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Abstract


The mold region of the continuous caster, the most widely used casting device used by the steel industry has been


modeled through a combination of a steady-state heat transfer approach and a recently developed pareto-converging


genetic algorithm (PCGA). Due to highly non-linear nature of the objective functions, as well as the constraints, lo-


cating the pareto-front was quite a challenging job in this case. Also, from a physical consideration, the pareto-front


needed to be zoomed into the region of equality of two objective functions. PCGA could successfully locate the optima


after an extensive search, and the predictions are well in accord with the data provided by a number of industrial


casters. Ó 2001 Published by Elsevier Science Inc. All rights reserved.


1. Introduction


Continuous casting technology is a major breakthrough in the history of steelmaking and is
immensely in¯uencing the steelmaking practice worldwide. In fact, it has already rendered tra-
ditional ingot casting virtually redundant in a number of countries where the major steel com-
panies are basically moving towards hundred percent production through the continuous casting
route. The basic features of a continuous caster are shown in Fig. 1. The molten steel from a
tundish is poured into the caster where the primary solidi®cation occurs in a water-cooled mold.
The metal subsequently passes through a spray-cooling region where the secondary cooling
occurs.


Application of biologically inspired genetic algorithms (GA) [1,2] to continuous casting has just
begun. Earlier it was demonstrated by Chakraborti et al. [3,4] how the casting velocity can be
maximized in terms of various parameters in the mold region. GA techniques related to con-
tinuous casting have recently been implemented in a steel plant in Slovenia by Filipic and Sarler
[5] which clearly indicates the emerging importance of GA applications in this area. The present
paper reports an extension of our earlier work [4] using a pareto-optimal formulation [6] and a
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pareto-converging genetic algorithm (PCGA) recently developed by Kumar [7]. Further details
are provided below.


2. Scope of the present work


The present study focuses on the mold region, the very heart of the caster, where proper control
of the solidi®cation process goes a long way towards the ®nal quality of the cast product. Despite
years of both theoretical and experimental research [8,9] the process parameters pertinent to this
region of the caster have really not been optimized, at least in the mathematical sense of the word.
This is re¯ected in the wide variation in the operational parameters used by the industrial casters
surveyed by Samarasekera et al. [10], many of which are attempting to cast billets of similar cross
sections under signi®cantly di�erent conditions. In fact, highly empirical practices abound in the
industrial scene. Placing of a coin by the mold side to detect the mold oscillation, as described by
Samarasekera et al. [10], is perhaps an extreme example in this context. In addition, there are
plenty of other methods of parameter adjustments which may not be so much outrageously
unscienti®c, but nonetheless equally ad hoc in nature. In this scenario, there remains an ample
scope of conducting a mathematical optimization of the continuous casting mold operation,
which till to date have been performed only to a limited extent. A probable reason for this is
perhaps a highly non-linear and often multi-modal nature of the problem, rendering numerical
computation immensely di�cult, particularly by the derivative based traditional methods.


Fig. 1. A schematic digram of the continuous casting process.
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In our earlier work [4], an attempt was made to conduct an optimization study of the mold
region using a number of computational techniques, among which genetic algorithms had turned
out to be the most promising. Since any industrial caster would like to cast as fast as possible
maintaining an acceptable limit for the maximum shell thickness, the basic philosophy behind our
optimization scheme was to maximize the casting velocity subject to various system constraints.
In order to achieve that a number of system variables were identi®ed, and attempts were made to
express the casting velocity in terms of these variables, utilizing a number of physical criteria ± a
steady state energy balance for example. It was however, not possible to incorporate all the
variables in a single equation. More than one objective functions were therefore necessary to
describe the system, and in our previous work [4] those were handled according to the Method of
Objective Weighing, where in order to maximize or minimize fi�v� for i � 1; 2; . . . ;N (v being an
M dimensional, vector containing M design variables) one optimizes the overall objective function
U �PN


i�1 ~wifi�v�, such that 06 ~wi6 1 and
PN


i�1 ~wi � 1.
Although convenient to use and also known as a classical approach towards handling the multi-


objective problems, the Method of Objective Weighing is often unable to o�er justice to them. In
many real world problems the weightage factor -i is di�cult to assign and various objective
functions are not necessarily correlated in a linear fashion, as implicitly assumed in this method. A
much better approach would be resorting to a pareto-optimal formulation where each objective
function is computed separately and various sets of solutions are compared with each other to
identify a series of feasible solutions, constituting a so-called pareto-front, where no member is
absolutely superior over any other. This is ensured by implementing a condition of non-domi-
nance; stripped of the mathematical jargon which essentially means that no solution is accepted in
the pareto set which is either comparable or better than its other members, in terms of all the
objective functions, and is better in terms of at least one. A pareto-optimal formulation provides
an engineer with an ample choice of the decision variables and has been tested in hosts of
problems from various disciplines [11±13]. However, to the best of our knowledge, no pareto-
optimal studies have been reported for the continuous casting process. This paper perhaps is the
maiden attempt to introduce this powerful design tool into continuous casting research. The
version of genetic algorithm (i.e. PCGA) that has been used to achieve this is also quite new and
has recently been proposed by one of the present authors [7]. Implementation of the pareto
formulation in the present context is far from an easy job. In addition of the inherent non-lin-
earity of the problem, handling more than one complicated search space simultaneously appeared
to be quite a challenging task for the genetic algorithm employed by us. Applying a too com-
plicated system model at this stage would have simply resulted in a computational deadlock,
serving no rational purpose at all. After a judicious deliberation what we have employed here is a
relatively simple but nonetheless e�cient model of the casting process. Although we signi®cantly
altered and ®ne tuned it to ®t our requirements, the fundamentals of this model have been
available in the metallurgical literature for quite some time [14]. Surprisingly, however, it re-
mained grossly unutilized as far as design oriented research is concerned in the continuous casting
area. This study therefore is an attempt to introduce a newer approach both in terms of modeling
and computing methodology. Further details are provided below.


3. The pareto-optimal formulation


As indicated earlier, we will restrict our attention to the mold region only, where the primary
cooling of the steel takes place in a water cooled copper mold supported by steel baking plates [9].
Following Brimacombe and Samarasekera [8] we will assume the mold con®guration shown in
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Fig. 2. Following now a procedure suggested by Geiger and Poirier [14] one can perform a series
of steady state heat balance for the present con®guration to obtain an expression for the ®rst
objective function, which is essentially casting velocity u expressed as:


u � 2k0 �h� d1� � TM ÿ To� �L
q0H 0f a 2k0M �M2 �h� d1� �� � ; �1�


where k0 is the thermal conductivity of the metal, �h is an average heat transfer coe�cient for the
mold±metal interface, d1 is a correction factor, TM and To denote temperatures at the solid±liquid
interface and the inner surface of the mold wall respectively, L is the mold length, M is the so-
lidi®ed mold thickness, q0 is the density of the steel and the lumped parameter a is de®ned as:


a � 1


2
�


����������������������������������
1


4
� C0P TM ÿ To� �


3 1ÿ e� �H 0f� �


s
: �2�


The latent heat of fusion was adjusted through a correction factor e in order to account for the
heat retention in the mushy zone that forms between the liquid and solid (Fig. 2) and was de®ned
as:


H 0f � 1� ÿ e� Hf� � CPL TP� ÿ TM��; �3�
where Hf is the uncorrected latent of fusion, CPL is the speci®c heat of liquid and TP is the pouring
temperature of the liquid metal.


In this study, Eq. (1) was taken as a ®rst objective function which was maximized subject to the
following constraints arising out of a number of physical considerations. By equating the average
mold heat-¯ux expression provided by Lait et al. [15] with the heat-¯ux at the mold±metal in-
terface, the ®rst physical constraint was formulated as


Fig. 2. A schematic diagram of the con®guration of the mold region.
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2675:2ÿ 334:4


���
L
u


r
ÿ �h� � d1� TS� ÿ To� � 0; �4�


where the time was scaled as L=u and the original constants were converted to SI units. The mold-
gap of thickness Dg is generally ®lled with mold powder of thermal conductivity km a second
equality constraint was therefore worked out through a simple ¯ux continuity in the gap region,
such that:


km � d2


Dg
ÿ �h� � d1� � 0: �5�


Due to a signi®cant uncertainty in the reported values of km, a correction factor d2 was added to it.
Finally, the extent of heat removal from the mold is limited by the extent of heat removal through
forced convection in the cooling water channel. Conducting a heat balance at the cooling water
side a third constraint was therefore formulated as


hwk To�� ÿ TWout� qwCPW/ TWout�f ÿ TWin� ÿ bg k� � Dtmoldhw�� � 0; �6�
where hw is the heat transfer coe�cient at the cooling water side, k the thermal conductivity of
copper mold, qw and CPW are the density and speci®c heat of the cooling water, while TWout and
TWin are its inlet and outlet temperatures, respectively. The cooling water velocity is denoted by /,
b is a water heat loss adjustment term and Dtmold is the thickness of the mold.


In the ®nal formulation, the equality constraints were combined to yield


Iÿ C hwk TS�� ÿ Twout� ÿ qwCPW/ TWout�f ÿ TWin� ÿ bg k� � Dtmoldhw�� � 0; �7�
where


I � 2675:2ÿ 334:4


���
L
u


r
�8�


and


C � km � d2� �
Dghwk


: �9�


Further details of these equations are provided elsewhere [16].
The continuous casting mold however oscillates with a sinusoidal motion, which has not been


accounted for in the equations given above. In terms of mold oscillation the casting velocity can
be expressed as [17]:


u � pfS cos pftN� �; �10�
where tN denotes negative-strip time, the time period in the mold oscillation cycle in which the
downward velocity of the mold exceeds that of the strand, and f and S are the frequency of
oscillation and its corresponding stroke length, respectively.


Since the two expressions for the casting velocity are composed of variables independent of
each other, one needs to maximize them simultaneously which leads to a pareto-optimal problem.
Fixing of the casting velocity based upon just one of them would lead a false operating guideline.
Furthermore, the velocities predicted by both the objective functions should match reasonably
which is often di�cult to attain computationally. Considering the fact that the objective functions
belong to two di�erent search spaces, and most of the parameters involved in them, in reality, can
vary within prescribed limits, the optimum velocity is not possible to calculate without resorting
to a robust optimizing technique. In fact, during our earlier work [4] it was found that the
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gradient-based Steepest Descent method failed miserably to optimize such objective functions
when all the variables were taken into account, while genetic algorithms were able to produce
acceptable results. It also needs to be pointed out that both the objective functions (i.e. the ex-
pressions of casting velocity) here are highly non-linear in nature. In addition, a non-linear reverse
dependence of the system constraint on the casting velocity makes this problem additionally
complicated more than many other similar non-linear systems. 1 Here the ®nal equality constraint
(Eq. (3)) was handled using a parabolic-penalty parameter approach [18], which in the present
scenario was not very easy to implement. Furthermore, since both the objective functions provide
the value of the same variable u, here the pareto-front needs to be zoomed into the range where
the predicted values from both the equations are practically equal. The two expressions however
belong to two unrelated and often con¯icting search spaces, with entirely di�erent ®tness land-
scapes, as it is known in the GA literature [1,2]. This zooming in operation was therefore a highly
cumbersome task, which was ultimately quite successfully handled by our algorithm. The details
of our PCGA technique are provided next.


4. Pareto-converging genetic algorithm


The PCGA has been recently proposed by Kumar [7] for the optimization of multi-objective
functions. This can be considered to be an extension of the earlier work of Fonseca and Fleming
[19] and also of Srinivas and Deb [20]. The basic methodology of PCGA is described below.


PCGA uses the basic operators of Simple Genetic Algorithm, as detailed in our earlier work
[16]. However, instead of a single set of population traditionally used in SGA, here more than one
set of randomly initiated populations is used. Each of them is known as a tribe in the PCGA
terminology. The genetic operations like crossover, mutation etc. are carried out within the in-
dividual tribes, and intermixing of tribes is allowed only for convergence checking. Like the
technique suggested by Srinivas and Deb [20] PCGA also resorts to non-dominated sorting of the
population set. For a typical multi-objective problem:


Minimize Objective fm�~v�; m � 1; 2; . . . ;M


Subject to Constraint gk�~v�6 ck; k � 1; 2; . . . ;M ;


where~v � �xn: n � 1; 2; . . . ;N� is a N-tuple vector of variables; and ~U � �fm: m � 1; 2; . . . ;M� is a
N-tuple vector of objectives.


If the objective vector ~Ui is partially less than another objective vector ~Uj, �~Ui � ~Uj� then ~Ui is
taken to be dominating over ~Uj. Following Goldberg [1] the condition for being partially less is
taken as:


~Ui � ~Uj


� �
() 8m� � fmi


ÿ
6 fmj


� ^ 9m� � fmi


ÿ
< fmj


�
: �11�


The locus of the non-dominated solutions constitutes the pareto-front.
In PCGA all the individuals are ranked based upon their non-dominance. The procedure of


ranking is already elaborated in the GA literature [12]. A simple linear function is utilized to map
all the N individuals of a certain tribe onto some dummy ®tness values, based upon which a
simple roulette wheel selection [18] was conducted for picking up the pair of mates for crossover
and mutation. After crossing over and mutating those mates, the newly produced o�springs are


1 Since u is also a parameter present in the constraint expression shown in Eq. (7), here the constraint is non-linearly dependent on


the velocity as well, not just the other way round. Optimizing u � f �u� for a non-linear function, as needed in this case, is quite a


challenging job from a mathematical point of view.
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sent back to the tribe, temporarily increasing its size to N � 2. The two children produced this way
could be of better rank than their parents; alternately there could be the so-called lethal repro-
ductions as well, giving rise to o�springs of inferior ranks. To resort back to the original size, the
population is then ranked again, and the two individuals with lowest ranking are discarded. When
N=2 pair such pair-wise reproductions are completed, the PCGA is said to ®nish an epoch, in
contrast to a generation of SGA, where the o�springs are not pitted against the parent popula-
tion. 2


Unlike Srinivas and Deb [20] no sharing was attempted here. Instead, the above-mentioned
process was repeated till convergence. After any epoch t, a rank ratio R for any particular rank
was calculated as:


R � pop�t�
pop�t� � pop�t ÿ 1� ; �12�


where pop�t� denotes the number of individuals belonging to that rank at epoch t and pop�t ÿ 1�
is the corresponding value for the previous epoch. A histogram was calculated by plotting R
values against the corresponding ranks. Initially, such histograms are plotted for each tribe. Once
the histograms tend towards R � 0:5, the population of the tribe consists mostly of non-domi-
nating individuals. The rank ratio is also computed across the tribe boundary in order to check
for convergence, and the pareto-front is ®nally obtained when this inter-tribe histogram also tends
towards 0.5.


5. Results and discussion


Here we have developed a PCGA code in C, and used it to calculate the pareto-front consisting
of the maximized values of the objective functions shown in Eqs. (1) and (10), subject to the
constraint expressed by Eq. (7). All the calculations were performed in a local area network of
Pentium machines under a Linux environment.


Due to a high non-linearity associated with the objective functions, a judicious adjustment of
the crossover probability was required. Even after that it was not easy to zoom in the pareto-front
to the region of equality of both the objective functions. The number of lethals has also gone up
linearly with the number of epochs as shown in Fig. 3. In addition, as shown in Fig. 4, both the
objective functions tend to spend a considerable number of epochs in the practically non-feasible
negative region of the velocity, from which they took a considerable amount of time to recover.
Only after running the code for about 5500 epochs the solution converged with the maximized
®rst objective function �u1� as 0.0976 m/s, closely equal to the second objective function �u2� as
0.0991 m/s. In general, the second objective function used by us (Eq. (10)) tends to predict casting
velocities which are a bit on the higher side. However, at the present state of knowledge no better
governing equation is available for the mold oscillation, and the expression used is quite ubiq-
uitous in the continuous casting literature [8]. The pareto solution obtained in this study should be
used to determine the upper limit of casting velocity, and considering a 20% con®dence limit for
such a totally theoretical prediction, the upper limit of billet casting velocity �uu� can perhaps be
®xed at 0.07 m/s. The major billet casters in North America are performing in the casting velocity
range 0.010±0.0633 m/s [10], with only a few operating at the upper range. Based upon the present


2 An epoch in the PCGA strategy can be roughly taken as equivalent to an iteration in the derivative-based traditional methods. In


any Evolutionary Computing scheme, like the one adopted here, a large number of possible solutions are however, present at any epoch


or generation. This is in contrast to a single solution that needs to be upgraded during an iteration in most conventional methods.
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pareto-optimal solution it appears that with ®ne tuning of various operational parameters, per-
haps still there is some more scope for increasing the casting speed. Also, for a condition similar to
what is considered here Geiger and Poirier [14] have theoretically estimated the casting velocity as
0.0508 m/s which is in general agreement with the predictions made here. It is perhaps important
to mention at this point that the optimized results would be further accurate if the available heat
transfer data were more reliable so that the usage of the correction factors like d1 and d2 could be
avoided. However, at the current level of experimental data availability that appears to be quite
impossible. Enough precautions however were taken here so that these correction factors do not
lead the solution to a false convergence. The allowable upper and lower limits of these correction
factors were kept small, reasonably within the limits of the estimated experimental errors, so that
they could only ®ne tune the optimized result, instead of dominating it.


The optimized values of all the parameters are shown in Table 1. It should be realized at this
point that GAs map any variable X from real space to binary utilizing its lower and upper bounds
X L and X U, which need to be speci®ed by the user. 3 Thus, during this study, although every
parameter shown in Table 1 as taken as a variable, the search for each of them was very much
restricted within speci®ed variable bounds provided on the basis of the current industrial practice.
This feature of GAs act as a natural safeguard against any spurious solutions which are likely to
appear in other techniques where variable bounds need not be speci®ed. For example, it is im-
possible for a GA-based solution to converge to a shell thickness zero with an in®nite casting
speed, as any rationally prescribed lower limit on on shell thickness will simply prevent it from


3 A simple way to achieve that would be a linear mapping, where for a ` bit encoding, S the decoded value of the string is related to


the variable X as: X � X L � S�X U ÿ X L�=�2` ÿ 1�.


Fig. 3. Linear increase of lethal reproductions with number of epochs.
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becoming vanishingly small. In many other techniques, Simulated Annealing for example, such
built in safeguards are non-existing. It was shown in our earlier work [4] that because of this
reason Simulated Annealing often predicted practically unachievable casting speeds while genetic
algorithms closely followed the industrial trends.


The results obtained by the present optimization scheme seems to be quite reasonable. The
present study has indicated a negative strip time of 0.625 s, an oscillation frequency of 3.43 Hz,
and a stroke length of 11:76� 10ÿ3 m, which are perfectly reasonable considering the data
available from twenty four North American billet casters [10].


The accuracy with which PCGA is able to predict the casting conditions is therefore quite
promising and this premier attempt of applying a pareto-optimal formulation to the continuous


Fig. 4. Typical paths towards convergence. The objective function values are in m/s: (a) for the ®rst objective function;


(b) for the second objective function.
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casting process seems worthy of further exploration. To any researcher in this area PCGA can
therefore be recommended as a very powerful modeling tool. It needs to be highlighted at this
stage that although no numerical optimization scheme can really guarantee converging to a global
optimum, the likelihood of ®nding it is much higher in a GA or, for that matter, in a PCGA type
of computing environment. The reason simply is that the GAs work on the basis of a population,
which in plain words means that at any point of time, instead of a single guess value or its lone
update, we have a large number of possible solutions present in the GA-based techniques, cov-
ering the entire search space. PCGA, in addition, uses a multi-population approach (the tribes in
its terminology) further adding to the population diversity. Thus GA-based solutions are designed
to be independent of initial guess values, which are prescribed fully randomly in any good GA
code developed to date. The traditional way of altering the initial guess and checking the stability
of solution is thus redundant in GAs, where it is usually done by slightly increasing the mutation
probability once the solution appears to be stable. If the optimum reached is not global, then one
should be able to mutate out of it, thus preventing any premature convergence. All these pre-
cautions were taken during this study and we found PCGA to be remarkably steady.


During this study, attention was focused only on the mold region of the caster, and our current
e�orts are directed towards a more complete analysis of the process, involving its other portions
like tundish, spray-cooling region etc. A complete optimization-based model for the continuous
casting however warrants many more years of continued research, and in this process the evo-
lutionary computing techniques are likely to contribute in a very big way. Some vital ground work
has been done in this study in continuation of our earlier e�orts in this area [3,4], which hopefully,
will stimulate future GA-based optimization studies of continuous casting in a very near future.
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