Worst Best Worst 
Best [1474,5500] [1479,13500] [1464,1500] [1372,7500]


Worst [1322,25000] [1489,32000] [1292,20500] [1225,29000]
CPU Time 121 secs 118 secs 637 secs 297 secs 


These preliminary experiments and results suggest that 
our population-based metaheuristic effectively produces 
good solutions for space allocation problems. There is of 
course much more work to do in order to establish our 
approach as a competitive multiobjective optimisation 
technique. Nevertheless, this insight into the application 
to this type of problem encourages us to continue the 
investigation. We believe that the combination of 
metaheuristics, heuristic initialisation techniques and 
populations may produce good results in the area of 
multiobjective optimisation for other real-world problems. 


5   CONCLUSIONS 
We have described a population-based approach for 
multiobjective optimisation resulting from a combination 
of metaheuristics. Our approach uses self-adaptation, 
information-sharing between individuals and mutation as 
a basis to develop the population. It also permits us to 
obtain a single high quality solution or a set of good 
solutions by deciding the strategy to control the common 
cooling schedule and termination criterion. 


Our experiments show the ability of our technique to 
maintain a diverse population. We believe this is because 
instead of recombination, we use self-adaptation 
(including mutation) to evolve the individuals and share 
information concerning the current state of the solution 
process between individuals. The experiments and results 
presented here suggest that this technique may be an 
effective approach to tackle combinatorial multiobjective 
optimisation problems. It could also be used on single-
objective optimisation problems where it is necessary to 
produce several good solutions simultaneously. This 
method may have potential use for a wider range of 
optimisation problems. 


More work is necessary to validate the effectiveness of 
our approach. For example, we will test our approach 
using a range of test problems like those proposed by Deb 
(1999), Zitzler (1999) and Knowles & Corne (2000). It is 
important to carry out a theoretical analysis of the role 
that the common temperature has in this algorithm and to 
investigate the effect of parameters such as population 
size. One interesting future direction is the evaluation of 
individuals using different strategies. For example we 
could evaluate some individuals in the population using 
dominance, other individuals using an aggregated 
function and so on. 
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