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ABSTRACT 
In this work a genetic algorithm for the resolution of an Integer Goal Programming 


model is shown. In general, this type of problems produce serious difficulties for its resolution 
using traditional algorithms from Integer Programming, being in most of the real problem 
cases too expensive computationally to solve it. However, it will be shown how this new type 
of methods, the genetic algorithms, can solve real integer goal programming problems 
efficiently with a reduced computational cost. To this aim, we solve an Integer Goal 
Programming Model for the Higher Education applying a genetic algorithm and a traditional 
algorithm. For these resolutions, the computational cost is analysed to show the advantages of 
a genetic algorithm for the resolution of complex real problems.   


Keywords: Integer Programming, Goal Programming, genetic algorithms, 
Multiobjective Optimization. 


   
1. Introduction.   
   
Evolutionary algorithms have become a very used tool for optimization, machine  


learning, design problems, neuronal network, search, and other fields on Mathematics  and 
Engineering. The main point of these types of algorithms is simulating natural evolution to 
find solutions for complex problems. This way, the famous naturalist Charles Darwin defined, 
in his famous book in 1859, Natural Selection or Survival of the Fittest as the preservation of 
favourable individual variations, as well as the destruction of those injurious ones. In nature, 
individuals have to adapt to their environment to survive by means of evolution, in which 
those variations favouring their competitiveness are preserved, and those aspects that weaken 
their adaptation are eliminated. These characteristics, favourable or unfavourable, are stored 
and controlled in some units called genes, and these genes are grouped forming 
chromosomes.    


   
In the late 60s, John Holland became interested in applying the principles of the natural 


evolution for the resolution of complex problems in the field of machine learning, developing 
a technique that will be the root of  the genetic algorithms. In 1989 Goldberg published a 
book including a solid background for this type of strategies and where you could find more 
than 70 real applications of genetic algorithms. The main characteristic of a genetic algorithm 
is the use of a recombination operator or crossover as the search mechanism. This way, 
parents swap part of the information on their genes to create new offspring with some new 
features and with some of the parents’ characteristics. This operator is based on the fact that 
different components of good solutions can be evolved independently and then combined to 
form better solutions. Additionally to the crossover, a mutation operator is used to maintain an 
appropriate diversity level among the population, by means of making the genetic search 
random. Each population member is represented by a set of chromosomes, that originally 







were simply binary strings. This representation of the population's elements plays a main role 
in a genetic algorithm, since it must be able to represent all the range of feasible solutions for 
the problem, as well as the characteristics that we would like to obtain with the final solution. 
Given a representation, an initial population is generated and, by means of the selection 
operator, the more fit individuals (parents) are selected to produce new offspring. The quality 
of each individual, this is, the quality of each gene string, is settled by a fitness function. 
When a genetic algorithm is used to solve an optimization problem, the fitness function is the 
optimising function, f(x), although it can be modified for example to penalise the constraint 
violation or to foment diversity among the population. A more detailed description of each 
element on a genetic algorithm can be found in Goldberg (1989).  


  
Finally, we want to remark the capacity of a genetic algorithm to use and take 


advantage of some elements from other types of methodologies, like simulated annealing, 
taboo search or GRASP. As consequence of this great adaptability to solve different classes of 
complex problems, the number of real applications of genetic algorithm in the literature is 
also enormous, as you can observe in Gandibleux and Ehrgott (2000).   


   
2. Multiobjective Programming with Genetic Algorithms.   
      
In comparison with single objective optimisation problems, little research has been 


reported on the field of Multiobjective optimisation with genetic algorithms. Goldberg (1989) 
mentions the first attempts of using genetic search in a multicriteria problem in the late 60s. 
These first attempts were focused in the aggregation of the criteria by means of scalarization. 
However, from the late 60s, other different approaches have appeared in the literature, based 
on aggregation, on the Pareto efficiency and on other types of orders, as you can see for 
example in Fonseca and Fleming (1993). Jakob et al. (1992) made use of the Weighted-Sums 
method to aggregate the criteria, but this method usually produces not so balanced solutions 
and therefore it doesn't explore the whole efficient frontier. Ritzel et al. (1994) tried to use the 
Constraint Method to obtain a better approximation of the efficient frontier, although with a 
bigger computational cost because of multiple resolutions must be carried out. To avoid 
problems when aggregating the criteria, many of the efforts in the literature have gone toward 
approaches not based on scalariazation. This way, Schaffer (1985) developed the method 
VEGA (Vector Evaluated Genetic Algorithm) whose only difference with an usual genetic 
algorithm is the way the selection is carried out for recombination. In this method, on each 
generation the population groups in a certain number of subpopulations (usually the number 
of criteria) where only one criteria is taken into account. This is a very popular method in the 
literature, although in many problems it produces not so balanced solutions. Fourman (1985) 
used a lexicographic order to carry out the selection, obtaining good results since with the 
lexicographic order you can always compare two individuals and then can build a ranking 
among the population. This approach also has the advantage of not needing to normalize the 
criteria, because of these type of binary comparisons.  


 
Also you can find some approaches based on Pareto domination. With this type of 


methods, the fitness value of each individual depends on its efficiency or dominance inside 
the population. This way, Goldberg (1989) made a non-dominance ranking to solve the 
“speciation” problems of VEGA. This method showed superior to VEGA in some cases, as 
you can see in Hilliard et al.(1989). Fonseca and Fleming (1993) developed this idea into the 
MOGA method (Multi Objective Genetic Algorithm), where each individual's ranking 
depends on the number of elements in the population dominating it. Srinivas and Deb (1994) 
used the idea of the non-dominance ranking in the NSGA method (Non-Dominated Sorting 
Genetic Algorithm) that also showed efficient when solving problems with multiple criteria. 







Finally, Sakawa et al.(1997,2000) developed a modified genetic algorithm for 0-1 Fuzzy 
Multiobjective Programming. More research relating Multiobjective Programming and 
evolutionary algorithm can be found among others in Busacca et al. (2001), Jaszkiewicz 
(2002), Hanne (1999), Sarker et al. (2002), Coello et al. (2000), etc. A survey on 
Multiobjective Evolutionary Algorithm can be found in Van Veldhuizen and Lamont (2000).          


   
On the other hand, we cannot find many papers on the literature relating specifically 


Goal Programming with genetic algorithms. This way, Gen et al.(1997) developed a genetic 
algorithm for Fuzzy Nonlinear Goal Programming models. Mirrazavi et al. (2001) analysed 
the use of genetic algorithms to solve Integer Goal Programming models on a general frame. 
Wilson and Macleod (1993) and Chen and Liu (1994) used genetic algorithm to solve a 
Weighted Goal Programming model.  


 
But, in fact, a Lexicographic Goal Programming problem can adapt perfectly to the use 


of a fitness function based on a lexicographical order, this is, the lexicographic order 
corresponding to the priority levels of the LGP problem. This way, you can take advantage in 
a simple way of the good properties of this type of lexicographic genetic algorithms, as it is 
shown in Fourman (1985).    


   
3. Application.   
   
As an example to show the efficiency of this type of algorithms, we will solve in this 


section a real Lexicographic Integer Goal Programming model. We chose this problem 
because it is a very well known fact that among the Mathematical Programming problems, the 
Integer Programming problems offer a bigger computational complexity when being solved. 
This way, the Integer Programming problems require, in general, a great computational cost, 
in comparison with the rest of Mathematical Programming problems, even making the 
resolution unfeasible in many cases. However, Integer Programming is a very important 
branch of Mathematical Programming because you can find an enormous variety of real 
problems of this type, related with areas so diverse as the combinatorial analysis, planning 
and production, transport, assignment, scheduling, flow, location, distribution, machine 
sequencing, etc. On the other hand, Integer Goal Programming is one of the more popular 
approaches on the literature on Multiobjective Integer Programming because, with this type of 
problems, obtaining completely or a good approximation of the efficient set is a really 
difficult task, being then more easy to obtain satisfacing solutions. 


   
This problem is based on a model developed in Caballero et al. (2002). It is a 


Lexicographic Integer Goal Programming model for the efficient assignment of the financial 
resources of a Spanish university and we will apply it to the particular case of the University 
of Málaga. This problem uses 3124 integer variables (22 variables by department, having the 
University of Málaga 142 departments), 1420 deviational variables (continuous), 712 hard 
constraints and 1420 soft constraints associated with the goals of the problem. These goals are 
allocated into five priority levels. 


  
Firstly, this problem, with the data of the University of Málaga, was solved with the 


Multiobjective Programming software PROMO (Caballero et al. (2000)). This software uses 
the CPLEX Integer Programming libraries, version 6.5.1., that are among the most efficient 
ones for the resolution of integer problems and offer all the existent techniques to solve a 
problem of this type efficiently: cuts, pre-processing, heuristics, etc. We carried out several 
resolutions with different parameters in a personal computer Pentium III 1 Ghz, requiring all 







them more than 3 hours of processing for its resolution, and some of them even more than 4 
hours.    


   
Later on, a genetic algorithm has been developed to solve this problem and to evaluate 


the computational cost saving that a genetic algorithm can offer for this type of problems. 
This algorithm uses an integer representation for the 22 variables of each department. For the 
initial population, 1300 individuals were generated (for the whole resolution the population's 
size was 1300 individuals), where for each individual some of the variables were randomly 
generated and the rest was calculated according to these values to ensure the feasibility of 
each one of the initial population's individuals. However, for the rest of the algorithm the 
procedure adopted to deal with feasibility was death penalty, this is, if a chromosome encodes 
an infeasible solution, it is destroyed and replaced).  


 
For the fitness evaluation, we used a function based on the lexicographic order and the 


goals associated to the ILGP problem. This way, each individual's evaluation consisted on a 
vector with the value of the achievement functions associated to the five priority levels of the 
problem. This lexicographic evaluation allows to carry out the population's complete 
ordination (a complete ranking), since any two elements are comparable by means of this 
lexicographical order. This way, the used selection operator was a lineal ranking, where 200 
couples (parents) were selected to reproduce, among the population's 1300 individuals.   


   
Each one of these couples gave place to an offspring of 4 individuals. Then, this 


reproduction operator produces a total of 800 new individuals that will substitute the 800 
worse individuals of the previous generation, becoming an elitist algorithm.    


 
Among this offspring of 4 children by couple, two of them are built exchanging 


(conditionally) the 22 values of the departments of the parents. This is, one of the children 
receives entirely (the 22 genes) the father's even departments and the mother's odd 
departments, and the other son receives them inversely. Then, this is an uniform crossover of 
142 points. However, this crossover operator firstly estimates the goal values on each 
department of the individual to which this son will substitute in the population. This way, this 
son will receive from one of the parents the 22 values of a department if it is estimated that 
this exchange will improve the current values on the individual to be substituted. Conversely, 
if no improve is estimated, the son will receive the 22 values from the individual to be 
substituted, but it is carried out a random test that can allow to take the parents’ department 
values although it introduces a worse estimation. For each parent’s other two children it was 
simply carried out an uniform crossover of 142*22 points with a random test, this is, and 
exchange of all the variables. Relating the mutation operator, mutation was allowed (with 
probability 0,01) only for the genes of those departments whose goal values were under the 
target value. As we mentioned above, death penalty was used to deal with infeasibility, this is, 
any infeasible individual obtained by the crossover or the mutation operator is eliminated. We 
also used a measure of the infeasible individuals rate (number of infeasible individuals 
created in comparison with the total offspring) to control some parameters of the mutation and 
crossover operator. With this rate we were trying to estimate the efficiency of the crossover 
and mutation operator, because if this rate is high then most of the computational effort of this 
two operators is lost because of  the death penalty. Then, we used this rate as a feedback 
parameter to adjust some other parameters of the crossover and mutation operator. Also, we 
could found this rate as a good estimation of the convergence state, because as the population 
become more uniform (convergence is near to be reached) this rate tends to 0. The reason for 
this relation could be found in the building blocks hypothesis (Goldberg (1989)), because as 
the convergence is being reached the diversity of the blocks to be combined on each crossover 







operation is smaller and these different blocks better fit, producing then less infeasibility. In 
this example, this rate showed to be so useful to improve the crossover and mutation operator 
and to estimate a stopping condition.   


 
This algorithm was also combined with a local search (30 iterations) by means of a 


GRASP method (an heuristic using a greedy randomised function) starting from the 10 better 
individuals on the ranking each 50 generations. Finally, as a stopping condition, we used the 
infeasibility rate to avoid a large number of iterations and finally we could carry out no more 
than 200 iterations for each resolution.    


   
This algorithm was implemented using C++ ( Microsoft Visual C++ 6.0 compiler)  


language to obtain a Windows software supporting some graphics to show the evolution of 
the resolution process. With this simple genetic algorithm we solved our ILGP problem again 
with a personal computer Pentium III 1 Ghz, and we obtained the CPLEX optimal solution 
within a computational time not exceeding in any case 20 minutes. This fact showed us the 
efficiency that this type of algorithm can offer for complex integer problems as our example 
was.    


 
4. Conclusions.   
             
With this work we seek to show the efficiency and the advantages that a genetic 


algorithm can introduce when solving Integer Goal Programming complex problems. To this 
aim, it has been solved an Integer Goal Programming complex real problem with a traditional 
exact method (CPLEX Branch and Bound method), using some of the most efficient libraries 
in this field, the CPLEX libraries. Later on it has been developed and implemented a simple 
genetic algorithm to solve this problem, obtaining the same optimal solution, but within a 
saving of computational time of more than 80%. This example could show the proposal of 
this work: when solving a complex IGP problem, the use of a genetic algorithm can be an 
efficient option from the point of view of computational cost as well as the quality of the 
solution.    
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