

 Combining Hybrid Metaheuristics and Populations for the
Multiobjective Optimisation of Space Allocation Problems

E.K. Burke
ekb@cs.nott.ac.uk

Dept. of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

P. Cowling
pic@cs.nott.ac.uk

Dept. of Computer Science
University of Nottingham

J.D. Landa Silva
jds@cs.nott.ac.uk

Dept. of Computer Science
University of Nottingham

S. Petrovic
sxp@cs.nott.ac.uk

Dept. of Computer Science
University of Nottingham

Abstract

Some recent successful techniques to solve
multiobjective optimisation problems are based
on variants of evolutionary algorithms and use
recombination and self-adaptation to evolve the
population. We present an approach that
incorporates a population of solutions into a
hybrid metaheuristic with no recombination. The
population is evolved using self-adaptation, a
mutation operator and an information-sharing
mechanism. Since the main component in our
approach is a simulated annealing algorithm, the
cooling schedule for the whole population
becomes critical. A common cooling schedule
for the whole population is determined based on
an evolutionary process. Results are presented
using a real-world multiobjective combinatorial
optimisation problem, namely space allocation
with two conflicting criteria. These results
suggest that this approach is a suitable alternative
not only for combinatorial multiobjective
optimisation problems, but also for obtaining a
population of locally optima solutions in single-
objective optimisation problems.

1 INTRODUCTION
In this paper, we present a population-based technique for
multiobjective combinatorial optimisation problems. The
approach is based in a hybrid metaheuristic that uses hill-
climbing, simulated annealing, tabu lists and a mutation
operator. This technique has been extended to solve
multiobjective combinatorial optimisation problems, by
incorporating a population of solutions. The population of
feasible solutions is initialised and improved using hill-
climbing. Self-adaptation is achieved using simulated
annealing with a common cooling schedule for all
individuals. The mutation operator is used to disrupt a
solution so that a different area of the search space can be
explored. Cooperation between individuals is induced
using lists of tabu and attractive moves.
The proposed approach has the ability to provide a
diverse set of high quality solutions for a combinatorial
optimisation problem. In our experiments, we consider
both an aggregating function and the dominance relation

to evaluate the solution fitness. Although we present and
discuss the results of applying this technique to a specific
multiobjective combinatorial optimisation problem, we
believe it can also be used for other multiobjective
optimisation problems. This technique can also be used to
find a diverse set of local optima in single-objective
optimisation problems.
There are a considerable number of papers about
multiobjective optimisation including: theoretical studies,
surveys, experimental comparative studies, test problem
sets, analysis of future trends, and others. In the next
section, we provide a brief summary of the recent work in
this area. Our intention with this is to clarify the main
concepts, identify the most important aspects of interest in
multiobjective optimisation and define the scope of our
contribution. Our approach is described in section 3. In
section 4, the experiments and results are presented and
discussed. Conclusions are established in section 5.

2 MULTIOBJECTIVE OPTIMISATION

2.1 EVOLUTIONARY APPROACHES
It has been stated by Hertz & Klober (2000) that there is
not a clear and widely accepted definition of an
evolutionary algorithm. However, they suggest that in a
strict sense, an evolutionary algorithm handles a
population of solutions, evolves this population by means
of cooperation (recombination) and self-adaptation
(mutation) and uses a coded representation of the
solutions. They introduce a framework to describe
evolutionary algorithms. Some guidelines to classify
evolutionary algorithms are proposed by Calegari et.al.
(1999).
Why begin with evolutionary algorithms? Some of the
recent successful techniques proposed to solve
multiobjective optimisation problems are of this type. For
a comprehensive overview refer to Fonseca & Fleming
(1995), Van Valdhuizen & Lamont (2000b) and Zitzler
(1999). Additional surveys and comparative studies are
presented by Coello Coello (1999), Coello Coello (2001),
Horn (1997), Van Valdhuizen & Lamont (2000) and
Zydallis et.al. (2001). Recent advances on evolutionary
multiobjective optimisation are reported in Zitzler et.al.
(2001).

2.2 ALTERNATIVE APPROACHES
Many authors use non-evolutionary approaches to solve
multiobjective optimisation problems. An overview of
some of these techniques is available in Miettinen (2001).
Even some methods that have been classified as
evolutionary by their creators may not be labelled as such
if we use a strict definition of evolutionary algorithms
(some of them do not use recombination). It is not our
intention to argue whether an approach should be called
evolutionary or not. In this section, we refer to some
algorithms that use self-adaptation as the main tool to
evolve the population rather than recombination.
In recent years, the interest in these different approaches
has become greater. For example, Menczer et.al. (2000)
proposed the Evolutionary Local Search Algorithm in
which they use agents with a local selection scheme. The
multiobjective A* is an approach for multiobjective
combinatorial optimisation problems proposed by Stewart
& White (1991) based on the A* algorithm. This
multiobjective A* technique was extended by Dasgupta
et.al. (1999) for those combinatorial problems that can be
represented as search trees. The multiobjective simulated
annealing algorithm by Tuyttens et.al. (2000) is an
adaptation of simulated annealing to multicriteria
problems. Their algorithm uses a vector of weights to
induce a privileged direction in the search. An extension
of the multiobjective simulated annealing algorithm was
presented by Teghem et.al. (2000) for large-scale
problems. In their technique, interaction with the
decision-maker is required to adjust preference settings
during the search. An approach called the Pareto
Archived Evolution was recently introduced by Knowles
& Corne (2000). This technique basically uses local
search and makes comparisons to select among mutated
individuals keeping an archive of previously seen
solutions.

2.3 FUNDAMENTALS
A multiobjective optimisation problem can be thought of
as a number of decision variables, a set of objectives and
a number of constraints. In many real-world optimisation
problems, the various objectives are conflicting and often
incommensurable. In some cases, it is desirable to obtain
those solutions that represent a tradeoff between the
different objectives. These solutions are known as non-
inferior or non-dominated solutions. To be more precise
we can define dominance as follows (where we aim to
maximise each objective):

Let V = (v1, v2,…, vk) and U = (u1, u2,…, uk) be two
distinct k-dimensional vectors of objective function values
for a k-objective problem where we aim to maximise each
objective, then
� V strictly dominates U if vi > ui , for i = 1,2,..,k
� V loosely dominates U if vi ≥ ui , for i = 1,2,..,k
� V and U are incomparable if neither V dominates U nor

U dominates V
For minimisation objectives these definitions are altered
in the obvious way. Given a set S of feasible solutions, a
solution is said to be non-inferior or non-dominated if its
k-dimensional vector containing the values for the k-
objectives is non-dominated by any other vector in S.

Then the Pareto optimal front is the set of non-dominated
solutions in the whole solution space. Refer to Van
Valdhuizen & Lamont (2000b) for a more detailed
description of Pareto concepts.
Three goals can be used to evaluate the effectiveness of a
given multiobjective optimisation technique that attempts
to find the Pareto optimal front (Zitzler,1999):
� distance from the resulting non-dominated set of

solutions to the true Pareto optimal front should be
minimised
� a good distribution of the set of solutions found is

desirable, i.e. in any given non-dominated set the
solutions should not be clustered together
� the spread of the non-dominated set should be as large

as possible, i.e. the set of solutions should cover as
much of the non-dominated front as possible

Three main problems arise when using and designing a
multiobjective optimisation technique: how to combine
search and decision-making, how to perform fitness
evaluation to guide the search and how to maintain a
diverse population (Horn,1997; Zitzler,1999). For the first
problem, there are three alternative ways to combine the
searching and decision-making processes:
1. to perform decision-making before the search
2. to search before decision-making
3. to perform decision-making during the search
In the first case, the relative importance of each criterion
is established before the searching process. In the second
alternative, after the searching process is completed a set
of possible solutions is proposed and the decision-making
process takes place. Finally, the last method refers to
interactively modifying user preferences while the
searching process is being performed.
For the problem of fitness evaluation, many different
solutions have been proposed such as: aggregating
functions, Pareto-based selection or switching objectives
(Coello Coello,1999). Aggregating functions combine
multiple objectives into a single-objective, for example
using a weighted sum of objectives. Pareto-based
selection uses the concept of dominance to find the set of
those solutions that represent a tradeoff among the
multiple objectives. Switching objectives refers to the
optimisation of one objective at a time while imposing
constraints on the others.
The problem of population diversity refers to the
possibility of premature convergence of the population. A
review of some alternatives to avoid this problem and
accomplish the goal of maintaining a diverse population
can be found in Zitzler (1999).
In this paper, we analyse the performance of our approach
upon a bi-criteria combinatorial optimisation problem: a
real instance of the space allocation problem (Burke
et.al.,2001). We show how both objectives are conflicting
so that we must find a tradeoff between them. The
algorithm is tested using different forms of fitness
evaluation to guide the search: an aggregating function
and dominance-ranking. From the results we make some
observations about the set of solutions obtained using
each form of fitness evaluation. Our approach allows us to
produce a set of good solutions at the expense of more
computation time, or a single high quality solution in a
shorter time.

3 THE ALGORITHM

3.1 GENERAL DESCRIPTION
There are three main components in the method: selection
of parameters, heuristic hill-climbing initialisation and the
hybrid simulated annealing algorithm (Fig. 1). The local
search heuristic is problem dependent. This heuristic is
part of both components, the initialisation (hill-climbing)
and the evolution phase (simulated annealing). Therefore,
the selection of parameters for the local search heuristic is
also dependent on the specific problem. More details
about the local search heuristic and corresponding
parameters for our specific problem domain are in Burke
et.al. (2000).

1. Heuristic_Parameters_Selection
2. For Individual = 1 To Population_Size Do

2.1. Construct an initial Current_Solution
2.2. Heuristic_Hill_Climbing on Individual
2.3. Add Individual to Current_Population

3. Best_Population = Current_Population
4. While Termination_Criterion Not Satisfied Do

4.1 For Individual = 1 To Population_Size Do
4.1.1 Apply Hybrid_Simulated_Annealing

4.2 Adjust Global Parameters
4.3 Update Best_Population

Fig. 1. The Hybrid Population-Based Metaheuristic.

In the initialisation phase (step 2, Fig. 1) feasible
individuals are constructed and improved using heuristic
hill-climbing. The population is evolved using our hybrid
simulated annealing algorithm until a termination
criterion is satisfied. After each iteration, the best solution
achieved by each individual is updated in the best
population. The final best population is composed of the
best solutions achieved by each individual in the
population during the evolution process. The feasibility of
the individuals and the neighbourhood exploration are
defined by the particular problem. For example in space
allocation (the test problem is described in section 4.1) the
neighbourhood is explored by making a move. A move is
any change in the allocation of an object and by exploring
moves new solutions can be constructed (Burke
et.al.,2001; Burke et.al.,2000). Intensification is provided
by our hybrid simulated annealing heuristic when the
temperature is zero or near to zero. Diversification is
achieved in the initialisation phase and since no direct
recombination is used, premature convergence of the
population is unlikely to occur.
Given the features of multiobjective optimisation
techniques (section 2.1), we can define our approach as a
hybrid population-based metaheuristic. The hybridisation
of metaheuristics has been studied for some time. For
example Pirlot (1996) presents a brief tutorial on
simulated annealing, tabu search and genetic algorithms
and a survey on hybridisations of these techniques for
solving single objective search problems. Other
approaches using hybridisations can be found in Aarts
et.al. (1997), Osman & Kelly (1996), Rayward-Smith
et.al. (1996) and Reeves (1995). Since in our approach the
local search heuristic and the fitness evaluation technique
can be modified, it is possible to adapat this technique to
other optimisation problems.

3.2 THE HYBRID SIMULATED ANNEALING
COMPONENT

After presenting an overview of the algorithm, we use the
pseudocode in Fig. 2 to describe how the hybrid simulated
annealing component (step 4.1.1. in Fig. 1) operates upon
the population. Each individual in the population has
three attributes: BestIndividual, ReHeatCounter and
NoImprovesCounter. BestIndividual is the
memorised best instance of each individual found during
the execution of the algorithm. ReHeatCounter and
NoImprovesCounter are both initialised to zero.

 If First Individual in the Population
 If Temperature is zero (1)
 If GlobalReHeatCounter ≥ ReHeatInterval
 Temperature = InitialTemperature

GlobalReHeatCounter = 0
 For Individual = 1 To Population_Size Do
 Individual.ReHeatCounter = 0
 Else
 If GlobalIntervalCounter < Interval

GlobalIntervalCounter = GlobalIntervalCounter + 1
Else

 Temperature = Temperature – Decrement
 GlobalIntervalCounter = 1
 SearchNewIndividual
 If NewIndividual better than Individual (2)
 If NewIndividual better than Individual.BestIndividual
 Individual.BestIndividual = NewIndividual
 Individual.ReHeatCounter = 0
 Else
 Increment Individual.NoImprovesCounter
 If Temperature is zero
 Increment Individual.ReHeatCounter
 Else
 Increment Individual.NoImprovesCounter
 If Temperature is zero
 AcceptProbability = 0
 Increment Individual.ReheatCounter
 Else AcceptProbability = e− (∆ / Temperature)

 If AcceptProbability > Random Accept NewIndividual
Else Reject NewIndividual

GlobalReHeatCounter = max of all ReHeatCounters (3)
If SingleHighQualitySolution
 GlobalImprovesCounter = max of all NoImprovesCounter
If MultipleGoodSolutions
 GlobalImprovesCounter = min of all NoImprovesCounter

Fig. 2 In the Hybrid Simulated Annealing Phase, the Lists of
Tabu and Attractive Moves and the Mutation Operator are
Incorporated in SearchNewIndividual.

There are four global parameters for the population in our
hybrid simulated annealing algorithm: Temperature,
GlobalImprovesCounter, GlobalIntervalCounter
and GlobalReHeatCounter. The first three are
initialised to zero, while Temperature is initialised to a
value of InitialTemperature (values for our
experiments are given in section 4.3).

3.3 INFORMATION-SHARING AND THE
MUTATION OPERATOR

The neighbourhood of each individual is explored by
using a local search heuristic (SearchNewIndividual).
During this exploration to produce a NewIndividual
from the current one, lists of moves are maintained and
shared among all individuals. These lists contain tabu and
attractive moves so that information-sharing within the
population is encouraged. In our heuristic for the space

allocation problem, one move is selected and carried out
for the current individual. In Fig. 2 we can observe that
once the NewIndividual is evaluated, it is compared
with the current individual and with the best solution
achieved by the individual so far (BestIndividual).
Those moves that produced a NewIndividual which
outperforms the BestIndividual are inserted in the list
of attractive moves. The moves that generated a
NewIndividual that worsens the current solution are
inserted in the list of tabu moves. During the
neighbourhood exploration, if a move is selected and it is
in the list of tabu moves, then we reject the move and a
new search in the neighbourhood is started. The list of
attractive moves is used to select a move when it has not
been possible to find a move that leads to a feasible
NewIndividual. The size of both lists is determined by
the size of the problem (Burke et.al.,2001). The last tabu
or attractive move replaces the move that has been in the
corresponding list for the longest number of iterations. If
while exploring the neighbourhood, no feasible
NewIndividual is found, the solution is modified
through a mutation operator. The mutation operator
modifies the current individual so that new moves are
explored and a feasible NewIndividual can be found. In
our problem, the modification consists of removing some
allocated objects from their assigned room. Note that the
local search heuristic can be modified according to the
specific optimisation problem and hence, specific
strategies to implement information-sharing and mutation
can also be designed.

3.4 GLOBAL TEMPERATURE - DISTRIBUTED
COOLING SCHEDULE

This population-based simulated annealing algorithm
controls the cooling schedule by sensing the performance
of each individual in the population. Note in code (1) of
Fig. 2, that this control over the global Temperature is
done only at the beginning of each iteration, i.e. before
the algorithm is executed for all the individuals in the
population. Interval is the number of iterations after
which there is a decrement in the Temperature
parameter. ReHeatInterval is the number of iterations
after which if there is no improvement in the current
solution, the Temperature is raised again to the value of
InitialTemperature. These parameters are set at the
beginning of the whole process and are defined by the
size and type of problem (Burke et.al.,2001). If the
process is being cooled, then the common Temperature
is decremented constantly after Interval number of
iterations. When the Temperature is equal to zero, the
value for GlobalReHeatCounter indicates whether or
not to reheat the process.
In code (2) of Fig. 2, if after searching and finding a
NewIndividual, this new solution improves the current
one, then a second comparison is made with the best
recorded performance so far for that individual. If this
NewIndividual overcomes the best recorded
performance for the present individual then the second
population (the population containing the best solutions
achieved by each individual) is updated. When the
NewIndividual is not better than the current one, the
current Temperature determines its acceptance. If this
global Temperature is zero the solution is rejected since
only improvements are accepted. But if the global

Temperature is not zero, the new solution is accepted
only if a calculated probability is greater than a random
number chosen from the uniform distribution on the
interval [0,1]. The probability is defined by −e− (∆ /

Temperature) where ∆ is the fitness variation from the current
to the new solution.
At the end of each iteration in code (3) of Fig. 2,
GlobalReHeatCounter is set to the highest
ReHeatCounter of all individuals. This means that as
soon as one of the individuals cannot be improved for a
ReHeatInterval iterations, the common Temperature
is raised again. The effect of this strategy is that while one
(maybe more) individual is stuck in the improvement
process, the others are not yet. Then switching to the
random phase of the simulated annealing algorithm
(Temperature not zero) the exploration of the search
space can continue. Finally, we can see that there are two
ways of setting GlobalImprovesCounter. This value is
used as a termination criterion for the whole process. If
the maximum of NoImprovesCounter over all
individuals is used, the individual for which the best
performance has not been improved for the longest
number of iterations, determines the termination of the
process. This quickly yields a varied population of
solutions, although it might be possible to improve some
of the solutions. On the other hand, if the minimum value
of NoImprovesCounter is used, then all the individuals
have been improved considerably. In this case a set of
more uniform (in terms of fitness) solutions is obtained at
the expense of longer computation time.
To summarise, this hybrid population-based simulated
annealing algorithm has a global Temperature for the
whole population, but the control of this parameter is
distributed over all individuals in the population.
Additionally, deciding which individual determines the
termination criterion, a single high quality solution or a
group of good solutions can be achieved in less or more
computation time respectively.

4 EXPERIMENTS AND RESULTS

4.1 THE SPACE ALLOCATION PROBLEM
Results of our experiments using a real instance of the
space allocation problem are presented in this section.
This is a complex real-world combinatorial optimisation
problem. It consists of the allocation of a number of
objects with different sizes to a number of areas of space,
subject to certain constraints. More formally, the space
allocation problem can be described as follows:
Given a set X = { x1, x2,…, xn } of n objects and a set of m
available areas of space Y = { y1, y2,…, ym }, find the
optimal allocation of the n objects into the m available
areas of space, given by h : X → Y where,
h (xi) = yj, if object xi has been allocated to area yj
h (xi) = 0, if object xi has not been allocated
to minimise the k functions f1, f2, f3,…, fk subject to a
number of constraints.
The instance of the space allocation problem that we have
considered is the distribution of people to rooms. Given a
number of rooms with different sizes, the problem is to
distribute all people in the set of rooms. Constraints are

set on the people and the size of rooms that they should be
allocated to. In addition to specific space requirements,
each person may have other requirements. These other
requirements are expressed as constraints. Examples of
constraints are: people that need to be allocated in certain
rooms, people that need to be located in adjacent rooms,
people that should not share their room with another
person, people that need to be located far away from
certain areas, etc. There are two objectives in this
problem. The first objective is to minimise the misuse of
the space so that people are allocated to areas of space
that are neither too large nor too small. The second
objective is to minimise the penalty for the violation of
soft constraints in the problem. Given the examples of
constraints mentioned before, a hard constraint is a
requirement that must be satisfied so that the solution can
be considered feasible. Soft constraints are those
requirements that need not be satisfied but in that case
should be penalised. A feasible solution in our space
allocation problem must have all resources allocated and
all hard constraints satisfied.
In our test problem there are 55 human resources with
different requirements of space (test data is available in
Burke et.al.,2001). There are 55 rooms with different
sizes, 15 hard constraints and 37 soft constraints. The
types of constraints are for example: people that must be
allocated in certain areas or in certain rooms; people that
must be together, adjacent or close to each other; rooms
that must not be empty or overused; and other similar
constraints.

4.2 THE BI-CRITERIA NATURE OF THE TEST
PROBLEM

The objectives “minimise the misuse of the space” and
“minimise the violation of soft constraints” are often
conflicting and incommensurable. For example, to
achieve a better utilisation of the space, some constraints
may need to be violated and vice versa. Space utilisation
is expressed in terms of area while the constraints are
expressed in terms of satisfaction or non-satisfaction and
penalties. This means that it is complicated to evaluate
and compare both objectives by combining them into a
single objective. Let f1 and f2 be two functions that
represent objectives and are defined as follows:
� f1 is the function that represents the misuse of space

which we wish to minimise
� f2 is the function that represents the violation of soft

constraints which we wish to minimise
In order to show that both objectives in this problem are
conflicting, we analysed the behaviour of each objective
while the other was subject to improvement. We executed
10 runs for each case, and in all runs the behaviour is
similar. For clarity, we show three of these runs. In Fig. 3
we observe that as a result of improvement on the space
utilisation, the satisfaction of constraints is worsened. In
the second one, Fig. 4, we notice that the effect is also
present when the satisfaction of soft constraints is being
improved. For these graphs, the numbers in the axis for f1
are a measure of the amount of space misused, i.e. the
sum of total space wasted and overused in the allocation.
The numbers in the axis for f2 are a measure of the total
penalty due to the violation of soft constraints in the
allocation.

0

7000

14000

21000

28000

35000

060000012000001800000

f1

f2

Fig. 3. Minimising Space Misuse.

0

700

1400

2100

2800

3500

060000012000001800000

f2

f1

Fig. 4. Minimising Soft Constraints Violation.

Minimising the misuse of space affects the second
objective but minimising the violation of soft constraints
seems to have a lighter effect on the first objective. If we
apply an approach in which the switching of objectives is
used (see section 2.3), then we can obtain a deeper
analysis of the correlation between the objectives in a
multiobjective optimisation problem.

4.3 MINIMISING BOTH OBJECTIVES
SIMULTANEOUSLY

Now we present the results of applying our approach to
solve the test problem described in section 4.1. We used a
population of 10 individuals. In reference to the
pseudocode presented in Fig. 2, we used these parameters
in our experiments: InitialTemperature equal to
1000, Decrement set to 200, ReHeatInterval equal to
550 and Interval set to 55. Two ways of assigning
fitness to the solutions were examined: aggregating
functions and dominance-ranking (see section 2.3). For
the first method we add the values of both f1 and f2 into
one scalar value that represents the solution fitness. In the
second method, the solution fitness is represented by a 2-
dimensional vector that contains the values for f1 and f2.
For example, suppose we have three solutions A, B and C
with the objective values shown in Table 1. If we use the
aggregated function approach then the sum given by f1+f2
is an evaluation of the total penalty for each solution. In
the other case the solutions are ranked using the
dominance concept defined in section 2.3. For the
minimisation example shown in Table 1, if we use the
aggregated function then solutions B and C are preferred
over solution A (98<135). But with dominance-ranking,
only solution B is preferred over solution A ([43,55]
strictly dominates [45,90]), while C is incomparable with
respect to A and B.

Table 1. Comparing Two Ways of Evaluating Objectives:
Aggregating Function and Dominance-Ranking.

 A B C
f1 45 43 5
f2 90 55 93

f1 + f2 135 98 98
dominance [45,90] [43,55] [5,93]

The aggregating function used in our experiments is given
by equation (1) below.

)1()()]()([
11

21 ∑∑
==

++=+
n

i
i

m

i
ii OSCPAOPAWPff

Here, n is the number of objects (resources), m is the
number or areas of space (rooms), WP is the penalty for
area Ai if there is space wastage, OP is the penalty for
area Ai if there is space overuse, SCP is the penalty for
violating a soft constraint for object Oi.

All the data for the test problem used here is available in
Burke et.al. (2001), including the penalty parameters. In
our experiments, we executed 200 runs using the
aggregating function and dominance-ranking for fitness
evaluation. We also used both strategies explained in
section 3.4: single high quality solution and multiple good
solutions and two termination criteria: no improvement
after a maximum number of generations (1700
generations) and a fixed execution time (1200 seconds of
CPU time). Table 2 below shows the distribution of these
200 runs in our experiments.

Table 2. Distribution of Runs. 100 Runs Using Single High
Quality Solution Strategy (SS) and 100 Runs Using Multiple
Good Solutions Strategy (MS).

 Aggregating Function Dominance Ranking
 SS MS SS MS

No Improvement 25 25 25 25
Execution Time 25 25 25 25

4.4 PERFORMANCE USING THE
AGGREGATING FUNCTION

In Fig. 5 below, we show the best populations obtained in
each set of 25 runs when using the aggregating function to
combine the two objectives. We can compare the
populations obtained with the single high quality solution
strategy (SS) and with the multiple good solutions
strategy (MS). The comparison is made using both
termination criteria mentioned in the last section. In each
population, the best and worst solutions are marked with a
solid and a blank bar respectively.

The first observation we make is the effect of the control
over the temperature for the hybrid simulated annealing
algorithm as explained in section 3.4, and the termination
criterion. The decision on whether to search for one good
solution or a population of them produces quite different
results. The single high quality solution strategy (SS)
consumes less computation time and the rest of the
population tend to be of poor quality. If we want a set of
good solutions then we require a population where the
sum of the objective values tends to be uniform among
the individuals, this is produced by the multiple good

solutions strategy (MS). The drawback is the increase in
computation time. Note that the effect of deciding
between the single solution and the multiple solution
strategies holds over a fixed execution time. When both
strategies are executed for a similar time, a much better
solution is achieved by the single solution strategy, at the
expense of the rest of the population being relatively poor.
In this case, the population produced by the multiple
solution strategy is uniform in terms of the objective
values.

0

2000

4000

6000

8000

10000
f1 + f2

Fig. 5. Populations Using the Aggregating Function.

In Table 3 we show the statistics for the best and worst
populations (best and worst runs) obtained in each set of
25 runs when using the aggregating function. The values
shown are: best individual, worst individual, the average
for the whole population and the total CPU time in
seconds. The small difference between the best and worst
runs with each strategy suggests that the algorithm is
reliable. However, further experiments are required to
provide more evidence of this.

Table 3. Best and Worst Populations Obtained Using the
Aggregated Function to Combine Both Objectives.

Best and Worst Runs Using Aggregating Function
Single Solution Runs Multiple Solutions Runs Population

Statistics Best Worst Best Worst
Average 4744.24 6807.94 2393.54 3500.13

Best 2495.44 4604.55 1495.44 1976.33
Worst 9082.24 9123.66 3905.44 6405.44

CPU Time 252 secs 149 secs 1573 secs 1174 secs

4.5 PERFORMANCE USING DOMINANCE-
RANKING

The best populations obtained in each set of 25 runs when
using dominance-ranking to evaluate the objectives, are
shown in Fig. 6. Again, we can compare the populations
produced with the single high quality solution strategy
(SS) and with the multiple good solutions strategy (MM).
The comparison is made using both termination criteria:
no improvement for a maximum of 1700 generations and
a fixed CPU execution time equal to 1200 seconds. Note
that each population in Fig. 6 is a non-dominated set and
no solution dominates the rest of the population. These
non-dominated sets of solutions represent a tradeoff
between both objectives, the minimisation of space
misuse (f1) and the minimisation of soft constraints
violation (f2).

252 secs

No Improvement Fixed Execution Time

SS SS MSMS

1573 secs 1200 secs

We can observe that the two sets of non-dominated
solutions produced by the strategy single high quality
solution (SS) contain a very good solution, but the rest of
the population has many other solutions with low quality.
The non-dominated sets obtained with the multiple good
solutions strategy (MS) contain more solutions with a
good quality (but certainly no identical solutions). While
the solutions produced by the multiple solutions strategy
are closer to each other, the solutions produced by the
single solution strategy have a bigger distance between
them. Again, even with identical execution time, both
strategies maintain the behaviour described here.

0

5000

10000

15000

20000

25000

12001300140015001600

f1

f2

SS No Improvement MS No Improvement
SS Fixed Execution T ime MS Fixed Execution T ime

Fig. 6. Populations Using Dominance-Ranking.

The final set of solutions is the result of the best
performance achieved by each individual in the
population independently from rest of the population.
Then, there is no guarantee that the final set of solutions
will always be non-dominated. It may occur that one or
more individuals dominate the rest of the population. But
as shown here, the resulting set is diverse and it represents
a tradeoff between the objectives. To obtain a non-
dominated front (not the Pareto-optimal front) we can
select those solutions in the final population that are non-
dominated.

In Table 4 we present the statistics for the best and worst
populations (best and worst runs) obtained in each set of
25 runs when using dominance-ranking. An interesting
aspect is that the computation time is improved because it
is not necessary to calculate the aggregating function.
Again, the sets of solutions obtained with both strategies
reveal the effect of the control over the common
temperature and the termination criterion discussed in
section 3.4. As we said before, there is no solution
dominating the rest of the population. Then the best
individual in Table 4 refers to the solution in the
population than dominates most of the other individuals.
The worst individual refers to the solution that is
dominated by most of the individuals in the population.
The populations produced with the single solution
strategy contain a very good solution, but the overall

quality of the population is low. With the multiple
solution strategy, the overall quality is better at the
expense of longer computation time.

Table 4. Cost Vectors for the Set of Solutions Obtained Using
the Concept of Dominance for Fitness Evaluation.

Best and Worst Runs Using Dominance-Ranking
Single Solution Runs Multiple Solutions Runs Population

Statistics Best Worst Best Worst
Best [1474,5500] [1479,13500] [1464,1500] [1372,7500]

Worst [1322,25000] [1489,32000] [1292,20500] [1225,29000]
CPU Time 121 secs 118 secs 637 secs 297 secs

These preliminary experiments and results suggest that
our population-based metaheuristic effectively produces
good solutions for space allocation problems. There is of
course much more work to do in order to establish our
approach as a competitive multiobjective optimisation
technique. Nevertheless, this insight into the application
to this type of problem encourages us to continue the
investigation. We believe that the combination of
metaheuristics, heuristic initialisation techniques and
populations may produce good results in the area of
multiobjective optimisation for other real-world problems.

5 CONCLUSIONS
We have described a population-based approach for
multiobjective optimisation resulting from a combination
of metaheuristics. Our approach uses self-adaptation,
information-sharing between individuals and mutation as
a basis to develop the population. It also permits us to
obtain a single high quality solution or a set of good
solutions by deciding the strategy to control the common
cooling schedule and termination criterion.

Our experiments show the ability of our technique to
maintain a diverse population. We believe this is because
instead of recombination, we use self-adaptation
(including mutation) to evolve the individuals and share
information concerning the current state of the solution
process between individuals. The experiments and results
presented here suggest that this technique may be an
effective approach to tackle combinatorial multiobjective
optimisation problems. It could also be used on single-
objective optimisation problems where it is necessary to
produce several good solutions simultaneously. This
method may have potential use for a wider range of
optimisation problems.

More work is necessary to validate the effectiveness of
our approach. For example, we will test our approach
using a range of test problems like those proposed by Deb
(1999), Zitzler (1999) and Knowles & Corne (2000). It is
important to carry out a theoretical analysis of the role
that the common temperature has in this algorithm and to
investigate the effect of parameters such as population
size. One interesting future direction is the evaluation of
individuals using different strategies. For example we
could evaluate some individuals in the population using
dominance, other individuals using an aggregated
function and so on.

Acknowledgments
J.D. Landa Silva acknowledges support from Universidad
Autónoma de Chihuahua and PROMEP in Mexico.

References
E.H.L Aarts, J.H.M. Korst, P.J.M. Van Laarhoven,
(1997), Simulated Annealing in Aarts E., Lenstra J.K.
(Eds.), Local Search in Combinatorial Optimization,
Wiley.

E.K. Burke, P. Cowling, J.D. Landa Silva, (2001), The
Space Allocation Problem, [Online], Available at web
site:http://www.asap.cs.nott.ac.uk/ASAP/space/spacealloc
ation.html.

E.K. Burke, P. Cowling, J.D. Landa Silva, B. McCollum,
(2000), Three Methods to Automate the Space Allocation
Process in UK Universities, Proceedings of the 3rd
International Conference on the Practice and Theory of
Automated Timetabling, PATAT 2000, Konstanz,
Germany, pp.374-393.

P. Calegari, G. Coray, A. Hertz, D. Klober, P. Kuonen,
(1999), A Taxonomy of Evolutionary Algorithms in
Combinatorial Optimization, Journal of Heuristics, Vol. 5,
No. 2, pp.145-158.

C.A. Coello Coello, (1999), A Comprehensive Survey of
Evolutionary−Based Multiobjective Optimization
Techniques, Knowledge and Information Systems, Vol. 1,
No. 3, pp.269-308.

C.A. Coello Coello, (2001), A Short Tutorial on
Evolutionary Multiobjective Optimization, Proceedings of
the 1st International Conference on Evolutionary Multi-
Criterion Optimization, EMO 2001, Lecture Notes in
Computer Science Vol. 1993, pp.21-40, Springer, Zurich,
Switzerland.

P. Dasgupta, P.P. Chakrabarti, S.C. DeSarkar, (1999),
Multiobjective Heuristic Search: An introduction to
Intelligent Search Methods for Multicriteria Optimization,
Vieweg.

K. Deb, (1999), Multi−Objective Genetic Algorithms :
Problem Difficulties and Construction of Tests Problems,
Evolutionary Computation, Vol. 7, No. 3, pp.205-230.

C.M. Fonseca, P.J. Fleming, (1995), An Overview of
Evolutionary Algorithms in Multiobjective Optimization,
Evolutionary Computation, Vol. 3, No. 1, pp.1-16.

A. Hertz, D. Klober, (2000), A Framework for the
Description of Evolutionary Algorithms, European
Journal of Operational Research, Vol. 126, No.1, pp.1-12.

J. Horn, (1997), Multicriteria Decision Making and
Evolutionary Computation in T. Bäck, D.B. Fogel, Z.
Michalewicz (Eds.), Handbook of Evolutionary
Computation, Institute of Physics Publishing, Bristol, UK.

J. Knowles, D.C. Corne, (2000), Approximating the
Nondominated Front Using the Pareto Archived
Evolution Strategy, Evolutionary Computation, Vol. 8,
No. 2, pp.149-172.

F. Menczer, M. Degeratu, W.N. Street, (2000), Efficient
and Scalable Pareto Optimization by Evolutionary Local
Selection Algorithms, Evolutionary Computation, Vol. 8,
No. 2, pp.223-247.

K Miettinen, (2001), Some Methods for Nonlinear Multi-
Objective Optimization, Proceedings of the 1st
International Conference on Evolutionary Multi-Criterion
Optimization, EMO 2001, Lecture Notes in Computer
Science Vol. 1993, pp.1-20, Springer, Zurich,
Switzerland.

I.H. Osman, J.P. Kelly (Eds.), (1996), Meta−Heuristics:
Theory & Applications, Kluwer Academic Publishers.

M. Pirlot, (1996), General Local Search Methods,
European Journal of Operational Research, Vol. 92, No.
3, pp.493-511.

V.J. Rayward−Smith, I.H. Osman, C.R. Reeves, G.D.
Smith (Eds.), (1996), Modern Heuristic Search Methods,
Wiley.

C.R. Reeves (Ed.), (1995), Modern Heuristic Techniques
for Combinatorial Problems, McGraw−Hill, UK.

B.S. Stewart, C.C. White, (1991), Multiobjective A*,
Journal of the ACM, Vol. 38, No. 4, pp.775-814.

J. Teghem, D. Tuyttens, E.L. Ulungu, (2000), An
Interactive Heuristic Method, for Multi−Objective
Combinatorial Optimization, Computers & Operations
Research, Vol. 27, No. 7−8, pp.621-634.

D. Tuyttens, J. Teghem, P.H. Fortemps, K. Van
Nieuwenhuyze, (2000), Performance of the MOSA
Method for the Bicriteria Assignments Problem, Journal
of Heuristics, Vol. 6, No. 3, pp. 295-310.

D.A. Van Valdhuizen, G.B. Lamont, (2000) On
Measuring Multiobjective Evolutionary Algorithms
Performance, Proceedings of the 2000 Congress on
Evolutionary Computation, Vol. 1, pp. 204-211.

D.A. Van Valdhuizen, G.B. Lamont, (2000b),
Multiobjective Evolutionary Algorithms: Analyzing the
State-of-the-Art, Evolutionary Computation, Vol. 8, No.
2, pp.25-147.

E. Zitzler, (1999), Evolutionary Algorithms for
Multiobjective Optimization: Methods and Applications,
Thesis submitted to the Swiss Federal Institute of
Technology Zurich, Shaker Verlag, Germany.

E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, D.
Corne (eds.), (2001), Proceedings of the 1st International
Conference on Evolutionary Multi-Criterion
Optimization, EMO 2001, Lecture Notes in Computer
Science Vol. 1993, Springer, Zurich, Switzerland.

J.B. Zydallis, D.A. Van Valdhuizen, G.B. Lamont,
(2001), A Statistical Comparison of Multiobjective
Evolutionary Algorithms Including the MOMGA-II,
Proceedings of the 1st International Conference on
Evolutionary Multi-Criterion Optimization, EMO 2001,
Lecture Notes in Computer Science Vol. 1993, pp.226-
240, Springer, Zurich, Switzerland.

