Worst-case identification of touch voltage and stray
current of DC railway system using genetic algorithm
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Abstract: The problem of reducing the touch voltage and stray current in DC railways is
multiobjective and conflicting. It is affected by many factors such as the earthing and bonding design,
as well as the normal and failure operating conditions. An approach of genetic algorithm .based
multiobjective optimisation is proposed to identify the worst-case touch voltage and stray current in
MRT systems. A two-step design scheme is formulated to represent both the normal and the failure
conditions. The method of Pareto-optimal sets is developed to best improve the touch voltages and
stray current integral for the normal condition. The decision-maker is given a powerful tool for
picking the most appropriate earthing and bonding design from the set, and for identifying the worst-
case performance from the list of credible failure conditions. Simulation results are presented which
demonstrate the effectiveness of the proposed approach in fulfilling the design objectives.

List of principal symbols

TSS = traction substation
PS = passenger station

Ir = running rail current
I = stray current
Iy = train current

Ry = running rail resistance

Ry = earth resistance at passenger station
Ry = carth resistance at the train

F = objective functions

C = feasible set

h() = equality constraints

g(.) = inequality constraints

x = decision variables :

x* = non-dominated solution vector

1 Introduction

Mass rapid transit (MRT) power supply systems comprise
three parts: the traction substations (TSSs), the go-circuit
and the return-circuit. At TSSs, the AC supply voltage is
stepped down and converted to DC. Catenary wires or
third rails are used in the go-circuit. Running rails, rail
bonds and return cables are the main components of the
return circuit. Because of the rail-to-ground and rail resist-
ances, there will be a voltage rise caused by the return cur-
rent flows between the rails and the local ground known as
the touch voltage. Excessive instantaneous touch voltages
jeopardise safety. As running rails are usually lightly insu-
lated, the traction current passing back to the substations
may partly leak into the ground. The leakage current,
known as stray current, is likely to be picked up by the
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underground structures in the vicinity and cumulative stray
current may accelerate their corrosion [1, 2].

The monitor and control of touch voltage and stray cur-
rent is receiving increasing attention, while their computer
simulation has been well studied. Since stray current causes
accumulative corrosion proportional to the product of the
magnitude of stray current and the time duration, the stray
current used in this paper is represented by the stray-cur-
rent integral collected from all earthing points. The touch
voltage causes immediate harm and takes an instantaneous
value.

To provide an accurate model of the stray-current inte-
gral, the peak loading condition should be studied. On the
other hand, touch voltages tend to be highest under failure
conditions. Unfortunately, improvement of either the stray-
current integral or touch voltages tends to deteriorate the
other. For instance, high rail-to-ground insulation is liable
to present large touch voltages but small stray currents. To
compromise between touch voltages and stray currents in
identifying the worst-case solution, a two-step design proce-
dure is proposed, as in Fig. 1.

In Step 1, the algorithm extensively explores several
earthing and bonding arrangements under normal opera-
tion. The method of Pareto-optimal sets is used to obtain a
set of optimal solutions of the bicriterion optimisation
problem. In each solution, the earthing and bonding design
is optimised to best improve the two criteria of touch volt-
ages and stray-current integral. Each solution therefore rep-
resents a different degree of trade-off between the two
criteria.

The Pareto-optimal set from step 1 contains a large col-
lection of optimal designs. This is also a source of reference
for different design variations. Because the specific times at
which initiating events that cause failure condition are
unpredictable, any optimal design taken from step 1 must
be operated at all times in such a way that the system will
not be endangered should any credible failure occur. In
step 2, the decision-maker picks one optimal design from
the set, and performs a performance check with the list of
credible failure conditions. The worst-case touch voltages
and stray-current integral are identified during checking.
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Fig.1 Overall layout of two-step design procedure

The decision-maker prepares his’her own list of credible
failures from predefined events such as substation out-of-
service, broken or deteriorating bonding and joints, etc.
Should the worst case be unsatisfactory, the decision-maker
is prompted to pick another optimal design from the set for
a further performance check.

2 Multiobjective optimisation of earthing and
bonding design for normal operation

In a general multiobjective optimisation, the vector F(x)
contains a set of objective functions f{(x), uniquely defined
by the set of variable x. F(x) is to be minimised (or maxim-
ised) individually:

min F(z) = [f1(2), fa(2),

subject to C = {z : h(z)

o fal@)]

=0,g(z) <0} 1
where z (= 2 in this problem) defines the number of objec-
tive functions in the vector F(x). C denotes the feasible set
of x, which is subjected to equality and inequality con-
straints.
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Fig.2  Pareto front for bicriterion minimisation problem
@ non-dominated solutions
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calli=1,2,.

Feasible solutions to the above multiobjective optimisa-
tion problem are known as non-dominated solutions in a
Pareto-optimal set. Each solution is uniquely defined by a
parameter vector x° € C. To qualify as a non-dominated
solution, a solution should not be dominated by any other
solutions, i.e. there is no x' € C such that f{(x') = f{x") for
- 1, and f{x") <f(x) forsome;j=1,2,.

Fig. 2 shows all the p0551b1e (dominated and non- dorm-
nated) solutions of a bicriterion optimisation problem for
Jf1(x) and fx(x), where all non-dominated solutions are situ-
ated on a circular arc known as a Pareto-optimal front.
Solution points, which are not situated at the front, are
dominated solutions and are discarded during the optimisa-
tion (see Appendix).

2.1 Optimisation variables

Touch voltages and stray currents are affected under nor-
mal condition by factors such as the passenger substation
spacing, rail resistance and rail conditions, headway inter-
val, synchronisation delay, weather condition, soil resistiv-
ity, and earthing and bonding design. Among these factors,
a close TSS spacing decreases the go-circuit voltage drops,
but the spacing is determined by other considerations such
as the ease of construction and commercial benefit [3].
Once the MRT system is designed, the rail resistance is
fixed and cannot be changed easily. The headway depends
on the passenger traffic flow. It usually takes constant val-
ues during certain periods, e.g. rush hours, normal hours
and evening hours. The synchronisation delay varies during
the actual train run from zero to the headway specified at
the time. The touch voltage and stray current are also
affected by operational abnormality (or failure), which can
be the result of track paralleling switched off, substations
out of service, etc. In our work, the earthing and bonding
arrangement is first optimised against the normal-condition
factors.

catenary wire

substation

'T train
Rr

running rail l
Rg T's Is v[ Ry

Fig.3  Simple case xtudy of touch voltage and stray current

A simplified single-TSS and single-train model is shown
in Fig. 3. The stray current of this model is
R
Is = _ Belr (2)
Rr+ Rpr + Rs
where I is the train current, Ry is the running rail resist-
ance, Ry is the earth resistance at the TSS, and Ry is the
carth resistance as seen at the train.

In eqn. 2, the train current /7 is largely affected by the
train schedule and passenger flow [4]. Loadflow studies
using the train current simulate the performance, voltage
profile and harmonic distortion of the go-circuit, as well as
the contribution of power from each TSS. As the running
rail resistance Ry is decided at the design stage of the MRT
system, Rg and Ry are the only variables to be investigated.
In general, low Rg and Ry give rise to a high stray current
but a relatively low rail potential. Regular bonding of the
rails equalises the rail-to-earth potentials of all rails along
the return circuit. It also reduces the return resistance
because of parallel rail paths constituting the return-circuit.
The earthing and bonding arrangement is hence chosen as
the decision variables in step 1, and optimised to best
improve the touch voltages and stray currents.
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2.2 Approaches of multiobjective optimisation

In traditional methods of multiobjective optimisation, dif-
ferent criteria are linearly blended into a composite scalar
objective. This requires pre-establishment of the weights of
different criteria. However, in many cases, the utility func-
tion is not known prior to the optimisation problem. As

there is usually no common metric between different crite- -

ria, the weighted combination is difficult. On the other
hand, differently weighted combinations lead to different
results because different parts of the information are
emphasised. The solution using one set of weights provides
only one of the Pareto-optimal solutions, as in Fig. 2. As it
is never a simple task to specify an appropriate set of
weights, optimal solutions are individually obtained for a
range of weights and the so-called trade-off curves are gen-
erated [5]. The computing time required for generating the
trade-off curves is high and it is difficult to apply such tech-
niques to non-convex problems.

The concept of a Pareto-optimal set is therefore intro-
duced into step 1 to eliminate the problem as above. In
this, each objective function is utilised separately rather
than collectively. The parallel search characteristic of the
GA makes it possible to solve the multiobjective optimisa-
tion efficiently. Such a GA feature is exploited in this work
to formulate effective selection and reproduction operators
to generate the Pareto-optimal set. Pioneering work was
carried out by developing the vector evaluated genetic algo-
rithm for multiobjective optimisation [6]. In the algorithm,
the non-commensurable objective functions are treated
independently. The population in the current generation is
divided into sub-populations based on each of the objec-
tives separately to reproduce the next generation. In the
population-based but non-Pareto approaches, the gener-
ated candidate solutions give satisfactory results at only one
objective but perform poorly at the other objectives. Their
performances are somewhat similar to that of weighting
objective function optimisation. In contrast to the vector
evaluated genetic algorithm, the Pareto-based approach is
to process selection and reproduction on the basis of not
only the objective values themselves, but also their domi-
nance properties. - All the locally non-dominated points
achieve equal reproductive potential through a non-domi-
nated sorting procedure. In [7], a method is proposed for
rank assignment according to the Pareto-optimality of an
individual, which is explained in detail in the Appendix.
This method tries to trace all the non-dominance individu-
als in the present population as far as possible. When all
the non-dominated individuals in the current generation are
picked, the recombination operators are then applied to
produce the next generation. The above procedure is iter-
ated to locate the Pareto-optimal points and produce sub-
sequent populations until the convergence condition is met.
The final non-dominated set represents the collection of
trade-off solutions among all the objectives.

The proposed scheme follows the general outline of the
Pareto-based approach as described above. The conven-
tional genetic algorithm (GA) is, however, modified as in
the Appendix to deal with the present multiobjective prob-
lem. )

3  Return circuit simulation

As in Fig. 4, the MRT system studied in this paper has
two tracks. There are 16 passenger stations, 7 of which are
chosen as TSSs. The trains are provided with regenerative
braking and dispatched in either the UP- or DN-direction.
The passenger stations are located at an interval of 1~2 km.
At each passenger station, the pair of running rails carrying
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each train are bonded (known as cross bonding) to reduce
the impedance of the return circuit. However, the pair of
running rails has the option of being bonded to the other
pair of running rails in the opposite direction (interbound
bonding). Since all trains are dispatched with the same pre-
specified headway and synchronisation delay, it is sufficient
to use the headway interval as the period of the optimisa-
tion [3]. The time step of simulation is taken as one second.
Moreover, it is assumed that the stray current path resist-
ance, which changes with many practical factors, is known
and can be varied later for scenario studies. The flowchart
of the return-circuit simulation is illustrated in Fig. S. The
train movement module is first run to obtain the speed—dis-
tance profile and the current—distance profile. The AC/DC
load flow is then applied to calculate the train currents and
TSS currents in the go-circuit. Using these currents, a sec-
ond network solution is applied to the return-circuit to cal-
culate the touch voltage and stray current.
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Fig.4 Layout of MRT system
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Fig.5  Flowchart of return-circuit simulation

Like the AC/DC loadflow in the go-circuit, the load
referral method [4] is used to remove the train nodes from
the return-circuit model. Thus, only the network nodes are
retained as the circuit nodes, and the dimension of the
return-circuit model is fixed at a small value. Without the
use of the load referral method, the dimension of the model
is time varying. The return system is modelled accurately
with 15 equivalent 7 circuits with nonlinear representations
of running rails, earthing and ground resistances, etc.

"MRT systems have been provided with either total
floating, direct earth or diode earth. The return-circuit
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Table 1: Typical arrangements of earthing and bonding

Simulation . . s Positive Negative thxrr?Znt
“no. Simulation condition touch touch integral,
voltage, V voltage, V Ah

1 As default 74.13 -80.75 41.62

2 All PSs direct earth, bonding as default 67.04 -78.83 156.94
3 All PSs diode earth, bonding as default 98.34 -58.53 83.10

4 All PSs interbound bond, earthing as default 74.11 -80.64 41.84

5 All TSSs direct earth, bonding as default 77.49 -76.55 82.78

6 All TSSs diode earth, bonding as default 93.91 —61.66 67.31

7 All TSSs interbound bond, earthing as default 74.14 —80.59 41.84

8 All PSs direct earth & interbound bond 78.03 -65.74 202.85
9 All PSs diode earth & interbound bond 98.20 -57.82 83.02
10 All TSSs direct earth & interbound bond 87.79 —63.94 107.55
1 All TSSs diode earth & interbound bond 93.81 -57.82 67.36
12 All TSSs direct earth and all PSs diode earth, bonding as default  85.55 -70.05 104.01
13 All TSSs diode earth and all PSs direct earth, bonding as default ~ 74.61 -70.01 150.34
14 All TSSs interbound bond and all PSs direct earth 64.80 -83.36 117.56
15 All TSSs interbound bond and all PSs diode earth 90.97 -69.47 62.78
16 All TSSs direct earth-and all PSs interbound bond 77.41 -76.72 82.89
17 All TSSs diode earth and all PSs interbound bond 93.83 ~60.54 67.36

As a default, all TSSs and PSs are not provided with interbound bonding and are floating

simulation allows a mix of different earthing arrangements
at either the TSSs or passenger stations (Section 4). To take
the cumulative effect of stray current into account, the total
integral stray current collected for all earthing points as
defined in [8] is employed in this paper.

4 Optimisation results

* To gain insight, simulations are carried out on the study
MRT system for a variety of earthing and bonding
arrangements. The touch voltages-and the total integral
stray currents collected for all earthing points listed in
Table 1 have exhibited certain patterns of variations for
the earthed and unearthed arrangement. Generally speak-
ing, both the touch voltage and the average stray current
tend to increase when the headway is decreased. The head-
way used in this study is 180s, which is the headway used
during the peak hours. Floating the return pole is seen to
reduce the stray current to roughly half, as compared to a
solidly earthed arrangement. The floating arrangement
does, however, raise concerns about touch voltage and
makes the low-level stray current difficult to detect and
clear. The bonding of rails provides adequate path for the
return traction current, decreases the mutual resistance, and
thus increases the traction current in the return path.,

4.1 Multiobjective optimisation for normal
condition
To best improve the touch voltages and stray-current inte-
gral, the proposed approach is executed to optimise the
three objectives: the maximum positive touch voltage (17),
the minimum negative touch voltage (f;), and the total inte-
gral stray current collected for all earthing points (f3). f; is
chosen due to the unidirectional characteristics of the diode
earth.

The proposed multiobjective optimisation is carried out
for two configurations:

(i) Configuration 1: earthing and bonding taken at all TSSs
only
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(i1) Configuration 2: earthing and bonding taken at all pas-
senger stations (PSs)

Since the study MRT system has 16 passenger stations, a
GA string of 48 bits (16 x 3-bit substrings) is formed for
configuration 2 to represent the earthing and interbound
bonding at all 16 passenger stations. It is assumed that all
passenger stations are cross-bonded (Section 3). Each sub-
string consists of 3 binary bits. The first 2 bits are used for
identifying the earthing strategy, which can be floating,
directly earthed or diode earthed. The last bit is set to either
one or zero to provide interbound bonding at each passen-
ger station or not. Likewise, the GA uses a string of 21 bits
for the 7 TSSs in configuration 1. The computer program
for the optimisation of touch voltage and stray current is
written in Visual C++. The program typically takes 50min
for the optimisation with a generation number of 5 and a
population of 100.
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Fig.6  Pareto-optimal set for configuration 1: equal priority assigned to min-
inum touch voltages and stray current integral

As shown in Figs. 6-9, the decision-maker is presented
with four Pareto-optimal sets, which contain the solutions
with equal and different priorities for configuration 1 and
configuration 2. The solutions contained in each set repre-
sent a different trade-off among the three objective func-
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tions. If the positive touch voltage (f;) takes priority over
the other two objectives, then more solutions (‘O’ in Figs. 7
and 9) gather in the region of small positive touch voltage
values. A similar observation is made if priority is assigned
to the other two objectives. From Figs. 7 and 9, three
extreme solutions are picked from the vertices of the plots
for configuration 1 and configuration 2. Tables 2 and 3
each contains the three extreme solutions together with a
well-balanced solution with equal priority on the three
objectives.

stray current integral

WS
Voitage 100 90 o

Fig.7  Pareto-optimal set for configuration 1: different priorities assigned to
mininmm touch voltages and stray current

O positive touch voltage has highest priority

x negative touch voltage has highest priority

+ stray current integral has highest priority

stray current integral

0 )
Ne
Voltage 100 -100 (oG

Fig.8 Pareto-optimal set for configuration 2: equal priority assigned to min-
imum touch voltages and mean stray current

stray current integral

Voltgge 100 190 oo

Fig.9 Pareto-optimal set for configuration 2: different priorities assigned to
minirmuan touch voltages and stray current

O positive touch voltage has highest priority

x negative touch voltage has highest priority

+ stray current integral has highest priority

By comparing the four solutions in Table 2 with the four
solutions in Table 3, configuration 2 appears to carry
higher stray currents (f3) than configuration 1. The former
has, however, out-performed the latter from the point of
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view of both f; and f;. This appears reasonable as the
former provides more earthing and bonding locations.
Since both configuration 1 and configuration 2 are opti-
mised, the solutions in Tables 2 and 3 have out-performed
the typical cases in Table 1.

Table 2: Multiobjective optimisation of earthing and bond-
ing for configuration 1

Lowest Lowest :3 :;?St
Solution Priorities on f;, f, positive  negative current
and f; touch touch .
integral,
voltage, V voltage, V
Ah
1.1 same priority for all 64.83 -60.26 42.89
1.2 highest priority on f;  59.52 -64.79 41.80
1.3 highest priorityon f,  73.12 -60.19 47.57
1.4 highest priorityon 64.81 -61.55 41.81

f, is the positive touch voltage; £, is the negative touch voltage; and
f3 is the stray current integral

Table 3: Multiobjective optimisation of earthing and bond-
ing for configuration 2

Lowes!
Lowest Lowest stray t
Solution Priorities on f;, positive  negative current

and f touch touch

voltage, V voltage, V :}t‘egraL
2.1 same priority for all 53.28 -57.57 51.38
2.2 highest priorityon f;  53.20 -65.80 47.90
2.3 highest priorityon f,  67.44 -56.37 52.41
2.4 highest priority on f;  58.10 -56.10 47.58

f; is the positive touch voltage; f is the negative touch voltage; and
f3 is the stray current integral

Table 4: Performance check of case 2.1 with list of credible
failure conditions

Failre SUDStEon CELYS L curemt
outage voltage voltage integral voltage
1. None 53.28 -89.41 86.92 1213.0
2 St0 1Rec 55.53 -91.18 87.49 12120
3 St2 1Rec 66.89 -95.6 90.72 1153.3
4 St5 1Rec 62.32 -103.46  95.04 11511
5 St8 1Rec 63.54 -104.1 102.38 1128.1
6 St111Rec  53.23 -94.06 92.05 1163.7
7 St131Rec  55.51 -82.89 88.71 1205.2
8 St15 1Rec  53.28 -89.41 87.39 1211.2
9 St0 2Rec 53.28 -83.74 92.91 1216.2
10 St0 95.35 -107.78 94.65 1080.4

4.2 Performance check for failure conditions
Table 4 shows the performance checks on a well-balanced
solution of configuration 2 as listed in the first row of
Table 3. The list of ten credible failure conditions is given
in the second column. Almost all three objectives have
deteriorated drastically due to outage of a TSS or a rectifier
at TSS.

5 Conclusions

A multiobjective optimisation approach is proposed in this
paper to identify the worst-case touch voltage and stray
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current in MRT systems. As the results are affected by
both the normal condition and failure conditions, a two-
step solution scheme has been formulated to represent both
conditions. The method of Pareto-optimal sets has been
developed to best improve the touch voltages and stray-
current integral for the normal condition. Care has been
taken to ensure a comprehensive and uniform spread of
optimal solutions within the set. The decision-maker is
given a powerful tool for picking the most appropriate
earthing and bonding design from the set, and for identify-
ing the worst-case performance from the list of credible fail-
ure conditions.
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7 Appendix: Genetic algorithm based
multiobjective optimisation

7.1 Review of genetic algorithm

The GA was motivated by ideas from natural genetics, and
has been successfully applied to a variety of optimisation
problems. The GA starts with a population of chromo-
somes and the abstract representations of candidate solu-
tions. Evaluations of chromosomes in the current
generation are based on the problem-dependent fitness
function. Chromosomes with higher fitness are selectively
picked for reproduction. By employing crossover and
mutation, a low probability operator and a high probabil-
ity operator, respectively, information encoded in these
selected chromosomes is recombined. Successive popula-
tions are generated to form the subsequent generation. In
this way, the GA attempts to find all the optima in the
search space and realise the Darwinian notion of competi-
tive evolution. The fittest members of the population would
survive, as their information content is preserved, combined
and evolved to produce even better offspring.

7.2 Modified genetic algorithm with fitness
sharing

Conventional GAs suffer from the inherent drawback of
genetic drift [7], which forces all candidate solutions into a
few clusters rather than uniform scatter along the Pareto
front, as in Fig. 2. To overcome such a problem, a niche
mechanism of fitness sharing is specifically developed at the
phenotypic level to maintain the solution diversity.
Through dividing the populations into different niches,
each peak and its neighbourhood receives a fraction of the
population related to its height. In addition, the fitness of
each candidate solution is reduced by an amount propor-
tional to the density of candidate solutions present in its
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neighbourhood. The convergence occurs within a niche
rather than within the full population. Therefore, a uniform
spread of non-dominant points for multiobjective optimisa-
tion problems is obtained along the Pareto-optimal front.

7.3 Selection processing with rank assignment

While retaining the same concept of crossover and muta-
tion as the conventional GA, the proposed approach exerts
a degree of control over the selection process by applying
the rank assignment method as proposed in [7] for the mul-
tiobjective problem. During the present GA evolution, can-
didates in the current generation are compared by
considering the following Pareto-optimality conditions, and
ranked to decide on their chances of survival in the next
generation. First, all the non-dominated candidates in the
current generation are identified as rank 1 and marked.
Then the non-dominated candidates among the unmarked
solutions are ranked as 2 and marked. The above rank
assignment procedure is repeated recursively as in Fig. 10,
until the current rank number reaches a pre-specified value
or the size of the unmarked population becomes smaller
than a certain value. Afterwards, those candidates with a
favourable rank (say, less than 6) survive, whereas candi-
dates with a rank higher than the threshold (greater than 6)
are discarded. The preserved candidates are then selected
and recombined to produce the subsequent generations.
Meanwhile, the non-dominated candidates among the pre-
served ones are recorded in the Pareto solution set. Each
time a non-dominated solution is generated, the set of exist-
ing Pareto solutions will be updated. If any member in the
set of Pareto solutions does not dominate the new non-
dominated candidate, this candidate will be added to the
set. On the other hand, any solution in the set that is dom-
inated by the added point will be eliminated from the set.
Therefore, at the end of GA evolution, the set of Pareto
solutions comprises only non-dominated candidates gener-
ated during the whole evolution procedure.

Generate initial population P(0);
Evaluate P(0);
1:=0;
repeat
Generate P(t+1) using P(t) as follows
{ Assign ranks to the individuals in the P(t) as follows
{ rank_value=1l;
repeat
Find all the non-dominated ones among all the un-visited individuals,
Assign their ranks to be rank_value;
Set visit flag to the assigned individuals;
rank_value:= rank_value+1;
until the rank_value is equal to the set value or all the individuals are visited
}
if(different priorities among objectives)
Modify the ranks in favour of the objective with preference;
Select individuals for reproduction on basis of rank;
Recombine the selected individuals employing crossover and mutation operators;

3
Evaluate P(t+1);
t=t+];
until termination condition is met

Fig.10  Flowchart of proposed GA for multiobjective optimisation

7.4 Variable recombination operators

In a typical GA, the crossover and mutation operators are
the most important components that influence the GA’s
efficiency to give maximum exploration of the search space,
and ensure convergence towards global optima. To attain
the best GA performance, the crossover probability is
assigned a large value at the beginning of the optimisation
and linearly reduced in subsequent generations. The muta-
tion probability is varied in the opposite direction.
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7.5 Treatment of preferred priorities among
objectives

In practice, the decision-maker may wish to optimise cer-
tain objectives, and the proposed approach should allow
such a preference. The above rank assignment method is
modified as in the two-objective minimisation example of
Fig. 11b. Fig. 11a shows the rank assignment for 6 candi-
date solutions, where equal priorities are placed between
the minimising objective f; and the minimising objective f;.
Both solutions a and b are ranked as level 1 since fi(a) >
fi(b) but fy(@) < fr(b). Likewise, solutions ¢, d and e are
ranked as level 2 and solution f'is ranked as level 3. Should
the decision-maker wish to give a higher priority to mini-
mising the objective f, than to minimising the objective £,
candidate solutions a, ¢ and f are ranked at a higher level

(more successful) than candidate solutions b, d and e. Can-
didate solutions a, ¢ and f will thus be selected for repro-
duction, and will have a higher probability of survival in
subsequent generations.
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Fig.11  Rank assignments for different priorities among objectives
a f, has the same priority as f]
b f; has greater priority than f;
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