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Abstract. The goal of designing optimal nearest neighbor classifiers is to 
maximize classification accuracy while minimizing the sizes of both reference 
and feature sets. A usual way is to adaptively weight the three objectives as an 
objective function and then use a single-objective optimization method for 
achieving this goal. This paper proposes a multi-objective approach to cope 
with the weight tuning problem for practitioners. A novel intelligent multi-
objective evolutionary algorithm IMOEA is utilized to simultaneously edit 
compact reference and feature sets for nearest neighbor classification. Two 
comparison studies are designed to evaluate performance of the proposed 
approach. It is shown empirically that the IMOEA-designed classifiers have 
high classification accuracy and small sizes of reference and feature sets. 
Moreover, IMOEA can provide a set of good solutions for practitioners to 
choose from in a single run. The simulation results indicate that the IMOEA-
based approach is an expedient method to design nearest neighbor classifiers, 
compared with an existing single-objective approach. 

1   Introduction 

The nearest neighbor (1-nn) classifier is commonly used due to its simplicity and 
effectiveness [1]-[5]. According to 1-nn rule, an input pattern is assigned to the class 
of its nearest neighbor from a labeled reference set. The goal of designing optimal 1-
nn classifiers is to maximize classification accuracy while minimizing the sizes of 
both reference and feature sets. Ho et al. [4] proposed an intelligent genetic algorithm 
IGA for simultaneous reference set editing and feature selection to design 1-nn 
classifiers, using a weighted-sum approach by combining multiple objectives into a 
single-objective function. However, in order to obtain good solutions using the 
weighted-sum approach, domain knowledge and large computational cost are required 
for determining a set of good weight values. 

In this paper, a multi-objective approach utilizing a novel intelligent multi-
objective evolutionary algorithm IMOEA [6], [7] is proposed to solve the problem of 
designing optimal 1-nn classifiers. The proposed approach can cope with the weight 
tuning problem for practitioners. Furthermore, IMOEA can efficiently obtain a set of 
non-dominated solutions in a single run, compared with a single-objective EA using 



multiple runs in terms of solution quality and computation cost. Two comparison 
studies are designed to evaluate performance of the proposed approach. It is shown 
empirically that the IMOEA-designed classifiers have high classification accuracy 
and small sizes of reference and feature sets. The experimental results indicate that 
the IMOEA-based approach is an expedient method to design nearest neighbor 
classifiers, compared with an existing single-objective approach. 

The organization of this paper is as follows. The investigated problem is described 
in Section 2. Section 3 presents the design of optimal 1-nn classifiers using IMOEA. 
Section 4 reports the experimental results and Section 5 concludes this paper. 

2 The Investigated Problem 

2.1 Designing 1-nn Classifier 

The investigated problem of designing optimal 1-nn classifiers is described as follows 
[4], [5]: 

Let X = {X1, …, Xn} be a set of features describing objects as n-dimensional 
vectors x = [x1, …, xn]T in Rn and let Z = {z1, …, zN}, zj∈Rn, be a data set. Associated 
with each zj, j=1, …, N, is a class label from a set C = {1, …, c}. The criteria of data 
editing and feature selection are to find subsets S1 ⊆ Z and S2 ⊆ X such that the 
classification accuracy is maximal and the sizes of the reduced sets, card(S1) and 
card(S2), are minimal, where card(·) denotes cardinality. Define a real-valued function 
P1-nn(V, S 1, S 2) as the classification accuracy of a 1-nn classifier with S1 and S2: 

P1-nn : P(Z) × P(X) :→ [0,1], (1) 

where P(Z) is the power set of Z and P(X) is the power set of X. The classification 
accuracy P1-nn uses a counting estimator )( j

CE vh [11] measured on a given validation 
set V = {v1, …, vm}, as shown in Equation (2). If vj is correctly classified using S1 and 
S2 by the 1-nn rule, )( j

CE vh =1, and 0 otherwise. 
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The problem is how to search for S1 and S2 in the combined space such that P1-nn is 
maximal, and card(S1) and card(S2) are minimal.  

Essentially, the investigated problem has a search space of C(N+n, 
card(S1)+card(S2)) instances, i.e., the number of ways of choosing card(S1)+card(S2) 
out of N+n binary decision variables with three incommensurable and competing 
objectives. The investigated problem can be formulated as the following multi-
objective optimization problem: 
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2.2   Review of Weighted-sum Approaches 

For editing a reference set, Kuncheva et al. [1] and Cano et al. [3] found that EAs 
using a weighted-sum objective function can offer high classification accuracy and a 
good data reduction ratio for designing 1-nn classifiers. To edit a reference set and 
select useful features simultaneously, Kuncheva et al. proposed a GA with a 
weighted-sum approach , using a fitness function F as follows [4], [5]: 
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The sum of card(S1) and card(S2) is used as a penalty term. The weight value α is 
used to tune the degree of penalty. 

Generally, the number N+n of binary decision variables is large. Large parameter 
optimization problems often pose a great challenge to engineers due to the large 
parametric space, the possibility of large infeasible and non-uniform areas, and the 
presence of multiple peaks. Despite having been successfully used to solve many 
optimization problems, conventional GAs cannot efficiently solve large parameter 
optimization problems. Therefore, Ho et al. [4] proposed IGA using the fitness 
function F in Equation (4) to solve the investigated problem with a large number of 
decision variables. It have been shown empirically that the IGA-designed classifiers 
outperform some existing methods, including Kuncheva’s GA-based method [5] in 
terms of both classification accuracy and the number card(S1)×card(S2). However, 
different data sets represent different classification problems with different degrees of 
difficulties [3]. Without using domain knowledge, it is difficult for practitioners to 
determine appropriate weight values in the weighted-sum approach and the results 
may be sensitive to weight values. In order to obtain high performance, multiple 
experiments with different weight values for different data sets are necessary in the 
weighted-sum approach.  

3 IMOEA-Designed 1-nn Classifier 

3.1 Chromosome Representation 

The feasible solution S corresponding to the reduced reference and feature sets is 
encoded using a binary string consisting of N+n bits. The first N bits are used for S1⊆ 
Z and the last n bits for S2⊆X. The i-th bit has a value 1 when the respective element 
of Z(X) is included in S1(S2), and 0 otherwise. The search space consists of 2N+n points. 



For example, considering the reduced reference set {z3, z5, z6, z8} and feature set {X2, 
X3, X5, X6}, the corresponding chromosome is S = [ 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 ] with 
N=9 and n=6. 

3.2 Fitness Assignment 

The fitness assignment strategy of IMOEA uses a generalized Pareto-based scale-
independent fitness function GPSIFF considering the quantitative fitness values in the 
Pareto space for both dominated and non-dominated individuals [6], [7]. GPSIFF 
makes the use of Pareto dominance relationship to evaluate individuals using a single 
measure of performance. Let the fitness value of an individual Y be a tournament-like 
score obtained from all participant individuals by the following function: 

GPSIFF(Y) = p – q + c, (5) 

where p is the number of individuals which can be dominated by Y, and q is the 
number of individuals which can dominate Y in the objective space. Generally, a 
constant c can be optionally added in the fitness function to make fitness values 
positive. In this study, c is the number of all participant individuals. Note that GPSIFF 
is to be maximized in IMOEA.  

3.3 Intelligent Crossover (IC) 

In the conventional crossover operations of GAs, two parents generate two children 
with a combination of their chromosomes using randomly selected cut points. The 
merit of IC is that, the systematic reasoning ability of orthogonal experimental design 
(OED) [4], [6]-[8] is incorporated in the crossover operator to economically estimate 
the contribution of individual genes to a fitness function, and then the better genes are 
intelligently picked up to form the chromosomes of children. The procedure of IC, 
theoretically analysis and experimental studies for illustrating the superiority of IC 
with the use of OED can be found in [4], [6]-[8]. 

3.3.1 Orthogonal Array and Factor Analysis 
Orthogonal array (OA) is a factional factorial matrix, which assures a balanced 
comparison of levels of any factor or interaction of factors. It is a matrix of numbers 
arranged in rows and columns where each row represents the levels of factors in each 
experiment, and each column represents a specific factor that can be changed from 
each experiment. The array is called orthogonal because all columns can be evaluated 
independently of one another, and the main effect of one factor does not bother the 
estimation of the main effect of another factor. A two-level OA used in IC is 
described as follows. Let there be γ factors with two levels for each factor. The total 
number of experiments is γ2  for the popular “one-factor-at-a-time” study. The 
columns of two factors are orthogonal when the four pairs, (1,1), (1,2), (2,1), and 
(2,2), occur equally frequently over all experiments. Generally, levels 1 and 2 of a 
factor represent selected genes from parents 1 and 2, respectively. To establish an OA 



of γ factors with two levels, first we obtain an integer ( )⎡ ⎤1log22 += γω , where the 
bracket represents a ceiling operator. Then, build an orthogonal array Lω(2ω-1) with ω 
rows and (ω-1) columns and use the first γ columns; the other (ω-γ-1) columns are 
ignored. The algorithm of constructing OAs can be found in [13]. OED can reduce the 
number of experiments for factor analysis. 

After proper tabulation of experimental results, we can further proceed factor 
analysis to determine the relative effects of various factors. Let yt denote a function 
value of the combination t, where t = 1, …, ω. Define the main effect of factor j with 
level k as Sjk where j = 1, …, γ and k = 1, 2: 

∑
=
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ω

1t
ttjk FyS , (6) 

where Ft = 1 if the level of factor j of combination t is k; otherwise, Ft = 0. Since 
GPSIFF is to be maximized, the level 1 of factor j makes a better contribution to the 
function than level 2 of factor j does when Sj1>Sj2. If Sj1<Sj2, level 2 is better. If Sj1=Sj2, 
levels 1 and 2 have the same contribution. The main effect reveals the individual 
effect of a factor. The most effective factor j has the largest main effect difference 

21 jj SSMED −= . After the better one of two levels of each factor is determined, a 

reasoned combination consisting of γ factors with better levels can be easily derived. 
The reasoned combination is a potentially good approximation to the best one of the 
2γ combinations.  

 3.3.2 Procedures of Intelligent Crossover 
Two parents breed two children using IC at a time. How to use OA and factor 

analysis to perform the IC operation with γ factors is described as the following steps: 
Step 1: Randomly divide the parent chromosomes into γ pairs of gene segments 

where each gene segment is treated as a factor. 
Step 2: Use the first γ columns of OA Lω(2ω-1) where ( )⎡ ⎤1log22 += γω .  
Step 3: Let levels 1 and 2 of factor j represent the jth gene segment of a 

chromosome coming from parents, respectively. 
Step 4: Simultaneously evaluate the fitness values yt of the ω combinations corre-

sponding to the experiments t, where t = 1, …, ω.  
Step 5: Compute the main effect Sjk where j = 1, …, γ and k = 1, 2. 
Step 6: Determine the better one of two levels for each gene segment. Select level 1 

for the jth factor if Sj1 
> Sj2. Otherwise, select level 2. 

Step 7: The chromosome of the first child is formed using the combination of the 
better gene segments from the derived corresponding parents. 

Step 8: Rank the most effective factors from rank 1 to rank γ. The factor with a large 
MED has a high rank. 

Step 9: The chromosome of the second child is formed similarly as the first child 
except that the factor with the lowest rank adopts the other level. 

For one IC operation, the two children are more promising to be new non-
dominated individuals. The individuals corresponding to OA combinations are called 
by-products of IGC. The by-products are well planned and systematically sampled 



within the hypercube formed by parents, so some of them are promising to be non-
dominated individuals. Therefore, the non-dominated by-products will be added to the 
elite set in IMOEA.  

3.4 Intelligent Multi-objective Evolutionary Algorithm 

IMOEA uses an elite set E with capacity NEmax to maintain the non-dominated 
individuals generated so far. The used IMOEA in the investigated problem is as 
follows: 
Step 1: (Initialization) Randomly generate an initial population of Npop individuals 

and create an empty elite set E and an empty temporary elite set E’. 
Step 2: (Evaluation) Compute all objective function values of each individual in the 

population. Assign each individual a fitness value by using GPSIFF. 
Step 3: (Update elite sets) Add the non-dominated individuals in both the population 

and E’ to E, and empty E’. Considering all individuals in E, remove the 
dominated ones. If the number NE of non-dominated individuals in E is 
larger than NEmax, randomly discard excess individuals. 

Step 4: (Selection) Select Npop-Nps individuals from the population using binary 
tournament selection and randomly select Nps individuals from E to form a 
new population, where Nps=Npop·ps. If Nps > NE, let Nps= NE. 

Step 5: (Recombination) Perform the IC operations for Npop·pc selected parents. For 
each IC operation, add non-dominated individuals derived from by-products 
and two children to E’. 

Step 6: (Mutation) Apply bit mutation with pm to the population. 
Step 7: (Termination test) If a stopping condition is satisfied, stop the algorithm. 

Otherwise, go to Step 2. 

4 Experimental Results 

The 11 well-known data sets with numerical attribute values are used to evaluate 
performance of the proposed approach. All the data sets are available from [12]. To 
assure fair performance comparisons by avoiding the dependence on the training and 
test data, the following data partition is used. First, the patterns with the same class 
label are put together without changing their order in the original data file. 
Subsequently, the patterns with odd index values are assigned to the set V1 and the 
other patterns are assigned to the set. V2. When V1(V2) is used as a training set, V2(V1) 
is a test set. In the training phase, the training set is used to select the reduced sets S1 
and S2, and calculate the classification accuracy P1-nn. The test classification accuracy 
is measured using the test set. 

The coverage metric C(A, B) of two solution sets A and B [9] is used to compare 
the performance of two corresponding algorithms considering the three objectives: 
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C(A, B) = 1 means that all individuals in B are weakly dominated by A. On the 
contrary, C(A, B) = 0 means that none of individuals in B are weakly dominated by A. 
The comparison results of two solution sets using the coverage metric are depicted 
using box plots. For easy understanding, the data reduction ratio Drd is used to 
measure the efficiency of editing reference sets: 

N
Scard

Drd
)( 1= . (8) 

The feature reduction ratio Frd is used to measure the efficiency of editing feature 
sets: 

n
Scard

Frd
)( 2= . (9) 

The parameter settings of IGA are as follows: Npop=30, ps=0.4, pc=0.6 and pm=0.05. 
The fitness function of IGA is F in Equation (4). Nine different weight values of α, 
α=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are used. In order to make comparisons 
with multi-objective solutions, the nine experiments using nine different weight 
values ranged from 0.1 to 0.9 are regarded as an IGA run. The parameter settings of 
IMOEA are as follows: Npop=30, NEmax=30, ps=0.4, pc=0.6 and pm=0.05. The factor 
value of OA is 7 in both IGA and IMOEA. The stopping condition is the number of 
function evaluations Neval=10000. Thirty independent runs were performed. Each of 
IGA, and IMOEA performed 30 independent runs. The solution sets of 30 runs are 
compared using the coverage metric.  
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Fig. 1. Box plots based on the coverage metric C. The vertical axis is the value of C 
and the horizontal axis is the index of data sets. 

 



Fig. 1 shows the coverage metric of C(IGA, IMOEA) and C(IMOEA, IGA) from 
30 runs, for the (training, test) data sets (V1, V2) and (V2, V1). Observing the median in 
the box plots, the results shows that the solutions of IMOEA weakly dominate 40%-
80% solutions of IGA, and the solutions of IGA weakly dominate 5%-40% solutions 
of IMOEA. The results reveal that IMOEA can evolve a set of non-dominated 
solutions that cover the solutions of IGA.  
 
Table 1. Results of average classification accuracy, data reduction ratio and feature 
reduction ratio on DROP5 and C4.5 

DROP5 C4.5 Data set P1-nn Drd P1-nn Frd 
(1) cmc 0.4888 28.31% 0.5050 100.00%
(2) glass 0.6692 30.29% 0.6730 77.78%
(3) haberman 0.7256 13.72% 0.7160 66.67%
(4) heartc† 0.5418 19.86% 0.5420 96.15%
(5) iris 0.9200 20.67% 0.9265 37.50%
(6) liver-

disorder 0.5883 30.14% 0.6580 100.00%

(7) new-
thyroid 0.9210 12.56% 0.9255 80.00%

(8) pima 0.7227 20.18% 0.7055 87.50%
(9) sonar 0.7694  27.36% 0.7405 16.67%

(10) wdbc 0.9367 8.97% 0.9170 21.67%
(11) wine 0.9439 12.35% 0.9320 26.92%
Average 0.7480 20.40% 0.7492 64.62%

†Six patterns with missing attribute values are excluded. 
Table 2. Results of t-test on the classification accuracy of the selected IMOEA-
designed classifiers, the C4.5 classifiers and DROP5, with 29 degrees of freedom at 
the 0.05 the significance level. The solutions of IMOEA are selected using Equation 
(4) withα=0.5 

IMOEA(α=0.5) t-test Data set P1-nn Deviation DROP5 C4.5 
(1) cmc 0.4461 0.0103 Lose Lose 
(2) glass 0.6698 0.0183 Equal Equal 
(3) haberman 0.6891 0.0176 Lose Lose 
(4) heartc† 0.5340 0.0159 Lose Lose 
(5) iris 0.9400 0.0174 Win Win 
(6) liver-

disorder 0.5872 0.0237 Equal Lose 

(7) new-thyroid 0.9464 0.0153 Win Win 
(8) pima 0.6711 0.0155 Lose Lose 
(9) sonar 0.8001 0.0199 Win Win 

(10) wdbc 0.9426 0.0073 Win Win 
(11) wine 0.9306 0.0158 Lose Equal 



Table 3. Results of average data and feature reduction ratio on the IGA-designed 
classifiers, the selected IMOEA-designed classifiers and the C4.5 classifiers. The 
solutions of IMOEA are selected using Equation (4) with α=0.5 

IGA IMOEA(α=0.5) Data set Drd Frd Drd Frd 
(1) cmc 47.15% 32.67% 41.48% 14.67% 
(2) glass 37.88% 16.67% 27.95% 11.11% 
(3) haberman 25.54% 39.67% 22.50% 35.67% 
(4) heartc† 38.30% 15.77% 33.52% 8.69% 
(5) iris 4.52% 33.00% 6.47% 25.00% 
(6) liver-disorder 36.56% 25.83% 26.25% 17.83% 
(7) new-thyroid 13.88% 24.00% 9.52% 20.00% 
(8) pima 36.60% 27.25% 30.75% 15.63% 
(9) sonar 33.00% 13.68% 23.69% 2.45% 

(10) wdbc 24.96% 20.27% 18.58% 5.27% 
(11) wine 12.99% 11.15% 7.19% 7.69% 
Average 28.31% 23.63% 22.54% 14.91% 

 
Due to its nature, IMOEA tries to optimize the three objectives and tends to obtain 

widespread solutions on all the three objectives. Considering only P1-nn, it is not fair to 
perform t-test on all the classification accuracy of the IMOEA-designed classifiers to 
the baseline classification accuracy. Therefore, Equation (4) is adopted as a simple 
decision making model to select a solution from a set of non-dominated solutions. 
Table 1 reports the results of C4.5[10] and DROP5[11]. Table 2 reports the results of 
the t-test on the classification accuracy of the selected IMOEA-designed classifiers 
using α=0.5 with the C4.5 and the DROP5 classifiers. Table 3 reports the data and the 
feature reduction ratios of the selected IMOEA-designed classifiers. It shows that the 
selected IMOEA-designed classifiers offer smaller data and feature reduction ratios 
than those of the IGA-designed classifiers. From Tables 1-3, the simulation results 
indicate that the proposed approach can achieve better data and feature reduction 
ratios without losses in generalization accuracy. 

5 Conclusions 

In this paper, we have proposed an approach to designing optimal 1-nn classifiers 
using a novel intelligent multi-objective evolutionary algorithm IMOEA with 
intelligent crossover based on orthogonal experimental design. The proposed 
approach copes with the weight tuning problem for practitioners. It has been shown 
empirically that the IMOEA-designed classifiers have high performance, compared 
with the IGA-based in terms of classification accuracy, the size of reference set and 
the size of feature set. Moreover, IMOEA provides a set of solutions for practitioners 
to choose from. IMOEA can be easily applied without using domain knowledge to 
efficiently design 1-nn classifiers with high-dimensional patterns with overlapping. 
The simulation results indicate that the IMOEA-based approach is a good alternative 



method to design nearest neighbor classifiers, compared with the existing single-
objective approach. 
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