Differential evolution based tuning of fuzzy automatic
train operation for mass rapid transit system
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Abstract: Train performance of mass rapid transit systems can be improved with the use of fuzzy
controllers in automatic train operation (ATO) systems. The tuning of these fuzzy controllers is
presented using the algorithm of differential evolution (DE). The basic DE algorithm is modified to
optimise a multiobjective function comprising punctuality, riding comfort and energy usage. Using
this algorithm, the fuzzy ATO controller is tuned for each interstation train run. In operation, the
controller adjusts each train’s control according to the current operating conditions. A fuzzy ATO
controller model was previously developed by the authors and is used to demonstrate the effectiveness

of the tuning scheme.

List of major symbols

NP = population
F = amplification probability
CR = crossover probability

D = dimension of population in the algorithm of differ-
ential evolution

MG = maximum permitted generation number
P = punctuality

E = energy usage

i = traction fluctuation

TS = safety performance indices

P = punctuality performance indices

CT = riding comfort performance indices

AC = energy saving performance indices

1 Introduction

Automated transit systems are designed to provide the saf-
est and most cost-effective railway service. Within these sys-
tems, automatic train operation (ATO) plays a very
important role. Under normal situations, the ATO control-
ler schedules train movement from departure to the next
scheduled station-stop with interstation parameters col-
lected at each station. At the same time, the conventional
ATO controller also manoeuvres each train using data
received from the automatic train supervision system
(ATS), which monitors and co-ordinates the movement of
all trains operating at any time. Usually the ATO control-
ler is not equipped with on-schedule controller. This means
that the ATS does not have the capability to make self-
adjustment if there are deviations from the normal sched-
ule. For example, during peak hours the dwell time will be
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longer because of increased passenger flows. Therefore, the
conventional ATO controller alone might not guarantee
punctual schedule and ATS might require human interven-
tion. Trains might have to be under manual control.

In view of the above, many studies were carried out to
find better control schemes [1-4]. Fuzzy ATO control is
one of the more successful methods. Yasunobu and Miya-
moto [1] made a noteworthy contribution. They designed a
fuzzy ATO controller, which can automatically change the
train operation status to offset these unforeseen deviations
caused by various factors. It actually controls each train’s
departure, speed regulation, and station-stop time at target
points and at each station. It was implemented in the city
of Sendai in Japan in 1987. Chang and Sim [2] also applied
fuzzy logic to the ATO controller to provide multiobjective
control for satisfying various railway operational require-
ments. Both these two fuzzy ATO controllers can perform
as skilfully as human experts do, and are superior to a con-
ventional PID automatic train operation controller in terms
of stopping precision, energy usage, riding comfort and
running time as described in [1, 2] separately.

Membership functions play an important role in ensuring
the control precision and robustness of the fuzzy ATO con-
troller. The initial design of membership functions can be
accomplished heuristically. Railway control systems are,
however, very complicated and usually affected by many
factors such as interstation distance, gradient profiles (tun-
nel, upward slope, and downhill slope) and different sched-
ules. These have made it quite difficult to tune the fuzzy
membership functions manually.

To solve this problem, a new method is developed to
optimally tune the fuzzy membership functions as in [2]. A
modified differential evolution (DE) algorithm is adopted
to accomplish this task. The DE algorithm is conceptually
simple and easy to use, and has good convergence [5, 6].
These features have made it an ideal algorithm for optimis-
ing functions with continuous variables. In addition, with
the use of float-point strings, the dynamic range of the
DE’s search space is greatly increased as compared with the
genetic algorithms. Higher resolution and wider range have
been achieved. To obtain faster convergence and better
results, the basic algorithm is modified to make it more
robust and suitable for tuning the fuzzy ATO controller.

IEE Proc.-Electr. Power Appl., Vol. 147, No. 3, May 2000



2  Fuzzy ATO controller and tuning requirements

This Section reviews the fuzzy ATO controller [2], which
prescribes braking, coasting, and powering of the train
based on evaluation of safety, riding comfort, punctuality
and energy usage. 1t decides, for each moving train at each
time instant, the need and the effort of powering F or brak-
ing B, or whether coasting should be initiated to optimise
the overall performance.

Fig. 1 shows the layout of the fuzzy ATO controller as
proposed in Fig. 2. There are five basic inputs needed: train
kinetics, distance of the designated station from the train,
ATP codes, scheduled time and track gradient profile.
Fuzzy sets and performance indices are based on multiple
objectives as predefined in the form of rules to ensure cor-
rect decisions. For each choice of command status (motor-
ing, coasting, brake-to-target-speed, brake-to-stop), a group
of rules are fired for determining the strength for the selec-
tion of the status. The command that has the largest
weighting after defuzzification will be chosen as the next
train command status to be taken.
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Fig.1 Layout of fuzzy ATO controller
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Fig.2  Membership function of safety performance indices

The major fuzzy performance indices are classified as fol-
lows:
(i) safety performance indices: TS (TS_safe and TS danger).
(i) punctuality performance indices: P (P_early and P_late).
(iii) energy saving performance indices: AC (AC short and
ES long).
(iv) riding comfort performance indices: CT (CT _short and
RC long).

2.1 Assumption

The following assumptions are made in the design of the
proposed ATO controller:

(i) Factors which affect the kinematics of the train such as
the mass, acceleration, velocity and distance, can be esti-
mated or measured with onboard sensors.

(ii) The train voltage profile is read from a database, which
is established through previous electrical network analysis
[3]. The train voltage profile can be used for adjusting each
train’s acceleration and braking rates during optimisation.

(iil) Fixed block signalling schemes are adopted.
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2.2 Fuzzy ATO controller design based on fixed
block signalling scheme

The fixed block-signalling scheme has fixed-length ATP
blocks connected along the entire track. When the train
enters an ATP block, the ATP code is transmitted to the
train, which decodes for the desired target speed and the
maximum safe speed. Subsequent ATP blocks are set to
prevent the trailing trains from encroaching upon the head-
way or from exceeding the civil speed limit. The following
requirements are considered for designing the fuzzy ATO
controller [2]:

(i) train and passenger safety

(il) punctuality in meeting schedule
(iii) energy conservation

(iv) passenger comfort

The following fuzzy membership functions provide a
means of measuring and maintaining performance of the
fuzzy ATO controller. All the constants used here are cho-
sen, based on extensive sensitivity simulations of fuzzy
memberships.

2.3 Defining fuzzy sets for ATO controller
The four main fuzzy sets are defined as follows:

2.3.1 Safety performance indices, TS: One method
for ensuring train safety is to run the train below the target
speed as specified by the automatic train protection device
(ATP). The variable for measuring safety is defined as fol-
lows:

Vsafe = v — TargetSpeed 1)

where v is the current velocity of the train. TargetSpeed is
the desired target speed specified by the ATP. It forms a
well-defined boundary to the ‘space’ within which the ATO
controller is free to operate. It accounts for the ATO and
ATP system tolerances. In this implementation, the Target-
Speed without civil speed restriction is chosen to be
80km/h. The fuzzy performance indices are defined as fol-
lows:

Safe (I'S.S)
“’TS,S('vsufe)
1 Vaafe<—2KPH
= < int#(~2KPM,1,0,0,v00p6) —~2KPH<vease<0
0 Vsafe >0
Danger (T'S_D)
prs_p(Vsafe)
0 Veafe<—2KPH
= int 7(—2KPM,0,0,1,v407e) —2KPH<vqa5e<0
1 Usafe>0
(2)

where KPH is the multiplication constant which converts
km/h to m/s. As in Fig. 2, Intr(x;, ¥y, X3, ¥3, X) is the inter-
polating function that interpolates the value of u for x
between (x;, y;) and (x3, y3) as follows:

X — T
—y1)+ 3
T3 — 7, (ys—y1) +y1 (3)

int7’(3317y1,’x37‘y3a33) =

which means that, when the train runs under 78kmvh (nor-
mal case), it is free to operate without any limitation. When
its speed exceeds the 78kmv/h, the rule will try to pull back
the train.
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2.3.2 Punctuality performance indices, P: One of
the most important requirements in the controller design is
meeting the arrival time of the train. The variable for meas-
uring punctuality is defined as follows:

test = t1 + to — available time to schedule (4)

where ¢, is the estimated coasting time according to current
velocity and 1, is the estimated braking time according to
current velocity. £, + #, is the estimated time needed before
reaching the destination, and ‘available time to schedule’
represents the time left on the schedule. Their difference 7,
is the indication of train punctuality. The fuzzy perform-
ance indices are defined as follows:

early (P_E)
1 tour<—20
wp_E(test) = { int7(—20,1,10,0,tc0;)  —20<tear <10
0 teas>10
late (P_L)
0 Lews <—20
wp_r(test) = Q intr(=20,0,10,1,tcss)  —20<te,e <10
1 tost>10
5)

2.3.3 Energy saving performance indices, AC:
One method for conserving energy is to encourage coast-
ing. To achieve this goal, an estimate is made on the maxi-
mum time ¢, allowed for coasting before the train must
apply braking to stop at the destination. Defining the
energy saving performance index 4C, which checks on the
available coasting time as follows:

short (AC_S)

1 1 <2
pac_s(t) =< intr(2,1,6,0,t1) 2<t1 <6
0 t1 > 6
long (AC_L)
0 ty <2
vac_p(ty) =< intr(2,0,6,1,¢4;) 2<t1 <6
1 t1>6

(6)

2.3.4 Passenger comfort performance indices,
CT: Passenger comfort may be improved by reducing the
number of transitions of train command status during the
journey. The status changes frequently when a train is trail-
ing closely behind another train during peak periods. This
paper adopts one of the most obvious methods, which tries
to minimise the transitions by forcing the train to coast for
at least a time period before allowing it to power up.

The performance indices for passenger comfort can
therefore be based on the actual length of coasting time ..
The performance indices are defined as follows:

short (CT_S)
1 tc < 20
por_s(tc) = ¢ intr(20,1,30,0,tc) 20 < tc < 30
0 tc > 30
long (CT_L)
0 tc < 20
per_r(te) = ¢ intr(20,0,30,1,¢c) 20 < tc < 30
1 tc > 30
(7)
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3 Proposed DE based tuning of fuzzy ATO
controller

The DE algorithm is a promising candidate for minimising
real-valued and multimodal objective functions. It is con-
ceptually simple and easy to use and has good convergence.
By using float-point string, the dynamic range of the DE’s
search space is greatly increased as compared with the
genetic algorithms. Higher resolution and wider range have
been achieved. In Appendix 7.1, the basic concepts of the
DE algorithm and the most widely used variants are
reviewed.

As mentioned in Section 2.3, there are four main sets of
fuzzy membership functions in the fuzzy ATO controller,
which are used for choosing the next status command from
braking, powering, and coasting. Every set of membership
functions is determined by four parameters (X, x,, X3, X4)
as shown in the example of Fig. 2, for the safety terform-
ance indices TS (TS safe and TS danger). Three similar
sets of membership functions are used for representing the
three other performance indices. Altogether, 16 fuzzy
parameters are contained in a vector X;;, i =0, 1, 2, ..., 15.

Different fuzzy parameters will generate completely dif-
ferent train performance. These parameters can initially be
formulated by human experience. Subsequent parametric
tuning will however be an exhausting and time-consuming
task because the current operating condition is unknown
and related information is diverse. Therefore, a modified
DE algorithm is proposed for optimising X; .

3.1 Algorithmic details

To obtain faster convergence and better results, the stand-
ard algorithm is modified to make it more robust and suit-
able for tuning the fuzzy ATO controller. Simulation
results show that the train performance in terms of punctu-
ality, energy saving and riding comfort has been greatly
improved. For detail information of the algorithm, please
refer to Appendix 8.1.

3.2 Formulation of objective function

The aim of the proposed tuning algorithm is to achieve
good train performance with due regard to energy usage,
passenger riding comfort and punctuality. The multiobjec-
tive function can be represented by the following perform-
ance index (cost):

Z(P,E,J) = min | ky (T — To)? + ks <Z E(t))

t=0
+hs- (Z‘ J(t))
t=0
SE(@) =V« /i(t)

1=0 t
J(t) = M/|a(t+ 1) — a(t)|
8)

where V' is the train voltage, which is retrieved from previ-
ous electrical network analysis; and 7 is the train current,
which is calculated from the current train control status.
The value of E is positive if the train is powering, and neg-
ative if train is braking. J(¢) represents the fluctuation of
train control status, M is the train weight, which will
change slightly according to the number of passengers, a is
the train acceleration, 7" and Ty, respectively denote the
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actual arrival time and scheduled arrive time. &, k, and &3
are positive constants used for compromising among the
three objectives. They are adjusted to give different priority
on energy usage, punctuality and passenger comfort. Usu-
ally, these three objectives are in conflict with each other
and need to be collectively optimised according to prede-
fined priority. For example, the priority on achieving
energy savings should be set lower when there is require-
ment to minimise journey time during peak periods. k;
should then be increased to improve the priority of punctu-
ality accordingly.

initial parameters '
produced by DE
rule base to

- defuzzification
make decision

T i

DE algorithm to produce
new parameters

—

fuzzification

Fig.3  Scheme for fuzzy logic controller based on DE

3.3 Steps of tuning process
The structure of the proposed the DE algorithm is shown
in Fig. 3, whose main steps are as follows:

Step I: In the first generation, generate the set of parame-
ters X; ; randomly for evaluating the fuzzy ATO controller
membership functions. Provide also the initial values of F
and CR.

Step 2: Using the current parameters X, simulate the
train performance until it reaches the destination and calcu-
late the performance index as defined in eqn. 8.

Step 3: Repeat step 2 for the entire NP population.

Step 4: Generate the new parameters X;; according to
eqns. 10-13. Modify CR and F according to eqns. 14 and
15. Then revisit steps 2 and 3.

Step 5: Repeat step 4 until satisfied parameters X, are
obtained or the predetermined maximum generation is
reached.

4  Simulation results and discussion

Parameters in this modified differential evolution are cho-
sen as follows: population size NP = 100, maximum per-
mitted generations number MG = 70, initial crossover
probability CR® = 1, initial amplification probability F® =
0.3

A track in a typical MRT line between the two adjacent
stations MRB and RFP is chosen for an interstation opti-
misation to demonstrate the validity of the proposed
method. The total length is 923m and the maximum safety
speed is 80km/h. There is a civil speed limitation of 60km/h
from 370m to 490m. The gradient profile of simulated rail-
way section is given in Fig. 10. Three cases with different
time schedules are studied in the simulation. The scheduled
time in Figs. 4 and 5, 6 and 7, 8 and 9 are 100s, 90s and Os,
respectively. It is noted in Figs. 4-9 that stages 1, 2, 3 and 4
represent the running modes of motoring, coasting, braking
to target speed and braking to stop, respectively.

From Table 1 and Figs. 4-9, the train performance has
been much improved after tuning with the DE-based
tuning method. In the normal and off-peak schedules, the
proposed method not only ensures that the train reaches its
destination on time but also improves the energy and
reduces jerk factors. It is shown that there is a rapid
upward change of gradient near RFP station in the
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Table 1: Comparison of train performance under different time schedules

Schedule  Arrivetime  Jerk factor Energy factor Cost
fuzzy ATO control 100 97 7.77 x 10* 2.78 x 10* 9.50
DE-basedcontro! 100 100 6.56 x 10* 2.61x 104 6.58
fuzzy ATO control 90 87 8.30 x 10* 2.36 x 10* 9.46
DE-basedcontrol 90 90 7.45 x 10% 2.33x 10* 6.86
fuzzy ATO control 0 76 9.15 x 10* 1.78 x 10* 51.9
DE-basedcontrol 0 72 1.22 x 10* 0.69 x 10% 30.8

gradient profile, which leads to unreasonable acceleration
just before braking (Figs. 4 and 6). In Figs. 5 and 7, it is
shown, after tuning, that unreasonable acceleration is
avoided by acquiring higher initial velocity after the first
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Fig.8 Velocity profile of fuzzy controller under tight schedule
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acceleration. In the tight schedule, the train with the DE-
based control is accelerated immediately after leaving a civil
speed limit. Therefore, the train runs faster after tuning,
The average speed between the two stations in Fig. 8 is 43.7
(= 923*3.6/76) km/h, while the average speed n Fig. 9
is 46.15 (= 923*3.6/72) km/h. The time taken has been
shortened by 4s after tuning. Taking into account the short
distance between these two stations, the time saving is sig-
nificant. The energy has also been reduced by more than
50% after tuning. This is mainly due to the triggering off of
regenerative braking by the DE based fuzzy ATO control-
ler. Table 2 gives an analysis of energy component.
Assume all the regenerated energy is fully absorbed by
other train, the total cost has been reduced to only two-
thirds after tuning. The jerk factor is, however, increased,
which is caused mainly by motoring after civil speed limit.
This is inevitable because the most important task for train
under tight schedule is to catch up with the scheduled time.
In addition, the maximum acceleration rate is set to be
1.1m/s?, thus most passengers would not feel any discom-
fort during motoring.

Table 2: Energy component

Schedule Total energy Positive Negative

time consumed energy  energy
DE-based 100 26103 42017  -15914
Fuzzy ATO based 100 27817 52817 25000
DE-based 90 23388 43169  -19780
Fuzzy ATO based 90 23618 54033  -23618
DE-based 0 6960 57061  -50101
Fuzzy ATO based 0 17840 64035  -46187

Figs. 11 and 12 illustrate the convergence of the modified
DE algorithm. Fig. 11 shows the performance index of the
best parameters in each generation and the dashed lines in
the Figure represent the performance index of the fuzzy
ATO controller before tuning. It can be observed that,
after less than 30 generations, the generated parameters are
already very close to the optimal solution. This confirms
the excellent convergence property of this proposed
method. Fig. 12 shows the average performance index in
each generation.

In this paper, the ATO control is optimised for each
interstation run between two stations. This algorithm can
easily be expanded for a practical implementation on multi-
station control. Fuzzy membership functions are optimised
and stored for each interstation ATO control, which are
then retrieved for controlling each interstation run. A plat-
form of master—slave fuzzy controllers [7] can be used for
firing the relevant interstation ATO controllers according
to different train running conditions.
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5 Conclusion

A DE-based fuzzy ATO controller is proposed in this
paper, which automatically fine tunes the fuzzy member-
ship functions used in the controller. The tuning minimises
multiobjective performance indices, takes into account of
different factors like interstation distance, rapidly changing
gradient profiles, and schedules. Through simulations, the
proposed tuning method is shown to improve greatly the
performance of the fuzzy ATO controller. This method is
simple to implement, and, more importantly, very effective.
It can also be applied to other configurations of fuzzy con-
trollers with little algorithmic changes. The proposed
method is applicable to both the timetable-based and head-
way-based mass transit systems by simply assigning differ-
ent priorities to different objectives.
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7 Appendix

7.1 DE basic concepts and variants

The DE algorithm has been a promising candidate for
minimising real-valued and multimodal objective functions
[5, 6]. It is a parallel direct-search method, which utilises
NP D-dimensional parameter vectors:

X, i=01,2...,NP-1 9)

as the population for each generation G (i.e. for each itera-
tion of the minimisation). NP does not change during the
minimisation process. The initial population is chosen ran-
domly and should be able to cover the entire parameter
space uniformly. Basically, the DE algorithm generates new
parameter vectors by adding weighted difference between
two population vectors to a third vector. If the resulting
vector yields a lower objective function value than a prede-
termined population member does, the newly generated
vector will replace the vector which has been compared in
the previous generation; otherwise, the old vector is
retained. This basic principle is, however, extended being
applying to the practical variants of the DE algorithm. For
example, adding more than one weighted difference vector
to it can perturb an existing vector. In most cases, it is also
worthwhile mixing the parameters of the old vector with
those of the perturbed one before comparing the objective
function values. The following variant of the DE algorithm
[3, 4] has been proved the most useful in the present appli-
cation.

For each vector X, i =0, 1, 2, ..., NP — 1 a perturbed
vector V. is generated according to the following:

Viet1 =X+ F - (Xne-X3e)  (10)

- =T

where ry, ry, r; € [0, NP — 1] are mutually different integers
and F > 0.

The randomly chosen integers r|, r, and r; also have to
be different from the running index i. F is a real and con-
stant factor € [0, 2] which amplifies the differential varia-
tion (X,, ¢ — X3 ). This scheme requires that the vector to
be perturbed is randomly chosen and that the perturbation
consists of one weighted difference vector only.

To increase the potential diversity of the perturbed
parameter vectors, a crossover probability CR is introduced
to calculate the new vector,

Jui(p-1),6+1) (11)

U, .1 is a D-dimensional parameter vector in the (G + 1)th
generation and u;; ., i its elements of the following form:

U, g1 = (Wio,cr1, Wit g1, - - -

vij,a+1 for j = (nyp,{n+Lip,...,
<n+L— 1>D
z;5,¢ for all other j € [0,D — 1]

Uij,G+1 =

(12)
where the acute bracket < >j, denotes a module function
with modulus D.
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The starting index » in eqn. 12 is a randomly chosen inte-
ger for the interval [0, D — 1]. The integer L, which denotes
the number of parameters to be exchanged, is drawn from
the interval [1, D]. The crossover probability CR is taken
from the interval [0, 1] and constitutes a control variable in
the design process (see eqn. 13). The random decisions for
both n and L are updated for each newly generated vector
Ui,G+l-

To decide whether or not it should become a member of
generation G + 1, the new vector U, g, is compared with
X, If vector Uy, vields a smaller objective function
value than X, X is set to U,gyy; otherwise, the old
value X, is retained.

It has been shown that the DE algorithm is a promising
candidate for minimising real-valued, multimodal objective
functions [5, 6]. Besides its good convergence properties,
the DE algorithm is very simple to understand and imple-
ment. Its good performance has been manifested clearly in
the first to fifth De Jong functions and other testbeds [6].
The next Section will show how to use a modified version
of the DE algorithm to fine tune the fuzzy membership
functions in the ATO controller.

8 Appendix

8.1 DE algorithmic details

For each vector X, i =0, 1, 2, ..., NP — 1, a perturbed
vector ¥, can be generated by programming Eqns. (9)-
(11) in C codes as follows:

L = 0;n = int(rand() - D)

do{L=L+1,
Vim = Tpin t Fan (Z'T‘Z,n - ZTS,n)
n={n+1)%D,

twhile(rand() < CR&&L < D) (13)

where rand() is supposed to generate a random number €
[0, 1.
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In the above typical DE algorithm, the most significant
control variables are F and CR. Their values directly affect
the system convergence and convergence speed. If CR = 1,
all the parameters in the vector ¥, 7 € [0, D] will be
replaced by a newly generated vector according to eqn. 10.
If CR < 1, only some of the parameters will be replaced. F
is an amplification factor, which controls the amplification
of the differential variation (Xr,; ~ X,34). These two
parameters are similar to the crossover probability and
mutation probability in a genetic algorithm. According to
the computational mechanism of a typical genetic algo-
rithm [8], the probability of crossover should be decreased
and the probability of mutation should be increased during
the solution process in order to increase the computational
efficiency and the opportunity to find the optimal solution.

In this paper, the basic DE algorithm is modified by
adjusting F and CR with a basic idea from refined genetic
algorithm [9]. Initial probabilities for crossover and amplifi-
cation are selected. For every generation thereafter, CR is
linearly decreased while F is linearly increased. At the same
time, the limits on these probabilities are set in advance so
that they do not go beyond the permitted intervals. In the
present application, the permitted interval for CR is
between 0.7 and 1, and F is between 0.3 and 0.5. CR and F
are changed from generation to generation according to the
following equations:

CR® = CR®Y — (CR® - 0.7)/MG  (14)

FO = pt=Y 4 (05 - FOY/MG  (15)

where ¢ denotes the generation number (i.e. the iteration
number), CR® and FO denote the initial values of the
crossover probability and the amplification probability,
CRY and F9 denote the crossover probability and the
amplification probability at the sth generation. MG is the
maximum permitted generation number.
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