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Abstract: This paper describes the optimal design of Interior
Permanent Magnet Synchronous Motors for which two objective
functions regarding motor efficiency and weight are used. Mul-
tiobjective optimization technique is applied to finding the opti-
mal solution in this case. An optimal design method that deter-
mines both the noninferior solution set and the best compromise
solution employing a modified genetic algorithm is proposed,
The proposed algorithm adopts the structure of the conventional
genetic algorithm, but fitness value and convergence criterion are
redefined and some major parameters of the algorithm are ad-
justed to the multiobjective optimization. In order to predict the
motor performance more accuraiely, a core loss formula is de-
rived considering the flux variation due to the stator currents as
well as that due to the magnet. .

Keywords: Multiobjective optimal design, Noninferior solution
set, Interior Permanent Magnet Synchronous Motor, Genetic
algorithm, Core loss

I . INTRODUCTION

There are many conflicting design objectives in the op-
timal design of electric machines, so multiobjective opti-
mization technique is required to meet design purposes,
The conventional approach to these kinds of the problem is
the conversion of the problem to the single objective opti-
mization problem using the appropriate method, such as
weighting method or constraint method. Recent researches
on the multiobjective optimization focus on the methods
based on the fuzzy reasoning[1~3], but almost all of them
can be regarded as the same class as the conventional one.
Few papers deal with the multiobjective optimization
strictly, except for the distinguishable research by
G.H.Kim{4].

Multiobjective optimization problems, in general, have
many sclutions. The solution set of the problem is called as
a noninferior solution set. Therefore, in order to apply this
method to the optimal design of electric machines, auxil-
fary steps are necessary to find the best compromise solu-
tion.
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The preposed optimal design algorithm consists of two
parts of which each finds the noninferior solution set and
the best compromise solution, respectively. In this paper,
the algorithm is implemented by a modified genetic algo-
rithm.

The core loss of the Permanent Magnet Motors is, in
contrast to the Induction Motor, not a no-load loss because
the air gap flux of the motor varies according to the stator
current[S,6). So, the core loss formula considering the flux
variation due to the stator current is required to make the
more accurate performance predictions possible. In this
paper, a formula for the eddy current loss is derived con-
sidering the flux variation in the tooth and yoke due to the
stator current as well as the magnet.

The proposed optimal design algorithm is applied to the
design of the Interior Permanent Magnet Synchronous Mo-
tor for which two objective functions regarding motor effi-
ciency and weight are used. And the dimensions, parame-
ters and characteristics of the optimally designed motor are
compared with those of the prototype,

. OPTIMIZATION ALGORITHM

A. Formulation of the Problem

Multiobjective optimization problem with p objectives, »
decision variables, and m constraints is formulated as

Minimize  f(x).
x; 20,
‘g‘,(x) <0, j =1 m
x:(x,,---,x,,)

fx)= (fl (x),- f,,(x))

The solutions must satisfy the noninferiority condition.
Noninferiority can be defined in the following way[7];

(H

i=1-n
5.t

where

A feasible solution is roninferior if there exists no other
Jeasible solution that will yield an improvement in one ob-
Jective without causing a degmdat:on in at least one
other objective.

In general, many solutions exist satisfying the noninferi-
ority condition. So, it is necessary to find the best compro-
mise selution among the noninferior solutions. The crite-
rion for the best compromise solution differs according to
the design purposes. If a certain objective function is im-
portant among othets, the solution will exist in the neigh-
borhood of its optimum. Or, if some objective functions
have critical limits, the solution will be determined accord-
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ing to the limits. But, providing all the objective functions
have the equal importance, an adequate criterion for the
best compromise solution can be given by the min-max
optimum of the relative difference from the global optima
of the objective functions .

min max Ifk(x) fu |

v(x*) xeX,kek |fkl

where X, : feasible region in decision space

@

f k* : optimal solution of Ath objective\function
K= {],- o p}
B. The Modified Genetic Algorithm

The modified genetic algorithm is a solution method to
the vector optimization problem. The algorithm searches
both the noninferior solution set and the best compromise
solution. Algorithm for searching the noninferior solution
set has the same flow as the conventional genetic algo-
rithm, except for the following modifications;

a} Fitness values are high and the same for all the poinis
satisfying the noninferiority condition, and low ones oth-
erwise.

b) Convergence criterion is to be satisfied if no further
update of noninferior solution set is done during the pre-
determined number of iterations.

The flowchart of the modified genetic algorithm for the
vector optimization problem is shown in Fig.1.

C. Numerical Example

A numerical example which has two objective functions
is given in this section, Functions £,(x) and f,(x) given
by (3) are 2-dimensional quadratic functions each of which

Create the initial population,
and calculate the abjective function value

Y

Evaluate the fitness of each individuals,
and construct the intial noninferior solution set
le
L2

Construct the new population
by applying the genetic operator

Evaluate the objective function & fitness
of each individuals in the new population

Update the noninferior solution set,
and find the optimum of each objective function

Convergence criterion satisfied?

Yes

[ Find the best compromise solution |

v

l End |

Fig.1. Flowchart of the modified genetic algorithm

has only one minimom 100 at the point {(5,5) and (8,8),
respectively.

2
) =22z -5) +100
2
£o(x1,%,) = 2 (x, -8)" 100

f=l

minimize

&)

st (% -6) +(x,-6) ~4<0

Constraint is given by a circle centered at (6,6) with radius
2. So, the feasible region in decision space is the interior
and the boundary of the circle. Careful investigaticn shows
that the noninferior solution set in decision space and ob-
jective space are the line connecting the minimum point
(5,5) and (7.414,7.414) in the feasible region and the curve
connecting the corresponding minimum point, respectively.

Important algorithm parameters used in this paper are
given in Table 1 and the results are presented in Table 2.
Fig.2 shows the initial population which is chosen ran-
domly, the solution set in decision space obtained at the
50™ 400" generation, and the final results, the noninferior
solution set in decision and objective space obtained at the
1572™ generation, The number of the solutions obtained at
each generation are 372, 625, 696, respectively. It can be
seen in Fig.2 that the noninferior solution set converges to
the one discussed above with the generation and finally the
noninferior solution set and minimum of each function is
very close to the analytic one. From the results it can be
concluded that sufficiently large number of noninferior
solutions can be found by using the proposed algorithm
with relatively small number of iterations.

TABLE 1
IMPORTANT PARAMETERS FOR THE ALGORITHM
high fitness value 0.75
low fitness value 0.25
the number of initial population 200
the number of iterations for convergence criterion 200
probability of crossover 0.5
probability of mutation 0.05
TABLE 2
OPTIMIZATION RESULTS OF THE EXAMPLE
the number of noninferior solutions 696
the number of total iterations 1572
minimum of /i(x) 100.000
at the point (5.005,5.005)
minimum of £(x) 100.697
at the point (7.409,7.409)
the best compromise solution (5.992,5.992)
the value of /i{x) 103.938
the value of 5(x) 108.063
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Fig.2, Noninferior solution set in decision space and objective space

IIl. DESIGN OBJECTIVES OF THE MOTOR

A. Derivation of Core Loss formula

The core loss consists of the eddy current and the hys-
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teresis losses and can be calculated from the flux densities
and the rate of change of them in the stator teeth and yoke.
Analysis of the air gap flux densities due to the magnet, d-
axis and g-axis currents of the Interior Permanent Magnet
Motor shown in Fig.3 is presented in [8]. Eddy current and
hysteresis losses can be decomposed into the terms in the
stator teeth and that in the yoke. Tooth flux density B, can
be calculated considering the displacement of the magnet
edge from the center of the tooth according to the rotation
of the rotor as shown in Fig.4(a) and can be given by

1 ot p i ‘
B=T L Be(p6)l, 1,0, @
where r, : stator bore radius

[, : stator axial length

r
p  the number of pole pairs

w, : tooth width
B, : air gap flux density
. source angular frequency
A slot pitch in mechanical angle
The eddy current loss is proportional to the square of the

time derivative of the tooth flux density. So, the eddy cur-
rent loss per unit tooth volume P, can be given as follows.

2
ke T(ds,]
m:Thdtm

kmwf 2 ( 5 ey g ) (5)
= g— B, -B,csa,) +8
{ 8 (BW+ s By / ,) , SN &

+Bj(a,—s;n2a,)+B:[a,+s;n2a, +W(p2ﬂ2-1)/pﬁz]}
where £, : eddy current loss coefficient in teeth
B, air gap flux density due to the magnet
_ By, : induced flux density at the rotor surface

A

B, : peak flux density due to d-axis current

A

B, peak flux density due to g-axis current

w web width in mechanical angle
¢+ magnet pole arc angle

o, = P(a - ﬂ/2)
The stator yoke flux density B, and the eddy current loss
per unit yoke volume P, can be calculated in the same

manner considering Fig.4(b).

I'ig.3. Cross-section of the Permanent Magnet Synchronous Motor
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where - d,: stator yoke depth
kay {8
fo=7 b\ ar)

2
ko { ren, 2, sin2pe
i e ) 0
y

4

. (2pa—sin2pa+ pé+sin ps .

. Bg( P p2 pé+sinp ]-4(Bgm+3m)3dsmpa}
where £, : eddy current loss coefficient in yoke

B “!7 g (p6)i,r,do ©)

Hysteresis loss per unit volume can be obtained from the
maximum flux density in the teeth and yoke, respectively.

A

2
Py = kpy @, B

o ®
Ph.’y :.khly @, By
where  k,, : hysteresis loss coefficient in teeth
kyy, + hysteresis loss coefficient in yoke
Stator teeth and yoke volume is given by
erarh =W d.s- [r Sn ( 9)

Ve =27{r, +d, +dl, [2)d, 1,
d,: stator slot depth
S, : the number of the stator slots

where

Thus the overall core loss is expressed as

Poi = Ve Po + P )+ Vynke(Per + thy)' (10)

Core loss formula introduced in this paper can be veri-
fied by comparing the calculated core loss values with the
experimental ones of the prototype motor as shown in
Fig.5. It is very difficult to measure the core loss directly,
so is inferred from the load test as follows: if the tempera-
ture of the motor has stabilized, the stator resistance, that
is, the stator winding loss, remains constant. So measuring
the stator current and resistance, the input and output
power, and the speed of the motor after the motor tempera-
ture has stabilized, the total loss, the stator winding loss,
and the mechanical loss can be calculated. From these val-
ues, the core loss can be obtained.

Fig.5 shows the variation of the core loss data at the.
rated speed 2500 [rpm] of the motor according to the load
conditions, Calculated values agree well with the experi-
mental ones. Slight discrepancy betweén them may arise
mainly from the difficulty in the separation of the core loss
from the total loss and from the inaccuracy of the core loss
coefficients of the core material.

" B. Objective Functions

Design objectives are the efficiency and the weight of
the motor, Maximum efficiency is obtained by minimizing
the motor loss when the motor output is considered to be
constant at the rated value. So the motor loss and weight
are taken as the objective functions which are to be mini-
mized. The motor loss consists of the stator winding loss,
core loss, and mechanical loss, Other loss components are
neglected because of their little contribution to the overall
loss.

The stator winding loss can be given by

P, =3R12
__36p. N2 [ ﬂ'rska]. (n
" nfdr,+d,) LA
where g, : resistivity of wire
1“. . stator phase current

N, : the number of stator winding turns/phase
f, : stator slot fill factor
k : overhang coefficient of stator winding

Core Loss[W]
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Fig.5. Comparison between the calculated and experitental results
of'the stator core loss



From (i0) and {11), the overall motor losses are given as

follows. Mechanical loss P,, can be considered as a con-

stant value assuming the fixed motor speed.
ffoss = P+ P+ Pm! (12)

Active material motor weight is the sum of the stator,
rotor, magnet and winding weight, The rotor volume is
confined to the parts that participate in the energy conver-
sion assuming the weight of the remaining parts is not sig-
nificantly varied. This is because the variation of the design
parameters is restricted due to the rotor geometry con-
straints. It is also assumed that the density of the shaft ma-
terial is the same as the rotor core matetial.

fwer’ghr = pilr (ﬂr.cd.v + Edy (r:v + d\))

+p [,.(71‘}'_3 - l,,,(4w,,, +24, )) +4p, Wbl (13)

27,

o fidir +d, )(1,+ka . ]

where |/, ; magnet thickness

w,, : magnet width
.o, « density of the steel core
p,, - density of the magnet
p,, . density of the wire

C. Decision Variables and Constraints

Since the motor losses and the weight are represented as
a function of design parameters of the motor, several de-
sign parameters can be selected as the decision variables.
The decision variables chosen in this paper are the number
of the stator winding turns, the stator bore radius, the stator
axial length, the stator yoke depth, the stator slot depth, the
magnet thickness, and the pole arc angle,

The decision variables are restricted within the range
determined by the constraints, The constraints come from
the rotor geometry, that is, the condition that the magnets
can be inserted in the rotor as shown in Fig.3, and the elec-
trical and magnetic characteristics of the motor such as the
limits of the flux density, current density and magnet pro-
tection against demagnetization. The output power, i.e.,
motor torque and the speed, is considered to be the same as
the prototype motor for comparison purposes of the proto-
type with the optimally designed motor.

IV. RESULTS

The proposed optima!l design algorithm is applied to the
design of the Interior Permanent Magnet Synchronous Mo-
tor of 3 phase, 4 pole, 2500rpm and 600 W ratings. The
noninferior solution set in objective space is given in Fig.6.
The set is not connected, which reveals that the feasible
region of the problem is not convex. The optimal design
results are given in Tables 3, 4 and 5. The former shows
the solution corresponding to the minimum of each objec-
tive function, and the latter the comparison of the design
parameters between the optimally designed motor and the
prototype. The values of the design parameters of the op-
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timally designed motor come from the best compromise
solution defined in (2). The optimally designed motor
shows higher efficiency but larger weight than the proto-
type. But since the rotor dimension of the optimally de-
signed motor is decreased compared with that of the proto-
type, it can be deduced that the optimally designed motor
could have an enhanced servo performances because of the
reduction of the rotor inertia.

2.5

""-‘__optimal design
2.0 b i i

totype

Height
-
=
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Fig.6. The noninferior solution set in objective space of
the optimal design problem of
the Interior Permanent Magnet Synchronous Motor.

Table 3
MINIMUM OF EACH OBJECTIVE FUNCTION

(1) minimum (2) minimam
loss solution ~ weight solution
loss [W] 154,43 198.42
weight [kg] 233 1.72
the number of winding turns 432 . 492
stator bore radius fmm} 17.49 19.92
stator axial length {mm] 49.24 42.82
stator slot depth [mm] 1431 14,17
stator yoke depth fmm) 7.74 5.45
magnet thickness [mm)] 347 415
magnet pole arc angle [deg] 35.62 31.67
Table 4

COMPARISON OF THE DESIGN PARAMETERS BETWEEN THE
OPTIMALLY DESIGNED MOTOR AND THE PROTOTYPE

prototype dcs?gltlie"d\arl’rllitor
loss [W] 185,58 167.58
weight [kg] 195 2.07
the number of winding turns 480 444
stator bore radius [mm] 20.50 18.54
stator axial length [mm) 41.60 48.00
stator slot depth [mm] 1325 13.30
stator yoke depth fmm] 5.80 7.71
magnet thickness [mm] 4.00 334
magnet pole arc angle [deg) 34.35 3726
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Table 5
DESIGN PARAMETERS OF THE OPTIMALLY DESIGNED

MOTORS HAVING THE SAME WEIGHT AND LOSS WITH THE
PROTOTYPE, RESPECTIVELY :

same weight motor same loss motor

loss [W] 168.79 185.38
weight [kg] 1.95 1.76
the number of winding turns 450 436
stator bore radius [mm] 18.92 18.05
stator axial length [mm] 44,96 48.53
stator slot depth [mm] 14,15 13.94
stator yoke depth [mm]- 6.32 552
magnet thickness fmm]’ 345 3.35
magnet pole arc angle [deg] 37.09 33.85

V. CONCLUSICON

In this paper, multiobjective optimal design algorithm
using modified genetic algorithm is presented. The algo-
rithm is derived from-the conventional one by redefining
the fitness values and the convergence criterion. The main
feature of the proposed algorithm is its ability to find the
noninferior solution set in a single routine of calculation,
And the best compromise solution can be found from the
set to meet the design purposes. The effectiveness of the
algorithm is verified by the application to the 2 dimen-
sional quadratic function problem, which reveals that the
result obtained from the proposed algorithm agrees well
with the analytic one.

Also, the improved core loss formula is derived consid-
ering the flux variation due to the stator current as well as
the magnet in order to predict the motor performance more
accurately. Calculated performance is compared with the
experimental results. Finally, the proposed algorithm is
applied to the optimal design of the Interior Permanent
Magnet Synchronous Motor which has two design objec-
tives, i.e., minimizing motor logs and weight. Through the
results of the motor design, it can be concluded that the
algorithm will provide the appropriate results to meet the
design purposes.
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