

Abstract


CHETAN, SRIGIRIRAJU, KISHAN. Noninferior Surface Tracing Evolutionary


Algorithm (NSTEA) for Multi Objective Optimization (Under the direction of Dr. S.


Ranjithan.)


Evolutionary algorithms are becoming increasingly valuable in solving large-


scale, realistic engineering problems.  Most of these problems deal with sufficiently


complex issues that typically conflict with each other, thus requiring multi objective


(MO) analyses to assist in identifying compromise solutions.  The focus of this paper is to


develop and test a new multi objective evolutionary algorithm (MOEA).  The new


procedure, Noninferior Surface Tracing Evolutionary Algorithm (NSTEA), builds upon


two fundamental concepts that are established in the mathematical programming


literature for MO analysis.  Implicit implementation of Pareto optimality and beneficial


seeding of initial population are instrumental in the improved performance.  NSTEA was


evaluated by solving a suite of test problems reported in the MOEA literature.


Performance with respect to accuracy, coverage, and spread of noninferior solutions


generated by NSTEA is evaluated and compared with those of solutions generated by


four other MOEAs that are widely accepted.  Also, in some cases, comparisons are made


with noninferior sets generated using mathematical programming techniques. Overall,


NSTEA performs relatively better than the other MOEAs when tested on these problems.


Application and performance evaluation of NSTEA in solving a real-world MO


engineering optimization problem was also conducted.  In comparison to published


mathematical programming-based noninferior solutions, the NSTEA solutions performed







well. In summary, this paper contributes to the MOEA literature by presenting NSTEA as


a good alternative evolutionary algorithm-based multi objective method that is relatively


simple to implement and to incorporate into existing implementations of evolutionary


algorithm-based optimization procedures.
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1 Introduction


Most real world engineering decision making problems, especially those that involve


public sector issues, require consideration of a multitude of conflicting design objectives.


Although many of these objectives can be represented sufficiently well to allow quantitative


analysis, incorporating them into a decision making process requires multiobjective (MO)


modeling and optimization.  Unlike single objective problems for which the optimal solutions are


sought, the multiobjective problems require the consideration of noninferior tradeoffs among


competing objectives to help identify best compromise solutions.  This information is potentially


useful to decision makers in eliminating inferior solutions from consideration, facilitating an


efficient search for solutions that really matter with respect to the defined objectives. Generation


of tradeoff information in the form of a noninferior, or Pareto optimal set, of solutions within a


region of interest in the objective space is the main goal of multiobjective analysis.


An array of multiobjective evolutionary algorithms (MOEAs) has been reported since the


early eighties. Detailed summaries of the state-of-the-art in MOEA were discussed recently by


Coello (1999a) and Van Veldhuizen and Lamont (2000), and are also represented in the special


issue of Evolutionary Computation (Vol. 8, No. 2, Summer 2000) on multi criterion optimization


(also see Coello (1999b) for an archive of bibliography).  Within standard mathematical


programming frameworks, the constraint method and weighting method are two commonly used


techniques for generating noninferior sets (Cohon, 1978).  In the constraint method, one


objective is optimized while constraining the others to target levels to identify a noninferior


solution.  Alternatively, an aggregate objective function, defined as a linearly weighted sum of


all objective functions, is optimized in the weighting method.
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The underlying Pareto-optimality concepts of these MO methods are general, and can be


applied within any evolutionary algorithm (EA) framework as well as within mathematical


programming techniques for optimization. Solving a number of independent single objective


optimization models to obtain a set of noninferior solutions, however, renders these MO methods


less attractive if each model solution is computationally intensive to obtain.  This issue is


addressed in some mathematical programming approaches (e.g., linear programming, nonlinear


programming, integer programming) by seeding a search for a new noninferior solution with a


previously generated adjacent noninferior solution.  The first noninferior solution can be the


optimal solution for any one of the objectives.  Any efficiency gain is predicated on the notion


that for some class of problems noninferior solutions adjacent in the decision space map to


adjacent points in the objective space.


This paper describes the development of the Noninferior Surface Tracing Evolutionary


Algorithm (NSTEA), which explicitly uses this adjacency mapping property to its advantage


within an MOEA framework.  The underlying simple concepts in NSTEA allow it to be adapted


easily into existing implementations of evolutionary algorithms for single objective optimization,


as well as to eliminate the computational need for iterative sorting and pair-wise comparison that


are required when determining Pareto optimality.  Starting with a general representation of a


standard MO problem, brief descriptions of a four commonly accepted MOEAs that are used for


performance comparison in this paper are provided in the next section.  The details of NSTEA


are then described, followed by a performance comparison of NSTEA and the other MOEAs in


solving a suite of published test problems.  Where possible, the noninferior solutions are also


compared to those obtained via mathematical programming techniques.  An application of
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NSTEA to a real world problem in environmental management is also presented.  Finally,


concluding remarks are made with a brief discussion of NSTEA’s strengths and weaknesses.


2 Background


2.1 A standard multiobjective optimization problem


A multiobjective problem consisting of k objectives and m constraints defined as


functions of decision variable set x can be represented, without loss of generality, as follows:


Maximize Z(x) = {Zl(x): l=1,2, …, k} (1)


S.T.  gi(x) ≤ 0 ∀i = 1,2,…,m (2)


x ∈ X (3)


where x = {xj : j = 1,2,…..,n} represents the decision vector, xj is the jth decision variable, X


represents the decision space, gi(x) is the ith constraint, Z(x) is the multiobjective vector, and


Zl(x) is the lth objective function.


2.2 Noninferiority


Noninferiority (which is also referred as nondominance or Pareto optimality) of a


multiobjective solution is formally defined as follows (Cohon, 1978):  a feasible solution to a


multiobjective problem is non-inferior if there exists no other feasible solution that will yield an


improvement in one objective without causing a degradation in at least one other objective.
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More rigorous definitions of this and related MO terminology are given by Van


Veldhuizen and Lamont (2000) and Zitzler et al. (2000).  Based on the definitions by Van


Veldhuizen and Lamont (2000) and notations used in Equations 1-3, the following are defined:


Pareto Dominance: A multiobjective vector u = (u1,u2,…uk) is said to dominate v = (v1,v2,…vk)


(denoted by u Ø v ) if and only if u is partially more than v,


i.e., iiii vukivuki >∈∃∧≥∈∀ :},...2,1{},,...2,1{ .


Pareto Optimality: A solution x ∈ X is said to be Pareto optimal with respect to X if and only if


there exists no x’ ∈ X for which v = Z(x’)  dominates u = Z(x).


Pareto Optimal Set: For a given multiobjective problem Z(x), the Pareto optimal set P* is a set


consisting of Pareto optimal solutions. P* is a subset of all the possible solutions in X.


Mathematically, P* is defined as follows:


P* := {x ∈ X | ¬∃ x’ ∈ X : Z(x’) Ø Z(x)} (4)


Pareto Front: The Pareto front, PF* is the set that contains the evaluated objective vectors of P*.


Mathematically PF* is defined as:


PF* := { u = Z(x) | x ∈ P* } (5)


2.3 Evolutionary algorithms for multiobjective optimization


Since the pioneering work by Schaffer (1984, 1985) in the area of EAs for MO


optimization, development of MOEAs has taken multiple directions.  Detailed surveys of these


techniques are catalogued by Fonesca and Fleming (1993, 1995), Horn (1997), Coello (1999a,


1999b), and Van Veldhuizen and Lamont (2000).  Many different bases (such as differences in


fitness and selection implementations) for higher level classification of MOEAs are used in these
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surveys.  For example, Schaffer’s (1985) vector evaluated genetic algorithm (VEGA) uses a


special single-objective-based preferential selection procedure, the method by Hajela and Lin


(1992) uses an aggregated fitness function, and the methods by Horn et al. (1994), Srinivas and


Deb (1994), Zitzler and Thiele (1999), and Knowles and Corne (2000) use Pareto-based


selection procedures to determine the noninferior set.  In addition, these techniques can be


categorized by special operators, such as niching and sharing (e.g., Horn et. al., 1994; Menczer


et. al., 2000), restrictive mating (e.g., Loughlin and Ranjithan, 1997), and elitism (e.g., Knowles


and Corne, 2000; Zitzler and Thiele, 1999).  An EA-based approach presented more recently by


Loughlin et al. (2000a) addresses problems with conflicting objectives where some may not be


easily quantified or modeled.  A wide range of applications (e.g., Hajela and Lin, 1992; Ritzel et


al., 1994; Cieniawski et al., 1995; Jimenez and Cadenas, 1995; Harrell and Ranjithan, 1997;


Coello et al., 1998; Coello and Christiansen, 2000; Loughlin et al., 2000b; Obayashi et al., 2000)


of MOEAs in solving realistic MO engineering problems have also been reported.  All existing


MOEAs are not described in this paper, but brief discussions are provided below for selected


MOEAs that are used to compare the performance of NSTEA proposed in this paper.


2.3.1 Vector Evaluated Genetic Algorithm (VEGA)


VEGA (Schaffer, 1985) was the first reported MOEA that exploited the population


within an EA to consider multiple objectives and to search for nondominated solutions


simultaneously.  For a problem with k objectives, k subpopulations of size N/k are considered,


where N is the population size.  Beside the standard crossover and mutation operators, VEGA


applies a selection operator preferentially to each subpopulation based on one of the objectives.


These subpopulations are then shuffled together at end of each iteration to obtain a new


population.  Shuffling and merging all subpopulations corresponds to averaging the normalized
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fitness components associated with each of the objectives. The linear combination of the


objectives implicitly performed over many generations by VEGA can be attributed to the


speciation phenomenon.  This tends to split the population into species, each specializing with


respect to one of the objectives.  As a result, VEGA provides a poor coverage of the noninferior


set.


2.3.2 Niched Pareto Genetic Algorithm (NPGA)


Horn et al., (1994) proposed NPGA that uses Pareto optimality as a basis for the selection


operator.  Individuals undergo a tournament selection in which the Pareto dominance of the


individuals is used as the criterion for determining the winner. Instead of limiting the tournament


comparison to two individuals, a comparison set consisting of a specific number (tdom) of


individuals is picked at random from the population at the beginning of each selection process.


Two individuals are selected at random from the population for determining a winner. Both


individuals are compared with the individuals in the comparison set to check for dominance. If


one of them is non-dominated and the other is dominated, then the non-dominated individual is


selected. If both of them are dominated or non-dominated then a niche count is calculated for


each individual and the individual with lower niche count is selected. By ensuring the selection


of non-dominated individuals, convergence towards the noninferior set is ensured. By selecting


the individual with the lower niche count, diversity is maintained in the population. NPGA has


been shown to be successful in obtaining good convergence to the noninferior set as well as


maintaining good coverage. The performance of NPGA is heavily dependent, however, on the


selection of the sharing factor and size of the tournament (tdom).
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2.3.3 Non-dominated Sorting Genetic Algorithm (NSGA)


The NSGA (Srinivas and Deb, 1994) is based on several layers of classifications of the


individuals. NSGA varies from a simple genetic algorithm only in the way the selection operator


is used. The crossover and mutation operators remain unchanged. Before selection, the


population is ranked on the basis of nondomination, classifying all nondominated individuals


into one category with a dummy fitness value. To maintain diversity in the population, these


classified individuals undergo sharing based on their dummy fitness values. This group is then


ignored and the next layer of nondominated individuals is classified similarly, assigning a lower


fitness value. This layering process continues until the whole population is classified. Thereafter


a stochastic remainder roulette-wheel selection is used to select the next generation of


individuals, resulting in more copies of individuals that are relatively more dominant.  This


facilitates search for nondominated regions and consequent convergence to the noninferior set.


A tangential pressure applied in the objective space by the sharing procedure helps enhance


coverage of the noninferior set.  NSGA is shown to obtain a good coverage of the noninferior


set, but is sensitive to the sharing factor.


2.3.4 Strength Pareto Evolutionary Algorithm (SPEA)


Zitzler and Thiele (1999) presented SPEA, an elitist MOEA based on Pareto optimality


concepts.  SPEA maintains an external population of noninferior solution by storing at every


generation all Pareto optimal solutions.  Along with the current population, this external


population undergoes all genetic operations. A fitness value is determined for each individual in


the combined population. The fitness value of each individual in the combined population is


determined based on the number of solutions it dominates. All Pareto optimal solutions in the
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combined population are assigned a fitness value based on the number of solutions they


dominate. A relatively higher fitness value is assigned to an individual that dominates more


solutions in the combined population, while a relatively lower fitness value is associated with a


solution dominated by more solutions in the combined population. Care is taken to assign no


non-dominated solution a fitness value worse than the most dominated solution. This


methodology of fitness assignment ensures that the search is directed towards the noninferior set


while simultaneously maintaining diversity.


3 NSTEA - Noninferior Surface Tracing Evolutionary Algorithm


The most successful among the existing MOEAs with respect to identifying the noninferior


set with sufficient coverage use, in general, a Pareto-based approach.  Each step for checking


Pareto optimality requires sorting and pair-wise comparison of at least a subset of the population,


thus increasing the computational needs.  This is avoided in the new MOEA technique NSTEA


that is presented in this paper.  Building upon the concepts of the mathematical programming-


based weighting approach (Cohon, 1978) for generating the noninferior set, NSTEA achieves


Pareto optimality in an implicit manner by applying fitness pressure that encourages the


population at each intermediate step to move towards a noninferior solution.  Similar to an


objective aggregation approach, a linearly weighted function of all objective functions is used to


evaluate fitness at each intermediate step to enforce Pareto optimality of a solution.  Normalized


objective function values are used to maintain generality.  Through repeated execution of this


intermediate step with varying weight vectors, NSTEA attempts to identify the noninferior set.


A linearly weighted fitness function, Zag, is computed as follows:


∑
=


=
k


l
llag


ZwZ
1


(6)
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where, w = {wl: :l=1,2,…k} is the weight vector, wl is the lth weight and lZ  is the lth normalized


objective function value. The weight wl is a fractional number such that


1
1


=∑
=


k


l
lw (7)


A straightforward implementation of an algorithm that repeats this intermediate step with


varying w would be similar to iterative execution of a single objective EA, which is not


necessarily computationally efficient.  Instead, NSTEA exploits the basic concept that for some


classes of problems, adjacent solutions in the decision space map to adjacent points in the


objective space.  Its implication is that these decision vectors (xs) (that map to adjacent


noninferior points in the objective space) have solution features (i.e., values of xjs) that are only


marginally different.  This enables the beneficial use of the final population corresponding to the


current noninferior solution to seed the search of an adjacent noninferior solution.  The new


search of course would have an updated weight vector w to represent an adjacent noninferior


point in the objective space.  When the new selection pressure manifesting from the updated


weight vector is applied on the previous population, the population quickly migrates to an


adjacent noninferior solution.  A systematic update of the weight vector thus enables an efficient


mechanism for incrementally tracing the noninferior set.  This incremental population migration


approach significantly reduces the computational burden compared to that required when solving


each single objective EA as independent search problems.


Using a two objective problem as an illustration, let the current weight vector w be {w1, w2};


without loss of generality, we assume w1 + w2 = 1.  The updated weight vector corresponding to


the search for an adjacent noninferior solution would then be {w1+∆, w2-∆}, where the
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magnitude of ∆ determines the minimum interval between adjacent noninferior solutions. For


example, smaller values of ∆ would result in a finer coverage  (or better distribution) of the


noninferior set, but would require execution of more intermediate steps, each of which requiring


the solution of a single objective EA.  At the beginning of the algorithm, the population is


converged to an extreme point in the noninferior set by optimizing for one of the objectives.  In


the above example, this is achieved by solving the optimization problem corresponding to w1=1


and w2=0 (or alternately w1=0 and w2=1).  Once the population has converged to this solution


according to some stopping criterion, the best solution is stored.  Then the weight vector is


incremented adaptively to w1←w1-∆ and w2←w2+∆, and the current population is continually


subjected to all the genetic operators where the fitness evaluation is now based on the updated


weight vector.  To introduce higher population diversity at the beginning of each search, the


mutation operator is applied in an adaptive manner during each intermediate step, starting with a


higher rate and gradually reducing it (e.g., exponential decay) with generations within each step.


Thus, at the beginning of each intermediate step the higher mutation rate perturbs the converged


population around the previous noninferior point, introducing diversity for the new search.


This iterative process is terminated when the weight vector corresponds to optimization of


the other objective, i.e., when w1= 0 and w2=1 (or alternatively w1=1 and w2=0). Two


convergence criteria are implemented to determine when to change the weight vector and initiate


the search for the next noninferior solution.  One of the criteria is to check if the number of


generations, generation, exceeds a maximum value, maxGenerations. The other criterion is to


track the improvement in the best solution corresponding to a weight vector; convergence is


assumed when the best solution does not improve within a certain number (N) of successive
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generations.  If either of the above two criteria is satisfied then the weight vector is updated. The


key steps of NSTEA are shown as a flowchart in Figure 1.


Figure 1: Flowchart for NSTEA - Noninferior Surface Tracing Evolutionary Algorithm.


* The two convergence criteria are: 1) generation ≥ maxGenerations, and 2) no


improvement in N successive generations


Unlike most other MOEAs, NSTEA does not attempt to let the population converge to the


noninferior set simultaneously.  Instead, at each intermediate step, a point in the noninferior set is


identified through a search conducted by the whole population, and the final noninferior set is


generated by storing all noninferior solutions found at the intermediate steps.  Analogous to the


weighting method, the use of an aggregate fitness function implicitly ensures Pareto optimality.
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The coverage of the noninferior set is achieved explicitly by traversing the noninferior surface


through incremental and systematic updates of the weight vector.


4 Testing and evaluation of NSTEA


NSTEA was applied to a set of test problems of varied difficulty and characteristics. The


first application uses Schaffer’s F2 problem (Schaffer, 1985), which is an unconstrained,


nonlinear problem.  This is included since most other MOEA methods have been tested against


it, providing a common basis for comparison.  The second application uses a constrained, non-


linear optimization problem (Winston, 1993).  Although this problem has not been used for


testing of other MOEA methods, it offers a relatively challenging constrained problem that is


easily implemented. A noninferior set obtained by solving this problem using a gradient-based


nonlinear programming algorithm (Generalized Reduced Gradient-GRG2 algorithm (Lasdon et


al., 1978; Fylstra et al., 1998) hosted by Microsoft Excel 97 Solver) is used to evaluate the


performance of NSTEA. While the first two applications represent problems in a continuous


search space, the third application, which uses the extended 0/1 multiobjective knapsack problem


(Zitzler and Thiele, 1999), represent a problem in a combinatorial search space.  This problem is


a constrained, binary problem.  Performance comparisons of several MOEAs in solving this


problem are presented by Zitzler and Thiele (1999), and are used here to compare the


performance of NSTEA.  In addition, a noninferior set was generated using a mathematical


programming-based weighting method for the extended 0/1 knapsack problem, which was solved


using a binary programming solver (CPLEX Version 4.0).


Several performance criteria are used to evaluate NSTEA and to compare it with other


approaches: 1) accuracy, i.e., how close are the generated noninferior solutions to the best
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available prediction; 2) coverage, i.e., how many different noninferior solutions are generated


and how well are they distributed; and 3) spread, i.e., what is the maximum range of the


noninferior surface covered by the generated solutions.  Currently reported as well as newly


defined quantitative measures are used in comparing NSTEA with other MOEAs.  The


robustness of NSTEA in solving problems with different characteristics (e.g., real vs. binary


variables, constrained vs. unconstrained, continuous vs. combinatorial) is examined, in some


limited manner, by applying it to a variety of problems.  To evaluate the robustness of NSTEA in


generating the noninferior set and providing good coverage, random trials were performed where


the problems were solved repeatedly for different random seeds.  A representative solution is


used in the discussion below


4.1 Schaffer’s F2 problem


4.1.1 Description


The F2 problem is defined as follows:


Minimize 2
1 xZ = (8)


Minimize Z2 = (x – 2)2 (9)


The range for the decision variable x is [-5,7]. The Pareto optimal solutions constitute all


x values varying from 0 to 2. The solution x = 0 is optimum with respect to Z1 while the solution


x = 2 is optimum with respect to Z2. That is, objective functions Z1 and Z2 are in conflict in the


range [0,2].
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4.1.2 Results


The F2 problem was solved using NSTEA with algorithm-specific parameters as shown


in Table 1.  Results are compared in Figure 2 where the exact solution (obtained analytically


using Equations 8 and 9) for this problem is also shown.
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Figure 2: The true noninferior tradeoff curve and the noninferior set determined by NSTEA for


Schaffer’s F2 problem.


Although this is a relatively simple problem, the results indicate that NSTEA is very


accurate in generating the noninferior set for this problem.  Also, it provides good coverage by


generating a good distribution of noninferior solutions, and provides a full spread.
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Table 1: NSTEA parameters and settings for solving the test problems


Problem Decision
variable


type


NSTEA
Parameters


No. of
intervals


Population
size


Encoding Crossover
type


No. of
random trials


F2 Real 100 100 Binary, 32 bits per
variable


Uniform 5


Winston Real 100 100 Binary, 32 bits per
variable


Uniform 5


Knapsack Binary 100 100 Binary, 1 bit per
variable


Uniform 5


4.2 Winston problem


4.2.1 Description


This problem, adapted from Winston (1993), is a constrained, two objective, nonlinear


problem with two real-valued decision variables. This is a resource allocation problem in which


television advertising resources must be distributed between two target audiences.  The goal is to


maximize the exposure of the advertisements to both male and female viewers.  Given a limited


total advertising budget, the choice is between placing advertisements during football games and


soap operas, each costing different amount. This problem is mathematically stated as follows:


Maximize the number of men, SFZ 4201 += (10)


Maximize the number of women SFZ 1542 +=  (11)


Subject to the budget constraint: 100F + 60S ≤ 1000 (12)


where F and S (such that F>0 and S>0) are the number of one-minute advertisements placed


during football games and soap operas, respectively.
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4.2.2 Results


The Winston problem was solved using NSTEA with parameter settings as shown in


Table 1. For comparative purposes, a noninferior set was obtained using the constraint method


for this problem. A series of single objective constrained nonlinear programming models were


solved using the nonlinear programming (NLP) solver (Generalized Reduced Gradient-GRG2


algorithm (Lasdon et al., 1978; Fylstra et al., 1998) hosted by Microsoft Excel 97 Solver). The


resulting noninferior solutions are shown in Figure 3.


25


30


35


40


45


50


55


60


65


70


25 30 35 40 45 50 55 60 65


Z1


Z 2


NLP
NSTEA


Figure 3: The noninferior solution obtained using NSTEA and an NLP solution approach for the


Winston problem.
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Noninferior solutions generated by NSTEA are accurate (in comparison with the


noninferior solutions generated using the NLP approach) and cover the noninferior surface


evenly.  Also, the generated solutions spread the entire range of the noninferior set.


4.3 Extended 0/1 multiobjective knapsack problem


4.3.1 Description


Zitzler and Thiele (1999) used in their work a knapsack problem that extends the


traditional single objective knapsack problem by incorporating two knapsacks that can be filled


by items selected from a larger collection of items. Similar to the traditional knapsack problem,


each knapsack has a limited weight capacity with different payoff when each item is included in


it. The goal is to allocate a limited set of items to maximize the payoff in each knapsack without


violating its weight capacity constraint. This multiobjective problem is defined mathematically


as follows:


Maximize Zl(x) = ∑
=


n


j 1


pl,j  x j ∀l = 1,2,…,k (13)


Subject to ∑
=


n


j 1


wl,j  x j ≤  cl ∀l = 1,2,…,k (14)


In the formulation, Zl(x) is the total profit associated with knapsack l,  pl,j = profit of


placing item j in knapsack l, wl,j = weight of item j when placed in knapsack l, cl = capacity of


knapsack l, x = (x1, x2,……, xn) ∈ {0,1}n such that xj = 1 if selected and = 0 otherwise, n is the


number of available items and k is the number of knapsacks.
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This binary MO problem was solved for the cases with two knapsacks (i.e. k = 2) and 250


and 500 items. The results reported here correspond to n = 500 and k = 2. The data for the


problems solved were adapted from Zitzler and Thiele (1999).


4.3.2 Results


The extended knapsack problem was solved by NSTEA for the parameter setting shown


in Table 1.  In addition, the noninferior set was generated using the constraint method for this


problem by modeling it as a binary linear programming (BLP) model.  This was solved using the


binary linear programming solver, CPLEX. In Figure 4, these results are shown along with the


results reported by Zitzler and Thiele (1999) for the following MOEAs: VEGA, NPGA, NSGA,


and SPEA.
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Figure 4: A comparison of noninferior sets obtained using NSTEA, VEGA, NPGA, NSGA,


SPEA, and mathematical programming approach (BLP) for the extended 0/1


multiobjective knapsack problem.


To examine the consistency of NSTEA in solving this problem, five trials with different


random seeds were conducted.  The results are summarized in Figure 5.  NSTEA appears to be


insensitive to the random seed, indicating robust behavior.
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Figure 5: A comparison of noninferior sets obtained using NSTEA for five random trials and


BLP (binary linear programming) method for the extended 0/1 multiobjective


knapsack problem.


Accuracy of the noninferior solutions generated by NSTEA should be compared with


respect to the best available noninferior set, as well as with the best estimate obtained by the


other MOEAs.  The mathematical programming-based estimate of the noninferior set, the best


available for this problem, is included in Figure 4 to make the first evaluation.  Compared to this,


the accuracy of noninferior solutions generated by NSTEA and the other MOEAs is relatively
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poor.  The combinatorial nature of the search can be attributed to the weak performance by all


EAs.  Accuracy of NSTEA in comparison to other MOEA results , however, is very good.  Some


noninferior solutions obtained by SPEA, the best performing MOEA according to Zitzler and


Thiele (1999), appear to dominate some solutions generated by NSTEA.  The spread or range


covered by the NSTEA generated solutions, however, is far superior to that attained by all other


MOEAs. Further, NSTEA is able to provide good coverage by identifying noninferior solutions


that are almost evenly distributed throughout the full range.


4.3.3 Performance metrics and comparison of MOEAs


To compare the performance of NSTEA with that of other MOEAs, the following


quantitative measures are used.


Accuracy


The S factor used by Zitzler and Thiele (1999) to represent the size of noninferior space


covered is used to characterize and compare accuracy.  In addition, the approach used by


Knowles and Corne (2000), which is based on the method proposed by Fonseca and Fleming


(1995), is used to characterize the degree to which a noninferior set outperforms another.  The


same numbers of radial sampling lines used in computing this metric by Knowles and Corne


(2000) are used in the comparisons presented here.  An either-or criterion is used to determine if


the noninferior set obtained by an MOEA dominates that obtained by another MOEA; the


closeness of the two points of intersection are not differentiated statistically.


Spread


Spread is quantified for each objective as the fraction of the maximum possible range of


that objective in the noninferior region covered by a noninferior set.  A larger value of this metric
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indicates better spread.  As shown in Figure 6, let points A and B refer to the two extreme points,


i.e., the single objective optimal solutions for objective 1 and 2, respectively, for a two objective


case. The maximum range covered by the noninferior set C ∈ {Ch : h=1, 2, …,q} is (Z1
Cq – Z1


C1)


and (Z2
C1 – Z2


Cq) in Z1 and Z2 objective space, respectively.  Therefore, the spread metrics in


objective space 1 and 2 are defined as (Z1
Cq – Z1


C1)/(Z1
B – Z1


A) and (Z2
C1 – Z2


Cq)/(Z2
A – Z2


B),


respectively.


Coverage


A quantitative measure computed based on the maximum gap in coverage is defined to


represent the distribution of the noninferior solutions generated by an MOEA.  The Euclidean


distance between adjacent noninferior points in the objective space is used to indicate the gap.


A smaller value of this metric indicates better distribution of solutions in the noninferior set.


This metric is defined separately as V1 and V2 to characterize the coverage within the range of


noninferior region defined by 1) the extreme points, and 2) the solutions generated by the


MOEA, respectively.  Using the illustrations shown in Figure 6, V1 is defined as Max {dh :


h=0,1, …, q}, and V2 is defined as Max {dh : h=1, 2, …, q-1}.
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Figure 6: An example two-objective noninferior tradeoff to illustrate the computation of: 1)


Spread metric, and 2) Coverage metric.


A summary of these metrics are compared in Tables 2a-2d for the noninferior solutions


generated by all MOEAs shown in Figure 4.  These results indicate that overall NSTEA performs


better than NPGA, NSGA, SPEA, and VEGA with respect to finding nondominated solutions


with a good distribution in the noninferior region.  This conclusion is specific to the 0/1 extended


multiobjective knapsack problem, and similar performance comparisons for other problems are


needed to make more general conclusions.  Although NSTEA provides the best distribution of


solutions in the entire noninferior range (based on V1 metric), SPEA provides a better


distribution (based on V2 metric) within the narrower noninferior range represented by its


solutions.
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Table 2a: Accuracy comparison, based on the S factor (Zitzler and Thiele, 1999), of noninferior


sets generated by different MOEAs for the extended 0/1 multiobjective knapsack


problem.  A larger value indicates better performance; the best is shown in bold.


MOEA Method S Factor


SPEA 0.89


NSGA 0.79


NPGA 0.83


VEGA 0.81


NSTEA 0.95


Table 2b: Accuracy comparison, based on the metric defined by Knowles and Corne (2000), of


NSTEA with different MOEAs for the extended 0/1 multiobjective knapsack problem.


(P1, P2): (Percentage number of times MOEA1 outperforms


MOEA2, Percentage number of times MOEA2 outperforms


MOEA2)


Number of Sampling Lines


The MOEAs


Compared


(MOEA1 vs.


MOEA2)


108 507 1083
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(NSTEA vs. SPEA) (96.3, 3.7) (95.9, 4.1) (95.9, 4.1)


(NSTEA vs. NSGA) (100, 0) (100, 0) (100, 0)


(NSTEA vs. NPGA) (100, 0) (100, 0) (100, 0)


(NSTEA vs. VEGA) (100, 0) (100, 0) (100, 0)


Table 2c: Comparison of Spread of noninferior sets generated by different MOEAs for the


extended 0/1 multiobjective knapsack problem.  A larger value indicates better


performance; the best is shown in bold.


Spread MetricMOEA


in Z1 objective space in Z2 objective space


SPEA 0.28 0.23


NPGA 0.24 0.25


NSGA 0.26 0.15


VEGA 0.20 0.16


NSTEA 0.87 0.88
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Table 2d: Comparison of Coverage of noninferior sets generated by different MOEAs for the


extended 0/1 multiobjective knapsack problem.  A smaller value indicates better


performance; the best is shown in bold.


Coverage MetricMOEA


V1 (includes the extreme


points for each objective)


V2 (excludes the extreme


points for each objective)


SPEA 0.118 0.011


NPGA 0.122 0.016


NSGA 0.121 0.021


VEGA 0.130 0.015


NSTEA 0.028 0.027


4.3.4 A computational comparison


A major premise underlying the new technique was the adjacency mapping between


decision space and objective space. By using the population that has converged around a


noninferior solution to seed the initial population for search for an adjacent noninferior solution,


it was assumed that the number of evaluations to convergence in subsequent searches would be


significantly reduced.  To verify this premise, the search for each noninferior solution was


conducted without seeding the initial population.  This is analogous to running NSTEA without
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seeding at each intermediate step.  These runs were repeated for five random trials.  The numbers


of function evaluations required by NSTEA with and without seeding are compared in Table 3.


Table 3: A computational comparison, for five random trials, in terms of number of function


evaluations needed by NSTEA with and without population seeding to solve the


extended 0/1 multiobjective knapsack problem.


No. of function evaluationsRandom Trial No.


NSTEA with population seeding NSTEA without population seeding


1 211,800 445,600


2 201,700 421,100


3 206,200 440,200


4 205,400 450,900


5 204,700 440,400


Two main observations can be made: 1) the number of function evaluations needed by


NSTEA is significantly smaller (over 50% less than the case when no seeding was applied); and


2) similar computational improvement is observable in all random trials. These results confirm


the benefit of the primary concept of adjacency mapping that is used in constructing the


algorithmic steps in NSTEA.  Also, NSTEA is sufficiently robust, and the computational needs


are consistent as well as independent of the random trials.
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5 Application of NSTEA to a realistic engineering problem – The Delaware estuary


management problem


To evaluate the applicability of NSTEA in generating noninferior solutions for a realistic


multiobjective optimization problem, a case study that was reported in the literature and had all


necessary input information was identified.  Brill (1972) reported a relatively large-scale real


world multiobjective analysis for a water quality management problem in the Delaware estuary.


This was build upon an extensive chemical-physical simulation model (Thomann, 1963) to


describe the water quality and earlier pollution discharge management models (e.g., Smith and


Morris, 1969). A stretch of 84 miles of the Delaware estuary was studied.  This stretch was


bordered by a large metropolitan and industrial complex, including one of the largest oil refining


and chemical areas in the United States. The primary water quality parameter of interest was


dissolved oxygen (DO) in the water.  The critically low level of DO was attributed to the


discharge of wastewater, which had high levels of biochemical oxygen demand (BOD).


The management model described by Brill (1972) is represented as a linear mathematical


programming  (LP) model.  Although an LP-based model was used in that analysis, the structure


of the management model would become more complex (e.g., nonlinear and binary


programming) when nonlinear cost functions and nonlinear physical-chemical processes are


incorporated in the analysis, calling for evolutionary algorithm-based solution approaches.  This


LP-based management model considered 44 major BOD dischargers and their impact on DO in


30 discrete reaches (each approximately 10,000 - 20,000 ft long).  The main goal of this


management model was to identify good BOD control strategies (i.e., which discharger should


control its BOD release and by how much) to meet a specified DO standard.  Like most


environmental management problems, the design criteria were in conflict, and compromise
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solutions were sought to assist in the decision making process.  The MO analysis focused on


consideration of two conflicting objectives: minimizing cost of BOD control, and maximizing


equity with respect to levels of treatment among the different dischargers.  In general, the least


cost discharge control strategy tends to be inequitable since the most cost-effective treatment


options are preferentially selected during optimization, resulting in inequities due to different


treatment levels by the dischargers.  Alternatively, the most equitable strategy, i.e., uniform


treatment, where all dischargers treat at the same rate is typically not cost effective because of


various factors that differ among dischargers, including economies of scale effects, location


effects and other differences among dischargers.   Therefore, consideration of noninferior


tradeoff between these conflicting objectives was needed. Different equity measures were


studied by Brill et al. (1976), and the particular management model that is compared in this paper


is as follows:


Minimize )( minmax1 eeZ −= (equity measure) (15)


Minimize ∑ ∑
= =
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where, N is the number of dischargers, J = {1,2,…,j,…,N} is the set of the indices of the


dischargers, fj,k is the kth piecewise waste reduction variable for discharger j, Cj,k is the unit cost


for fj,k, Kj is the number of waste reduction variables for discharger j, Ai,j is the impact coefficient


representing the improvement in water quality resulting from a unit waste reduction by


discharger j, Dj is the initial efficiency for discharger j, Bi is the water quality improvement


required for section i, M is the number of sections with water quality improvement goals, Uj,k is


the upper bound for fj,k, FTj is the total waste production for discharger j, E is the set of all


dischargers that need primary treatment, emax is the maximum efficiency among dischargers that


increase efficiency, e j is the efficiency in discharger j,  emin is the minimum efficiency among all


dischargers, and Jq is the set of dischargers that increase efficiencies.
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Brill et al. (1972) solved the above management model using the constraint method


(Cohon, 1978) via linear programming (LP).  The same problem was also solved using NSTEA.


This problem had 44 decision variables represented as real-valued strings, and a population size


of 100 was used.  The number of intervals was set to 100.  The noninferior solutions that were


reported in Brill (1972) are used as the basis for evaluation and comparison of the performance


of NSTEA. The resulting noninferior sets are shown in Figure 7.
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Figure 7: Comparison of noninferior solutions obtained using NSTEA and LP (linear


programming) for the Delaware Estuary management problem.


The noninferior solutions generated by NSTEA provide a good coverage as well as


spread well across the noninferior set.  The accuracy of these solutions is good in most sections
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of the noninferior set, except in the middle where some NSTEA solutions are slightly inferior.  It


must be noted that the linear programming-based noninferior solutions are globally optimal and


therefore represent the best noninferior tradeoff for this problem.


6 Summary and Conclusions


This paper presents a new MOEA, Noninferior Surface Tracing Evolutionary Algorithm


(NSTEA) for solving multiobjective optimization problems. NSTEA is founded upon two


simple, but powerful concepts: 1) optimization of an aggregate function of all objective functions


finds a noninferior, or Pareto optimal, solution; and 2) for some classes of problems, noninferior


solutions adjacent in objective space map to adjacent decision vectors with only marginal


differences in the decision space.  The attractive features of NSTEA include: easily adaptable for


use with existing implementation of evolutionary algorithms for an optimization problem since


no new operators are needed; and relatively less compute intensive since Pareto optimality is


ensured in an implicit manner, and therefore expensive sorting and pair-wise comparison


operations that are typically required by other Pareto-based MOEAs are eliminated.


 To evaluate the applicability of NSTEA to different MO problems, it was applied to a set


of standard test problems (reported in recent MOEA literature) with differing characteristics and


of varying levels of difficulty.  Test problems covered continuous as well as combinatorial


search, unconstrained as well as constrained optimization, real as well as binary variables, and as


few as one variable to as high as 500 variables.  This evaluation included performance


comparisons with other MOEAs and where available, with mathematical programming-based


noninferior solutions.  Accuracy, coverage, and spread of the noninferior solutions were used to


compare the performance.   To evaluate the consistency of NSTEA in generating the noninferior


set, several random trials were performed when solving each problem. Overall, NSTEA
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performed well with respect to these criteria for all problems tested.  The spread and coverage of


noninferior solutions obtained using NSTEA were always better than those demonstrated by


other MOEAs.  With respect to accuracy, NSTEA did well in almost all cases, except for the


extended 0/1 multiobjective knapsack problem for which SPEA did better for a few noninferior


solutions.


NSTEA was also applied to a real-world problem that required a multiobjective analysis


of two conflicting, environmental management objectives.  This problem, which is well


documented and reported in the literature, looked at environmental management strategies for


meeting water quality standards in the Delaware estuary while minimizing the cost of


environmental pollution control as well as minimizing the differences in control levels among


the polluters, i.e., maximizing the equity.  Results reported by other researchers included


noninferior sets with respect to the cost and equity objectives.  These solutions are globally


optimal since a linear programming approach was used to solve the MO model. In a comparison


of noninferior solutions obtained using NSTEA with the reported results, NSTEA performed


well in providing good coverage and spread, and the solutions were sufficiently accurate


compared to the global optimal solutions.


Some known limitations of NSTEA include the following.  The computational efficiency


gain obtained in NSTEA is premised on the existence of similarities in noninferior solutions that


correspond to adjacent points in the objective space. For problems where this may not hold true


strongly, the search implemented by NSTEA becomes analogous to solving a number of


independent single objective optimization problems, and therefore, may not realize any


significant computational gain. As the underlying search mechanism for a Pareto optimal


solution uses an incrementally varying aggregate function, the amount of each weight increment
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would dictate the number of noninferior solutions found.  If this increment is relatively large, it is


possible to miss some of the noninferior solutions, thus affecting the coverage.  As a result,


NSTEA with relatively large weight increments will likely miss noninferior solutions that lie


within any linear segment of the noninferior tradeoff.  For a problem with more than two


objectives, incrementally updating the weight vector to obtain an adjacent point is not necessarily


as straightforward as is for the two-objective cases presented here.  More investigation is needed


to evaluate this issue when applying NSTEA to higher dimensional problems.


The computational performance of NSTEA and other MOEAs needs to be studied


further.  Using the number of functions evaluations as a measure was useful in comparing the


computational needs for NSTEA and a single objective-based MO analysis.  This measure alone


is not sufficient to compare the computational gain, if any, that may be realized by NSTEA over


the other MOEAs that use explicit Pareto optimality checks. As this is dependent on the


algorithmic steps beyond just function evaluation, timing studies based on equivalent


implementations of each algorithm are required.  Future investigations will examine this issue.
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