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Abstract

High field superconducting magnets are used in different power appli-
cations, such as nuclear magnetic resonance systems, thermonuclear fusion
technologies and energy storage. These magnets have to fulfill high quality
standards in terms of field uniformity and stability, by keeping construction
costs and size as low as possible while respecting superconducting critical
state constraints.

The subject of this Thesis is the statement of models and resolution strate-
gies for the optimal engineering design of such superconducting power de-
vices. It is shown here that the design of such magnets can have a great ben-
efit by the adoption of the multi-objectives optimisation techniques, in par-
ticular the evolutionary approaches such as the Genetic Algorithms. State-
of-the-art models and methods of multi-objective optimisation are presented
and discussed and new strategies are proposed, able to be applied to indus-
trial relevant problems. Beside the classical approach based on the definition
of a scalar weighted-sum objective function to minimise, another strategy
exploiting the concept of Pareto optimality is adopted in addition.

A parallel optimisation environment is exploited to increase the comput-
ing performances of the proposed algorithms and to implement a distributed
multi-populations Genetic Algorithm with migration and aggression genetic
operators using new population indices.

The concept of solution robustness in the design process is introduced
to deal with the effect of manufacturing and assembling tolerances and suit-
able corrective strategies are proposed by adopting a new expression of the
objective function and Monte Carlo analysis.

The resolution strategy of inverse problems is similar to multi-objectives
optimisation problems by properly defining an error functional: the attention
is focused on non-destructive testing, where the task is to identify flaws in
critical structural parts by using external measures of physical parameters.
A benchmark for the eddy current testing problem is solved with the use of
the concept of evolution by biological diversity.

The previous methodologies are exploited with the development of two
prototypes, a software tool (Marides) and a cluster computing environment
(Beosun). The presented strategies have been then applied to test cases and
real world industrial problems. In particular, to the design of an energy stor-
age system and of both low and high critical temperature superconducting
magnets used for magnetic resonance imaging.
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Riassunto

Magneti superconduttori ad elevato campo sono usati in diverse appli-
cazioni elettriche di potenza, quali sistemi per la risonanza magnetica nu-
cleare, tecnologie della fusione termonucleare e per 'immagazzinamento di
energia. Tali magneti devono soddisfare elevati standard qualitativi, relati-
vamente all’uniformita ed alla stabilita del campo prodotto, mantenendo al
contempo costi costruttivi e ingombri quanto piu bassi possibile e rispettando
oltresi’ i vincoli legati alle condizioni critiche superconduttive.

L’argomento di questa Tesi ¢ la presentazione di modelli e di strategie di
risoluzione per il progetto ottimo ingegneristico di tali sistemi supercondut-
tori di potenza. E qui mostrato che il progetto di tali magneti puo trarre un
grande beneficio dall’adozione di tecniche di ottimizzazione multi-obiettivo,
in particolare di approcci evolutivi quali gli Algoritmi Genetici.

Modelli e metodi che rappresentano lo stato dell’arte dell’ottimizzazione
multi-obiettivo sono presentati e discussi, e sono proposte nuove strategie
da applicare a problemi di interesse industriale. Oltre il classico approccio
basato sulla definizione di una funzione obiettivo scalare come media pesata
da minimizzare, si adotta inoltre un’altra strategia che sfrutta il concetto di
ottimo secondo Pareto.

E stato sviluppato un ambiente di ottimizzazione parallela per incre-
mentare le prestazioni di calcolo degli algoritmi proposti e per implementare
un Algoritmo Genetico distribuito e multi-popolazione con operatori genetici
di migrazione e aggressione, che utilizzano nuovi indici di popolazione.

I1 concetto di robustezza della soluzione e introdotto nella fase di progetto
per tener conto degli effetti delle tolleranze costruttive e di assemblaggio e
sono quindi proposte adatte strategie correttive che utilizzano una nuova
espressione della funzione obiettivo e analisi alla Monte Carlo.

La strategia di risoluzione di problemi inversi e simile a quella adottata
per problemi di ottimizzazione multi-obiettivo con la definizione corretta di
un funzionale di errore: I'attenzione e focalizzata sulle prove non distruttive,
nelle quali il compito e I'identificazione di difetti di parti strutturali critiche,
utilizzando misure esterne di parametri fisici. Un problema test per prove
alle correnti indotte (eddy current) & risolto con 'utilizzo del concetto di
evoluzione per diversita biologica.

Le precedenti metodologie sono messe in opera con lo sviluppo di due
prototipi, un pacchetto software (Marides) ed un ambiente di calcolo di tipo
cluster (Beosun). Le strategie presentate sono state poi applicate a casi di



il

prova e problemi di effettivo interesse industriale. In particolare al progetto
di un sistema per I'immagazzinamento di energia ed a magneti supercondut-
tori, sia ad alta che a bassa temperatura critica, utilizzati per diagnostica a
risonanza magnetica.
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Chapter 1

Introduction - The Design

THis TuESIS 15 about the Optimal Design (in Power Electromagnetics).
I enclose ”Power Electromagnetics” in brackets because many topics I will
present are general and common to other engineering fields: the main atten-
tion will however be focused on the power applications, in particular on the
superconducting magnets technologies used in nuclear fusion systems and in
magnetic resonance devices.

Before talking about the Design, it is necessary to define the topic I
am going to discuss. This Chapter proposes some definitions of engineering
optimal Design.

1.1 Definition of Design

The Optimal Design is a multidisciplinary task and usually it is an iterative
work performed by a team of skilled and experienced engineers. Actually
for many people, and I agree with them, Design is, or should be, always
optimal and therefore we could simply talk about Design. In other words,
by definition a good designer always produces an optimal design.

During my University studies, I was taught to consider the ”Engineer”
(note the capital "E”) as who is able to design and to build his goal with € 1
while "the others” need € 10 for it. In this statement the attention is clearly
focused just on the economic optimisation of the design task. In general,
several other aspects should be considered.

There are many wide-range works about engineering design: I recall the
book of Sen & Yang [1] and the one of Pahl & Beitz [2] and the recent PhD
thesis of Dragan Cvetkovié [3], Geoff Leyland [4] and Johan Andersson [5].
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According to Pahl & Beitz [2]: “the main task of engineers is to apply
their scientific and engineering knowledge to the solution of the technical
problems, and then to optimise those solutions within the requirements and
constraints set by material, technological, economical, legal, environmental
and human-related considerations. Problems become concrete tasks after the
clarification and definition of the problems which engineers have to solve to
create new technical products (artifacts)”.

Another definition is given by the ABET (the US Accreditation Board for
Engineering and Technology): the ” engineering design is the process of devis-
ng a system, component, or process to meet desired needs. It is a decision-
making process (often iterative), in which the basic science and mathematics
and engineering sciences are applied to convert resources optimally to meet a
stated objective. Among the fundamental elements of the design process are
the establishment of objectives and criteria, synthesis, analysis, construction,
testing and evaluation”.

It is possible to say that Design is the process to build devices: objects
intended for desired purposes. These devices are naturally wanted as good as
possible, and even better. I want to stress that the adjective ”better” means
different depending on the field of interest. For instance, in the space sector,
better means generally lighter, while in the consumer arena, better means
cheaper.

Solving a problem or achieving a purpose can be represented as finding
a path to a goal. The path consists of a sequence of steps, where at each
step a decision among alternative choices must be made. The plan is the
sequence of decisions that leads from the starting state to the goal state.
It is realised in the given domain, its ”problem-space,” which is set by the
scientific models and technological procedures that constrain the realisation
of the goal. The search for a plan to reach the goal applies these models and
procedures as constraints on the possible alternatives at each step

1.2 Research objectives

The main objective of this Thesis is to direct the optimal design of super-
conducting power devices, in particular of high field magnets used in nuclear
magnetic resonance systems and in fusion technologies. To fulfill this goal,
state-of-the-art models and methods of multi-objective optimisation are pre-
sented and discussed in view of their application to specific problems of in-
dustrial interest. To increase the efficiency and to improve the quality of the
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available algorithms, new techniques have been developed and implemented
with the following aims:

e to introduce the concepts of solution robustness in the design process,
both during optimisation phase and as a post-processing step.

e to increase the computing performances of the proposed algorithms by
adopting a parallel optimisation environment and other high perfor-
mance computing techniques.

e to develop two pre-commercial prototypes: a high-performance parallel
cluster computer and a software for industrial optimal design.

1.3 Overview of the Thesis

This Thesis is organised in the following way:

Chapter 2 gives the general description of the problems in optimal design
of electromagnetic devices

Chapter 3 introduces the multi-objective optimisation problem and the
main topics about the Objective Function definition. In addition some math-
ematical background about the Pareto optimality concept and statistical def-
initions are given. Some test cases to be used in the following are then
described.

In Chapter 4 the current and proposed search algorithms for multi-objecti-
ve optimisation are illustrated. The main attention is focused on Genetic
Algorithms and their meta-optimisation strategies. The concepts of solution
robustness in the design process is then introduced together with the Monte
Carlo analysis.

The topics of Chapter 5 are the main issues of parallel computing ap-
plied to electromagnetics, the parallel Island Genetic Algorithms and the
new population genetic operators and indices.

In Chapter 6 the inverse problems resolution is introduced with its simi-
larity to the optimisation problems and the concept of biological diversity is
exploited.

Chapter 7 describes the developed parallel computing simulation environ-
ment (based on a Beowulf cluster) used to implement the previous models.

Chapter 8 gives some results of the proposed strategies with test cases
and real world industrial problems. The discussed problems are the design
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of an energy storage system and of both low and high critical temperature
magnets used for magnetic resonance imaging.

The conclusion of the Thesis are given in Chapter 9, together with some
further research pointers.

1.4 Appendix: Design and Nature

Many methodologies described in the following base themselves on concepts
coming from the natural world.

Some biologists debate about design in nature and about the design of liv-
ing organisms. But usually few biologists have experience designing anything
intended to achieve a specified function subject to physical constraints [6].

On the other hand, engineering can be called the science of design. En-
gineers design devices or processes to achieve a function they have in mind.
They apply physical and economic constraints to problem-solving.

The Darwinian "mechanism” of natural selection by an environment pre-
sented with alternative organisms through genetic mutation is claimed to
have produced the present complexity from the simplest forms of life. If so,
from an engineering viewpoint, this appears to be a highly empirical way
to design more complex organisms. The search mechanism is the random
selection of a given operator at each branch in the search tree of the problem
space.

However, because the actual behaviour of the Darwinian ”"mechanism”
are unidentified, it is not possible to conclude that the search is entirely
unguided. Intelligent-design theorists postulate that it is guided in a top-
down, model-driven or goal-driven way while theistic evolutionists postulate
bottom-up, data-driven or environment-driven guidance.

The statistician Amir D. Aczel in his book Probability 1 [7] recalled the
famous sentence of Albert Einstein ”God does not play dice” questioning
about how Darwinian natural evolution could produce creatures capable of
creating art, music, poetry, mathematics and philosophy, none of which seems
to have much Darwinian survival value. Are they mere by products of a brain
designed by nature only to increase its survival efficiency?



Chapter 2

The Optimal Design in
Electromagnetics

This chapter introduces the main characteristics and problems in the optimal
design of electromagnetic devices, in particular about the principal applica-
tion topic of this Thesis, the design of high field superconducting magnets.

2.1 Electromagnetic devices

THE OPTIMAL DESIGN of an electromagnetic device is a complex process
including the definition of the device layout and the selection of the design
parameters, in such a way to perform "as well as possible” the assigned
task with the satisfaction of the required performances and of the imposed
physical and technological constraints due to the stringent and demanding
requirements and quality standards [8].

Previously, the device, its performances and characteristics have to be
properly modelled. Like other engineering activities, the design in electro-
magnetics involves unstructured, real-life features that are hard to model,
since they require inclusion of unusual factors (from accident risk factors to
aesthetics). In general, the final cost of the device is an important aspect: it
includes the materials cost, the production and manufacturing cost and the
maintenance cost. Factors like the physical life span of the device have often
to be taken into account with the minimisation of the device probability of
failure.

For industrial relevant problems, in particular in the power and energy
field, the optimal design is usually a multi-objective task where different
specifications, often in conflict among them, have to be pursued with several
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design Degrees Of Freedom (DOF) [4]. The optimisation of the device looks
for an equilibrium point of the different and non-homogeneous goals. Each
generic admissible solution for the design problem represents one point in the
multi-dimensional design space spanned by all admissible device parameters
satisfying the requirements and the technological and physical constraints.

Therefore it is necessary the use of a multi-objective optimisation strategy
based on a rigorous mathematical formulations and automatic design aids to
help the engineer’s technical sensibility and experience during the process.

Due to the presence of multiple quasi-optimal solutions and to the typical
complexity of electromagnetic calculations, the automatic optimal design of
electromagnetic devices is a very challenging task. In addition, as a further
complexity element, the mathematical model of the design problem does not
always include all the design goals and constraints: it could be too diffi-
cult to mathematically define some of the objectives or constraints or the
inclusion of a particular objective could deeply increase the complexity of
the problem resolution. For instance, some of these not usual constraints or
"auxiliary” information about the problem come from the designer’s experi-
ence and knowledge. For these cases, it is preferable to adopt an optimisation
strategy able to find a set possible solution: in this way, the Decision Maker
(DM) has the final duty of selecting the best solution among the set.

2.2 Basic problems in engineering design

Some of the basic problems of engineering design can be stated in the follow-
ing way [3]:

e There are objectives and there are constraints. The difference between
them is not always well established and some of them can move from
objectives to constraints or vice-versa.

e Some constraints are strict and some are not and can be relaxed.

e The design parameters ranges can be also ”fuzzy” and flexible: the real
bounds are not always known at the beginning of the design process.

e The parameters and the objectives values can be effected by uncertain-
ness due to measure or computing errors.

e The output should contain both optimal solutions and suggestions of
extending ranges and/or inclusion/removals of constraints.
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e [t is useful for the engineer to have a set of results to post-analyse:
for instance, those results can be processed by some other programs or
tools or by consulting some knowledge databases or experts.

In engineering practice, the optimal design problem is usually formulated
in terms of constrained optimisation of a multi-objective scalar function,
typically constructed as a weighted sum of different cost functions, each one
specialized to mathematically represent a partial objective. The overall Ob-
jective Function (OF') is then minimised inside a suitable search domain
defined by the admissible ranges for each parameter while taking into ac-
count the imposed constraints. In general, the OF presents multiple local
minima scattered in the admissible solutions space: therefore its minimisa-
tion calls for global techniques able to explore the complete space without
being trapped by local minima.

Stochastic evolutionary strategies are a family of well known global op-
timisation algorithms widely used in different research fields for their ro-
bustness and generality. In particular, the Genetic Algorithms (GAs) have
achieved a particular relevance, both for their quite simple implementation
and for the effectiveness of their action: recently performed numerical exper-
iments confirmed the interest and documented the algorithm performances.

"Real world” design problem can be very demanding in terms of com-
puting resources, by requiring the resolution of a complex electromagnetic
problem for each OF evaluation: High Performance Computing (HPC) tech-
niques are therefore necessary to low down the development time of a new
device configuration when the complexity of the adopted models increases.
In such a context, the present growing diffusion of parallel computing archi-
tectures pushes towards the development of innovative versions of the min-
imisation algorithms able to take maximum advantage of the performances
and specific technical characteristics of the new computing resources.

2.3 Superconducting magnets

Superconductors are a class of materials which show no Ohmic resistance
to direct current when cooled below a critical cryogenic temperature 7T, also
called the transition temperature. In addition, superconduction state requires
that the current density passing through the material must be below a char-
acteristic level known as the critical current density (J.) and the magnetic
field, to which the material is exposed, must be below a characteristic value
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(critical magnetic field H.). These critical conditions are interdependent and
define the environmental operating conditions for the superconductor. Su-
perconducting wires provide significant advantages over conventional copper
wires because they conduct electricity with little or no resistance and asso-
ciated energy loss and they can transmit much larger current density than
conventional wires.

2.3.1 Design of fusion magnets

A promising approach to produce energy is the use of controlled thermonu-
clear fusion machines, whose development is performed since many decades
all over the world. The most studied configuration to achieve magnetic con-
finement of the very hot plasma, where the fusion process evolves, is called
tokamak (toroidal chamber machine, by the original Russian acronym). A
huge superconducting magnetic system is used in a tokamak fusion machine
to generate the strong fields required in a wide region [9]: for this purpose,
conventional resistive magnets are not attractive due to the large energy
needed to feed such magnets, in addition to technological issues. The mag-
netic system is composed by a set of coils wound with superconducting ca-
ble: the design of such coils has to be properly processed in order to fulfill
the wanted requirements. The project ITER (International Thermonuclear
Experimental Reactor) has gathered worldwide significant research and de-
velopment efforts about superconducting magnets and conductors. In the
framework of the ITER project, two model coils have been built and are now
under testing: one of these, the TEFMC (toroidal field model coil), is shown
in Figure 2.1.

2.3.2 Design of MRI superconducting magnets

Superconducting magnets for Magnetic Resonance Imaging (MRI) are de-
signed to provide very strong magnetic fields with quite high levels of ho-
mogeneity [10]. Suitable optimisation techniques can be effectively used to
choose the magnet geometrical parameters (e.g. dimensions and position
of each coil), while satisfying mechanical and physical constraints (e.g. di-
mensions of the wires and packaging factors or superconductor critical cur-
rents) [11].

For the design of MRI magnets, the main performance figure is the homo-
geneity of the magnetic field in the Volume of Interest (VOI). In the analysis
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Figure 2.1: ITER project: toroidal field model coil (TFMC).
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of MRI magnets, a spherical harmonics expansion of the flux density field
can be used inside the sources free VOI:

oo n—1
B.=po Y 'y {(n —m) cos) P™(cos ) + sin 9 P (cos 19)} X (2.1)
n=1 m=0

[A,,, cos my + B, sin my|

where (7,0, ¢) are the coordinate of the field point, with the axis z aligned
with 6 = 0, and P are the Legendre functions of the first kind. Only the
field component along the axis z of the coil system is considered, because
other components are negligible with respect to the main component, on
condition that the needed field is highly uniform.

The coefficients A,,,, and B,,, provide an effective measure of the field
homogeneity: for a perfectly homogeneous field, all the coefficients are equal
to zero except for the first one, which is equal to the field magnitude. Rather
effective techniques have been proposed to evaluate A, and B,,, with good
accuracy and limited computation time, allowing to perform analysis with a
large number of runs even on a PC-class computer [12].

For axial-symmetric fields, there is no dependence by the azimuthal co-
ordinate ¢ and only the terms with m = 0 are not vanishing. The field
expansion (2.1) reduces to:

B, =g Y Apor™! [n cos ¥ P?(cos ) + sind) P! (cos 19)} (2.2)
n=1
The lack of homogeneity Uni f(x) for the magnets configuration x is de-
fined as the ratio between the maximum field variation inside the VOI and
the central field B,(0). Unif(x) is measured in ppm (parts per million) as

— 106 |Bz(pmax) — Bz(pm1n>|
B.(0)

where Praz € Pmin are respectively the points in the VOI where the field get

Unif(x) (2.3)

its maximum and minimum values. Due to the analyticity of the field, the
Pmaz € Pmin points are on the VOI boundary.



Chapter 3

Optimisation Problems and
Objective Functions

In this chapter, the multi-objective optimisation problem is defined and some
mathematical and statistical background are recalled, in particular the con-
cept of Pareto optimality. Topics related to the definition of the Objective
Function are introduced. Then, some test cases, used in the following, are
presented.

3.1 The optimisation problems

USUALLY THE OPTIMISATION problems are defined by using a scalar Ob-
jective Function that is used to evaluate the solution quality, as recalled in
the previous chapter. The OF imposes a total order on the set of potential
solutions and the task is simply to search for an optimum.

For many real world applications, however, when it is required to find
solutions that simultaneously optimise two or more distinct criteria of prefer-
ence, other approaches are possible. These multi-objective problems present
a number of challenges that do not arise in scalar optimisation. In most cases,
for example, there do not exist solutions that are an optimum on all problem
objectives, and so there is no ideal solution: rather, there are a number of
solutions that represent different tradeoffs of the objectives. In this context,
the aim of the search has to be properly defined together with a method to
compare the solutions in order to drive the search.

11
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3.2 Definition of the problem

Single objective optimisation problems (SOPs) involve the minimisation of
a scalar function f(x) (the objective function), where x = (xy,...,z,) is a
point in the optimisation parameter space R". The general problem class to
be considered is known as nonlinearly constrained single-objective optimisa-
tion problem and can be expressed in mathematical terms as [13]:

min! f(x) xeR” (3.1)
subjected to  ¢j(x) =0, j€E
cj(x) >0, jel

low ,.up

z; € [z, x

7 »7e

| i=1,...,n

where ¢j(x),j = 1,...,p are the constraint functions, E is the index set of
equality constraints and [ is the index set of inequality constraints, where
both sets E and I are finite. The x!° and z;? are the lower and upper
range limits of the i-th variables x;. The objective function f(x) and the
constraint functions ¢; are real valued scalar functions. Any point x satisfying
all constraints of the optimisation problem is called feasible. The set of all
feasible points is called the feasible region.

Multi-objective optimisation problems (MOPs) involve the ”minimisa-
tion” of a vectorial function F(x) = (fi(x), ..., fe(x)) € R, where fi(x) are
the partial objectives. Because the R* space is not ordered, the meaning of
the minimisation of the vectorial function F has to be properly defined by
introducing some ordering technique (for instance by using the Pareto domi-
nance concept presented in the following). The multi-objective optimisation
problems is defined as:

min! F(x) F € RF xcR" (3.2)
subjected to  ¢;(x) =0, j€FE
cj(x) >0, jel

=1,...n

The conditions for the existence of solutions of the problems (3.1) and
(3.2) are reported in [13].

For solving a MOP, a human Decision Maker (DM) is necessary to state
the often difficult tradeoffs between conflicting objectives [14]. Depending
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on how optimisation and the decision process are combined, multi-objective
optimization methods can be broadly classified into three categories:

Decision making before search The objectives of the MOP are aggre-
gated into a single objective which implicitly includes preference infor-
mation given by the DM.

Search before decision making Optimisation is performed without any
preference information given. The result of the search process is a set

of (ideally Pareto-optimal, see next sections) candidate solutions from
which the final choice is made by the DM.

Decision making during search The DM can articulate preferences dur-
ing the interactive optimisation process. After each optimisation step,
a number of alternative trade-offs is presented on the basis of which
the DM specifies further preference information to guide the search.

The aggregation of multiple objectives into one optimisation criterion has
the advantage that the classical single-objective optimisation strategies can
be applied without further modifications. However, it requires knowledge
of the search domain, which is usually not available. Performing the search
before decision making overcomes this drawback, but excludes preference
articulation by the DM, which might reduce the search space complexity.
Another problem with this second and also with the third algorithm category
might be the visualisation and the presentation of non-dominated sets for
higher dimensional MOPs [15]. Finally, the integration of search and decision
making is a promising way to combine the other two approaches, uniting the
advantages of both.

3.3 Partial and total order

For the multi-objective optimisation problem, the concept of order of a multi-
dimensional space has to be introduced by the following definitions [3]:

Definition 3.1 Order

Partial order Binary relation R is a partial order on domain D if and only
if it satisfies the following three properties:

1. reflexivity: for allx € D, R(z,z);
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2. antisymmetry: for all v,y € D, if R(x,y) and R(y,x) then
=Y,

3. transitivity: for all z,y,z € D, if R(x,y) and R(y,z) then
Rz, 2).

Total order Binary relation R’ is a total order on domain D if:

1. It is a partial order;
2. For allz,y € D, R'(x,y) or R'(y,x).
Strict order Binary relation R” is a strict (partial) order on domain D if
it satisfies the following two properties:
1. trreflexivity: For allx € D, = R"(x,z);
2. transitivity: For all z,y,z € D, if R"(x,y) and R"(y, z) then
R'(x,z).

The notations < and > are commonly used for partial and < and > for
strict orders.

Definition 3.2 Chain
Subset D' C D is called chain with respect to partial order < if every two
elements of D' are comparable, i.e. for allz,y € D', x <y ory < x.

Examples

e The usual order on a set of real numbers is a total order: it is always
possible to say for any two real numbers x and y if x <y or y < x.

def

o If D={(z,y) | z,y € R}and{(x,y) <2 (z1,y1) —

Y1)} then

(z<m)A(y<

1. Order <, is (non-total) partial order on D since, for example,
(2,3) = <5 (3,2) and (3,2) = <5 (2,3);

2. Sets {(z,0) | z € R} and {(0,z) | * € R} are examples of chains
according to <,.



CHAPTER 3. OPTIMISATION PROBLEMS 15

For the multi-objective optimisation problems, the multi-dimensional com-
ponent-wise order relation < is not a total order: it is not fulfilled that for
every two vectors X,y € R" | x <y ory < x, i.e. not every two elements
are comparable. In multi-dimensional case, this ordering relation is a partial
order. Instead of one total order, we have (possibly many) chains where ev-
ery two elements within a chain are comparable. The greatest element of a
chain is called a mazimal element [3].

3.4 Mathematical background

Some definitions used in the following are here presented.

Convexity The set K € R" is conver if, for any points x;, X3 in the set,
the line segment joining these points is also in the set, i.e.:

Vx;, x0€ K @ xg=(1-0)x3 + 0xy € K Vo e [0,1]

3.4.1 Pareto dominance

Pareto Dominance A vector u = (uy,...,u,) is said to dominate v =
(v1,...,v,) and is denoted by u < v, if and only if u is partially less
than v, 1.e.,

Vie{l,....,n} w<v; ANIje{l,....,n}: u; <v, (3.3)

Pareto (Optimal) Set For a given multi-objective problem F(x), defined
as in (3.2) in a set 2 C R™, the Pareto optimal Set P is defined as:

P={xeQ|-3x' e€Q: FxX)<Fix)} (3.4)
P is the set of all elements in {2 whose image is non-dominated.

Pareto (Optimal) Front For a given multi-objective problem F(x), de-
fined as in (3.2), and Pareto optimal Set P, the Pareto Front PF is
defined as:

PF:={u=Fx)|xeP} (3.5)

The Pareto Front is therefore the maximal set of nondominated feasible
solutions.
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3.4.2 Statistical definitions

These statistical definitions [16] will be used later.

PMF The probability distribution of a discrete random variable Y is repre-
sented by its Probability Mass Function (PMF), defined as:

py(y) = PY =y} (3.6)
where P{Y = y} is the probability of Y to have the value y.

Probability distribution function If X is a continuous random variable
and z the generic value of X, the probability distribution function of
the random variable X is defined as

Fx(z) = P{X <z} VezeR (3.7)

where P{X < z} is the probability of X to have values not greater than
z. Fx(x) is also called the cumulative probability function or Cumu-
lative Distribution Function (CDF). By the definition, the probability
in an interval ]a, b] is:

P(Ja,b]) = Fx(b) — Fx(a) (3.8)

PDF The Probability Density Function (PDF) fx(z) of a continuous ran-
dom variable X is defined by:

P@) = [ fx@)do (3.9
Since the probability of the event is 1, the PDF is normalised:
/_O:O Fxlz)de =1 (3.10)
Expecter value E Also referred as mean or first order moment:
E[X] = /o; o fx () dz (3.11)
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Variance 0% Also referred as second order moment:
a§:[ (x — E[X])?fx(z) do (3.12)

The square root ox of the variance is called standard deviation.

Uniform PDF The continuous uniform PDF is defined as:

‘&@*:bia if 2 € [a,b]

fx(x)=0 otherwise

For the uniform PDF it results:

(b= a)*
12

a+b
E[X] = 5 oy =

Gaussian (normal) PDF For two real parameters ;1 > 0 and o > 0, the
continuous Gaussian PDF is defined as:

1 o—p)?
fx(x) = e (3.13)
2ro
For the Gaussian PDF it results:
E[X]=u ox =0’

The special case 1 = 0 and 02 = 1 is called standard normal PDF.

Central Limit Theorem The Central Limit Theorem is an important math-
ematical result which states that for a continuous random sample of
observations from any distribution with a finite mean and a finite vari-
ance, the sample mean will tend to follow a normal distribution for
large samples.

Confidence Interval It is a statistic value constructed from a set of data to
provide an interval estimate for a random variable. The confidence level
associated with the interval, usually 90%, 95% or 99%, is the percentage
of times, in repeated sampling, that the intervals will contain the value
of the random variable.
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3.5 Definition of the Objective Function

The multi-objective optimal design can be performed by using vector or scalar
optimisation techniques. The former are based on the separate evaluation
and optimisation of the different partial objectives, while in the latter the
partial objectives are combined in some global cost function. For scalar
optimisation the problem is therefore reduced to the minimisation of a single
Objective Function. Therefore the OF provides a compact quantitative value
to the satisfaction of the several design goals, as a function of all design
parameters. The "quality” of each design solution is described by the value
of the OF in the actual configuration.

The single objectives can be commensurable, if they are expressed in
the same units, or non-commensurable: usually, for engineering optimisation
problems, the objectives are non-commensurable.

Scalar OF's are typically assumed as the weighted sum of the different
objectives, which have to be properly normalised and adimensionalised:

OF (x) = ;wi fi(x) (3.14)

where £ is the number of the partial objectives, f; is the i-th partial objective
normalised in [0,1], = is the design parameters vector and w; are suitable
weights, with w; > 0 and

k
dw; =1 (3.15)
=1

Of course, OF(x) = f(x) for SOP. The choice of the weights is made
to keep the order of magnitude and the sign of the partial objectives. The
optimal selection of the weights w; has to be performed by the designer on
the basis of the relative importance of the various objectives: the weights
are an a-priori articulation of the designer preferences and typically they
strongly influence the final results. Different strategies to express the designer
preferences among the objectives and to address the choice of the weights are
reported in [17].

In many industrial design problems, the OF' is non-continuous or non-
analytic. In addition, for a wide class of optimal design problems, due to non-
linear relationship with the design parameters, the OF presents multiple local
minima, each corresponding to one of possible quasi-optimal solutions. When
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the attraction basin of the minimum is unknown, to prevent the trapping into
local minima, the whole parameters space has to be therefore scanned.

3.6 Constraints handling: penalty functions

Constraint handling methods used in classical optimization algorithms can
be classified into two groups: (i) generic methods that do not exploit the
mathematical structure (whether linear or nonlinear) of the constraints (i.e.
¢; functions in (3.1) or (3.2)) and (ii) specific methods that are only applicable
to a special type of constraints.

Generic methods, such as the penalty function method, the Lagrange
multiplier method, and the complex search method are popular, because each
one of them can be easily applied to any problem without significant changes
in the algorithm [13]. However specific methods, such as the cutting plane
method, the reduced gradient method and the gradient projection method,
are applicable either to problems having convex feasible regions only or to
problems having a few variables, because of the increased computational
burden with large number of variables [18].

From here, I will refer; for simplicity, just to SOP. A very common ap-
proach to handling constraints (linear or not linear) is to transform the con-
strained problem into an unconstrained one by adding penalty functions to
the objective function f:

Ncon

D) = F(x) + Y Px) (3.16)

where ®(x) is the modified objective function, N, is the number of vio-
lated constraints and P;(x) is the penalty function for the i-th constraint.
These penalty terms weight the constraints violations, penalising non-feasible
solutions.

The penalty function method presents the following properties:

1. The ® value of a feasible solution is equal to its objective function value

£l

2. The ® value of an infeasible solution is always worse than that of a
feasible solution.

3. The ® value of a infeasible solution having smaller constraints violation
than another infeasible solution is better than the latter one.
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A deeper discussion about penalty functions will be developed later in
the Section 4.4.1, with their application to stochastic optimisation.

3.7 Test problems

In this Thesis some benchmark problems have been used to test different
optimisation strategies. For the selection of an effective benchmark problem,
it is important that the problem should be as much as possible similar to the
typical "real world” electromagnetic models. In particular the benchmark
function to minimise should be non-linear, non continuous, multimodal with
multiple minima and its definition domain should be non connected. In
addition, the function minima should be close to the non-feasible solutions
region.

3.7.1 Rastrigin function

For preliminary studies, the widely used Rastrigin analytic function has been
considered. It is defined by:

f=nA+> [z} — Acos(2ma;)] (3.17)
i=1

where the parameter A = 10, n is the dimension of the search space, i € [1,n]
and z; € [—5.12,5.12]. This multimodal function has a global minimum at
x; = 0, where it values zero, and several local minima: for example, the
function values 1 in the points located at z; = 1 and z;% = 0 Vj. To
introduce some of the characteristics of the typical electromagnetic problems,
not feasible regions have been set for the x; variables, with 7 odd, in the
ranges [—1.8, —1.1.] and [1.1,1.8]: is such a way the search space becomes
not connected and some of the minima are located close to the border of the
space. In addition, a discontinuity has been introduced at x; = £2.1, with ¢
even. In Figure 3.1 a section of the modified Rastrigin function with n = 2
is plotted in the plane xo = 0 for z; € [0,5.12]: it is visible the not-allowed
interval x; € [1.1,1.8]. In Figure 3.2 it is plotted the section in the plane
x1 =0 for xo € [0,5.12]: it is visible the discontinuity in xs = 2.1.
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Figure 3.1: Section of the Rastrigin function on the plane z,=0 for n = 2.
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Figure 3.2: Section of the Rastrigin function on the plane x1=0 for n = 2.
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3.7.2 TEAM 22 Problem

As an example of a "real world” benchmark problem, the optimisation design
has been performed for a superconducting system called SMES (Supercon-
ducting Magnetic Energy Storage) [19]. SMES systems are devices used to
store energy in magnetic fields generated by coils wound with superconduct-
ing wires. These devices can be applied for electrical load levelling and peak
load supply in power network or for protection of critical user facilities against
voltage dips. Due to the increase of power quality demand, SMES can be
also used for filtering the harmonic content in power transmission lines.

SMES are mainly characterised by the maximum stored energy: depend-
ing on the particular application, the SMES systems are designed for a max-
imum energy in the range 0.1 + 200 MJ. In a SMES device design, beside to
satisfy the specific device requirements, attention has to be given to other
cost factors, such as the superconductors volume and the overall dimensions.

For construction reasons, the most effective configuration for SMES wind-
ings is a short solenoid. Unfortunately, such structures generate stray mag-
netic fields in a wide surroundings area: these stray fields can be non-
conforming with environmental specifications related to human safety and
they can also interfere with the correct operation of other equipment. For
this reason, SMES devices include a second coil as an active shield, whose
position, shape and currents are included in the design parameters set.

A shape optimisation is then required to find a good choice of the free
parameters, according to the design constraints. Note that the dependence of
the device performance on the design parameters is quite complex, taking also
into account that the superconductors critical current conditions should not
to be violated. Due to the presence of multiple local optima, scattered in the
parameters search space, a global search algorithm is strongly recommended
to perform the SMES design.

Here the SMES design has been performed according to TEAM (Testing
Electromagnetic Analysis Methods) Problem 22 (see TEAM Web Page at
http://ics.ascnd.uakron.edu/ ), treating of an optimal SMES design with the
following specifications:

e The stored energy in the device should be 180 MJ.
e The stray field should be as small as possible.

e The current density inside superconducting coils must not violate crit-
ical conditions, depending on the magnetic field intensity, required to
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guarantee the superconducting state.

The critical condition, relating the current densities ||J|| with the maxi-
mum values of the magnetic flux density ||B|| within the coils, for an indus-
trial superconductor is approximated by:

||| = (6.4 BJ| +54) A/mm? (3.18)
The following Objective Function is used:

|E - Eref| + B?tray
Eres B2

norm

OF =F +F, =

(3.19)

where: E is the magnetic energy of the device, E,.y = 180 MJ, B, orm =
2E~* T and

22

B

2 o ‘ stray ;

Bstray - § : 29
=1

2

(3.20)

Bgtray is evaluated at 22 equidistant points along line a and line b in
Figure 3.3. From the numerical point of view, the coils are schematised by
a set of filamentary circuits. Due to the linearity of the problem, analytical
formulas can be adopted to evaluate the field energy and the magnetic fields
by superposition. The magnetic energy E is calculated by:

Lo
E = 3 I'LI (3.21)
where L is the inductance matrix and I is the filamentary current vector.
The inductance matrix elements are evaluated using well known approximate
formulas [20]. The stray field and the magnetic field inside the coils, needed
to check the critical condition, are evaluate using the Urankar’s formulas [21].

Three parameters problem

Two subproblems are defined in the TEAM 22 benchmark. For the small
problem, the three design parameters are the dimensions of the outer coil
(Rg, ho/2, dy defined in Figure 3.3), while the inner coils dimensions and
the current densities are fixed. The geometrical boundaries for the design

parameters and the fixed parameters (Ry, hi/2, dy, Ji, J2) values are given
in Table 3.1.
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Figure 3.3: TEAM 22 problem: SMES geometry.
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Ri | Ry [hi/2| ha/2 | di | do Iy J

(m) | (m) | (m) | (m) | (m) | (m) | (MA/m®) | (MA/m?)
Min | - | 26| - |0204| - |01 - -
Max | - | 34| - | 11| - |04 - -
Fixed | 2.0 | - | 08 | - |027| - 22.5 22.5

Table 3.1: Geometrical constraints and fixed parameters of the SMES design
parameters: three parameters problem.
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Ry | Ry [ /2 he/2] di | do I Jo

(m) | (m) | (m) | (m) | (m) | (m) | (MA/m?) | (MA/m?)
Min | 10 | 1.8 | 0.1 | 0.1 | 0.1 | 0.1 10 -10
Max | 40 | 5.0 | 1.8 | 1.8 | 0.8 | 0.8 30 -30

Table 3.2: Allowable ranges for the SMES design parameters: eight param-
eters problem.

Eight parameters problem

For this quite more difficult problem, there are eight design parameters: the
dimensions of the two coils and the two current densities (R, Ra, h1/2, ha/2,
dy, dy, Ji, Jo in Figure 3.3) with their allowable boundaries given in Table 3.2.



Chapter 4

Search Algorithms

7If there is a set of strategies with the property that no player can benefit by chang-
ing her strategy while the other players keep their strategies unchanged, then that
set of strategies and the corresponding payoffs constitute the Nash Equilibrium”
(by John F. Nash Jr. [22]).

In this chapter, different strategies to solve the multi-objective optimi-
sation problem are presented, together with the Pareto optimality and sen-
sitivity analysis concepts. The main attention is focused on the Genetic
Algorithms. The developed and implemented algorithms have the principal
aim to increase the robustness of the problem solutions.

4.1 Pareto optimality and OF minimisation

T'wo oF THE STRATEGIES for multi-ob jective problems resolution are to cast
it as the minimisation of a scalar OF or as a Pareto Set search. As already
reported, usually the multi-objective problem defined in (3.2) is solved by
introducing a scalar OF, as in (3.14), defined as the weighted sum of the
single objectives to minimise. Each set of weights codes a different choice
made by an expert of the design problem (the Decision Maker) about the
relative importance of the single objectives. By varying the weights, the
objectives space can be spanned by modifying the OF landscape, where the
term OF landscape refers to the hypersurface in R™™! space obtained by
applying the OF to every point in the search space R" [23].

A different way to approach the multi-objective optimisation problem was
introduced by the Italian economist Vilfredo Pareto in XIXth century [24].
Such a method is based on the concept of non-dominated solutions, as defined

26
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in Section 3.4.1. A solution of a multi-objective optimisation problem is non-
dominated if does not exist another solution which gains better values of each
partial objective: in other words, given a non-dominated solution, it is not
possible to improve a partial objective without getting worse another one.
The Pareto Set is the locus of all non-dominated solutions and the Pareto
Front is the image of the Pareto Set in the objectives space [25].

The Pareto Front gives a global view of the optimisation problem without
assuming any particular decision about the relative importance of the partial
objectives and including the solutions related to all possible combinations of
relative weights among objectives.

In the ideal case, each global minimum of the OF, with its particular
weights set, is a point of the Pareto Front of the problem [26], [27]. Therefore,
solving the weighted optimization problem (3.14) for a certain number of
different weight combinations yields a set of Pareto optimal solutions: on
condition that an exact optimization algorithm is used and all weights are
positive, this method will only generate Pareto optimal solutions, as it can
be easily shown [28]. Assume that a feasible decision vector a minimises O F
for a given weight combination and is not Pareto optimal. Then, there is a
solution b which dominates a, i.e., without loss of generality fi(b) < fi(a)
and fi(b) < fi(a) for i = 2,....k. Therefore, OF (b) < OF(a), which is a
contradiction to the assumption that OF(a) is minimum.

The disadvantage of this technique is that it cannot generate all Pareto
optimal solutions with non-convex Pareto Front surfaces [5]. This is illus-
trated in Figure 4.1 for a two-objectives example. For fixed weights wy, wo,
the solution x is sought to maximize y = wy f1(x) + wy fo(x). This equation
can be reformulated as fa(x) = —31fi(x) + £, which defines a line with
slope —¥1 and intercept .~ in the objectives space (f1, f2). Graphically,
the optimisation process corresponds to move this line downwards until no
feasible objective vector is below it and at least one feasible objective vector
(here the vector ending in the point A) is on it. However, the point B, in a
non-convex region, will never minimise OF because no tangent line totally
below the Pareto Front can pass through it.

In order to be able to locate points on non-convex parts of the Pareto
Front, the weighted £,-norm problem could be solved instead [29]. The
weighted £,-norm problem is actually a generalization of the weighted sum
formulation (3.14) and it is defined as:

k

or() = {3 [wif@«x)r’}; (@.1)

i=1

where p is an integer satisfying 1 < p < oco. With an appropriate value of p,
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Figure 4.1: Pareto Front and OF.

all Pareto optimal points could be obtained but, however, such a value for p
is unknown in advance. Moreover, a high value of p increases the difficulty
of solving the optimization problem. In the extreme case where p = oo, the
problem to minimise the (4.1) is known as the weighted minmaz formulation.

In practical applications, the (approximate) Pareto Front of the problem
can be find by numerically solving many problems (3.14) by using different
weights set and to retain the non-dominated approximate minima solutions.

4.1.1 Pareto front: analytical test case

The previous procedure to find Pareto optimal solutions has been tested with
an analytical multi-objective problem with one DOF (the ”design parame-
ter” x) and two partial objectives defined by:
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-0.5 0 0.5 1

Figure 4.2: Pareto Front analytical test case: partial objectives plots and
OF's for different weight sets (the minima of each OFs are plotted with
marks).

Fi(x) =1+ a?

Fy(z) = 1 -z + 22 (4.2)

F} has a minimum F; = 1 for x = 0 and F, has a minimum F» = 3/4 for
x = 1/2. The partial objectives are plotted in Figure 4.2 together with the
scalar OF = w1 F| + woFy for seven different sets of weights: for each OF
the minimum is plotted with a mark. The seven weight sets are reported
in Table 4.1 together with minima values of OF and the corresponding =
values.

The Pareto Set of the multi-objective problem is the interval = = [0,1/2],
where the first objective F} increases with x and the second one F; decreases:
note that the Pareto Set is simply connected. The corresponding Pareto
Front is plotted in Figure 4.3 with continuous line in the objectives plane:
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w1y Wa Ome Tin,
0 | 1 | 0750 | 1/2
1/4 | 3/4| 0.859 | 3/8
1/312/3| 0.889 | 1/3
1/2|1/2] 0937 | 1/4
2/3|1/3| 0972 | 1/6
3/4|1/4| 0984 | 1/8
1 0 1 0

Table 4.1: Pareto Front analytical test case: minima OF's for different weight
sets.

similarly to the Pareto Set, the Pareto Front is simply connected.

As reported before, the Pareto Front can be computed by finding the
minima of the OF for different weights. Each minimum of OF corresponds
to a point in the Pareto Front when plotted in the objectives plane: in
Figure 4.3 the points are plotted with different marks, as listed in legend.
Note that, for each of such points, the corresponding weights give also the
values of the local tangent to the Pareto Front, as:

8F2 . w1

8F1 B W9

For the points inside the Pareto Set, small variations of the x variable

keep the point inner to the Set: therefore the corresponding point in the

objectives space moves along the Pareto Front. In other words, tolerances

on the design variable give no effect, in the sense that we get another Pareto

optimal solution. At the boundaries of the Pareto Set and in their neigh-

bourhood, small variations of the x variable can fall out of the Set and the
solutions can become not Pareto optimal.

(4.3)

4.2 Stochastic and deterministic methods

The algorithms for the resolution of an optimisation problem can be classified
in two general classes [13]: deterministic methods and stochastic methods.
A method is deterministic if, for a given initial point (guess), its trajectory
in the search space is predetermined and depends by the algorithm strategy:
the deterministic methods find always the same solution for each instance,
if they start from the same initial guess. The stochastic methods perform
instead some kind of random walk in the search space and their results are
usually non ”deterministic”.
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Figure 4.3: Pareto Front analytical test case: Pareto Front with MC worst
cases bars in dashed lines for partial objectives.
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Deterministic methods are both theoretically well analysed and numeri-
cally well tested tools to determine the optimal solution, if the starting point
is chosen in an appropriate way. Stochastic methods results do not depend
by a starting guess and, therefore, they can be seen as more "robust” meth-
ods for applications where no preliminary suggestions about the minimum
position are provided. Sometimes a two steps strategy is adopted, with a
preliminary global search by a stochastic approach followed by a deep local
optimisation by a deterministic algorithm [30].

Beside evolutionary approaches widely presented in the following, Monte
Carlo (MC) methods can be classified as a stochastic strategy: they employ
a pure random search where any selected trial solution is fully independent
of any previous choice and its outcome [31].

Optimisation methods can also be classified by the order of the algorithm,
which is the maximum derivative order of the objective functions used by
the algorithm. For simplicity, in the following I will just refer to problems
defined by a scalar OF. The OF is in general not differentiable and, if its
derivatives are needed, an interpolation of the OF has to be introduced by
assuming some model of its local or global behaviour in the search space
(for instance a quadratic model). By using zero-th methods, no derivative
of OF are needed and therefore, no model of the objective function OF is
established. On the other hand, the heuristic nature of these interpolating
methods is reflected by a more or less large number of strategy parameters
to be selected: the success of the different methods often crucially depends
on the choice of these parameters.

The choice of the minimisation method follows the characteristics of the
function OF, which is generally nonlinear and usually presents for industrial
problems one or more of the following properties:

e (Calculation of OF' is very expensive or time-consuming. For exam-
ple, each value of OF may be obtained by solving a costly numerical
subproblem or performing a sequence of laboratory experiments.

e Exact first partial derivatives of OF cannot be calculated. Either the
gradient does not exist, for example, when OF is discontinuous, or OF
is defined from a complex or convoluted computational structure that
obviates application of automatic differentiation techniques.

e Numerical approximation of the gradient of OF is impractically expen-
sive or slow.

e The values of OF are ‘noisy’. For example, the calculated value of OF
may depend on discretisation, sampling on a grid, inaccurate data, or
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an adaptively solved subcalculation (such as numerical quadrature or
Finite Elements Analysis).

A possible approach to deal with the OF computational cost and with
noisy data is to use curve-fitting or other data modelling techniques based
on a set of evaluated OF data points to derive new simpler objective func-
tions that represent the original ones explicitly and with acceptable accuracy.
These new models are sometimes referred to as surrogate models or metamod-
els. Any subsequent call of the OF during the optimization phase is replaced
by the surrogate models containing the explicit functions: using surrogates
may reduce drastically the computational load in a large design model. When
a final design is reached, the original algorithms can be used to obtain more
precise estimates. Surrogate modelling methods include traditional polyno-
mial curve-fitting techniques, as well as other employed strategies such as
neural networks.

4.2.1 Deterministic methods

Some short references about deterministic methods are here presented: for a
deeper survey see [13], [32]. Among the deterministic methods to optimise
unconstrained problems, it is possible to recall the simplex algorithm and
the Pattern Search method as direct search zero-order methods [33], or the
Newton method as second derivative method and the Quasi-Newton method
as first derivative method. When the function to be minimised has suitable
smoothness properties, unconstrained problems can often be solved routinely
using techniques based on Newton’s method. The underlying approach is to
develop a model function, usually quadratic, derived from local gradient and
Hessian information about OF', and then to calculate a ‘good’ step based
on the model. The fundamental theory of Newton-based methods has been
understood for more than twenty years, although a few open issues remain.
The most active areas of research about smooth unconstrained optimization
today involve the large-scale case, particularly the associated linear algebraic
issues. For constrained optimisation, among main techniques there are lin-
ear, quadratic or non-linear programming, where the term programming is
historically used as synonymous for optimisation.

Deterministic algorithms are available via a number of well tested math-
ematical libraries, such as NAG, IMSL, Netlib (see http://www.netlib.org) or
Matlab.
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4.3 Evolutionary computation

Evolutionary Strategies (ES) and Genetic Algorithms (GAs) are members of
a class of powerful stochastic, heuristic and adaptive procedures generally
called Evolutionary Computation techniques, which are based on the imita-
tion of the genetic processes of biological organisms. ES and GAs may be
used to solve search and optimisation problems [11] and they are suitable for
problems described by non-continuous, multimodal or multi-objective OF.
These techniques are usually simple and robust and, like other zero-order
methods, they do not require computation of the OF derivatives or particu-
lar knowledge about OF properties. ES and GAs were independently (and
almost simultaneously) developed, respectively by Ingo Rechenberg [34] and
John H. Holland [35].

4.3.1 Biological basis

The origin of Evolutionary Computation was an attempt to mimic some of
the processes taking place in natural evolution.

How can be seen in Nature, biological species evolve over many gener-
ations, according to the principles of natural selection and ”survival of the
fittest”, first clearly stated by Charles Darwin in The Origin of Species. By
mimicking this process, ES and GAs are able to ”evolve” solutions to real
world problems, if they have been suitably encoded.

Although the details of biological evolution are still not completely un-
derstood, there exist some fixed points supported by a strong experimental
evidence:

e Evolution is a process operating over chromosomes rather than over
organisms. The chromosomes are organic tools encoding the structure
of a living being, i.e. a creature is ”built” decoding a set of chromo-
somes.

e Natural selection is the mechanism that relates chromosomes with
the efficiency of the entity they represent, thus allowing those efficient
organisms, which are well-adapted to the environment, to reproduce
more often than those which are not.

e The evolutionary process takes place during the reproduction stage.
There exists a large number of reproductive mechanisms in Nature.
The most common ones are mutation (that causes the chromosomes
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of offspring to be different from those of the parents) and recombi-
nation (that combines the chromosomes of the parents to produce the
offsprings).

4.4 Genetic Algorithms

Among the evolutionary techniques, the Genetic Algorithms are the most ex-
tended group of methods representing the application of evolutionary tools.
They rely on the use of selection, crossover and mutation operators. Replace-
ment is usually performed by generation of new individuals.

A GA proceeds by creating successive generations of better and better
individuals by applying very simple operations. The search is only guided
by the fitness value associated to every individual in the population: this
value is used to rank individuals depending on their relative suitability for
the problem being solved.

The process starts with a randomly generated population of individuals
(or phenotypes), each one made by strings of the design variables, represent-
ing a set of points spanning the search (or design) space. Each individual is
suitably coded into a chromosome (or genotype) made by a string of genes:
each gene encodes one of the design parameters, by means of a string of bits,
a real number or other alphabets.

New individuals (or offsprings) are then generated by using some genetic
operators, the classical ones being the crossover (or recombination) and the
mutation. The crossover operator combines two chromosomes to generate an
offspring, while the mutation operator randomly changes some of the genes of
a chromosome. The probability of survival of the newly generated individuals
depend of their fitness: the individuals with higher fitness values are kept
in the population for further mating and reproduction and those with lower
fitness are discarded.

Historical perspective

Here the main steps in the Genetic Algorithms history are presented, since
their birth in 1962 by the hand of John H. Holland. Before that date, some
attempts were made in modelling genetic systems by computer models (see
A. Fraser in 1957 [36]): however the fundamental objective of these studies
was to understand some biological phenomena. Holland and his students in
the University of Michigan were the first to recognize the usefulness of using
genetic operators in artificial adaptation problems. In 1971, John Holland
sets the basis for the theory behind the use of Genetic Algorithms with the
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Schema Theorem. In 1975 two important works were published: ” Adaptation
in Natural and Artificial Systems” of Holland [35] and ”An Analysis of the
behavior of a class of Genetic Adaptive Systems” of Kenneth De Jong [37],
a Holland’s student: these works served as a base for the vast majority of
subsequent studies. In 1989, David Goldberg published ” Genetic Algorithms
in Search, Optimization and Machine Learning”, a reference book for Genetic
Algorithms [38]. In the present, GAs are reaching their adult phase, being
used in several applications in different fields, especially where ” conventional”
methods are not applicable.

Traditional GAs
A GA is defined by the following components, functions and parameters [38]:

e the search space (i.e. the space of phenotypes);

e the representation space (i.e. the space of genotypes), including alpha-
bet and string length of genotypes;

e the mapping from phenotypes to genotypes spaces;

e the fitness function;

e the size of the population;

e the strategy for the initialization of the population;

e the selection mechanism (e.g. roulette wheel, ranking, tournament);

e the percentage of the population genetically operated on and inser