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Abstract- This paper presents the use of neural networks
and genetic algorithms in time-optimal control of a
closed-loop robotic system. Radial-basis function
networks are used in conjunction with PID controllers in
an independent joint position control to reduce tracking
errors. The results indicate that using neural network
controllers is more effective than using trajectory pre-
shaping scheme, reported in early literature.
Subsequently, a genetic algorithm with a weighted-sum
approach and a Multi-Objective Genetic Algorithm
(MOGA) are used to solve a multi-objective optimisation
problem related to time-optimal control. The results
indicate that the MOGA is the best method in terms of
the Pareto front coverage while the genetic algorithm
with a weighted-sum approach is more effective in terms
of finding the best individual according to the weighted-
sum criteria. As a result of using both neural networks
and genetic algorithms in this application, an idea of a
task hybridisation between neural networks and genetic
algorithms for use in a control system is also effectively
demonstrated.

1 Introduction

Time-optimal control has been one of the major research
interests in robotics during the past decade. Time-optimality
can lead to an overall improvement in the level of
productivity from a manufacturing viewpoint and an
increase in the effectiveness of a task execution from an
operational viewpoint. One particular aspect of research is
the theory and application of time-optimal control of a robot
arm along a pre-defined path. An algorithm that can lead to
time-optimality of this kind was firstly developed by
Bobrow et al. (1985). Over the years, this algorithm has
undergone a number of refinements and one of the latest
modifications has been described in Shiller and Lu (1992).
In summary, a time-optimal motion of a robot arm along a
pre-defined path is achieved when the motion is executed
with either the maximum possible acceleration or
deceleration along the path. This can be done when one of
the actuators on the robot arm is always saturated and the
other actuators adjust their torque values so that their
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torque limits are not violated (Sahar and Hollerbach, 1986).
Although this time-optimal control algorithm has been

proven to be a useful algorithm in a number of robotic
applications, the majority of the demonstrations have only
been done in the open-loop control mode. This can hardly
be the case for a practical use of motion control in a real-
time implementation where closed-loop control would be a
more common practice. Shiller et al. (1996) have pointed
out that the actuator dynamics and the delays caused by an
on-line feedback controller would lead to a reduction in the
efficiency of the algorithm when closed-loop control is used.
Two possible methods have been used to solve this problem.
The first method is based on a modification of the original
time-optimal control problem into a time-energy optimal
control problem which can be regarded as a Lagrangian
constraint optimisation problem and can only be solved
numerically (Shiller, 1996). A drawback of this method is
that the modification also leads to an increase in the
resulting trajectory time. The second method is based on the
use of a simplified friction model to compensate for the
actuator dynamics and the implementation of a trajectory
pre-shaping to account for the dynamics of the controller
(Shiller et al., 1996).

In this paper, time-optimal control is used in a closed-
loop robotic system. This is done in a similar way to that
described in Shiller et al. (1996) except that the actuator
dynamics are not considered. However, neural network
controllers are used in conjunction with standard controllers,
which leads to the redundancy of the use of trajectory pre-
shaping. In addition, a further multi-objective optimisation
problem associated with the use of time-optimal control in a
feedback system is also considered. In this case, the decision
variables consist of the magnitude of the torque limits within
the actuator on each robot joint while the objective variables
are the trajectory time and the position tracking error. Two
approaches on multi-objective optimisation using a genetic
algorithm, namely a genetic algorithm with a weighted-sum
approach and a Multi-Objective Genetic Algorithm
(MOGA) (Fonseca and Fleming, 1993), have been used to
solve this optimisation problem. Furthermore, a hill-
climbing method and a random search have also been used
to solve the same problem in order to compare with the
genetic algorithm performances. Since neural networks and
genetic algorithms are used in the different part of the



control application, in essence this indicates a task
hybridisation between neural networks and genetic
algorithms.

The paper is presented as follows. The time-optimal
control algorithm as described by Shiller and Lu (1992) is
briefly explained in section 2. In addition, the trajectory pre-
shaping scheme is also explained in this section. In section
3, the control structure of the robotic system and the
improvement in the system performance gained by using
neural network controllers is discussed. The multi-objective
optimisation problem associated with time-optimal control
and the optimisation techniques used to solve the problem is
explained in section 4. Simulation results from using
different optimisation techniques are shown in section 5.
Discussions on the optimisation results are given in section
6. Finally, conclusions are given in section 7.

2 Time-Optimal Control Algorithm and
Trajectory Pre-Shaping Scheme

In summary, time-optimal control algorithm as described by
Shiller and Lu (1992) can be used to generate the time-
optimal profiles of the reference joint position and the open-
loop control torque signal provided that the physical
properties of the robot arm are known and a pre-defined
path of the robot arm in the workspace is available. In
particular, the torque limits on the actuators within the robot
are the key factors which have a major influence on the
trajectory time obtained from the algorithm. As stated
earlier, the time-optimal motion is achieved when one of the
actuators on the robot arm is always saturated and the torque
values of other actuators are within the bounds of the
corresponding limits. This means that with the large values
of the torque limits, the obtained trajectory time will be
short. On the other hand, with the smaller values of the
torque limits, the obtained trajectory time will be relatively
larger. A schematic diagram describing input and output of
the time-optimal control algorithm is given in Figure 1.

Time-optimal
control
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torque limits

Pre-defined
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Figure 1: Schematic diagram of the time-optimal control algorithm

In Figure 1, the time-optimal control algorithm takes the
robot physical properties and the information regarding the
pre-defined robot’s path as inputs. The outputs from the

algorithm are the reference joint position and the open-loop
torque profiles.

Nonetheless, the time-optimal control algorithm will
produce a result based on the open-loop dynamics of the
system. This means that a certain number of problems will
arise when using the reference joint position profile obtained
from the algorithm as input to the closed-loop system
(Shiller, 1996; Shiller et al., 1996). In order to solve the
problem, Shiller et al. (1996) have introduced a method
known as trajectory pre-shaping which involves a
modification of the reference joint position profile according
to the dynamics of the closed-loop system. This
modification involves adding the open-loop reference joint
position profile with a factor given by the open-loop torque
profile which has been transformed by the inverse model of
the controller in the closed-loop system. This modified or
“pre-shaped” reference joint position profile is then used as
input to the position feedback system in the usual way.
Although some good results obtained by using trajectory
pre-shaping has been reported in early literature, it will be
demonstrated in the following section that the use of neural
networks to compensate for dynamics of controllers and
modelling errors helps to remove the need of using
trajectory pre-shaping.

3 Control Structure and Neural Network
Contribution

Firstly, consider the dynamic equation of motion for an n-
degree-of-freedom (n-dof) robot which is given by

D h c u( )�� ( , � ) ( ) ( )θ θ θ θ θ+ + = t (1)

where D(θ) is the n × n inertial acceleration-related matrix,

h( , � )θ θ  is the n × 1 centrifugal and Coriolis forces vector,

c(θ) is the n × 1 gravity loading force vector, u(t) is the n ×
1 torque input vector, θ( )t  is the n × 1 angular position

vector, � ( )θ t  is the n × 1 angular velocity vector, ��( )θ t  is the

n × 1 angular acceleration vector and n is the degree of
freedom of the robot model. Equation (1) indicates a non-
linear relationship between the input torque and the joint
angular parameters. The control strategy which is used in
this study is the independent joint control. In this case, the
control objective is to find a control signal u(t) such that the
overall robotic system will be de-coupled into n linear
second order systems. Freund (1982) has suggested such a
control signal which takes the form of
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where αij and λi are arbitrary scalars. With the use of u(t) of
this form, the overall dynamics of the system as described in
equation (1) will transform into

��( ) � ( ) ( ) ( )θ α θ α θ λi i i i i i ref
it t t u t+ + =1 0 , i = 1, 2, …, n (3)



which indicates the de-coupled input-output relationships of
the system. Using this form of de-coupling and non-linear
compensation, each de-coupled joint sub-system can be
controlled using a standard PID controller as schematically
displayed in Figure 2(a). In addition, a neural network can
be used as an additional controller in each joint control loop
where it will have a role of compensating for the dynamics
of the primary controller and the possible modelling errors.
This arrangement is illustrated in Figure 2(b).
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       Figure 2(a): A joint sub-system of the robot system using
                          independent joint control in conjunction with
                          PID controllers
       Figure 2(b): Neural network and PID controllers in each
                          joint control loop

However, with the arrangement shown in Figure 2(b), it
is not possible to derive an exact desired neural network
output training signal for use in supervised learning. An
alternative training signal must be acquired. In a standard
supervised learning, the difference between the actual neural
network output and the desired neural network output - the
training error - is used to update the network parameters
such as the connection weights. In the case where a neural
network is placed in a closed-control loop like in Figure
2(b), the feedback error signal can be used as the alternative
to the training error signal. This modified supervised
learning scheme is called feedback error learning (Kawato et
al., 1988).

In this study, radial-basis function networks are used to
assist PID controllers in the position control loop. Position
feedback error learning is used to train the connection
weights while the centres of the Gaussian radial-basis
functions are unsupervisedly trained. The training algorithm
used is similar to the one described by Fritzke (1994) except
no new centres are incremented into the network during
training and the nearest neighbour centre concept is used
instead of the topological neighbour neuron concept. Three
neural network controllers, one for each joint sub-system,
are trained and tested for use in position control of a 3-dof

robot by using a combination of the time-optimal position
trajectory and its corresponding position feedback as both
the training and the testing samples. Note that this time-
optimal trajectory is obtained for a robot task of tracking a
straight line path in Cartesian space with the torque limits on
joints 1, 2 and 3 of ±15, ±25 and ±5 Nm, respectively. The
parameter settings for training neural networks are
summarised in Table 1. The simulation results for the case
of PID controllers with trajectory pre-shaping and the case
of PID and neural network controllers are shown in Figures
3, 4 and 5.

Parameter Value
Number of Gaussian radial-basis functions
in each network 30
Number of connection weights in each network 30
Number of input nodes in each network 2
Number of output nodes in each network 1
Learning rate parameter (weight training) 0.001
Number of training samples 30
Number of training epochs 200

Table 1: Parameter settings for training neural networks
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Figure 3: Angular positions from each joint
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Figure 4: Tracking errors from each joint
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Figure 5: Open-loop and closed-loop torque on each joint

In Figures 3 and 4, the simulation results indicate that
with the use of the neural network controllers as the
assistants to the PID controllers, a significant improvement
in the control performance over that achievable by using
trajectory pre-shaping mechanism can be observed. In
Figure 5, with the use of neural network controllers, the
characteristics of the closed-loop torque profiles are similar
to those of open-loop control. This indicates that time-
optimality has been achieved within the torque constraints.
Note that these trained radial-basis function networks are
used in the following parts including the following multi-
objective optimisation problem without any further training.

Another advantage gained by using neural networks as
assistants to PID controllers is the resistance to modelling
errors which can occur during the robot operation. Many
forms of error can be introduced to the robot system after
the controllers have been designed. For example, a liquid
spillage from the container attached to the last link of the
robot arm can occur after an unexpected event, such as a
collision. This kind of malfunction can lead to a loss of the
overall mass in the last link of robot, which is a form of
modelling error. This kind of modelling error is used in the
following test cases which in turn are used to demonstrate
the effectiveness of neural network controllers in this kind of
situation. In summary, in the following five test cases, a
certain amount of mass in the last link, ranging from 10 % to
50 % of the overall mass, is lost during the operation. Note
that the modelling error will only effect the mass of the last
link and not the length of the last link. This makes the robot
trajectory unaffected by this modelling error.

Since the modelling error occurs after the control
structure has been determined, the robot physical model
which is used in the time-optimal trajectory generation and
feed-forward compensator for de-coupling the robot
dynamics will remain unchanged. Also the same torque
limits on the actuators will be used in the time-optimal
trajectory generation. However, the generated reference
position trajectory and open-loop torque profile will no
longer be optimal. Nevertheless, it is sufficed to say that

although time-optimality cannot be maintained after the
occurrence of the fault, the robot operation can still be
described as time sub-optimal. A summary of simulation
results, expressed in terms of the sum of the squared position
tracking error and the sum of the absolute error, from all five
test cases and the previous simulation with no mass loss is
given in Table 2. Note that the simulation results from using
trajectory pre-shaping in the same situations are also given
for comparison purposes.

Mass Squared Error (rad2) Absolute Error (rad)
Loss (%) PID + NN PID + TP PID + NN PID + TP

0 0.0084 0.5894 0.6669 4.6620
10 0.0103 0.6350 0.7607 5.1721
20 0.0205 0.3191 1.0206 4.0637
30 0.0304 0.2754 1.1929 3.7820
40 0.0365 0.2656 1.3096 3.8071
50 0.0409 0.2509 1.4249 3.7661

PID + NN - PID and neural network controllers
PID + TP - PID controllers with trajectory pre-shaping

Table 2: Summary of tracking error results

Again, from Table 2 it is noticeable that in all test cases,
the use of the neural networks as assistants to the PID
controllers has proven to be a more effective method in
reducing tracking errors than the use of trajectory pre-
shaping scheme. This indicates that neural network
controllers are more suitable to the time-optimal control
application both in the normal operating condition and in the
event of the occurrence of modelling errors in the control
system.

4 Multi-Objective Optimisation Problem and
Optimisation Techniques

In practice, the maximum torque limits, which are used in
the time-optimal trajectory calculation process for a closed-
loop control, are usually less than the actual torque limits on
the actuator. This safety precaution is done in order to allow
some margins of error for possible discrepancies introduced
to the system by modelling errors and controller dynamics
(Shiller et al., 1996). This implies that for a given set of the
actual torque limits of the actuators, there is a set of
admissible torque limits combinations that can lead to a
certain level of time-optimality within an acceptable range
of tracking error. This points to a design problem in robotic
applications in which the objective is to find a combination
of torque limits from a set of admissible torque ranges which
will lead to a trajectory which meets the time-optimality and
tracking error constraints. This is a multi-objective
optimisation problem since it would be highly unlikely to
obtain a single trajectory that can minimise both the
trajectory time and the tracking error simultaneously. A
Multi-Objective Genetic Algorithm (MOGA) (Fonseca and
Fleming, 1993) and a genetic algorithm with a weighted-sum



approach have been used to solve the problem associated
with the torque limits selection in this study. The problem
formation and the genetic operators used are discussed as
follows.

4.1  Decision Variables

A 3-dof robot with the task of tracking a straight line path in
Cartesian space, presented earlier, is used to demonstrate
this multi-objective optimisation problem. Assuming that the
magnitudes of the maximum and the minimum torque limits
are the same for each actuator, the decision variables of a
possible solution would consist of the magnitude of the
torque limits of each joint. In this study, the range of the
magnitudes of the torque limits on joints 1, 2 and 3 are set to
15-30, 25-40 and 5-20 Nm, respectively. The lower bounds
of the limits (i.e. 15, 25, 5) are based on the maximum
allowable trajectory time requirement of 0.3 seconds, while
the upper bounds of the torque limits (i.e. 30, 40, 20) are set
by the actual torque limits of the actuators.

4.2  Objective Variables

There are two optimisation objective variables in this
problem: the tracking error and the trajectory time
objectives. The tracking error objective is expressed in
terms of the sum of the mean absolute value over three
joints, calculated over the whole trajectory. The trajectory
time objective is the optimal trajectory time obtained from
the time-optimal control algorithm described in section 2.
Note that the sampling period used in the simulation of this
3-dof robotic closed-loop system is 0.01 seconds. Hence, the
trajectory time will always be in the form of 0.01m where m
is a positive integer.

4.3  Chromosome Coding

Three decision variables - the magnitudes of the torque
limits from all three joints - are concatenated together and
coded using a Gray code to form a chromosome. The torque
ranges of all three joints are discretised using a search step
of 0.5 Nm. This leaves 31 search points for the magnitude of
the torque limits of each joint which can be coded with a
Gray code of length 5. The total length of the chromosome
in this case is 15. Note that there are certain search points
obtained after decoding the chromosome which lie outside
the required search space. These points are mapped back
into the feasible region by changing the most significant bit
of the Gray code section representing the particular decision
variable that violates the feasibility constraint into zero.

4.4  Fitness Assignment and Fitness Sharing

The ranking method, as described in Fonseca and Fleming
(1995), is used to rank each individual in the population in
the case of the MOGA. Then, a linear fitness interpolation is
used to assign fitness to each individual. Fitness sharing,

with the use of triangular sharing function, is then carried
out in normalised objective space. In the case of the genetic
algorithm with a weighted-sum approach, the objective
functions are weighted and added together to form a single
objective. Then fitness is calculated from the weighted-sum
objective in the usual way for a single-objective
minimisation problem. In effect, this will force the algorithm
to concentrate the search on only one area of the Pareto
front. For this reason, fitness sharing is not implemented in
the genetic algorithm with a weighted-sum approach.

4.5  Selection Method

Stochastic universal sampling (Baker, 1989) is used in the
fitness selection. The elitist strategy used is to select two
individuals with the highest fitness and pass onto the next
generation without crossover or mutation.

4.6  Crossover and Mutation Methods

The standard one-point crossover is used in the
recombination. Two individuals are allowed to perform
crossover if, and only if, they are within the mating
restriction distance from each other. For simplicity, the
mating restriction radius is set to equal to the sharing radius
and the consideration on the distance between the two
individuals is also done in normalised objective space. In
addition, a standard bit-flipped operation is used for the
mutation. The parameter settings for both the MOGA and
the genetic algorithm with a weighted-sum approach are
summarised in Table 3.

Parameter Value
Chromosome length 15
Crossover probability 0.8
Mutation probability 0.07
Sharing radius (MOGA only) 0.003
Mating restriction radius 0.003
Population size 30
Number of elitist individuals 2
Number of generations 30

Table 3: Parameter settings for the genetic algorithms

Since the techniques involved in the search mechanism
used in both the genetic algorithm with a weighted-sum
approach and the MOGA are quite different from one
another, another two search techniques are also presented
here for the purpose of comparison with each of the genetic
algorithm approach. These two standard techniques are the
hill-climbing and random search methods. A brief
description of these two methods is given as follows.

As mentioned earlier, in the case of the genetic algorithm
with a weighted-sum approach, a multi-objective
optimisation is reduced into a single objective one. The hill-
climbing method is also a single-objective optimisation
method which can be used to find an optimal solution



without the use of gradient information of the search space.
The hill-climbing algorithm presented here is similar to the
one reported in Mahfoud (1995), which is also
recommended for use in the comparison with the genetic
algorithm performance. The hill-climbing algorithm starts
from an initial value of randomly chosen decision variables.
Then the search cycle through the variables, trying
perturbations on each one. A perturbation is either an
upward or downward change in the value of a variable. The
hill-climbing algorithm will take each improvement as it is
found. After cycle through all the variables and no
improvement is gained, the search step size is reduced by
half and the search begins again. The hill-climbing
algorithm will terminate when a search with the smallest step
size yields no improvement.

Moving onto the random search technique: Eschenauer et
al. (1990) have explained that in the case of a multi-
objective optimisation, the random search method can
generally be used to obtain a non-dominated solution set. In
the random search technique, a set of random solutions are
generated. Then non-dominated solutions are picked from
this solution set. This can be done by applying the ranking
mechanism used in the MOGA to the initial random
solutions and selected solutions with the highest rank. Since
a genetic algorithm also uses randomly generated solutions
as its initial search points, the random search has already
been embedded into the genetic algorithm as the initial
search procedure. This means that a comparison between the
non-dominated solutions found from the initial population of
the genetic algorithm and the non-dominated solutions
obtained from the last generation of the genetic algorithm
run would provide an adequate comparison in terms of the
comparison with the random search method.

By incorporating the weighted-sum criteria used in the
genetic algorithm with a weighted-sum approach and the
hill-climbing technique to the non-dominated solution sets
obtained from the MOGA and the random search, another
two best individual results can be obtained for comparison
purposes. In brief, there will be a total of four best
individual results, one from each technique. Note that the
best individual result from the random search will be
equivalent to the best individual from the first generation of
a genetic algorithm run. On the other hand, by applying the
ranking technique used in the MOGA to the last generation
of the genetic algorithm with a weighted-sum approach,
another non-dominated solution set can be obtained for
comparison with the non-dominated solution sets obtained
from the MOGA and random search. In total, there will be
three sets of non-dominated solutions for comparison.
Again, the non-dominated solution set from the random
search will be equivalent to the non-dominated solution set
in the initial population of the genetic algorithm. For
simplicity, the same initial population is used in both the
genetic algorithm with a weighted-sum approach and the
MOGA for comparison purposes. The parameter settings for

the hill-climbing and random search methods are
summarised in Table 4.

Parameter Value
Hill-Climbing Algorithm
   Initial search step size (Nm) 4.0
   Final search step size (Nm) 0.5
Random Search
   Number of initial random solutions 30
Table 4: Parameter settings for hill-climbing and random search

               methods

5 Simulation Results

Two case studies are investigated in this paper. The aim of
the first case study is to find a set of torque limits
combinations which leads to trajectories with the sum of the
mean absolute tracking error ≤ 0.10472 radians (2 degrees
per joint) and the trajectory time ≤ 0.27 seconds. The aim of
the second case study is to find a set of torque limits
combinations which leads to trajectories with the sum of the
mean absolute tracking error ≤ 0.05236 radians (1 degree
per joint) and the trajectory time ≤ 0.30 seconds. The
purpose of the first case study is to find solutions that
concentrate more on optimising the trajectory time while the
second case study emphasises on the tracking error
optimisation. The simulation results for these two cases are
summarised in Tables 5-12. Note that more than one
combination of torque limits can result in the same time-
optimal trajectory.

6 Discussions

Inspection of the results from both case studies reveals that
the weighted-sum solution found by the hill-climbing
method is the best solution in the first case study and the
worst solution in the second case study. In contrast, the
genetic algorithm with a weighted-sum approach emerges as
a more effective method where it is capable of locating the
best weighted-sum solutions in both case studies. This
highlights the problem associated with the nature of the hill-
climbing algorithm. In the hill-climbing method, the search
always starts from one guessed solution. In order for the hill-
climbing method to find the globally optimal solution, the
globally optimal solution has to be reachable from the initial
solution. This means that the search path selected by the
search algorithm must not lead to locally optimal solutions.
This makes the selection of the initial solution a critical
factor to the possibility of a successful search. Along the
same lines of reasoning, the reason for the genetic algorithm
with a weighted-sum approach being a more effective
method for finding the best solution lies on the use of its
parallel search mechanism. In the genetic algorithm, the
search is initialised by a number of guessed solutions, this
makes the selection of the initial solutions become less
critical.



Decision Variables Objective Val.
T1 T2 T3 Error t

25.5 39.0 10.5 0.06931 0.23
24.0 34.0 12.0 0.05848 0.24
22.0 36.5 10.5 0.04251 0.25
20.5 30.5   9.0 0.04158 0.26
19.0 39.0 12.0 0.03659 0.27

Table 5: Pareto optimal solutions -
                    random search (case 1)

Decision Variables Objective Val.
T1 T2 T3 Error t

27.5 40.0 18.5 0.08595 0.22
26.0 40.0 18.5 0.06129 0.23
23.5 37.5 20.0 0.05302 0.24
22.0 36.5 11.0 0.04251 0.25
20.0 31.5 11.0 0.03674 0.26
18.5 33.0 16.0 0.03044 0.27

Table 6: Pareto optimal solutions -
                    WSGA (case 1)

Decision Variables Objective Val.
T1 T2 T3 Error t

29.0 40.0 11.0 0.08581 0.22
26.0 38.0 14.5 0.06376 0.23
24.0 38.5 19.0 0.05264 0.24
22.0 36.5 11.0 0.04251 0.25
20.0 38.0 16.0 0.03465 0.26
20.0 38.0 17.5 0.03465 0.26
18.5 34.0   9.5 0.03038 0.27

Table 7: Pareto optimal solutions -
                    MOGA (case 1)

Approach Pareto Front Best Individual
Number of Distinct Decision Variable Objective Value Weighted-Sum

Solutions T1 T2 T3 Error t Objective Value
Hill-Climbing - 26.0 40.0 20.0 0.06129 0.23 0.29129
Random Search 5 22.0 36.5 10.5 0.04251 0.25 0.29251
WSGA 6 26.0 40.0 18.5 0.06129 0.23 0.29129
MOGA 6 22.0 36.5 11.0 0.04251 0.25 0.29251

Table 8: Summary of results from the four approaches - weight on the mean absolute tracking error objective = 1.0 and weight on the
                  trajectory time objective = 1.0 (case 1)

Decision Variables Objective Val.
T1 T2 T3 Error t

22.0 36.5 10.5 0.04251 0.25
20.5 30.5   9.0 0.04158 0.26
19.0 39.0 12.0 0.03659 0.27
17.5 27.5 13.5 0.02814 0.28
15.0 30.5   8.5 0.01976 0.30
15.0 34.0 14.0 0.01976 0.30
15.0 39.0 15.5 0.01976 0.30

Table 9: Pareto optimal solutions -
                    random search (case 2)

Decision Variables Objective Val.
T1 T2 T3 Error t

22.0 38.5   5.5 0.04465 0.25
18.5 36.0 12.5 0.03038 0.27
16.0 35.5   7.0 0.02246 0.29
16.0 39.0 11.5 0.02246 0.29
15.0 27.0 19.5 0.01970 0.30

Table 10: Pareto optimal solutions -
                     WSGA (case 2)

Decision Variables Objective Val.
T1 T2 T3 Error t

22.0 38.0 18.0 0.04248 0.25
22.0 38.5 17.5 0.04248 0.25
20.0 36.5 16.0 0.03465 0.26
20.0 38.0 17.0 0.03465 0.26
20.0 38.0 17.5 0.03465 0.26
18.5 32.5   9.0 0.03056 0.27
17.5 27.5   5.0 0.02814 0.28
16.0 35.0 16.0 0.02246 0.29
16.0 39.0   7.0 0.02246 0.29
15.0 28.5 18.5 0.01971 0.30
15.0 28.5 19.0 0.01971 0.30

Table 11: Pareto optimal solutions -
                     MOGA (case 2)

Approach Pareto Front Best Individual
Number of Distinct Decision Variable Objective Value Weighted-Sum

Solutions T1 T2 T3 Error t Objective Value
Hill-Climbing - 15.0 40.0 20.0 0.01976 0.30 0.2276
Random Search 5 15.0 30.5   8.5 0.01976 0.30 0.2276
WSGA 4 15.0 27.0 19.5 0.01970 0.30 0.2270
MOGA 6 15.0 28.5 18.5 0.01971 0.30 0.2271
Table 12: Summary of results from the four approaches - weight on the mean absolute tracking error objective = 10.0 and weight on the

                  trajectory time objective = 0.1 (case 2)

In the above tables, T1, T2 and T3 are the magnitudes of the torque limits (Nm) on joints 1, 2 and 3, respectively. The heading
“Error” represents the sum of the mean absolute tracking error (rad) over three joints, calculated over the trajectory and t
denotes the trajectory time (sec).



In other words, during the search, the possibility that some
individuals in the population of the genetic algorithm to
escape the attraction of local optimums is higher than that of
a single solution in the hill-climbing method.

Overall, it can be seen that the MOGA has emerged as
the most effective method in finding the Pareto front for this
problem. This conclusion is supported by both view points
on the variety of solutions found and the number of found
solutions which cannot be dominated by solutions obtained
from the other techniques. Another important point, which
can be observed from both case studies, is that the solutions
found by the random search method cannot dominate any
solutions found by the MOGA. Since the solutions found by
the random search method in this case are the non-
dominated solutions of the initial population of the genetic
algorithm, this indicates that successful evolution has been
accomplished by the MOGA.

7 Conclusions

In this paper, the robotic application which is chosen to
illustrate the effectiveness in combining neural networks and
genetic algorithms at the application task level is a time-
optimal control application. The task of tracking a straight
line trajectory in Cartesian space is given to the robot in this
case. The time-optimal joint trajectory time history is
calculated by using the time-optimal control algorithm as
described by Shiller and Lu (1992). Time-optimality is
achieved by executing a bang-bang control, where the
control torque signal in one joint is saturated and the control
torque signal on other joints is adjusted accordingly such
that the torque limits on each actuator are not violated.
However, the trajectory time history obtained from the time-
optimal motion control algorithm is calculated by using only
the open-loop dynamics of the robot model. Previously, in
order for this trajectory time history to be used as input to
the position control loop, the time history had to be modified
using trajectory pre-shaping scheme (Shiller et al., 1996). In
this paper, the use of neural networks as assistants to PID
controllers has been proven to be an effective method in
compensating for the closed-loop dynamics and modelling
errors. This results in being able to use the trajectory time
history as the input to the control loop directly without the
use of complicate pre-shaping, which has not been possible
before in earlier literature.

Subsequently, genetic algorithms have been used to solve
a multi-objective optimisation involving the selection of
torque limits subject to time-optimality and tracking error
constraints. Two approaches of multi-objective optimisation
using a genetic algorithm have been used in this application:
the genetic algorithm with a weighted-sum approach and the
MOGA. The simulation results suggest that due to the local
search nature of the genetic algorithm with a weighted-sum
approach, it can produce a better weighted-sum individual
than the MOGA. However, the MOGA has been proven to
be a method which can produce a better non-dominated

solution set. This confirms the nature of the MOGA of being
a global search technique.
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