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Abstract

High field superconducting magnets are used in different power appli-

cations, such as nuclear magnetic resonance systems, thermonuclear fusion

technologies and energy storage. These magnets have to fulfill high quality

standards in terms of field uniformity and stability, by keeping construction

costs and size as low as possible while respecting superconducting critical

state constraints.

The subject of this Thesis is the statement of models and resolution strate-

gies for the optimal engineering design of such superconducting power de-

vices. It is shown here that the design of such magnets can have a great ben-

efit by the adoption of the multi-objectives optimisation techniques, in par-

ticular the evolutionary approaches such as the Genetic Algorithms. State-

of-the-art models and methods of multi-objective optimisation are presented

and discussed and new strategies are proposed, able to be applied to indus-

trial relevant problems. Beside the classical approach based on the definition

of a scalar weighted-sum objective function to minimise, another strategy

exploiting the concept of Pareto optimality is adopted in addition.

A parallel optimisation environment is exploited to increase the comput-

ing performances of the proposed algorithms and to implement a distributed

multi-populations Genetic Algorithm with migration and aggression genetic

operators using new population indices.

The concept of solution robustness in the design process is introduced

to deal with the effect of manufacturing and assembling tolerances and suit-

able corrective strategies are proposed by adopting a new expression of the

objective function and Monte Carlo analysis.

The resolution strategy of inverse problems is similar to multi-objectives

optimisation problems by properly defining an error functional: the attention

is focused on non-destructive testing, where the task is to identify flaws in

critical structural parts by using external measures of physical parameters.

A benchmark for the eddy current testing problem is solved with the use of

the concept of evolution by biological diversity.

The previous methodologies are exploited with the development of two

prototypes, a software tool (Marides) and a cluster computing environment

(Beosun). The presented strategies have been then applied to test cases and

real world industrial problems. In particular, to the design of an energy stor-

age system and of both low and high critical temperature superconducting

magnets used for magnetic resonance imaging.
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Riassunto

Magneti superconduttori ad elevato campo sono usati in diverse appli-

cazioni elettriche di potenza, quali sistemi per la risonanza magnetica nu-

cleare, tecnologie della fusione termonucleare e per l’immagazzinamento di

energia. Tali magneti devono soddisfare elevati standard qualitativi, relati-

vamente all’uniformità ed alla stabilità del campo prodotto, mantenendo al

contempo costi costruttivi e ingombri quanto più bassi possibile e rispettando

oltresi’ i vincoli legati alle condizioni critiche superconduttive.

L’argomento di questa Tesi è la presentazione di modelli e di strategie di

risoluzione per il progetto ottimo ingegneristico di tali sistemi supercondut-

tori di potenza. È qui mostrato che il progetto di tali magneti può trarre un

grande beneficio dall’adozione di tecniche di ottimizzazione multi-obiettivo,

in particolare di approcci evolutivi quali gli Algoritmi Genetici.

Modelli e metodi che rappresentano lo stato dell’arte dell’ottimizzazione

multi-obiettivo sono presentati e discussi, e sono proposte nuove strategie

da applicare a problemi di interesse industriale. Oltre il classico approccio

basato sulla definizione di una funzione obiettivo scalare come media pesata

da minimizzare, si adotta inoltre un’altra strategia che sfrutta il concetto di

ottimo secondo Pareto.

È stato sviluppato un ambiente di ottimizzazione parallela per incre-

mentare le prestazioni di calcolo degli algoritmi proposti e per implementare

un Algoritmo Genetico distribuito e multi-popolazione con operatori genetici

di migrazione e aggressione, che utilizzano nuovi indici di popolazione.

Il concetto di robustezza della soluzione è introdotto nella fase di progetto

per tener conto degli effetti delle tolleranze costruttive e di assemblaggio e

sono quindi proposte adatte strategie correttive che utilizzano una nuova

espressione della funzione obiettivo e analisi alla Monte Carlo.

La strategia di risoluzione di problemi inversi è simile a quella adottata

per problemi di ottimizzazione multi-obiettivo con la definizione corretta di

un funzionale di errore: l’attenzione è focalizzata sulle prove non distruttive,

nelle quali il compito è l’identificazione di difetti di parti strutturali critiche,

utilizzando misure esterne di parametri fisici. Un problema test per prove

alle correnti indotte (eddy current) è risolto con l’utilizzo del concetto di

evoluzione per diversità biologica.

Le precedenti metodologie sono messe in opera con lo sviluppo di due

prototipi, un pacchetto software (Marides) ed un ambiente di calcolo di tipo

cluster (Beosun). Le strategie presentate sono state poi applicate a casi di
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prova e problemi di effettivo interesse industriale. In particolare al progetto

di un sistema per l’immagazzinamento di energia ed a magneti supercondut-

tori, sia ad alta che a bassa temperatura critica, utilizzati per diagnostica a

risonanza magnetica.
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Chapter 1

Introduction - The Design

This Thesis is about the Optimal Design (in Power Electromagnetics).

I enclose ”Power Electromagnetics” in brackets because many topics I will

present are general and common to other engineering fields: the main atten-

tion will however be focused on the power applications, in particular on the

superconducting magnets technologies used in nuclear fusion systems and in

magnetic resonance devices.

Before talking about the Design, it is necessary to define the topic I

am going to discuss. This Chapter proposes some definitions of engineering

optimal Design.

1.1 Definition of Design

The Optimal Design is a multidisciplinary task and usually it is an iterative

work performed by a team of skilled and experienced engineers. Actually

for many people, and I agree with them, Design is, or should be, always

optimal and therefore we could simply talk about Design. In other words,

by definition a good designer always produces an optimal design.

During my University studies, I was taught to consider the ”Engineer”

(note the capital ”E”) as who is able to design and to build his goal with ¿ 1

while ”the others” need ¿ 10 for it. In this statement the attention is clearly

focused just on the economic optimisation of the design task. In general,

several other aspects should be considered.

There are many wide-range works about engineering design: I recall the

book of Sen & Yang [1] and the one of Pahl & Beitz [2] and the recent PhD

thesis of Dragan Cvetković [3], Geoff Leyland [4] and Johan Andersson [5].

1



CHAPTER 1. INTRODUCTION - THE DESIGN 2

According to Pahl & Beitz [2]: ”the main task of engineers is to apply

their scientific and engineering knowledge to the solution of the technical

problems, and then to optimise those solutions within the requirements and

constraints set by material, technological, economical, legal, environmental

and human-related considerations. Problems become concrete tasks after the

clarification and definition of the problems which engineers have to solve to

create new technical products (artifacts)”.

Another definition is given by the ABET (the US Accreditation Board for

Engineering and Technology): the ”engineering design is the process of devis-

ing a system, component, or process to meet desired needs. It is a decision-

making process (often iterative), in which the basic science and mathematics

and engineering sciences are applied to convert resources optimally to meet a

stated objective. Among the fundamental elements of the design process are

the establishment of objectives and criteria, synthesis, analysis, construction,

testing and evaluation”.

It is possible to say that Design is the process to build devices : objects

intended for desired purposes. These devices are naturally wanted as good as

possible, and even better. I want to stress that the adjective ”better” means

different depending on the field of interest. For instance, in the space sector,

better means generally lighter, while in the consumer arena, better means

cheaper.

Solving a problem or achieving a purpose can be represented as finding

a path to a goal. The path consists of a sequence of steps, where at each

step a decision among alternative choices must be made. The plan is the

sequence of decisions that leads from the starting state to the goal state.

It is realised in the given domain, its ”problem-space,” which is set by the

scientific models and technological procedures that constrain the realisation

of the goal. The search for a plan to reach the goal applies these models and

procedures as constraints on the possible alternatives at each step

1.2 Research objectives

The main objective of this Thesis is to direct the optimal design of super-

conducting power devices, in particular of high field magnets used in nuclear

magnetic resonance systems and in fusion technologies. To fulfill this goal,

state-of-the-art models and methods of multi-objective optimisation are pre-

sented and discussed in view of their application to specific problems of in-

dustrial interest. To increase the efficiency and to improve the quality of the
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available algorithms, new techniques have been developed and implemented

with the following aims:

� to introduce the concepts of solution robustness in the design process,

both during optimisation phase and as a post-processing step.

� to increase the computing performances of the proposed algorithms by

adopting a parallel optimisation environment and other high perfor-

mance computing techniques.

� to develop two pre-commercial prototypes : a high-performance parallel

cluster computer and a software for industrial optimal design.

1.3 Overview of the Thesis

This Thesis is organised in the following way:

Chapter 2 gives the general description of the problems in optimal design

of electromagnetic devices

Chapter 3 introduces the multi-objective optimisation problem and the

main topics about the Objective Function definition. In addition some math-

ematical background about the Pareto optimality concept and statistical def-

initions are given. Some test cases to be used in the following are then

described.

In Chapter 4 the current and proposed search algorithms for multi-objecti-

ve optimisation are illustrated. The main attention is focused on Genetic

Algorithms and their meta-optimisation strategies. The concepts of solution

robustness in the design process is then introduced together with the Monte

Carlo analysis.

The topics of Chapter 5 are the main issues of parallel computing ap-

plied to electromagnetics, the parallel Island Genetic Algorithms and the

new population genetic operators and indices.

In Chapter 6 the inverse problems resolution is introduced with its simi-

larity to the optimisation problems and the concept of biological diversity is

exploited.

Chapter 7 describes the developed parallel computing simulation environ-

ment (based on a Beowulf cluster) used to implement the previous models.

Chapter 8 gives some results of the proposed strategies with test cases

and real world industrial problems. The discussed problems are the design
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of an energy storage system and of both low and high critical temperature

magnets used for magnetic resonance imaging.

The conclusion of the Thesis are given in Chapter 9, together with some

further research pointers.

1.4 Appendix: Design and Nature

Many methodologies described in the following base themselves on concepts

coming from the natural world.

Some biologists debate about design in nature and about the design of liv-

ing organisms. But usually few biologists have experience designing anything

intended to achieve a specified function subject to physical constraints [6].

On the other hand, engineering can be called the science of design. En-

gineers design devices or processes to achieve a function they have in mind.

They apply physical and economic constraints to problem-solving.

The Darwinian ”mechanism” of natural selection by an environment pre-

sented with alternative organisms through genetic mutation is claimed to

have produced the present complexity from the simplest forms of life. If so,

from an engineering viewpoint, this appears to be a highly empirical way

to design more complex organisms. The search mechanism is the random

selection of a given operator at each branch in the search tree of the problem

space.

However, because the actual behaviour of the Darwinian ”mechanism”

are unidentified, it is not possible to conclude that the search is entirely

unguided. Intelligent-design theorists postulate that it is guided in a top-

down, model-driven or goal-driven way while theistic evolutionists postulate

bottom-up, data-driven or environment-driven guidance.

The statistician Amir D. Aczel in his book Probability 1 [7] recalled the

famous sentence of Albert Einstein ”God does not play dice” questioning

about how Darwinian natural evolution could produce creatures capable of

creating art, music, poetry, mathematics and philosophy, none of which seems

to have much Darwinian survival value. Are they mere by products of a brain

designed by nature only to increase its survival efficiency?



Chapter 2

The Optimal Design in
Electromagnetics

This chapter introduces the main characteristics and problems in the optimal

design of electromagnetic devices, in particular about the principal applica-

tion topic of this Thesis, the design of high field superconducting magnets.

2.1 Electromagnetic devices

The optimal design of an electromagnetic device is a complex process

including the definition of the device layout and the selection of the design

parameters, in such a way to perform ”as well as possible” the assigned

task with the satisfaction of the required performances and of the imposed

physical and technological constraints due to the stringent and demanding

requirements and quality standards [8].

Previously, the device, its performances and characteristics have to be

properly modelled. Like other engineering activities, the design in electro-

magnetics involves unstructured, real-life features that are hard to model,

since they require inclusion of unusual factors (from accident risk factors to

aesthetics). In general, the final cost of the device is an important aspect: it

includes the materials cost, the production and manufacturing cost and the

maintenance cost. Factors like the physical life span of the device have often

to be taken into account with the minimisation of the device probability of

failure.

For industrial relevant problems, in particular in the power and energy

field, the optimal design is usually a multi-objective task where different

specifications, often in conflict among them, have to be pursued with several

5
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design Degrees Of Freedom (DOF) [4]. The optimisation of the device looks

for an equilibrium point of the different and non-homogeneous goals. Each

generic admissible solution for the design problem represents one point in the

multi-dimensional design space spanned by all admissible device parameters

satisfying the requirements and the technological and physical constraints.

Therefore it is necessary the use of a multi-objective optimisation strategy

based on a rigorous mathematical formulations and automatic design aids to

help the engineer’s technical sensibility and experience during the process.

Due to the presence of multiple quasi-optimal solutions and to the typical

complexity of electromagnetic calculations, the automatic optimal design of

electromagnetic devices is a very challenging task. In addition, as a further

complexity element, the mathematical model of the design problem does not

always include all the design goals and constraints: it could be too diffi-

cult to mathematically define some of the objectives or constraints or the

inclusion of a particular objective could deeply increase the complexity of

the problem resolution. For instance, some of these not usual constraints or

”auxiliary” information about the problem come from the designer’s experi-

ence and knowledge. For these cases, it is preferable to adopt an optimisation

strategy able to find a set possible solution: in this way, the Decision Maker

(DM) has the final duty of selecting the best solution among the set.

2.2 Basic problems in engineering design

Some of the basic problems of engineering design can be stated in the follow-

ing way [3]:

� There are objectives and there are constraints. The difference between

them is not always well established and some of them can move from

objectives to constraints or vice-versa.

� Some constraints are strict and some are not and can be relaxed.

� The design parameters ranges can be also ”fuzzy” and flexible: the real

bounds are not always known at the beginning of the design process.

� The parameters and the objectives values can be effected by uncertain-

ness due to measure or computing errors.

� The output should contain both optimal solutions and suggestions of

extending ranges and/or inclusion/removals of constraints.
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� It is useful for the engineer to have a set of results to post-analyse:

for instance, those results can be processed by some other programs or

tools or by consulting some knowledge databases or experts.

In engineering practice, the optimal design problem is usually formulated

in terms of constrained optimisation of a multi-objective scalar function,

typically constructed as a weighted sum of different cost functions, each one

specialized to mathematically represent a partial objective. The overall Ob-

jective Function (OF ) is then minimised inside a suitable search domain

defined by the admissible ranges for each parameter while taking into ac-

count the imposed constraints. In general, the OF presents multiple local

minima scattered in the admissible solutions space: therefore its minimisa-

tion calls for global techniques able to explore the complete space without

being trapped by local minima.

Stochastic evolutionary strategies are a family of well known global op-

timisation algorithms widely used in different research fields for their ro-

bustness and generality. In particular, the Genetic Algorithms (GAs) have

achieved a particular relevance, both for their quite simple implementation

and for the effectiveness of their action: recently performed numerical exper-

iments confirmed the interest and documented the algorithm performances.

”Real world” design problem can be very demanding in terms of com-

puting resources, by requiring the resolution of a complex electromagnetic

problem for each OF evaluation: High Performance Computing (HPC) tech-

niques are therefore necessary to low down the development time of a new

device configuration when the complexity of the adopted models increases.

In such a context, the present growing diffusion of parallel computing archi-

tectures pushes towards the development of innovative versions of the min-

imisation algorithms able to take maximum advantage of the performances

and specific technical characteristics of the new computing resources.

2.3 Superconducting magnets

Superconductors are a class of materials which show no Ohmic resistance

to direct current when cooled below a critical cryogenic temperature Tc, also

called the transition temperature. In addition, superconduction state requires

that the current density passing through the material must be below a char-

acteristic level known as the critical current density (Jc) and the magnetic

field, to which the material is exposed, must be below a characteristic value



CHAPTER 2. THE OPTIMAL DESIGN IN ELECTROMAGNETICS 8

(critical magnetic field Hc). These critical conditions are interdependent and

define the environmental operating conditions for the superconductor. Su-

perconducting wires provide significant advantages over conventional copper

wires because they conduct electricity with little or no resistance and asso-

ciated energy loss and they can transmit much larger current density than

conventional wires.

2.3.1 Design of fusion magnets

A promising approach to produce energy is the use of controlled thermonu-

clear fusion machines, whose development is performed since many decades

all over the world. The most studied configuration to achieve magnetic con-

finement of the very hot plasma, where the fusion process evolves, is called

tokamak (toroidal chamber machine, by the original Russian acronym). A

huge superconducting magnetic system is used in a tokamak fusion machine

to generate the strong fields required in a wide region [9]: for this purpose,

conventional resistive magnets are not attractive due to the large energy

needed to feed such magnets, in addition to technological issues. The mag-

netic system is composed by a set of coils wound with superconducting ca-

ble: the design of such coils has to be properly processed in order to fulfill

the wanted requirements. The project ITER (International Thermonuclear

Experimental Reactor) has gathered worldwide significant research and de-

velopment efforts about superconducting magnets and conductors. In the

framework of the ITER project, two model coils have been built and are now

under testing: one of these, the TFMC (toroidal field model coil), is shown

in Figure 2.1.

2.3.2 Design of MRI superconducting magnets

Superconducting magnets for Magnetic Resonance Imaging (MRI) are de-

signed to provide very strong magnetic fields with quite high levels of ho-

mogeneity [10]. Suitable optimisation techniques can be effectively used to

choose the magnet geometrical parameters (e.g. dimensions and position

of each coil), while satisfying mechanical and physical constraints (e.g. di-

mensions of the wires and packaging factors or superconductor critical cur-

rents) [11].

For the design of MRI magnets, the main performance figure is the homo-

geneity of the magnetic field in the Volume of Interest (VOI). In the analysis



CHAPTER 2. THE OPTIMAL DESIGN IN ELECTROMAGNETICS 9

�

Figure 2.1: ITER project: toroidal field model coil (TFMC).
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of MRI magnets, a spherical harmonics expansion of the flux density field

can be used inside the sources free VOI:

Bz = µ0

∞∑

n=1

rn−1
n−1∑

m=0

[
(n−m) cos ϑPm

n (cos ϑ) + sin ϑPm+1
n (cos ϑ)

]
× (2.1)

[Anm cos mϕ + Bnm sin mϕ]

where (r, θ, ϕ) are the coordinate of the field point, with the axis z aligned

with θ = 0, and Pm
n are the Legendre functions of the first kind. Only the

field component along the axis z of the coil system is considered, because

other components are negligible with respect to the main component, on

condition that the needed field is highly uniform.

The coefficients Anm and Bnm provide an effective measure of the field

homogeneity: for a perfectly homogeneous field, all the coefficients are equal

to zero except for the first one, which is equal to the field magnitude. Rather

effective techniques have been proposed to evaluate Anm and Bnm with good

accuracy and limited computation time, allowing to perform analysis with a

large number of runs even on a PC-class computer [12].

For axial-symmetric fields, there is no dependence by the azimuthal co-

ordinate ϕ and only the terms with m = 0 are not vanishing. The field

expansion (2.1) reduces to:

Bz = µ0

∞∑

n=1

An0 rn−1
[
n cos ϑP 0

n(cos ϑ) + sin ϑP 1
n(cos ϑ)

]
(2.2)

The lack of homogeneity Unif(x) for the magnets configuration x is de-

fined as the ratio between the maximum field variation inside the VOI and

the central field Bz(0). Unif(x) is measured in ppm (parts per million) as

Unif(x) = 106 |Bz(pmax)−Bz(pmin)|
Bz(0)

(2.3)

where pmax e pmin are respectively the points in the VOI where the field get

its maximum and minimum values. Due to the analyticity of the field, the

pmax e pmin points are on the VOI boundary.



Chapter 3

Optimisation Problems and
Objective Functions

In this chapter, the multi-objective optimisation problem is defined and some

mathematical and statistical background are recalled, in particular the con-

cept of Pareto optimality. Topics related to the definition of the Objective

Function are introduced. Then, some test cases, used in the following, are

presented.

3.1 The optimisation problems

Usually the optimisation problems are defined by using a scalar Ob-

jective Function that is used to evaluate the solution quality, as recalled in

the previous chapter. The OF imposes a total order on the set of potential

solutions and the task is simply to search for an optimum.

For many real world applications, however, when it is required to find

solutions that simultaneously optimise two or more distinct criteria of prefer-

ence, other approaches are possible. These multi-objective problems present

a number of challenges that do not arise in scalar optimisation. In most cases,

for example, there do not exist solutions that are an optimum on all problem

objectives, and so there is no ideal solution: rather, there are a number of

solutions that represent different tradeoffs of the objectives. In this context,

the aim of the search has to be properly defined together with a method to

compare the solutions in order to drive the search.

11
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3.2 Definition of the problem

Single objective optimisation problems (SOPs) involve the minimisation of

a scalar function f(x) (the objective function), where x = (x1, . . . , xn) is a

point in the optimisation parameter space Rn. The general problem class to

be considered is known as nonlinearly constrained single-objective optimisa-

tion problem and can be expressed in mathematical terms as [13]:

min! f(x) x ∈ Rn (3.1)

subjected to cj(x) = 0, j ∈ E

cj(x) ≥ 0, j ∈ I

xi ∈ [xlow
i , xup

i ] i = 1, ..., n

where cj(x), j = 1, ..., p are the constraint functions, E is the index set of

equality constraints and I is the index set of inequality constraints, where

both sets E and I are finite. The xlow
i and xup

i are the lower and upper

range limits of the i -th variables xi. The objective function f(x) and the

constraint functions ci are real valued scalar functions. Any point x satisfying

all constraints of the optimisation problem is called feasible. The set of all

feasible points is called the feasible region.

Multi-objective optimisation problems (MOPs) involve the ”minimisa-

tion” of a vectorial function F(x) = (f1(x), . . . , fk(x)) ∈ Rk, where fi(x) are

the partial objectives. Because the Rk space is not ordered, the meaning of

the minimisation of the vectorial function F has to be properly defined by

introducing some ordering technique (for instance by using the Pareto domi-

nance concept presented in the following). The multi-objective optimisation

problems is defined as:

min! F(x) F ∈ Rk x ∈ Rn (3.2)

subjected to cj(x) = 0, j ∈ E

cj(x) ≥ 0, j ∈ I

xi ∈ [xlow
i , xup

i ] i = 1, ..., n

The conditions for the existence of solutions of the problems (3.1) and

(3.2) are reported in [13].

For solving a MOP, a human Decision Maker (DM) is necessary to state

the often difficult tradeoffs between conflicting objectives [14]. Depending
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on how optimisation and the decision process are combined, multi-objective

optimization methods can be broadly classified into three categories:

Decision making before search The objectives of the MOP are aggre-

gated into a single objective which implicitly includes preference infor-

mation given by the DM.

Search before decision making Optimisation is performed without any

preference information given. The result of the search process is a set

of (ideally Pareto-optimal, see next sections) candidate solutions from

which the final choice is made by the DM.

Decision making during search The DM can articulate preferences dur-

ing the interactive optimisation process. After each optimisation step,

a number of alternative trade-offs is presented on the basis of which

the DM specifies further preference information to guide the search.

The aggregation of multiple objectives into one optimisation criterion has

the advantage that the classical single-objective optimisation strategies can

be applied without further modifications. However, it requires knowledge

of the search domain, which is usually not available. Performing the search

before decision making overcomes this drawback, but excludes preference

articulation by the DM, which might reduce the search space complexity.

Another problem with this second and also with the third algorithm category

might be the visualisation and the presentation of non-dominated sets for

higher dimensional MOPs [15]. Finally, the integration of search and decision

making is a promising way to combine the other two approaches, uniting the

advantages of both.

3.3 Partial and total order

For the multi-objective optimisation problem, the concept of order of a multi-

dimensional space has to be introduced by the following definitions [3]:

Definition 3.1 Order

Partial order Binary relation R is a partial order on domain D if and only

if it satisfies the following three properties:

1. reflexivity: for all x ∈ D, R(x, x);
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2. antisymmetry: for all x, y ∈ D, if R(x, y) and R(y, x) then

x = y;

3. transitivity: for all x, y, z ∈ D, if R(x, y) and R(y, z) then

R(x, z).

Total order Binary relation R′ is a total order on domain D if:

1. It is a partial order;

2. For all x, y ∈ D, R′(x, y) or R′(y, x).

Strict order Binary relation R′′ is a strict (partial) order on domain D if

it satisfies the following two properties:

1. irreflexivity: For all x ∈ D , ¬R′′(x, x);

2. transitivity: For all x, y, z ∈ D, if R′′(x, y) and R′′(y, z) then

R′′(x, z).

The notations ≤ and ≥ are commonly used for partial and < and > for

strict orders.

Definition 3.2 Chain

Subset D′ ⊆ D is called chain with respect to partial order ≤ if every two

elements of D′ are comparable, i.e. for all x, y ∈ D′ , x ≤ y or y ≤ x.

Examples

� The usual order on a set of real numbers is a total order: it is always

possible to say for any two real numbers x and y if x ≤ y or y ≤ x.

� If D = {(x, y) | x, y ∈ R} and {(x, y) ≤2 (x1, y1)
def
⇐⇒ (x ≤ x1) ∧ (y ≤

y1)} then

1. Order ≤2 is (non-total) partial order on D since, for example,

(2, 3) ¬ ≤2 (3, 2) and (3, 2) ¬ ≤2 (2, 3);

2. Sets {(x, 0) | x ∈ R} and {(0, x) | x ∈ R} are examples of chains

according to ≤2.
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For the multi-objective optimisation problems, the multi-dimensional com-

ponent-wise order relation ≤ is not a total order : it is not fulfilled that for

every two vectors x,y ∈ Rn , x ≤ y or y ≤ x, i.e. not every two elements

are comparable. In multi-dimensional case, this ordering relation is a partial

order. Instead of one total order, we have (possibly many) chains where ev-

ery two elements within a chain are comparable. The greatest element of a

chain is called a maximal element [3].

3.4 Mathematical background

Some definitions used in the following are here presented.

Convexity The set K ∈ Rn is convex if, for any points x1, x2 in the set,

the line segment joining these points is also in the set, i.e.:

∀ x1, x2 ∈ K : xθ = (1− θ)x1 + θx2 ∈ K ∀ θ ∈ [0, 1]

3.4.1 Pareto dominance

Pareto Dominance A vector u = (u1, . . . , un) is said to dominate v =

(v1, . . . , vn) and is denoted by u ¹ v, if and only if u is partially less

than v, i.e.,

∀ i ∈ {1, . . . , n} ui ≤ vi ∧ ∃ j ∈ {1, . . . , n} : uj < vj (3.3)

Pareto (Optimal) Set For a given multi-objective problem F(x), defined

as in (3.2) in a set Ω ⊂ Rn, the Pareto optimal Set P is defined as:

P := {x ∈ Ω | ¬∃ x′ ∈ Ω : F (x′) ¹ F (x)} (3.4)

P is the set of all elements in Ω whose image is non-dominated.

Pareto (Optimal) Front For a given multi-objective problem F(x), de-

fined as in (3.2), and Pareto optimal Set P , the Pareto Front PF is

defined as:

PF := {u = F(x) | x ∈ P} (3.5)

The Pareto Front is therefore the maximal set of nondominated feasible

solutions.
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3.4.2 Statistical definitions

These statistical definitions [16] will be used later.

PMF The probability distribution of a discrete random variable Y is repre-

sented by its Probability Mass Function (PMF), defined as:

pY (y) = P{Y = y} (3.6)

where P{Y = y} is the probability of Y to have the value y.

Probability distribution function If X is a continuous random variable

and x the generic value of X, the probability distribution function of

the random variable X is defined as

FX(x) = P{X ≤ x} ∀ x ∈ R (3.7)

where P{X ≤ x} is the probability of X to have values not greater than

x. FX(x) is also called the cumulative probability function or Cumu-

lative Distribution Function (CDF). By the definition, the probability

in an interval ]a, b] is:

P (]a, b]) = FX(b)− FX(a) (3.8)

PDF The Probability Density Function (PDF) fX(x) of a continuous ran-

dom variable X is defined by:

P (x) =
∫ ∞

−∞
fX(x) dx (3.9)

Since the probability of the event is 1, the PDF is normalised:

∫ ∞

−∞
fX(x) dx = 1 (3.10)

Expecter value E Also referred as mean or first order moment:

E[X] =
∫ ∞

−∞
xfX(x) dx (3.11)
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Variance σ2
X Also referred as second order moment:

σ2
X =

∫ ∞

−∞
(x− E[X])2fX(x) dx (3.12)

The square root σX of the variance is called standard deviation.

Uniform PDF The continuous uniform PDF is defined as:

fX(x) =
1

b− a
if x ∈ [a, b[

fX(x) = 0 otherwise

For the uniform PDF it results:

E[X] =
a + b

2
σ2

X =
(b− a)2

12

Gaussian (normal) PDF For two real parameters µ > 0 and σ > 0, the

continuous Gaussian PDF is defined as:

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (3.13)

For the Gaussian PDF it results:

E[X] = µ σ2
X = σ2

The special case µ = 0 and σ2 = 1 is called standard normal PDF.

Central Limit Theorem The Central Limit Theorem is an important math-

ematical result which states that for a continuous random sample of

observations from any distribution with a finite mean and a finite vari-

ance, the sample mean will tend to follow a normal distribution for

large samples.

Confidence Interval It is a statistic value constructed from a set of data to

provide an interval estimate for a random variable. The confidence level

associated with the interval, usually 90%, 95% or 99%, is the percentage

of times, in repeated sampling, that the intervals will contain the value

of the random variable.
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3.5 Definition of the Objective Function

The multi-objective optimal design can be performed by using vector or scalar

optimisation techniques. The former are based on the separate evaluation

and optimisation of the different partial objectives, while in the latter the

partial objectives are combined in some global cost function. For scalar

optimisation the problem is therefore reduced to the minimisation of a single

Objective Function. Therefore the OF provides a compact quantitative value

to the satisfaction of the several design goals, as a function of all design

parameters. The ”quality” of each design solution is described by the value

of the OF in the actual configuration.

The single objectives can be commensurable, if they are expressed in

the same units, or non-commensurable: usually, for engineering optimisation

problems, the objectives are non-commensurable.

Scalar OF s are typically assumed as the weighted sum of the different

objectives, which have to be properly normalised and adimensionalised:

OF (x) =
k∑

i=1

wi fi(x) (3.14)

where k is the number of the partial objectives, fi is the i-th partial objective

normalised in [0,1], x is the design parameters vector and wi are suitable

weights, with wi ≥ 0 and

k∑

i=1

wi = 1 (3.15)

Of course, OF (x) = f(x) for SOP. The choice of the weights is made

to keep the order of magnitude and the sign of the partial objectives. The

optimal selection of the weights wi has to be performed by the designer on

the basis of the relative importance of the various objectives: the weights

are an a-priori articulation of the designer preferences and typically they

strongly influence the final results. Different strategies to express the designer

preferences among the objectives and to address the choice of the weights are

reported in [17].

In many industrial design problems, the OF is non-continuous or non-

analytic. In addition, for a wide class of optimal design problems, due to non-

linear relationship with the design parameters, the OF presents multiple local

minima, each corresponding to one of possible quasi-optimal solutions. When
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the attraction basin of the minimum is unknown, to prevent the trapping into

local minima, the whole parameters space has to be therefore scanned.

3.6 Constraints handling: penalty functions

Constraint handling methods used in classical optimization algorithms can

be classified into two groups: (i) generic methods that do not exploit the

mathematical structure (whether linear or nonlinear) of the constraints (i.e.

ci functions in (3.1) or (3.2)) and (ii) specific methods that are only applicable

to a special type of constraints.

Generic methods, such as the penalty function method, the Lagrange

multiplier method, and the complex search method are popular, because each

one of them can be easily applied to any problem without significant changes

in the algorithm [13]. However specific methods, such as the cutting plane

method, the reduced gradient method and the gradient projection method,

are applicable either to problems having convex feasible regions only or to

problems having a few variables, because of the increased computational

burden with large number of variables [18].

From here, I will refer, for simplicity, just to SOP. A very common ap-

proach to handling constraints (linear or not linear) is to transform the con-

strained problem into an unconstrained one by adding penalty functions to

the objective function f :

Φ(x) = f(x) +
Ncon∑

i=1

Pi(x) (3.16)

where Φ(x) is the modified objective function, Ncon is the number of vio-

lated constraints and Pi(x) is the penalty function for the i -th constraint.

These penalty terms weight the constraints violations, penalising non-feasible

solutions.

The penalty function method presents the following properties:

1. The Φ value of a feasible solution is equal to its objective function value

f .

2. The Φ value of an infeasible solution is always worse than that of a

feasible solution.

3. The Φ value of a infeasible solution having smaller constraints violation

than another infeasible solution is better than the latter one.
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A deeper discussion about penalty functions will be developed later in

the Section 4.4.1, with their application to stochastic optimisation.

3.7 Test problems

In this Thesis some benchmark problems have been used to test different

optimisation strategies. For the selection of an effective benchmark problem,

it is important that the problem should be as much as possible similar to the

typical ”real world” electromagnetic models. In particular the benchmark

function to minimise should be non-linear, non continuous, multimodal with

multiple minima and its definition domain should be non connected. In

addition, the function minima should be close to the non-feasible solutions

region.

3.7.1 Rastrigin function

For preliminary studies, the widely used Rastrigin analytic function has been

considered. It is defined by:

f = nA +
n∑

i=1

[x2
i − A cos(2πxi)] (3.17)

where the parameter A = 10, n is the dimension of the search space, i ∈ [1, n]

and xi ∈ [−5.12, 5.12]. This multimodal function has a global minimum at

xi = 0, where it values zero, and several local minima: for example, the

function values 1 in the points located at xi = 1 and xj 6=i = 0 ∀j. To

introduce some of the characteristics of the typical electromagnetic problems,

not feasible regions have been set for the xi variables, with i odd, in the

ranges [−1.8,−1.1.] and [1.1, 1.8]: is such a way the search space becomes

not connected and some of the minima are located close to the border of the

space. In addition, a discontinuity has been introduced at xi = ±2.1, with i

even. In Figure 3.1 a section of the modified Rastrigin function with n = 2

is plotted in the plane x2 = 0 for x1 ∈ [0, 5.12]: it is visible the not-allowed

interval x1 ∈ [1.1, 1.8]. In Figure 3.2 it is plotted the section in the plane

x1 = 0 for x2 ∈ [0, 5.12]: it is visible the discontinuity in x2 = 2.1.
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Figure 3.1: Section of the Rastrigin function on the plane x2=0 for n = 2.
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Figure 3.2: Section of the Rastrigin function on the plane x1=0 for n = 2.
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3.7.2 TEAM 22 Problem

As an example of a ”real world” benchmark problem, the optimisation design

has been performed for a superconducting system called SMES (Supercon-

ducting Magnetic Energy Storage) [19]. SMES systems are devices used to

store energy in magnetic fields generated by coils wound with superconduct-

ing wires. These devices can be applied for electrical load levelling and peak

load supply in power network or for protection of critical user facilities against

voltage dips. Due to the increase of power quality demand, SMES can be

also used for filtering the harmonic content in power transmission lines.

SMES are mainly characterised by the maximum stored energy: depend-

ing on the particular application, the SMES systems are designed for a max-

imum energy in the range 0.1÷ 200 MJ. In a SMES device design, beside to

satisfy the specific device requirements, attention has to be given to other

cost factors, such as the superconductors volume and the overall dimensions.

For construction reasons, the most effective configuration for SMES wind-

ings is a short solenoid. Unfortunately, such structures generate stray mag-

netic fields in a wide surroundings area: these stray fields can be non-

conforming with environmental specifications related to human safety and

they can also interfere with the correct operation of other equipment. For

this reason, SMES devices include a second coil as an active shield, whose

position, shape and currents are included in the design parameters set.

A shape optimisation is then required to find a good choice of the free

parameters, according to the design constraints. Note that the dependence of

the device performance on the design parameters is quite complex, taking also

into account that the superconductors critical current conditions should not

to be violated. Due to the presence of multiple local optima, scattered in the

parameters search space, a global search algorithm is strongly recommended

to perform the SMES design.

Here the SMES design has been performed according to TEAM (Testing

Electromagnetic Analysis Methods) Problem 22 (see TEAM Web Page at

http://ics.ascn3.uakron.edu/ ), treating of an optimal SMES design with the

following specifications:

� The stored energy in the device should be 180 MJ.

� The stray field should be as small as possible.

� The current density inside superconducting coils must not violate crit-

ical conditions, depending on the magnetic field intensity, required to
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guarantee the superconducting state.

The critical condition, relating the current densities ‖J‖ with the maxi-

mum values of the magnetic flux density ‖B‖ within the coils, for an indus-

trial superconductor is approximated by:

‖J‖ = (6.4‖B‖+ 54) A/mm2 (3.18)

The following Objective Function is used:

OF = F1 + F2 =
|E − Eref |

Eref

+
B2

stray

B2
norm

(3.19)

where: E is the magnetic energy of the device, Eref = 180 MJ, Bnorm =

2E−4 T and

B2
stray =

22∑

i=1

|Bstray,i
|2

22
(3.20)

Bstray is evaluated at 22 equidistant points along line a and line b in

Figure 3.3. From the numerical point of view, the coils are schematised by

a set of filamentary circuits. Due to the linearity of the problem, analytical

formulas can be adopted to evaluate the field energy and the magnetic fields

by superposition. The magnetic energy E is calculated by:

E =
1

2
ItLI (3.21)

where L is the inductance matrix and I is the filamentary current vector.

The inductance matrix elements are evaluated using well known approximate

formulas [20]. The stray field and the magnetic field inside the coils, needed

to check the critical condition, are evaluate using the Urankar’s formulas [21].

Three parameters problem

Two subproblems are defined in the TEAM 22 benchmark. For the small

problem, the three design parameters are the dimensions of the outer coil

(R2, h2/2, d2 defined in Figure 3.3), while the inner coils dimensions and

the current densities are fixed. The geometrical boundaries for the design

parameters and the fixed parameters (R1, h1/2, d1, J1, J2) values are given

in Table 3.1.
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Figure 3.3: TEAM 22 problem: SMES geometry.

R1 R2 h1/2 h2/2 d1 d2 J1 J2

(m) (m) (m) (m) (m) (m) (MA/m2) (MA/m2)
Min - 2.6 - 0.204 - 0.1 - -
Max - 3.4 - 1.1 - 0.4 - -
Fixed 2.0 - 0.8 - 0.27 - 22.5 -22.5

Table 3.1: Geometrical constraints and fixed parameters of the SMES design
parameters: three parameters problem.
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R1 R2 h1/2 h2/2 d1 d2 J1 J2

(m) (m) (m) (m) (m) (m) (MA/m2) (MA/m2)
Min 1.0 1.8 0.1 0.1 0.1 0.1 10 -10
Max 4.0 5.0 1.8 1.8 0.8 0.8 30 -30

Table 3.2: Allowable ranges for the SMES design parameters: eight param-
eters problem.

Eight parameters problem

For this quite more difficult problem, there are eight design parameters: the

dimensions of the two coils and the two current densities (R1, R2, h1/2, h2/2,

d1, d2, J1, J2 in Figure 3.3) with their allowable boundaries given in Table 3.2.



Chapter 4

Search Algorithms

”If there is a set of strategies with the property that no player can benefit by chang-
ing her strategy while the other players keep their strategies unchanged, then that
set of strategies and the corresponding payoffs constitute the Nash Equilibrium”
(by John F. Nash Jr. [22]).

In this chapter, different strategies to solve the multi-objective optimi-
sation problem are presented, together with the Pareto optimality and sen-
sitivity analysis concepts. The main attention is focused on the Genetic
Algorithms. The developed and implemented algorithms have the principal
aim to increase the robustness of the problem solutions.

4.1 Pareto optimality and OF minimisation

Two of the strategies for multi-objective problems resolution are to cast
it as the minimisation of a scalar OF or as a Pareto Set search. As already
reported, usually the multi-objective problem defined in (3.2) is solved by
introducing a scalar OF, as in (3.14), defined as the weighted sum of the
single objectives to minimise. Each set of weights codes a different choice
made by an expert of the design problem (the Decision Maker) about the
relative importance of the single objectives. By varying the weights, the
objectives space can be spanned by modifying the OF landscape, where the
term OF landscape refers to the hypersurface in Rn+1 space obtained by
applying the OF to every point in the search space Rn [23].

A different way to approach the multi-objective optimisation problem was
introduced by the Italian economist Vilfredo Pareto in XIXth century [24].
Such a method is based on the concept of non-dominated solutions, as defined

26
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in Section 3.4.1. A solution of a multi-objective optimisation problem is non-
dominated if does not exist another solution which gains better values of each
partial objective: in other words, given a non-dominated solution, it is not
possible to improve a partial objective without getting worse another one.
The Pareto Set is the locus of all non-dominated solutions and the Pareto
Front is the image of the Pareto Set in the objectives space [25].

The Pareto Front gives a global view of the optimisation problem without
assuming any particular decision about the relative importance of the partial
objectives and including the solutions related to all possible combinations of
relative weights among objectives.

In the ideal case, each global minimum of the OF, with its particular
weights set, is a point of the Pareto Front of the problem [26], [27]. Therefore,
solving the weighted optimization problem (3.14) for a certain number of
different weight combinations yields a set of Pareto optimal solutions: on
condition that an exact optimization algorithm is used and all weights are
positive, this method will only generate Pareto optimal solutions, as it can
be easily shown [28]. Assume that a feasible decision vector a minimises OF
for a given weight combination and is not Pareto optimal. Then, there is a
solution b which dominates a, i.e., without loss of generality f1(b) < f1(a)
and fi(b) ≤ fi(a) for i = 2, ..., k. Therefore, OF (b) < OF (a), which is a
contradiction to the assumption that OF (a) is minimum.

The disadvantage of this technique is that it cannot generate all Pareto
optimal solutions with non-convex Pareto Front surfaces [5]. This is illus-
trated in Figure 4.1 for a two-objectives example. For fixed weights w1, w2,
the solution x is sought to maximize y = w1f1(x) + w2f2(x). This equation
can be reformulated as f2(x) = −w1

w2
f1(x) + y

w2
, which defines a line with

slope −w1

w2
and intercept y

w2
in the objectives space (f1, f2). Graphically,

the optimisation process corresponds to move this line downwards until no
feasible objective vector is below it and at least one feasible objective vector
(here the vector ending in the point A) is on it. However, the point B, in a
non-convex region, will never minimise OF because no tangent line totally
below the Pareto Front can pass through it.

In order to be able to locate points on non-convex parts of the Pareto
Front, the weighted Lp-norm problem could be solved instead [29]. The
weighted Lp-norm problem is actually a generalization of the weighted sum
formulation (3.14) and it is defined as:

OF (x) =

{
k∑

i=1

[wifi(x)]p
} 1

p

(4.1)

where p is an integer satisfying 1 ≤ p ≤ ∞. With an appropriate value of p,
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Figure 4.1: Pareto Front and OF.

all Pareto optimal points could be obtained but, however, such a value for p
is unknown in advance. Moreover, a high value of p increases the difficulty
of solving the optimization problem. In the extreme case where p = ∞, the
problem to minimise the (4.1) is known as the weighted minmax formulation.

In practical applications, the (approximate) Pareto Front of the problem
can be find by numerically solving many problems (3.14) by using different
weights set and to retain the non-dominated approximate minima solutions.

4.1.1 Pareto front: analytical test case

The previous procedure to find Pareto optimal solutions has been tested with
an analytical multi-objective problem with one DOF (the ”design parame-
ter” x) and two partial objectives defined by:
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Figure 4.2: Pareto Front analytical test case: partial objectives plots and
OF s for different weight sets (the minima of each OF s are plotted with
marks).

F1(x) = 1 + x2

F2(x) = 1− x + x2 (4.2)

F1 has a minimum F1 = 1 for x = 0 and F2 has a minimum F2 = 3/4 for
x = 1/2. The partial objectives are plotted in Figure 4.2 together with the
scalar OF = w1F1 + w2F2 for seven different sets of weights: for each OF
the minimum is plotted with a mark. The seven weight sets are reported
in Table 4.1 together with minima values of OF and the corresponding x
values.

The Pareto Set of the multi-objective problem is the interval x = [0, 1/2],
where the first objective F1 increases with x and the second one F2 decreases:
note that the Pareto Set is simply connected. The corresponding Pareto
Front is plotted in Figure 4.3 with continuous line in the objectives plane:
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w1 w2 OFmin xmin

0 1 0.750 1/2
1/4 3/4 0.859 3/8
1/3 2/3 0.889 1/3
1/2 1/2 0.937 1/4
2/3 1/3 0.972 1/6
3/4 1/4 0.984 1/8
1 0 1 0

Table 4.1: Pareto Front analytical test case: minima OF s for different weight
sets.

similarly to the Pareto Set, the Pareto Front is simply connected.
As reported before, the Pareto Front can be computed by finding the

minima of the OF for different weights. Each minimum of OF corresponds
to a point in the Pareto Front when plotted in the objectives plane: in
Figure 4.3 the points are plotted with different marks, as listed in legend.
Note that, for each of such points, the corresponding weights give also the
values of the local tangent to the Pareto Front, as:

∂F2

∂F1

= −w1

w2

(4.3)

For the points inside the Pareto Set, small variations of the x variable
keep the point inner to the Set: therefore the corresponding point in the
objectives space moves along the Pareto Front. In other words, tolerances
on the design variable give no effect, in the sense that we get another Pareto
optimal solution. At the boundaries of the Pareto Set and in their neigh-
bourhood, small variations of the x variable can fall out of the Set and the
solutions can become not Pareto optimal.

4.2 Stochastic and deterministic methods

The algorithms for the resolution of an optimisation problem can be classified
in two general classes [13]: deterministic methods and stochastic methods.
A method is deterministic if, for a given initial point (guess), its trajectory
in the search space is predetermined and depends by the algorithm strategy:
the deterministic methods find always the same solution for each instance,
if they start from the same initial guess. The stochastic methods perform
instead some kind of random walk in the search space and their results are
usually non ”deterministic”.
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Deterministic methods are both theoretically well analysed and numeri-
cally well tested tools to determine the optimal solution, if the starting point
is chosen in an appropriate way. Stochastic methods results do not depend
by a starting guess and, therefore, they can be seen as more ”robust” meth-
ods for applications where no preliminary suggestions about the minimum
position are provided. Sometimes a two steps strategy is adopted, with a
preliminary global search by a stochastic approach followed by a deep local
optimisation by a deterministic algorithm [30].

Beside evolutionary approaches widely presented in the following, Monte
Carlo (MC) methods can be classified as a stochastic strategy: they employ
a pure random search where any selected trial solution is fully independent
of any previous choice and its outcome [31].

Optimisation methods can also be classified by the order of the algorithm,
which is the maximum derivative order of the objective functions used by
the algorithm. For simplicity, in the following I will just refer to problems
defined by a scalar OF. The OF is in general not differentiable and, if its
derivatives are needed, an interpolation of the OF has to be introduced by
assuming some model of its local or global behaviour in the search space
(for instance a quadratic model). By using zero-th methods, no derivative
of OF are needed and therefore, no model of the objective function OF is
established. On the other hand, the heuristic nature of these interpolating
methods is reflected by a more or less large number of strategy parameters
to be selected: the success of the different methods often crucially depends
on the choice of these parameters.

The choice of the minimisation method follows the characteristics of the
function OF , which is generally nonlinear and usually presents for industrial
problems one or more of the following properties:

� Calculation of OF is very expensive or time-consuming. For exam-
ple, each value of OF may be obtained by solving a costly numerical
subproblem or performing a sequence of laboratory experiments.

� Exact first partial derivatives of OF cannot be calculated. Either the
gradient does not exist, for example, when OF is discontinuous, or OF
is defined from a complex or convoluted computational structure that
obviates application of automatic differentiation techniques.

� Numerical approximation of the gradient of OF is impractically expen-
sive or slow.

� The values of OF are ‘noisy ’. For example, the calculated value of OF
may depend on discretisation, sampling on a grid, inaccurate data, or
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an adaptively solved subcalculation (such as numerical quadrature or
Finite Elements Analysis).

A possible approach to deal with the OF computational cost and with
noisy data is to use curve-fitting or other data modelling techniques based
on a set of evaluated OF data points to derive new simpler objective func-
tions that represent the original ones explicitly and with acceptable accuracy.
These new models are sometimes referred to as surrogate models or metamod-
els. Any subsequent call of the OF during the optimization phase is replaced
by the surrogate models containing the explicit functions: using surrogates
may reduce drastically the computational load in a large design model. When
a final design is reached, the original algorithms can be used to obtain more
precise estimates. Surrogate modelling methods include traditional polyno-
mial curve-fitting techniques, as well as other employed strategies such as
neural networks.

4.2.1 Deterministic methods

Some short references about deterministic methods are here presented: for a
deeper survey see [13], [32]. Among the deterministic methods to optimise
unconstrained problems, it is possible to recall the simplex algorithm and
the Pattern Search method as direct search zero-order methods [33], or the
Newton method as second derivative method and the Quasi-Newton method
as first derivative method. When the function to be minimised has suitable
smoothness properties, unconstrained problems can often be solved routinely
using techniques based on Newton’s method. The underlying approach is to
develop a model function, usually quadratic, derived from local gradient and
Hessian information about OF , and then to calculate a ‘good ’ step based
on the model. The fundamental theory of Newton-based methods has been
understood for more than twenty years, although a few open issues remain.
The most active areas of research about smooth unconstrained optimization
today involve the large-scale case, particularly the associated linear algebraic
issues. For constrained optimisation, among main techniques there are lin-
ear, quadratic or non-linear programming, where the term programming is
historically used as synonymous for optimisation.

Deterministic algorithms are available via a number of well tested math-
ematical libraries, such as NAG, IMSL, Netlib (see http://www.netlib.org) or
Matlab.
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4.3 Evolutionary computation

Evolutionary Strategies (ES) and Genetic Algorithms (GAs) are members of
a class of powerful stochastic, heuristic and adaptive procedures generally
called Evolutionary Computation techniques, which are based on the imita-
tion of the genetic processes of biological organisms. ES and GAs may be
used to solve search and optimisation problems [11] and they are suitable for
problems described by non-continuous, multimodal or multi-objective OF.
These techniques are usually simple and robust and, like other zero-order
methods, they do not require computation of the OF derivatives or particu-
lar knowledge about OF properties. ES and GAs were independently (and
almost simultaneously) developed, respectively by Ingo Rechenberg [34] and
John H. Holland [35].

4.3.1 Biological basis

The origin of Evolutionary Computation was an attempt to mimic some of
the processes taking place in natural evolution.

How can be seen in Nature, biological species evolve over many gener-
ations, according to the principles of natural selection and ”survival of the
fittest”, first clearly stated by Charles Darwin in The Origin of Species. By
mimicking this process, ES and GAs are able to ”evolve” solutions to real
world problems, if they have been suitably encoded.

Although the details of biological evolution are still not completely un-
derstood, there exist some fixed points supported by a strong experimental
evidence:

� Evolution is a process operating over chromosomes rather than over
organisms. The chromosomes are organic tools encoding the structure
of a living being, i.e. a creature is ”built” decoding a set of chromo-
somes.

� Natural selection is the mechanism that relates chromosomes with
the efficiency of the entity they represent, thus allowing those efficient
organisms, which are well-adapted to the environment, to reproduce
more often than those which are not.

� The evolutionary process takes place during the reproduction stage.
There exists a large number of reproductive mechanisms in Nature.
The most common ones are mutation (that causes the chromosomes
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of offspring to be different from those of the parents) and recombi-
nation (that combines the chromosomes of the parents to produce the
offsprings).

4.4 Genetic Algorithms

Among the evolutionary techniques, the Genetic Algorithms are the most ex-
tended group of methods representing the application of evolutionary tools.
They rely on the use of selection, crossover and mutation operators. Replace-
ment is usually performed by generation of new individuals.

A GA proceeds by creating successive generations of better and better
individuals by applying very simple operations. The search is only guided
by the fitness value associated to every individual in the population: this
value is used to rank individuals depending on their relative suitability for
the problem being solved.

The process starts with a randomly generated population of individuals
(or phenotypes), each one made by strings of the design variables, represent-
ing a set of points spanning the search (or design) space. Each individual is
suitably coded into a chromosome (or genotype) made by a string of genes :
each gene encodes one of the design parameters, by means of a string of bits,
a real number or other alphabets.

New individuals (or offsprings) are then generated by using some genetic
operators, the classical ones being the crossover (or recombination) and the
mutation. The crossover operator combines two chromosomes to generate an
offspring, while the mutation operator randomly changes some of the genes of
a chromosome. The probability of survival of the newly generated individuals
depend of their fitness : the individuals with higher fitness values are kept
in the population for further mating and reproduction and those with lower
fitness are discarded.

Historical perspective

Here the main steps in the Genetic Algorithms history are presented, since
their birth in 1962 by the hand of John H. Holland. Before that date, some
attempts were made in modelling genetic systems by computer models (see
A. Fraser in 1957 [36]): however the fundamental objective of these studies
was to understand some biological phenomena. Holland and his students in
the University of Michigan were the first to recognize the usefulness of using
genetic operators in artificial adaptation problems. In 1971, John Holland
sets the basis for the theory behind the use of Genetic Algorithms with the
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Schema Theorem. In 1975 two important works were published: ”Adaptation
in Natural and Artificial Systems” of Holland [35] and ”An Analysis of the
behavior of a class of Genetic Adaptive Systems” of Kenneth De Jong [37],
a Holland’s student: these works served as a base for the vast majority of
subsequent studies. In 1989, David Goldberg published ”Genetic Algorithms
in Search, Optimization and Machine Learning”, a reference book for Genetic
Algorithms [38]. In the present, GAs are reaching their adult phase, being
used in several applications in different fields, especially where ”conventional”
methods are not applicable.

Traditional GAs

A GA is defined by the following components, functions and parameters [38]:

� the search space (i.e. the space of phenotypes);

� the representation space (i.e. the space of genotypes), including alpha-
bet and string length of genotypes;

� the mapping from phenotypes to genotypes spaces;

� the fitness function;

� the size of the population;

� the strategy for the initialization of the population;

� the selection mechanism (e.g. roulette wheel, ranking, tournament);

� the percentage of the population genetically operated on and inserted
back;

� the genetic operators (including crossover and mutation) with their
parameters (e.g. the probability of application);

� the replacement policy (e.g. worst, random);

� the termination criterion (e.g. predefined number of steps, stagnation).

The three commonly used methods for individuals selection are [39]:

1. Random wheel : in this scheme the probability of selection for each
chromosome is proportional to its fitness.
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2. Ranking method : chromosomes are sorted based on their fitness values
and probabilities of their selection are fixed for the whole evolution
process.

3. Tournament selection: a selected number of chromosomes is chosen
randomly and then the chromosome with the best fitness in this group
is selected.

A traditional GA works on binary strings of fixed length and applies
random wheel selection, one point crossover and bit-flip mutation [35]. The
initial population is generated by following an uniform random distribution,
that is, every position in every string contains one 0 or one 1 with the same
probability. The evolution model is represented by successive generations
of populations, i.e., a new population completely replaces the old one. The
algorithm stops when a predefined number of generations have been reached.
Finally the evaluation of any given string is made by mapping the genotype
to the phenotype by means of a binary-to-decimal operation for every group
of bits of the genotype representing one problem parameter.

The notion of evaluation and fitness are sometimes used interchangeably.
However, it is useful to distinguish between the evaluation function (i.e. the
objective function of the problem to be minimised) and the fitness function
used by a genetic algorithm. The evaluation function provides a measure
of performance with respect to a particular set of parameters. The fitness
function transforms that measure of performance into an allocation of re-
productive opportunities. The evaluation of a string representing a set of
parameters is independent of the evaluation of any other string. The fitness
of that string, however, can be defined with respect to other members of the
current population. In the canonical genetic algorithm, fitness is defined by:

fitness =
1

OFi

(4.4)

where OFi is the value of the OF associated with string i. Another possible
definition is:

fitness =
OFmean

OFi

(4.5)

where OFmean is the average evaluation of all the strings in the population.
The computational effort in a GA usually resides in the evaluation of

the fitness function of the initial and new strings. Operators like selection,
mutation, crossover or replacement are of linear complexity and work at
constant rates for a given problem
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4.4.1 Constraints handling in GAs

GAs are essentially unconstrained search techniques but most real life de-
sign problems involve constraints. Therefore there have been a number of
approaches to handle constraints in GAs: a survey of methodologies is pre-
sented in [40]. Care must be taken in the choice of the method: the search can
be extremely difficult in non-convex feasible regions especially if the optima
are near the infeasible region.

The simplest approach has been to assign an arbitrarily low fitness to
infeasible individuals [41]. An interesting attempt to incorporate the knowl-
edge of constraint satisfaction during the selection phase was proposed in
[42]: to match the beauty with the brain, constraints matching was employed
during partner selection for crossover.

However the most used strategies are penalty functions (already defined
in Section 3.6), where solutions with constraint violations are penalized. The
naive method requires user to supply penalty parameters, which are usually
difficult to set. Moreover, the performance of this approach largely depends
on the penalty parameters used. Beside a number of dynamically updated
penalty parameter approaches [43], a penalty parameter-less GA is suggested
in [44].

Different forms of the penalty functions have been proposed. In [45] the
following one is presented (supposing to have just greater-than-or-equal-to
type constraints ci):

Pi(x) =

{
0 if ci(x) ≥ 0

ai [1 + ci(x)] else
(4.6)

This function enforce the penalty to allow some infeasible points near the
constraint boundary to have fitness values which are competitive with nearby
feasible points. These infeasible points may contain genetic information (as
building blocks or schema) that is necessary to find the optimum, so it is
important to allow these points a chance to survive [38]. However, it is also
necessary that the final design be feasible.

Therefore a fundamental tradeoff to be considered, when using a penalty
function, lies in the proper choice of the draw-down coefficient ai, which
is often arbitrary: a small coefficient will impose a smaller penalty than a
large coefficient for the same magnitude of constraint violation. In the GA,
a large penalty (resulting in a poor fitness) can quickly eliminate infeasible
solutions from the search. Conversely, using a small draw-down coefficient
may allow the survival of infeasible designs to the extent that the population
converges at an infeasible point as the optimal fitness solution. Clearly, a
compromise must be struck between these two extremes. The goal of an



CHAPTER 4. SEARCH ALGORITHMS 39

adaptive penalty function is to change the value of the draw-down coefficient
during the search allowing exploration of infeasible regions to find optimal
building blocks, while preserving the feasibility of the final solution.

Two basic forms of draw-down coefficient strategies can be identified:
generation number-based and population fitness-based.

� The generation number-based strategies increase the value of the draw-
down coefficient with successive generations.

� The fitness-based strategies are meant to increase the penalty coefficient
when the population fitness is diverse, causing the population to move
toward an optimal feasible design; and to decrease the coefficient when
the population begins to become homogeneous, allowing some infeasible
designs with important design information to survive. These forms can
use the variance of the population’s fitness values.

In [44] another approach in presented, based on a penalty function which
does not require any penalty parameter: a pairwise comparison is exploited
to make sure that:

1. when two feasible solutions are compared, the one with better objective
function value is chosen;

2. when one feasible and one infeasible solutions are compared, the feasible
solution is chosen;

3. when two infeasible solutions are compared, the one with smaller con-
straint violation is chosen.

The resulting objective function (3.16), modified by this penalty function,
is then defined as:

Φ(x) =





f(x) if ci(x) ≥ 0 ∀i
fmax +

∑
i
〈ci(x)〉2 else (4.7)

where the operator 〈 〉 returns the operand, if the operand is negative and
returns a value zero, otherwise. The parameter fmax is the maximum function
value of all feasible solutions in the population: therefore objective function
of an unfeasible solutions not only depends on the amount of constraints
violations but also on the population of solutions at hand.

An alternative approach to handling constraints in GAs is to repair or to
cancel infeasible solutions. After an individual has been generated during the
population initialization, crossover or mutation phases, if it is an unfeasible
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one, it is wiped out and substituted by new individual, which can be created
by scratch or by using some pre-evaluated ”gene pool” [46].

Constraints can be also handled as objectives as presented in [47] for
multi-objective Pareto GAs.

4.4.2 Initial population selection

To increase the efficiency of GAs in terms of quality of the final solution found
and of the computing burden, the set up of a ”good” initial population is
an important topic to deal with. The generated initial individuals should,
in general, satisfy the problem constraints and efficiently span the search
space. The generation can be performed randomly or by using some heuristic
problem-specific approaches [48].

Adopted strategy

The recalled concept of avoiding unfeasible solutions has been here adopted,
mainly for problems with a large number of constraints. Usually the con-
straints satisfaction test of an individual is much more less computationally
time-consuming than the OF evaluation: therefore it is important to check
the constraints before performing the OF computing.

An iterative procedure has been exploited to randomly generate (with an
uniform PDF) all individuals inside the admissible range for each parame-
ter: if an individual does not satisfy the constraints, it is substituted by a
new individual until a good feasible one is found, without evaluating the OF
and saving therefore a great computing load. In this phase, the available
knowledge about the problem at hand is also exploited: the problem param-
eters can be correlated (for instance, there could be some implicit geometric
relations among parameters), therefore their generation has to suitably per-
formed. After the initial population has been created, the fitness of each
individual is evaluated.

4.4.3 Evolutionary stall

As already recalled, GAs are more robust than deterministic search strategies.
However, if multiple minima are present, also the GAs can fall and be trapped
in a local minimum. In this case, the evolution of the population can arrive
to a situation of stall or premature convergence, where neither crossover nor
individuals mutation can improve the mean population fitness or the best
individual. To avoid the stall, the genetic diversity of the population has to
be saved during the evolution: a possible way is to use a proper population
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size or to adopt a hill-climbing strategy. In addition, the termination criterion
has to be able to discriminate between the stall and the finding of the wanted
problem optimum.

4.4.4 Meta-optimisation of GAs

It is clear that Genetic Algorithms performances and their ability to solve our
problems depend by a number of parameters which has to be properly set.
This task belongs to the meta-optimisation of the algorithm. Parameters like
the population dimension, the selection strategy, the crossover and mutation
probabilities, the stopping criterium are key points for the GAs behaviour.

No Free Lunch Theorem

It is not useful to look for ”general problem” evolutionary parameters. The
recent so-called ”No Free Lunch” (NFL) theorem by Wolpert and Macready [49]
proves the following result:

There is no universal genetic parameters setting for GA and there is no
universally best method for optimisation i.e. there is no method that will in
all cases outperform other methods.

The simple corollary of the NFL theorem is that, averaged on the class
of all functions, no algorithm performs better than random search. On the
other hand, the result of NFL theorem is ”too general” and mostly theo-
retically important: we do not need an algorithm which will outperform all
other algorithms on all functions. Desired is a better performance on a cer-
tain class of functions. In order to achieve this, careful choice of operators
and parameters is needed. In particular, the optimal values of the genetic
operators probability of application is specific for the particular problem at
hand.

4.5 Proposed and implemented strategies

In this section, the strategies implemented in the Thesis to increase the
efficiency of the GA and the quality of the found solution are presented.

4.5.1 Operators adaptation and hybrid GA

During the GA evolution, it is generally useful to change the genetic opera-
tors probabilities [50]: in the early evolution steps, the genetic diversity of the
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individuals is high and the crossover operator should have a high probability
of application to efficiently mix this inheritance and therefore to widely span
the search space. In this phase the mutation operator should be not often
applied to not destroy useful genes. On the other hand, during the last part
of the evolution, the genetic diversity is low because all individuals have been
attracted by a (hopefully global) minimum: the mutation operator achieves
therefore a more important role while the crossover is no more able to get
new genetic information. Following the previous comments, the application
probabilities of the crossover and mutation operators are varied in opposite
way: the crossover probability decreases during the evolution, while the mu-
tation probability increases. The change of probabilities can be previously
fixed or self-adapted during run-time. The two implemented strategies are:

Self-adapted operators probabilities The evolution of the population is
monitored and the operators probabilities are adapted during the evo-
lution process to improve the rate of convergence and to escape from
both the local minima and from too early convergence: for an example,
if a stall condition is detected, the probability of mutation increases.
As an index of the evolution, the generational finite increment, defined
later (see definition 5.4), can be used.

Deterministic mutation A local minimum hill-climbing deterministic step
is introduced: it is a directional mutation operator, that forces muta-
tion in the opposite direction of the maximum gradient. This operator
can be used when it is possible to get the gradient, by using the analyt-
ical derivative of the OF, when available, or by a numerically computed
derivative in other cases.

4.5.2 Optimal design and uncertainties

The actual construction of a device solution selected by some optimisation
strategy is generally different from the design one due to material or geometri-
cal tolerances: the final values of the device parameters are different from the
nominal ones and therefore the real device performances are in general worse
than expected [51]. In addition, during the working conditions, the generated
magnetic forces can deform the device geometry with the consequence that
the working point is different from the design one [52]: for example, during
the first charging cycles of a magnet, the coils naturally perform some small
positioning adjustments (this is called the magnet training). These effects,
as the mechanical and assembling tolerances, are usually modelled through
random variables with Gaussian PDF: in all cases, a device performances
degradation has to be expected.
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It can be shown that some design solutions are more sensible with respect
to the performances to little changes in the device parameters than other
ones. Therefore it is useful for the designer to use some tool capable to eval-
uate the sensitivity of a design solution to construction errors [53], [54], [55].

After the optimisation procedure has provided one or more candidates for
the design problem at hand, a post-processing phase can be applied to rank
the different solutions against their sensitivities.

A design solution is defined robust when it is not very sensible to the
variation of the construction parameters in a neighbourhood of their nominal
values. The neighbouring region can be identified with the tolerances range,
which is the interval of possible variation of each design parameter during
the construction phase.

From this statement, it follows that can be preferred a solution charac-
terised by a worse OF value than other configurations, if it is more robust.

4.5.3 Increasing the robustness of the design solution

The principal aim of this section is to shown as the effects of the uncertain-
ness due to the manufacturing tolerances can be efficiently considered in an
automatic fashion if it is included in the objectives a suitable term related
to parametric sensitivity of performances.

The OF definition is modified in such a way to take into account some
information about the behaviour of the OF in a neighbourhood of the can-
didate solution, defined by the expected uncertainness on the geometrical
parameters.

When dealing with uncertain parameters values, the evaluation of the
OF can be substituted by a modified OF defined as the expected value of
OF in the neighbourhood Ω(x) of the nominal device configuration x (the
tolerances range):

OF (x) =
∫

Ω(x)
p(x′)OF (x′)dx′ (4.8)

where p(x′) is the probability density of the occurrence of the configuration
x′. Here a Gaussian PDF is adopted.

The integration of (4.8) for a multi-variable general PDF requires suit-
able integration techniques to be adopted, because the computational cost of
multidimensional integration increases exponentially with the search space
dimensionality (this phenomenon is referred as ”the curse of dimensional-
ity” [56]). A simple possible, but computationally heavy, approach for multi-
ple design variables is to consider statistical independence among tolerances,
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assuming the joint probability p(x) is the product of the single marginal
probabilities pi(xi) of each parameter:

p(x) =
∏

i

pi(xi) (4.9)

Due to technological and constructive issues, there could be some de-
pendence among design parameters or tolerances caused by machine tools
and construction methodologies: in these cases, the number of independent
parameters decreases as the joint PDF should no longer be considered the
product of marginal PDF, leading to a reduction of the computational cost
for evaluation of (4.8). As an example, for MRI magnets the minimum radius
of the coils wound in the drum caves are subjected to the same tolerance.
The exploitation of such concepts provide a better exploration of the search
space in the neighborhood of each design trial solution: the integration points
for (4.8) can be reduced by locating them only in a subregion of Ω(x) while
keeping the same accuracy.

In the following, a one-variable SOP will be considered. A confidence
interval of 99% is adopted (i.e. the percentage of times in repeated sampling
that the interval contains the true value of the unknown parameter x). By
using the error function erf defined as:

erf(x) =
2√
π

∫ x

0
e− t2 dt (4.10)

the probability (3.8) for an interval ]−∆x, ∆x] with a standard normal PDF
can be expressed as [16]

P (−∆x, ∆x) = erf(
x√
2
) (4.11)

By the previous definitions, the root x′ of the equation:

erf(
x√
2
) = 0.99 (4.12)

is the upper limit of an interval corresponding to a 99% confidence for the
standard distribution. By using the variable substitution x

σ
= t, this interval

corresponds to the wanted interval limit ∆x for a Gaussian distribution with
mean µ = 0 and standard deviation σ computed as

σ =
∆x

x′
(4.13)

The probability density p(x) is truncated at the tolerance range ] −
∆x, ∆x] and then normalised with the area inside the confidence interval.
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Figure 4.4: Continuous (continuous line) and discrete (dashed line) proba-
bilistic density functions.

To be applied in the framework of an automatic optimisation procedure,
(4.8) has to be properly discretised. Different approaches can be used for
the approximate evaluation of (4.8). Here, for the one-variable case, the in-
tegral is evaluated by the rectangular rule with three equally spaced points
x1 = −2

3
∆x, x2 = 0, x3 = 2

3
∆x (Figure 4.4). The discretised probabilistic

densities (usually referred as Probability Mass Functions or PMF) is evalu-
ated in such a way to conserve the total area. By using the CDF defined in
(3.7), the points Pi are defined as:

P1 =
F (−∆x

3
)− F (−∆x)

2
3
∆x Area

(4.14)

P2 =
F (∆x

3
)− F (−∆x

3
)

2
3
∆x Area

P1 = P3

where Area is the area below the PDF in the tolerances range, equal to the
wanted confidence:

Area = F (∆x)− F (−∆x) = 0.99 (4.15)
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Finally the OF can be expressed as a weighted sum in the three integration
points xi:

OF (x) = P1 OF (x1) + P2 OF (x2) + P3 OF (x3) (4.16)

where the weights Pi have been normalised with respect to their sum.

Developed software

By using the Matlab language, a code has here been developed to imple-
ment the previous concepts. The software is built on the MATLAB Genetic
Algorithm Toolbox [57] by the Automatic Control and Systems Engineering
Department of the University of Sheffield (UK). The toolbox is available
at the Department web site [58] under the GNU licence. The GA Toolbox
ver. 1.2 supports (not parallel) multi-populations with migrations and binary,
integer and floating-point chromosome representations. A code fragment to
compute the weights Pi is reported in Appendix A.1.

A demonstration example

To illustrate the previous considerations, a very simple example is here pre-
sented. Let’s consider a problem characterised by two objectives ( cos(x3)
and −x ) depending by just one parameter x. By assuming the weights
equal respectively to 1/2 and to 1/5, we express the following analytic OF
(Figure 4.5):

OF(x) =
cos(x3)

2
− x

5
(4.17)

The function (4.17) is characterized by two minima in the range [0, 3
√

4π],
with the lower one (B in Figure 4.5) located in a narrower and steeper ”val-
ley” than the other minimum (A). It is assumed that the parameter x is af-
fected by an uncertainness characterised in the range ∆x = [x−0.25, x+0.25]
by a Gaussian PDF with a confidence range=0.99 and a variance σ = 0.0971.
By discretising the (4.8) with the previous technique, the OF has been mod-
ified as in (4.16) and it is plotted with dashed line in Figure 4.5. The three
weights in (4.16) are:

P1 = P3 = 0.1922 P2 = 0.6156 (4.18)

It can be observed that, in the modified OF, the positions of the two
minima move very slightly but the more robust point A becomes the new
global minimum.
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Figure 4.5: Robust Objective Function for the demonstration example.

4.5.4 Sensitivity analysis

To evaluate the impact of mechanical tolerances on the actual device perfor-
mance, two possible directions can be followed: Sensitivity Analysis (SA),
and Worst Case Analysis (WCA). While SA is quite diffused in electrical en-
gineering, WCA, which is a quite common tool in other field of engineering,
deserves some further investigation.

SA is based on the evaluation of the OF partial derivatives with respect
to the manufacturing input parameters. The partial derivatives, evaluated
for an optimal configuration, can be estimated either using the raw ”finite
difference” method or by well-known methods such as the adjoin variable or
the OF interpolation with multi-quadrics or splines approaches [59].

On the other hand, WCA is mainly aimed to effectively probe the con-
structive uncertainties distributions in order to localize the potentially most
critical realization (worst case) of the device around the nominal design, in
order to assess the performance of the actual device and to tune a possible
correcting tool. Due to the large number of the design parameters in the
usual engineering design problems, the principal methodology of probing the
parameters space is a Monte Carlo analysis. The MC analysis is performed
with the random generation of a quite large number of design configurations
characterised by simultaneous variations of the parameters within the tol-
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erance ranges centered on the reference design, possibly resulting from an
optimisation procedure. This is typically a post-processing step. Note that,
while the common methodologies to perform SA are based on the knowledge
of OF derivatives, the MC analysis has the advantage on other methods of
not requiring the computing of any derivatives.

MC makes available a large number of cases, that can be used, apart
from performing WCA, also to evaluate the statistical properties of some
further ”performance index” characterizing the device: MC analysis provides
therefore a number of information useful to evaluate the robustness of a
design solution, such as correlation indices between the design objectives
and the input parameters.

Evaluation of the OF gradient

The SA is usually performed through the evaluation of partial derivatives
of the design performance. Sometimes, in the phase of the design process
after the optimisation, some fixed parameters, not included in the previous
optimisation phase, may be included or some constraints on the DOF can be
released: in these cases, the OF derivatives are not all vanishing, although
evaluated in the proximity of an optimum. In addition, the solution from a
stochastic optimiser not always is a local minimum even if it is close to it:
so first partial derivatives can be different from zero.

Unfortunately, typical approaches to compute the OF derivatives can
be performed only if the dependence of the OF on the design parameters
is regular enough, and of course do not apply straight to parameters not
considered in the optimisation phase. In addition, the device sensitivity with
respect to fixed parameters must be evaluated from scratch, as no information
is available on this relationship at the end of optimisation process.

In the choice of a strategy to evaluate the partial derivatives, it is also
important to remind the characteristics of the OF s usually involved in elec-
tromagnetic optimisation. These OF s can be not differentiable or discontin-
uous with steep behaviour in the neighbouring of a local optimum: the usual
methods can therefore fail.

A different approach is here presented to performs SA with respect to
both fixed parameters and DOF by using MC analysis. After a MC analysis,
for instance used to perform a WCA, a random sampling of the OF centered
on a reference device configuration is available. An analogue situation can
happen after an evolutive optimisation, when the final population is usually
clustered around the best individual. In both situations, the MC analysis
and the evolutive optimisation, a quite big number of samples of the OF is
available ”for free” [60].
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By expanding at the first order in Taylor series the OF starting from the
reference configuration P0 and by using the m already computed values of
the OF in the MC points Pi = [Pi,1, ..., Pi,n] in a neighbourhood of P0 =
[P0,1, ..., P0,n], it is possible to assemble the following overdetermined linear
system for the unknown OF gradient:

Ax = b (4.19)

where:

xj = ∂ OF
∂P0,j

are the components of the OF gradient x in P0,

Ai,j = Pi,j − P0,j are the coefficient matrix A terms,
bi = OF (Pi)−OF (P0) are the known values,

and i = 1, . . . , m

The ”best fit” x solution of the overdetermined linear system (4.19), rep-
resenting the first order partial derivatives of OF in the reference point P0,
is obtained by computing the pseudoinverse of the rectangular m x n matrix
A by singular value decomposition (SVD).

Sensitivity analysis of the Rastrigin function

In order to test the previous sensitivity extraction method, the Rastrigin
function, presented in Section 3.7.1 has been considered with three variables
(n = 3). The point P0 = [1.1,−0.1, 0.1], close to the local minimum [1, 0, 0],
has been considered to evaluate the function gradient.

The Monte Carlo analysis has been started around the point P0 with 500
sample points randomly generated with a Gaussian distribution with µ = 0
and standard deviation σ computed as in (4.13) inside a tolerance range of
[P0 − 0.01, P0 + 0.01] with a confidence range=0.99.

The coefficients of the Taylor expansion have then been reconstructed
using the MC data, as in previous section. In Table 4.2 is reported a com-
parison between the SVD computed derivatives and the analytical ones: the
MC computed results show a good agreement within 0.4 % with the exact
data.

4.5.5 Monte Carlo analysis and Pareto Front

When the Pareto Front of the optimisation problem is available, it is possi-
ble to carry out a MC analysis to test the robustness of the Pareto optimal
solutions. Here a MC analysis is performed for the analytical test case pre-
sented in Section 4.1.1, by starting from each point of the Pareto Set, which
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Variable SVD ∂ F
∂xj

Analytical ∂ F
∂xj

Difference %

x1 39.1316 39.1263 0.0137
x2 -37.1316 -37.2485 0.3138
x3 37.1316 37.0192 0.3038

Table 4.2: Comparison between SVD computed (with 500 samples) and an-
alytical derivatives for the Rastrigin function.

is randomly perturbed inside the tolerance range. The mean values and the
variance of the partial objectives in the perturbed configurations are then
used to assess the sensitivity of that particular configuration. In addition,
the WCA gives the (approximate) worst cases of the partial objectives for
each Pareto solution: after such a piece of information is known, it is possible
to judge how far from the nominal performance will be, in the worst case,
that particular optimal solution and to tailor consequently possible correction
systems (e.g. shimming coils for high uniformity magnets).

This analysis can help to compare different Pareto solutions from the ac-
tual performance point of view, not only on the basis of the ”nominal design”.
Note that the values of the partial objectives for the all perturbed configu-
rations lie on the same side of the Pareto Front: following the definition of
Pareto Set, there are no configuration with lower values of all objectives than
a Pareto point. The worst cases can be plotted in the objectives plane to get
uncertainness intervals for points alongside the Pareto Front and, for each
objective, the width of the intervals is a direct measure of the sensitivity of
a Pareto solution to the construction tolerances.

MC analysis has been performed for a tolerance of 5% on the design
variable with 2000 runs for each point of Pareto Front. The worst cases for
the two partial objectives are reported as error bars for each Pareto points
in Figure 4.3. These figures help understanding the diverse sensitivities of
the partial objectives at different Pareto Front points: they are somehow
similar to the sensitivity ellipsoids presented in [60]. As an example, it is
possible to observe that the sensitivity of F1 is much higher in points with
small values of w1. If needed, a more detailed perspective about the effect
of uncertainties can be obtained by analysing the statistical behaviour of the
different objectives around a particular solution (or, in other words, around
a particular point of the Pareto Set).

Finally, it can be useful to have an understanding of the behaviour of
the statistical parameters resulting from MC analysis when moving along
the Pareto Front, in order to help selecting the most promising region. As
an example, the PDF for the point of Pareto Front obtained with a weight
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Figure 4.6: Pareto Front analytical test case: PDF of objective F1 for
w1 = 1/3 and the Gaussian distribution with the same mean and standard
deviation (in dashed line).

w1 = 1/3 is reported in Figure 4.6 for the objective F1 and in Figure 4.7 for
the objective F2. The mean µ and standard deviation σ of the objectives
PDF are also computed and in Figure 4.6 and in Figure 4.7 the Gaussian
distribution with such values of µ and σ are also plotted.

In Figure 4.8 the standard deviations of F1 and F2 is plotted versus the
corresponding values of the weight w1: the monotonic decrease of the σ with
increasing w1 weight suggests to select high values w1 if the objective F1 is
the most critical one and vice-versa, to get small values of σ and therefore
low solution sensitivity.

4.6 Appendix: the Nash equilibrium

In a multi-objective optimisation the goal is to find a good ”equilibrium”
point among different wanted objectives.

The situation is similar to a game theory concept, introduced by the
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mathematician John Forbes Nash Jr. and therefore called ”Nash equilib-
rium” [22]. A set of game strategies is a Nash equilibrium just in case no
player could improve his payoff, given the strategies of all other players in
the game, by changing his strategy. In a Nash equilibrium, all of the player’s
expectations are fulfilled and their chosen strategies are optimal.

On the cooperative game theory is based an approach of solving the
multi-objective optimization problem with the search for Nash equilibrium
points [23]. In a cooperative game, the players agree to cooperate with each
other and each player corresponds to an objective.

Also the so-called evolutionary games are based on the Nash equilibrium
concept. This type of games has been developed in biology in order to under-
stand how the principles of natural selection operate in strategic interaction
within and among species.



Chapter 5

Parallel Genetic Algorithms

Life results from the non-random survival of randomly varying replicators.
(A sentence the evolutionist Richard Dawkins wrote to be put on a T-shirt.)

In this chapter, the main issues of parallel computing and its application
to electromagnetics and optimal design are recalled. Then the parallel Ge-
netic Algorithms are described and the implemented Island Parallel Model
is introduced together with the evolution metric and population operators.

5.1 Computational Electromagnetics and Par-

allel Computing

Computational electromagnetics (CEM) requires high computing po-
wer both in terms of hardware than in terms of algorithms and solving
paradigms. Today many fields of computational physics, such as fluid dy-
namics, currently adopt parallel computing to simulate near-real-world cases
(e.g. the shape optimisation of complete aircrafts) while in CEM the use of
parallel computing is not so widely diffused [61] but in some military appli-
cation (e.g. stealth technologies in the high frequencies sector and magnetic
signature detection of submarines in low frequencies).

There are many reasons for this delay in CEM use of parallel comput-
ing. One reason is certainly due to the fact that field problems are generally
neither confined to a structure nor set in very regular domains. The ge-
ometries involve substantial details and the domains of study have often to
be considered to infinity: the needed spatial resolution spans many order of
magnitudes increasing the numerical difficulties in recognising parallel tasks.
Some examples of recent parallel CEM papers are in [62] and [63].

55
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In addition, I think this situation is also partially due to the availability
in electromagnetics of efficient simplified models, which can be used to solve
many typical problems. Other important issues are the usual quite high costs
of parallel computing, in terms of required computing resources and human
investment.

5.1.1 Present trends in parallel computing

The past situation has been recently changed. Today parallel computing is
no more restricted to huge expensive mainframes but low-cost parallel clus-
ter high-performances machines can be directly assembled by an university
department with a cost at the level of its normal research budget. There-
fore new perspectives are at hand and new problem solving strategies and
approaches can be explored.

At the moment, such cluster machines still require the knowledge of mes-
sage passing programming model, which is not very easy to use: in fact,
sometimes the message passing is called the ”machine language” of parallel
computing. In the near future, with the availability of faster network links
among computing nodes, it will be possible to adopt easier programming
models, such as the virtual shared memory environment [64].

In last years the CEM community began to use these new parallel com-
puting machines to increase performances of existing algorithms requiring
long computing time, such as the ones used in optimal design and field com-
putation [65], [66], [67], [68].

5.2 Parallel Genetic Algorithms

The Genetic Algorithms are generally able to find good solutions in reason-
able amounts of time, but as they are applied to larger and harder problems,
like the electromagnetic optimal design, the time required to find adequate
solutions can become very long. Therefore there have been multiple efforts
to make GAs faster and one of the most promising choices is to use parallel
implementations [69]. GAs structure is inherently parallel: the simultaneous
search for different points in parameters space could be thus naturally dis-
tributed among many processes. Different strategies to parallelise GAs have
been proposed [70], [71], [72], [73], [74]:

Global models These models introduce the parallel computing of new indi-
viduals among different processors to speed-up evolution without mod-
ifying the main structure and properties of the evolutionary procedure.
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This method is relatively easy to implement and a significant speed-up
can be expected, if the communications cost does not dominate the
computation cost [75]. The evaluation of individuals is parallelized by
assigning a fraction of the population to each of the processors avail-
able. Communication occurs only as each processor receives its subset
of individuals to evaluate and when the processors return the fitness
values. On a distributed memory computer, the population can be
stored in one processor: this ”master” processor would be responsible
for sending the individuals to the other processors (the ”slaves”) for
evaluation, collecting the results, and applying the genetic operators to
produce the next generation.

Coarse grained models In these models, also named Island Genetic Al-
gorithms (IGAs), the population of the GA is divided into multiple
subpopulations or islands that evolve isolated from each other most of
the time, but exchange individuals occasionally [76], [77]. The exchange
of individuals is called migration. Coarse grained parallel GAs bring
fundamental changes in the operation of the GA and have a different
behavior than simple GAs: they introduce new evolution paradigms by
using new relations among groups of individuals. Typically, each island
explores a different area of the research domain increasing the probabil-
ity to find a global minimum, but allowing also the possibility of track-
ing different ”quasi-optimal” solutions (local minima): storing multiple
quasi-optimal solutions can be useful in optimisation problems, where
the possibility of multiple solutions has not to be ruled out, provided
that the solutions all satisfy the design objectives. Sometimes coarse
grained parallel GAs are known as distributed GAs because they are
usually implemented on distributed-memory computers: these models
are well suited for cluster computing with a little number of nodes
connected by a local network.

Fine grained models This approach in parallelizing GAs uses fine-grained
parallelism [78]. Fine grained parallel GAs partition the population into
a large number of very small subpopulations. Indeed, the ideal case is
to have just one individual for every processing element available. This
model is suited for massively parallel computers.

Hybrid and multilevel models These models concurrently adopt differ-
ent strategies, for instance with hierarchical multiple levels to perform
some sort of meta-optimisation. Combining parallelisation techniques
results in algorithms that share the benefits of their components and



CHAPTER 5. PARALLEL GENETIC ALGORITHMS 58

promise better performance than any of the components alone. An ex-
ample of a multi levels GA is presented in Bianchini and Brown [79],
where an island model GA is combined with a master-slaves global
model inside each island: migration occurs between islands and the
evaluation of the individuals is handled in parallel. This approach can
be useful when working with complex applications with objective func-
tions that need a considerable amount of computation time.

5.3 Population moments

In a multiple populations GA environment, it is important to have a measure
to describe in a compact form the features of each population: I have there-
fore introduced [80], in analogy with mechanics, the concept of population
moments with respect to the problem fitness. Population moments act as a
metric in the search space and are defined in the following:

� The zero-order moment could be called the population mass and it is
computed as the sum of individuals fitness (where, for instance, the
fitness can be the reciprocal of OF value) :

F0 =
Nindiv∑

n=1

Fn (5.1)

where Fn = F (xn) is the fitness for the n-th individual, described by
the chromosomes vector xn of the design parameters, with dimension
equal to number of the design parameters (DOF) Ndof and Nindiv is the
number of individuals in the population. The zero-order moment is a
measure of the total population fitness.

� The first order moment defines the position R of the center of mass in
the search space as:

F0R =
Nindiv∑

n=1

Fnχn (5.2)

where χn is the vector of the normalized chromosomes χn,i, defined
as the corresponding chromosomes xn,i normalized to the diameter of
their admissible range, which is usually provided as a design constraint.
The first-order moment indicates the position of the ”center” of the
population.
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� The second-order moment defines the moment of inertia with respect
to each design parameter i, computed around the i -th component Ri

of the center of mass:

F0ρ
2
i =

Nindiv∑

n=1

Fn(χn,i −Ri)
2 (5.3)

where ρi is the i -th inertia radius component. The second-order mo-
ment measures the dispersion of the population with respect to its
center.

These moments describe the global behaviour of a population during the
evolution steps. For instance, they can be used to check the evolutionary
stall of the population, when there are no more ”important” changes in
the population for a number of successive generations. For this purpose,
a generational finite increment can be defined at each generation k as:

Dk = Mk −Mk−1 (5.4)

where Mk is the generic moment at the k-th iteration. The generational finite
increment can be profitably used to describe the evolution process and the
occurrence of the condition of stall.

However the main property of the moments is their possibility to compare
different populations (or the subpopulations in a coarse grained model) by
using them as a metric of the search space. As an example, if two compact
populations (i.e. with low values of the second order moment) have distant
centres (i.e. with different values of the first order moment), it is possible
to say they are exploring different areas of the search space and they are
also focusing towards different local minima. It is also possible to rank the
populations, for instance against the robustness of solution found: during the
last evolution steps, a population with a high global fitness (i.e. with a high
value of the zero order moment) and quite spread around its center (i.e. with
a high value of the second order moment) has found a more robust solution,
with a big number of good fitness individuals around the best one, than a
population with the same global fitness but a lower value of the second order
moment.

5.4 Population operators

My attention focused mainly to IGAs parallel models: therefore next sections
present some of the main topics about multi-populations GAs.
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5.4.1 Migration policy

Parallel GAs are more complex than the serial ones and more parameters
control their behaviour [81]. In particular, the migration of individuals from
an island to another one is controlled by several parameters like:

1. the islands topology, that defines the connections between the sub-
populations;

2. the migration rate, that controls how many individuals migrate;

3. the migration interval, that affects how often migrations occur.

An important index of the performance of parallel GAs is the topology
of the interconnection among islands [82]: the topology determines how fast
a good solution disseminates to other islands. If the topology has a dense
connectivity, good solutions will spread fast and may quickly take over a
new population. On the other hand, if the topology is sparsely connected,
solutions will spread slower and the islands will be more isolated from each
other, permitting the appearance of different solutions.

The communication topology is also important because it is a major fac-
tor in the cost of migrations. For instance, a densely connected topology
may promote a better mixing of individuals but it also entails higher com-
munication costs.

The general trend on coarse grained parallel GAs is to use static topologies
that are specified at the beginning of the run and remain unchanged. Many
implementations of parallel GAs with static topologies use the topology of
the communications network of the computer available to the researchers.
For example, implementations on hypercubes are common [83].

The other major choice on communication topologies is to use a dynamic
topology. In this type of topology, an island is not restricted to communicate
only with some fixed set of populations but instead it sends its migrants to
those that meet some criteria. The motivation behind dynamic topologies is
to identify those populations where the migrants are likely to produce some
effect. Typically, the criteria used to choose an island as a destination include
a measure of the diversity of the population [84] or a measure of the genotypic
distance between the two populations (or some representative individual of
a population, like the best one) [85]. A review of different migration policies
and of their links to natural evolution is presented in [86].

Different migration policies can be adopted. The migrations can be co-
operative, if the populations agree to exchange individuals, or dominant, if
a more developed and high fitness population sends some of its best indi-
viduals to other islands, following some criteria. A master-slaves approach
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to execute and control migrations has also been proposed to send the best
individuals to all islands [87].

5.4.2 Resources allocation and aggression policy

To increase the efficient use of the computing resources for the resolution of
optimisation problems defined by computationally intensive fitness functions,
a new population operator has been here introduced [80]: the aggression.
In the spirit of other GAs concepts, the new operator try to mimic a natural
evolution aspect.

In natural ecosystems, different species can be viewed as evolutionary
islands in competition to gain the limited available resources (e.g. food or
vital space): the conquest of natural resources by one of the species could be
performed for instance by hunting (the strongest survive) or resources can be
allocated by some kind of ”supervising” principle (the best survive).

In a similar way in the IGA, by adopting the concept of resources alloca-
tion, when two islands become too ”near”, a supervising aggression strategy
can decide that the stronger or the more adapt one can conquer the other
one by gaining its resources. On the other side, when there is a very weak
island and when successive migrations are not able to give new impulse to it,
the island can be destroyed and its resources can be given to the strongest
island.

The evaluation of the strength of an island can be defined by using the
already defined island moments. As a matter of fact, the higher are the
available resources of an island, the higher are the probability and the velocity
to find a good solution: the new acquired computing resources are used to
speed-up the updating of the individuals fitness.

5.5 Implementation of Island GA

One of the main results of this Thesis is the implementation of the concepts of
migrations on a dynamic topology among islands and of computing resources
allocation for an IGA model. Some details about this implementation are
given in the following.

The adopted parallel programming paradigm is the message passing,
where the parallel running processes communicate, synchronise and exchange
data through explicit messages, which have to be set by the programmer. In
particular the Single Program, Multiple Data (SPMD) model is used: all
processes run the same program, even if the execution of the code may be
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different among the processes. The message-passing calls follow the Message
Passing Interface (MPI) standard [88].

For the development of the computer code with the Fortran language, the
parallel GAs library PGAPack [89], developed at the Argonne Laboratory
(USA), has been used and extended with new operators and paradigms (see
next section and also Section 7.3.1).

The GA has been adapted to the particular characteristics of the solved
problems. A floating-point chromosomes representation has been adopted.
For the generation of the initial population, the lower and upper problem
limits for each design parameter set the initial ranges for the corresponding
gene: each gene is uniformly randomly generated inside its range.

The classical GA operators, as previously defined in Section 4.4, have
been suitably redefined in order to deal with floating point individuals:

� The selection phase allocates reproductive individuals on the basis of
their fitness by using a tournament selection scheme: couples of strings
are randomly chosen and for each couple the one with higher fitness is
selected.

� The two-points crossover operator takes genes from each parent and
combines them to create child strings.

� The mutation operator is in the form v ← v ± p ∗ v, where v is the
existing gene value and p is selected from a Gaussian normal distribu-
tion with mean µ = 0 and standard deviation σ = 0.5. The change
of a gene, p ∗ v, is added or subtracted to the old value with a prob-
ability of 0.5. Individuals to mutate are randomly selected. Mutation
operator may generate gene values outside the initialization range: if
this happens, the gene value is reset to the lower (upper) value of the
initialization range.

The population replacement is the steady state type, where the best in-
dividuals are copied to the new population, with a preset replacement value,
while the other individuals are created by crossover and mutation.

An important element of all stochastic algorithms, is the (pseudo-)random
number generator [90]: here the generator uses a starting seed value taken
from the system clock and therefore the random sequences are always differ-
ent for successive runs.

5.5.1 Load balancing issues: Master-Slave approach

Since the PGAPack only supports the single population global parallel model,
to implement the multi-population model a master-slave algorithm has been
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here developed: master process controls migrations and on each slave a sin-
gle population GA runs. The flow chart of the proposed IGA is shown in
Figure 5.1.

In parallel computing, an important aspect to deal with is load balancing.
During parallel processing, care must be taken to maintain all participating
processes busy performing useful computations and to minimise communica-
tion among the processes. In general, the SPMD model is not well suitable
for parallel computing on a cluster of workstations: this model assumes an
equal work load on each processor but, during the evolution, the actual slaves
computing time could be unbalanced and non predictable, due, for example,
to the presence of non-homogeneous computing nodes. To achieve good per-
formance, it is necessary to use a dynamic load balancing algorithm.

This strategy has been assured by the adopted Master-Slave model: the
work loads among the Slave processes are different and distributed by the
Master process with a task-farming technique: a new task is sent to a Slave
only when it has completed its previous task.

To avoid dead-locks of communication among processes, it has been neces-
sary to develop an asynchronous and non-blocking islands migration strategy
based on the master-slaves model [91], where master process controls mi-
grations among islands using a dynamic network connection that randomly
matches populations before migrations.

In addition, multiple processors can be assigned to each Slave island to
increase individuals fitness evaluation speed. In this way, a hybrid parallel
GA model is implemented, with a coarse grained GA running at the upper
level among islands and performing aggression and migrations while a global
parallel GA runs inside each multiple-processes island (Figure 5.2). The
Slaves start different and separate global model GAs while master process
enters in a loop waiting for messages from slaves (see Figure 5.1).

5.5.2 Implementation details

The system used to run the IGA is a Beowulf-class distributed-memory ma-
chine, which is described in the Chapter 7. An important issue of parallel
codes (which usually require a long development work) is the portability of
the codes across different platforms and architectures: here, to increase the
portability, public domain libraries, such as MPICH and PGAPack, have
been chosen. The code has been developed by using the always-available
Fortran programming language.

Different MPI communicators are used: the global MPI Comm World,
for the communications between the master and the slaves, and new com-
municators, one for each slave group of processes, where the GAs run. A
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Figure 5.1: Proposed IGA flow chart.
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Figure 5.2: Hybrid multilevel IGA model structure.

Fortran-MPI code fragment to create the new communicators is reported in
Appendix A.2.

The migrations start after an initial ”genetic development” (e.g. set to
200 generations) to let each population to properly exploit its genetic ma-
terial: by calling a migration genetic operator every Ng generations, each
island sends Nc copies of its best individuals to master and then it receives
Nc new individuals from master replacing some of its worst ones. In Fig-
ure 5.3 and in Figure 5.4 the detailed flow charts of the Master and of the
Slave processes are respectively reported, with the migrations management
in evidence. To perform migrations, the master process stores in a pool the
individuals received from the slaves, then it randomly sends to each querying
slave new individuals from another island (Aggression phase A, Figure 5.5).

After the first half of the preset total number of generations, the aggres-
sion phase begins (Aggression phase B, Figure 5.6): the weaker islands are
destroyed and their processors are assigned to the other ones. For example,
in Figure 5.6, the islands 0, 1 and 2 inherit the P4, P5 and P6 processors
from the destroyed island 3, 4 and 5. Due to the present limitation of the
used MPICH 1.2 release, it is not possible to have full asynchronous processes
but the aggression phase requires a general processes synchronization: the
creation of new topologies with new groups and new communicators has to
be performed on all processes.
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Figure 5.3: IGA: master process flow chart.
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Figure 5.4: IGA: slave processes flow chart.

MASTER
P0

ISLAND 0
P1

ISLAND 5
P6

Figure 5.5: IGA aggression: Phase A.
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MASTER
P0

ISLAND 0
P1, P4

ISLAND 2
P3, P5

ISLAND 1
P2, P6

Figure 5.6: IGA aggression: Phase B.

By numerical experiments, it has been shown that there is a best value for
the migration rate (Ng) and for the number of migrating individuals (Nc) [92]:
too frequent or too populated migrations can destroy the genetic diversity of
the populations and this can bring to the evolutionary stall.

5.6 Exploring the Biodiversity

A quite new strategy is here explored, once again borrowing from nature the
concept of biodiversity: different species evolve in quite similar environments
and they cooperate to achieve their not-the-same goals.

The multi population evolutionary environment has been used to find
the Pareto Front, with each population specifically finalised to minimise the
problem defined by a different weights set and, consequently, by a different
OF : therefore the search landscape is slightly different for each population.
If each population is characterised by its evolution goals, it is possible to refer
such a situation as biological variety or biodiversity: the populations aim to
the same objectives, which have different relative importance. The solving
algorithm is based on the multi-population IGA model [93]: the structure
is sketched in Figure 5.7, where each island has a different weights set and
exchanges evolutionary information with the other islands.

A similar approach has been used for the resolution of inverse problems,
as reported in the next Chapter 6.
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ISLAND 1
WEIGHTS SET 1

ISLAND 2
WEIGHTS SET 2

MASTER

ISLAND 3
WEIGHTS SET 3

Figure 5.7: IGA: biodiversity model structure.



Chapter 6

Inverse problems: minimisation
of error functionals in ECT

Natural selection is the blind watchmaker, blind because it does not see ahead, does
not plan consequences, has no purpose in view. Yet the living results of natural
selection overwhelmingly impress us with the appearance of design as if by a master
watchmaker, impress us with the illusion of design and planning.
by Richard Dawkins [94].

The models and methods used in optimal design can be adopted for
the resolution of the inverse problems arising in Non Destructive Testing
(NDT), where the task is to identify flaws in critical structural parts by
using external measures of physical parameters [95]. Inverse problems are
usually formulated as the minimisation of some error functionals, whose role
is similar to the OF s used in optimisation problems. The difference between
these two classes of problems is that the minimisation of the error functional
should give the ”real” unknown flaw geometry while in an multi-objective
optimisation in general there is no globally defined minimum to find. In
this chapter, the problem for electromagnetic NDT is formulated and the
proposed solution strategy is introduced with the application to a classical
benchmark.

6.1 Eddy Current Testing

Many technological productions, for instance in the aerospace or nuclear
reactor industry, present increasing quality and safety demands that require
in turn the detection of very small cracks or hidden flaws in critical parts.

70
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One of the usual non-destructive evaluation techniques for the detection of
defects in conductive specimens is the Eddy Current Testing (ECT) [96].
While early ECT-based systems adopted single frequency exciting signals, the
most recent techniques make use of more complex waveforms, characterised
by a richer spectral content.

One of these methodologies is the use of multiple frequencies, which in-
crease the reliability of ECT by improving the capability to discriminate
between the flaw signal and the noise due to the presence of external struc-
tures [97], and providing a better resolution in terms of defect depth [98]. In
addition, a multiple frequency scanning can provide additional information
about the flaw we are looking for [99]: for example, in multi-layer structures
containing rivets, the use of different optimal frequencies helps to detect hid-
den cracks and to mask the noise from the rivet [100]. The use of a multiple
frequency exciting signal has also been proposed as an input to a neural
classifier for the flaw geometrical parameters [101], [102].

Of course, the adoption of more complex waveforms introduces additional
difficulties and increases the complexity of the mathematical model to be in-
verted. As an example, ECT data from different frequencies can be affected
by non equal measurement uncertainties and noises due to dissimilar be-
haviour of the probe with the frequencies or due to the use of different probes
specialised for each frequency. In addition, suitable data fusion strategies
must be applied to take the greatest advantage from the available data sets.

A novel strategy for the resolution of the inverse problems arising in
the treatment of data from multi-frequency ECT is presented here [103]:
the strategy is based on a multi-objective type parallel approach. The eddy
currents pattern is determined by using a finite element code while the inverse
problem solver is based on a stochastic algorithm.

6.1.1 Problem formulation

In order to determine the presence of possible structural defects and their
characteristics, the usual approach is to solve an inverse problem, in which a
set of measurements taken on the actual sample is the input, while the defect
parameters represent the output. To accomplish such a task, a number of
”trial solutions”, for which the ”trial crack” parameters are iteratively fixed
by the inverse problem solving algorithm, must be analysed and compared to
the actual solution in terms of the ”measurement” generated. The presence
of a flaw corresponds to a change of the conductivity inside the material:
therefore the detection of the crack can be casted as the reconstruction of
the material conductivity map.

The resolution of the inverse problem passes then through the resolution
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of a number of ”direct problems”, which must be solved with the maximum
efficiency, as this task represents the most demanding part of the process in
terms of computational burden [104]. On the other hand, the effectiveness
and the accuracy of the detection process depend also on the inversion strat-
egy. Therefore, here the main attention is focused on the performance of the
inverse problem solving algorithm, while a very simple, yet not trivial, direct
problem has been considered, namely the JSAEM (Japan Society of Applied
Electromagnetics and Mechanics) benchmark problem #2 [105], and solved
using quite standard procedures.

6.1.2 Direct problem resolution

The solver for the direct problem is a finite edge-element integral code, based
on the electric vector potential formulation in the framework of the magneto-
quasi static modelling [106]. The formulation leads, via Galerkin finite ele-
ments discretisation, to the solution of the following equation:

L
dI

dt
+ RI = U (6.1)

where:

Lij = µ0

4π

∫
Ωc

∫
Ωc

∇×Ti(x)·∇×Tj(x
′)

|x−x′| dΩdΩ′

Rij =
∫
Ωc

∇×Ti(x) · η∇×Tj(x
′)dΩ

Ui = − ∫
Ωc

∇×Ti(x) · ∂As

∂t
dΩ

(6.2)

Ti is the i -th edge shape function, As is the source field vector potential, Ωc

is the conducting region,

J(x, t) =
N∑

k=1

Ik(t)∇×Tk(x) (6.3)

is the unknown current density distribution, η is the material conductivity,
and the gauge condition T · w = 0 is assumed on the edges of a mesh tree
to assure to uniqueness of the vector potential. The integral formulation
adopted in this model allows to discretise only the region where an eddy
current density is induced.

It should be noted that, when the same mesh can be used for the different
trial solutions and just the conductivity η of the various elements is updated
to locate the crack, the inductance matrix L has to be computed only once;
therefore L can be inverted in advance, thus sparing quite a big amount of
computational effort [107].
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Figure 6.1: Schematics for JSAEM benchmark problem #2.

In order to improve the efficiency of the direct solution process, the reci-
procity principle or smarter treatment of DOF can be adopted [108], [109].

In the JSAEM Problem #2 the test specimen is a square plate, with
dimensions 140 x 140 x 1.25 mm (Figure 6.1, letter (A)), made of nickel-based
non-magnetic superalloy INCONEL 600 MA showing a relative permeability
µr = 1 and a conductivity η = 106 S/m. The plate presents in the centre a
rectangular crack characterised by the following dimensions: length = 10 mm;
width = 0.2 mm; depth varying from 100% to 40% of plate thickness. Both
inner and outer defects are considered.

The eddy current probe is a cylindrical coil, with inner and outer radius
equal respectively to Rin = 0.6 mm and Rout = 1.6 mm and 0.8 mm height;
the lift-off from plate is assumed equal to 0.5 mm (Figure 6.1, letter (B)).
The coil is excited with AC current with RMS value equal to 1/140 A, at
different working frequencies. In the Table 6.1.2, the skin depths for the
three frequencies 150 kHz, 300 kHz and 600 kHz are reported for the case of
INCONEL 600 MA alloy.

A finite elements mesh has been here properly chosen to guarantee a
suitable precision and spatial resolution while limiting the number of elements

Frequency 150 kHz 300 kHz 600 kHz
Skin depth (mm) 1.30 0.92 0.651

Table 6.1: Skin depths for different frequencies in the INCONEL 600 MA
alloy.
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(i.e. the number of unknowns), using a higher discretisation level in the
region close to the probe (search region) and a coarser one in the remaining
part of the plate. In the present study, only cracks aligned to an axis (here
the x-axis) and with a high aspect ratio have been considered, representing
a class of quite common defects in the practical applications.

In the search region, in order to improve the overall effectiveness, a non-
uniform mesh step along the crack direction (x axis) and normal to it has
been used: in this way it is achieved almost the same spatial resolution along
the two x − y directions (see Figure 6.2). Each of the finer elements (crack
elements) have the same width and half the length of the JSAEM crack
(i.e. 0.2 x 5 mm). In Figure 6.3 is shown a zoomed view of the search region
mesh indicated by a dashed circle in Figure 6.2.

With such assumptions, a generic crack is described by five integer pa-
rameters: the row ny position along y-axis, the initial (nxin) and the final
(nxfin) element along x-axis, the initial (nzin) and the final (nzfin) element
along the vertical z-axis on the mesh (see Figure 6.3).

Finally, note that, to prevent new evaluations of already calculated trial
configurations, a data base of the computed trial cracks is built and updated
during the inverse problem resolution process. In this way, before evaluating
the measurements for a trial crack, the resolution strategy looks whether it
is already available in the look-up table: if not, the new crack is processed
and added to the data base, otherwise the data base is simply read.

6.1.3 Inverse problem model

As highlighted above, the actual crack is usually searched with an iterative
process by generating a sequence of ”trial cracks”, possibly converging to-
wards the actual crack to be detected, or, more reasonably, towards its best
representation among all the possible cracks generated by the representa-
tion basis chosen. The effectiveness of an inverse problem resolution strategy
must then be judged on the basis of its efficiency in the search process and,
in addition, on the basis of its ability in finding such a ”projection” of the
crack in the search space, without being puzzled by ”phantom” solutions.

The most usual approach is to formulate the problem in terms of a suitable
Objective Function OF, expressing the difference of the actual measurements
and the ”trial” ones (generated by the direct problem solver) in terms of the
parameters defining the crack (e.g. position, length or width).

Taking into account the nature of the OF (poor smoothness with mul-
tiple local minima), the latter can be efficiently solved by an evolutionary
strategy, such as the Genetic Algorithms [110], thanks to their capability to
span the complete parameters region. Of course, a suitable coding of the
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Figure 6.2: ECT analysis: top view of the plate mesh. The dashed circle
indicate the region zoomed in Figure 6.3
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Figure 6.3: ECT analysis: zoom plot of the fine mesh region.
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crack parameters and a suitable OF have to be chosen in order to relate the
measurement discrepancies with the defect parameters.

Note that when using a multi-frequency ECT, the OF should be able to
treat data from different frequencies. A possible, very simple, solution is to
use a scalar OF defined as the sum of the errors by the signals for different
frequencies [111], even if a scalar OF in multi-objective optimisation problem
is affected by well known problems arising from the non-convexity of the
search region.

In the following, on the other hand, the multi population environment
presented in Chapter 5 is adopted, where each population is specifically fi-
nalised to reconstruct the defect by using only one of the frequencies. To this
purpose, an Objective Function OFi for the i -th population is defined by:

OFi =
‖Si − Ssi‖
Ssi,norm

(6.4)

where Ssi and Si are the vectors of the measured and computed signal values
at the i -th frequency for the actual flaw geometry, Ssi,norm is a normalisation
parameter (i.e. the maximum value of the signal).

The inverse problem solving algorithm is based on the previously in-
troduced multi-population Island Genetic Algorithms (IGA). The presented
strategy in somehow similar to the solution of a multi-objective optimisa-
tion even if, in this problem, a global optimum does exist (the true flaw
geometry) and therefore the partial OFi have the same global minimum (but
different local minima). Of course, if the different signals are affected by
noise, the global minimum can no more exist and the solution of the multi-
objective problem gives therefore a Pareto Front, which has to be suitably
post-processed in order to localise the actual solution.

The direct problem has been faced with the described finite element ap-
proach. A fixed mesh has been adopted in order to simplify the problem
resolution, because the main concern of this chapter is on the inverse prob-
lem. Therefore the individuals (i.e. each ”trial crack”) can be described by
an integer chromosome in the form (ny, nxin, nxfin, nzin, nzfin). For each
evaluation of the OF, the chromosome is translated in a conductivity map of
the mesh elements to generate the trial crack geometry: to prevent numerical
instabilities, the crack elements are set to a much lower conductivity than
the material elements. The trial solution is then processed (either by solving
a FEM problem, or only by looking in the OF values table) and its fitness
is evaluated.
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Figure 6.4: ECT: master-slaves IGA structure.

6.1.4 Parallel computing environment

To achieve the needed performances, the concurrent stochastic search of the
IGA model takes advantage of the computing power of a parallel distributed
computing environment.

The multi level structure of the IGA utilises the different frequency-
specialised OF s landscapes inside the different islands (Figure 6.4). The
migration policy exploits the ranking of the populations following the skin
depths to properly allow the propagation of the flaw information towards
other populations.

6.1.5 Results

To asses the validity of the proposed method, a mesh made up of 648 brick
elements with 108 elements in the fine crack mesh region has been used to
solve the direct problem. The calculations have been performed on a 10 pro-
cessors cluster machine; three frequencies have been used for the exciting
coil (150 kHz, 300 kHz and 600 kHz) leading to three populations, one for
each frequency with three different OF s, as described above. The computing
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Crack A Crack B
Case A : f = 150 kHz 0% 0%
Case A : f = 300 kHz 10% 70%
Case A : f = 600 kHz 70% 50%
Case B : scalar OF 10% 10%

Case C : migration gap = 3 generations 100% 60%
Case C : migration gap = 6 generations 100% 90%
Case C : migration gap = 12 generations 100% 70%

Table 6.2: Results of the ECT numerical experiments: percentage of the
success on localising the crack.

resources of the cluster machine have been equally distributed among the
populations, each composed of 20 individuals and allowed to evolve for 60
generations in all numerical experiments.

Two different cracks have been considered, among those defined in the
JSAEM #2 benchmark: namely a first crack (crack A, of kind 66% inner
defect ID) described by the string [3,3,4,1,2] and a second one (crack B, of
kind 66% outer defect OD) described by [3,3,4,2,3]. Random noise has been
added to the computation results in order to simulate measurement noise.

In order to compare the effectiveness of different migration policies among
populations, the measurements of each of the crack have been processed using
the following strategies for the inverse problem resolutions:

� Case A: Three different, not interacting, populations;

� Case B : A single population with a classical scalar OF constituted by
the sum of the various terms (6.4) for the three frequencies;

� Case C : Three different populations, each communicating with the
others, with different migrations gaps (i.e. the number of generations
between successive migrations).

For each numerical experiment, to average the results, ten runs of the
GA have been considered, starting from the same initial population. In
Table 6.1.5 the percentages of the success on localising the crack are reported
for each of the strategies and, limiting to the case C, for different migrations
gaps ranging from 3 (equal to 1/20 of the total number of generations) to
12 (equal to 1/5 of the total number of generations). For all runs, the total
number of direct problem resolutions is the same.

From the results presented, it appears that, for the non-migrating GA,
the lower frequency was unable to find both the cracks, due to a local minima
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trapping with the used little population, while the other frequencies perform
better respectively with one of the two cracks. The scalar OF performs
quite badly for both cracks. The proposed strategy with migrations scores
very good for the inner defect (crack A) with full marks; for the outer defect
(crack B) the results show that there is an optimal value of the migration gap,
approximately equal to 1/10 of the total number of generations, as already
reported [80].

6.1.6 Section summary

An inverse problem solution strategy has been proposed for the multiple-
frequencies ECT data treatment. The model is based on a multiple popu-
lations Island Genetic Algorithm, with each population specialised to locale
cracks using data at one single frequency. The method has been tested with
JSAEM problem #2 with three frequencies and it shows significant better
performances than the other usual techniques.

The developed model for multiple frequency ECT can be also efficiently
exploited for a data fusion strategy, with the concurrent use of data from
different technologies and sources data by submitting a typology of data to
each population, for instance with ultrasonic scanning coupled with ECT
data.



Chapter 7

Computing environment

In a famous lecture, Alan Turing said: ”Tell me what you think a computer cannot
do and I will make one which can do exactly that”. I answered him by letter: ”What
do you mean by tell me? Perhaps I need to give you a description, because in that
case it would be an easy challenge. Clearly what must be avoided is the description
itself. There is one thing a computer certainly lacks and that is initiative. And I
do not know how one can describe initiative”
(by Karl R. Popper) [112].

In this chapter the current trends of parallel cluster computing are illus-
trated. Then the developed parallel computing environment and the cluster
prototype are described.

7.1 Beowulf Clusters

Beowulf systems are networks of fast personal computers configured with
large quantities of RAM and hard disk space and usually running the Linux
operating system [113]. These machines are also known as ”piles of PCs”
or ”cluster of workstations”. Tanks to their scalability and easy upgrade
possibility, such systems are becoming more and more attractive as cheap and
efficient platforms for distributed parallel applications and High Performance
Computing (HPC) and also for high availability and high reliability systems
[114].

The cluster scalability can be exploited to an extreme level to build very
huge systems: at the moment, in the position number 5 of the world most-
powerful installed computers list there is a cluster machines with 2304 proces-
sors (Intel Xeon) with a computing speed of 5.69 TFlops (millions of millions

81
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of floating point operations per second), built in part with the Italian tech-
nology of Quadrics (see http://www.top500.org).

Beowulf clusters provide universities, which often have limited resources,
cost effective computing power and provide as well a platform to teach par-
allel programming courses. Also in the today always changing and evolv-
ing situation of the computer market, it is possible to say that clusters can
achieve equivalent computing performances of classic ”industrial” machines
which have an order of magnitude higher price.

One of the first projects of this class was started at the NASA God-
dard Space Flight Center in 1994: at Goddard a machine was built and its
name was ”Wiglaf”, after one of the characters from the Beowulf epic British
saga [115]. Commodity clusters subsequently became known as Beowulf-
class clusters. More information is available from the dedicated web site
http://www.beowulf.org.

Today there is an increasing interest in the use of ”commodity off-the-
shelf” (COTS) components as building blocks for HPC. The success of cluster
machines is mainly due to the performance improvements in microproces-
sors and, perhaps more important, to the recent cost/performance gains in
network technology: Fast Ethernet and, in some months, Gigabit Ethernet
technology are becoming even more cheap.

A key component to forward compatibility is the system software used on
Beowulf. With the maturity and robustness of Linux, GNU software and the
standardization of message passing via PVM and MPI, programmers now
have a guarantee that the programs they write will run on future Beowulf
clusters, regardless of who makes the processors or the networks [116].

The cost-saving factor of Beowulf clusters is beginning to draw the atten-
tion of the mainstream computing world. Today many major corporations
are beginning to use them and large computer companies, such as IBM, SGI
and Compaq, offer clusters to their customers community.

The future of the Beowulf project will be determined collectively by the
individual organizations contributing to the Beowulf project and by the fu-
ture of mass-market COTS. As microprocessor technology continues to evolve
and higher speed networks become cost effective and as more application de-
velopers move to parallel platforms, the Beowulf project will continue to
evolve [64].

7.2 Beosun

To efficiently run the developed IGA code, a Beowulf machine has been
designed and built in the laboratory of the Department of Information Engi-
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neering of the Second University of Naples: its name is Beosun. The Beosun
machine is assembled with 8 PC-class rack-mounted nodes and connected in
island with a dedicated Fast Ethernet network. In Figure 7.1 a picture of the
final Beosun machine is shown. The components of the Beosun machine are
the following:

� Master Node

– Motherboard with chipset Intel 850, PC800 Rambus DRAMs sup-
port, ATA 100 and Fast Ethernet onboard controllers.

– Intel Pentium IV 1.9 GHz CPU, cache L2 256kB, 400 MHz FSB.

– 512 MB PC800 ECC Rambus DRAMs.

– 2 x 40 GB ATA 100 hard disks, 7200 RPM.

– Floppy disk.

– 2 Fast Ethernet NICs.

– 32 MB AGP graphics card.

– CD-ROM writer.

� Compute Slave Nodes

– Motherboard with chipset Intel 850, PC800 Rambus DRAMs sup-
port, ATA 100 and Fast Ethernet onboard controllers.

– Intel Pentium IV 1.9 GHz CPU, cache L2 256kB, 400 MHz FSB.

– 512 MB PC800 ECC Rambus DRAMs.

– 40 GB ATA 100 hard disks, 7200 RPM.

– Floppy disk.

– Fast Ethernet NIC.

– 8 MB graphics card.

� Fast Ethernet switch, 24 ports, 10/100BASE-TX, Layer 4.

� Master switch for monitor, keyboard and mouse, 32 ports.

All the compute nodes are configured in the same way, with a minimal
Linux installation. All nodes are connected to a single monitor, keyboard
and mouse via the master switch: this provides the ability to directly login
to the compute nodes if something goes wrong whilst avoiding unnecessary
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Figure 7.1: The Beosun Beowulf machine
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cost and space. All the components, but the monitor, are mounted on a 19”
rack cabinet.

The master node and the compute nodes are attached via 2 NICs to the
Ethernet switch: one card is for message passing communications with the
rest of the nodes and the second card for IP, DNS and other network data
traffic. The master node is connected via its third NIC to the external site
network.

The Beosun machine has been also connected to the previous generation
cluster machine built two years ago, with 6 nodes powered by AMD K7
processors (550 MHz) with 550 MB SDRAM per node: the resulting cluster
counts therefore 14 computing nodes.

7.3 Software

The used operative systems are Linux (Red Hat 7.2, Kernel 2.4.7) and Mi-
crosoft Windows XP, with the machines configured for dual boot. For par-
allel applications development, Linux with the Fortran language is mainly
adopted: both Fortran 77/90 and High Performance Fortran (HPF) are avail-
able. The parallel environment is message passing using the standard MPI
library, in the MPICH implementation.

7.3.1 Libraries

The software environment is completed by mathematical libraries such as the
standard BLAS (linear algebra), LAPACK (scalar linear equations systems)
and ScaLAPACK (parallel linear equations systems).

PGAPack

The parallel GAs library PGAPack [89] has been used to implement the
IGA model. PGAPack is a general-purpose, data-structure-neutral, parallel
genetic algorithm library. It supports the parallel implementations of the
single population global model. Key features in PGAPack include:

� Routines callable from Fortran or C.

� Runs on uniprocessors, parallel computers and workstation networks.

� Binary-, integer-, real-, and character-valued native data types.

� Full extensibility to support custom operators and new data types.
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� Parameterised population replacement.

� Multiple crossover, mutation, and selection operators.

� Easy integration of hill-climbing heuristics.

PGAPack is available by anonymous FTP from ftp.mcs.anl.gov in pub/pgapack

as pgapack.tar.Z.

7.3.2 Graphical user interfaces

The IGA code is linked to a Graphical User Interface (GUI), developed by
using the Matlab language, in a mixed environment Fortran-Matlab. The
GUI is used for I/O and during the computation to show the results. For
instance, to efficiently show the behavior of the different islands during the
evolutions, different windows are displayed on the screen showing, for each of
the best islands, the motion of the local first-order moment in the parameters
space or the evolution of the zero-order and second-order moment. In each
window the values of the best OF and of the generation are displayed together
with the number of processes running for the island.

The GUI is also used to set some of the input GA parameters, such as
the size of the populations and the GA stopping criteria (e.g. the maximum
number of generations) by using pop-down menus. At the end of the opti-
mization process, it is possible to show in each windows the obtained final
solution with the OF value.

7.3.3 Parallel Matlab

Matlab is widely adopted as a computing development tool in many scientific
and technological working groups. The underlying numerical routines, its
interactive environment, matrix-oriented language and graphical tools are
some of the reasons for its widespread use.

In the last years a number of parallel libraries (known as toolboxes) for
Matlab have been made available by several researchers and institutions:
these toolboxes are mainly developed by adopting the message passing con-
cept for the use on cluster of computers. A survey of the available parallel
toolboxes is presented in [117].

Here a different approach has been implemented. Rather than looking
for interactive parallel capabilities, the previously presented mixed Fortran-
Matlab environment has been exploited to run parallel mixed MPI-Fortran
code sections from a Matlab program.
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Results

In this chapter the main results obtained from the previous analysis by using
the developed and implemented techniques are introduced with the applica-
tion to test cases and real world problems, such as the design of supercon-
ducting magnets. In particular, the software prototype Marides is described.

8.1 Island GA for the TEAM 22 Problem

The previously introduced Island GA has been tested on the TEAM 22
problem with eight parameters described in Section 3.7.2. Each SMES con-
figuration, corresponding to an individual, has been represented by 8 chro-
mosomes coded with double precision floating points variables, corresponding
to the 8 design parameters (R1, R2, h1/2, h2/2, d1, d2, J1, J2), as defined in
Figure 3.3.

8.1.1 Migrations without aggression

First studies were performed for a multi population IGA with migration
but without aggression strategy among islands [118]. A preliminary analysis
has been carried out to tune IGA migration parameters: in particular, the
number of individuals involved in exchange process Nc and the frequency Ng

of the migration have been varied, computing for each case the mean value
of the minima found on 3 runs with 1000 generations. Table 8.1 shows a
summary of the best values of the objective function OF obtained for each
island population with 1000 individuals: lowest values of the OF (i.e. better
solutions) are achieved with Nc = 20 and Ng = 50, letting therefore 2% of
the population to migrate with rather frequent migrations.

These values of Nc and Ng have been then selected and the IGA has been

87
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Ng = 50 Ng = 100 Ng = 200
Nc = 10 0.1000 0.1310 0.2961
Nc = 20 0.01933 0.06638 0.1892
Nc = 40 0.05888 0.07865 0.4887

Table 8.1: Best OF values for different migration IGA parameters, with
populations of 1000 individuals.

OPERA-3d
Post-processor 2.612

30/May/00 12:10:28 Page 21

UNITS
Length          : m             
Flux density    : T             
Magnetic field  : A m-1
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Power           : W             
Force           : N             
Energy          : J             
Electric field  : V m-1

     

LOCAL COORDS.
Xlocal = 0.0
Ylocal = 0.0
Zlocal = 0.0
Theta = 0.0
Phi = 0.0
Psi = 0.0

X-6.0

X-4.0

X-2.0

X2.0

X4.0

X6.0

Y-6.0

Y-4.0

Y-2.0

Y2.0

Y4.0

Y6.0

Z-6.0

Z-4.0

Z-2.0

Z2.0

Z4.0

Z6.0

0.000171806 2.161571 4.32297
Component: BMOD

Figure 8.1: Best SMES configuration for migration IGA with magnetic field
map on a radial plane sector.
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Case OF Energy B2
stray R1 R2 h1/2

(MJ) (T 2) (m) (m) (m)
Best A 7.480e-3 180.0060 2.979e-10 1.1042 1.8483 1.7557
Best B 1.553e-2 180.8708 4.272e-10 1.3354 1.8661 1.4495
TEAM 5.520e-3 179.9924 2.191e-10 1.5703 2.0999 0.7846

Case h2/2 d1 d2 J1 J2

(m) (m) (m) (MA/m2) (MA/m2)
Best A 2.1851 0.4006 0.1394 17.0572 -14.2191
Best B 1.8380 0.3764 0.2184 19.9071 -13.9534
TEAM 1.4184 0.5943 0.2562 17.3367 -12.5738

Table 8.2: Best TEAM 22 results with migration IGA.

let to optimize the OF for a higher number of generations. As expected, a
number of ”optimal” configurations have been found, each satisfying the de-
sign goals, but characterized by different layouts. In Table 8.2 two of the
best results are reported: these results are obtained with 5 islands, each
one evolving with a population composed of 1000 individuals during 2000
generations, and they are compared with the currently best TEAM 22 solu-
tion. A sketch of the first best configuration (case with letter A) is shown in
Figure 8.1 together with the magnetic field modulus map on a radial plane.
Slight differences with the current best solution have been observed in the
energy and field values, probably due to different computational approaches
to the field and inductance evaluations.

The solutions found here have layouts different from the TEAM one:
in the following section, a strategy able to rank ”best” solutions will be
presented.

8.1.2 Aggression strategy

The TEAM 22 problem has been solved again by adopting the aggression con-
cept for the IGA. The population moments, introduced in Section 5.3, have
shown during the tests their ability to describe the behavior of the islands:
the aggression and migration strategies, based on the moments concept, can
efficiently improve the optimization process [80].

The parameters adopted for the IGA with aggression to tackle the TEAM 22
optimization problem are listed in Table 8.3. The number of initial islands
is six with one process for each island; after the aggression phase, the final
number is three, where each island owns two processes. By the previous anal-
ysis performed to tune IGA migration parameters, the number of individuals



CHAPTER 8. RESULTS 90

Initial populations 6
Final populations 3

Generations 4000
Individuals per population 2000

Table 8.3: IGA parameters for aggression.

involved in exchange process has been set to 2% of the overall population
and the frequency of the migrations has been set to 50 generations.

After the IGA evolution, in each of the three final islands an ”optimal”
configuration has been found: each configuration satisfies the assigned design
goals with a particular and different layout. In Table 8.4 the best results
are reported for the three islands, compared with currently best TEAM 22
solution. The best SMES geometry found (corresponding to Island 1) is
shown in Figure 8.2 together with the current best TEAM geometry.

As usual in a multi-objective optimization, different quasi-optimal solu-
tions exist and they can be ranked by using some criterion in addition to the
OF values, such as some auxiliary design requirements not coded in the OF.
In the case of SMES, some of the main characteristics of the device are the
total volume of the coils, that measures the amount of required supercon-
ducting wire and therefore the cost of the apparatus, and the compactness
of the system (defined as the external coil radius by the maximum of the
coils heights), that measures its external size. Among the three solutions of
Table 8.4, the first one (Island 0) has the lowest coils volume and is the most
compact one although its fitness is the worst, whereas TEAM solution has
a bigger volume but is more compact than the present best one, as reported
in Table 8.5. The final word among these solutions is a designer choice.

The comparison between IGA results on the TEAM 22 problem with-
out aggression (Table 8.2) and with aggression (Table 8.4) shows that, while
the adoption of the aggression strategy increases by sure the overall com-
puting performances, however it can decrease the exploration capabilities in
the search space due to the lowering number of islands, getting therefore
sometimes worse results.

8.2 Design of high Tc superconducting mag-

nets

High Temperature Superconductors (HTS) are ceramic-type materials that
exhibit zero-resistance properties at temperatures between 20 to 130 K, there-
fore requiring less expensive cooling systems than those needed for low tem-
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Case OF Energy B2
stray R1 R2 h1/2

(MJ) (T 2) (m) (m) (m)
Island 0 3.398e-2 178.5766 10.428e-10 1.9283 2.4253 0.7043
Island 1 1.424e-2 180.0007 5.6940e-10 1.9288 2.4275 0.7190
Island 2 1.569e-2 180.0058 6.2655e-10 1.9306 2.4268 0.7220
TEAM 5.520e-3 179.9924 2.191e-10 1.5703 2.0999 0.7846

Case h2/2 d1 d2 J1 J2

(m) (m) (m) (MA/m2) (MA/m2)
Island 0 1.4199 0.4358 0.1908 22.5600 -16.2376
Island 1 1.4663 0.4280 0.1879 22.6135 -16.0162
Island 2 1.4717 0.4279 0.1882 22.6001 -16.0208
TEAM 1.4184 0.5943 0.2562 17.3367 -12.5738

Table 8.4: Best results for IGA with aggression, compared to the TEAM 22
results.

Figure 8.2: Axial section of the best computed SMES geometry by aggression
IGA (filled boxes) and present TEAM solution (empty boxes).

Case OF Volume Compactness
m3 (R * L)

Island 0 3.398e-2 15.69 7.158
Island 1 1.424e-2 15.85 7.394
Island 2 1.569e-2 15.93 7.420
TEAM 5.520e-3 18.78 6.320

Table 8.5: Aggression IGA solutions ranking.
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perature superconductors (< 10 K, see Section 2.3). Recent progress in Ag
or Ag-alloy-sheathed Bi based HTS fabrication allows to produce suitably
long superconductor tapes.

For a number of power applications, in the near future, such new materials
could represent an appealing actual alternative to the classical technology,
based on NbTi and Nb3Sn, operating at low temperature of liquid helium.
However, the characteristics of HTS conductors are still to be assessed, and
many efforts are being carried out in order to improve their performance, such
as the critical current densities, and to optimise the fabrication process [119].

From the design point of view, one of the most critical characteristics of
HTS is their anisotropic relationship between the critical current density and
the magnetic flux density [120], with a different behaviour between parallel
B// and perpendicular B⊥ field components with respect to the tape surface.
Just for an exemplification, in Figure 8.3 the critical currents versus both the
flux density components, namely Jc1 = f1(B//) and Jc2 = f2(B⊥), are shown
for a commercial HTS tape at a fixed temperature of 27.9 K.

Due to these technological issues and to the sensitivity to the bending
stress, HTS tapes are usually wound in ”double-pancake” configuration coils,
which are then suitably arranged in order to build high field magnets: this
configuration allows to reduce the tape performance degradation due to wind-
ing procedure.

The optimal design of a HTS magnet has been here performed. The
adopted Objective Function OF is a combination of the different goals to
be fulfilled. A first term fv(x) takes into account the overall volume of
superconductor, which represents the main cost factor:

fv(x) =
1

VMAX

Ncoils∑

i=1

Vi (8.1)

where Ncoils is the number of the magnet coils, Vi is the volume of i-th coil,
x is the vector of the DOF defining a particular configuration and VMAX is a
normalizing term related to the volume of the region admissible for the coils
allocation.

The second term fs(x) of the Objective Function takes into account the
relative amplitude of the magnet feeding current with respect to the mini-
mum critical current within the coils: the lower this term is, the better the
coils are working because, in principle, it is possible to decrease the amount
of superconductor by downsizing the configuration and consequently by aug-
menting the feeding current. The expression adopted is:

fs(x) =
I

Ic

(8.2)
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Figure 8.3: HTS magnet: critical current densities versus f1(B//) and f2(B⊥)
for a commercial HTS tape.
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where I is the current needed to generate the assigned central field Bdes using
the tentative geometry x, and Ic depends of the field map inside the coils
and is evaluated using the anisotropic superconductor characteristics. The
OF can be then written as:

OF (x) = wV · fV (x) + ws · fs(x) (8.3)

where wV and ws are the weights of the objectives in the optimization func-
tion. As usual, the weights can be chosen in different fashions, depending on
the relative importance of the various design issues.

In addition, a number of constraints should be satisfied. The first ones
are the geometrical limits as, for example, the coils allocation inside suitable
areas. Further constraints set the maximum tape length that can be used to
wind each double-pancake and also the overall tape length.

The second ones can be termed ”physical constraints”: a typical physical
constraint is represented by the critical current limits. Although the term
fs(x) acts in the direction of keeping the current below the critical value, it
is necessary to explicitly impose this constraint to prevent from accepting
solutions with a very small volume but working above critical conditions. A
simple and efficient way to take into account the dependence of the criti-
cal current from both the field modulus and direction is to verify the two
conditions:

J ≤ f1(B//) = Jc1 (8.4)

J ≤ f2(B⊥) = Jc2 (8.5)

where f1 and f2 are the functions already introduced, Jc1 and Jc2 are the
critical parallel and perpendicular current densities and J is the current den-
sity inside the superconductor, given by the ratio between the current I and
the tape cross section.

Conditions (8.4) and (8.5) are very demanding in terms of the computa-
tional effort required by the optimisation algorithm, as both the conditions
are to be verified at each optimisation step in the points inside the wind-
ings where B// and B⊥ respectively reach their maximum values. This step
requires a maximum value search for each B component and therefore an
effective strategy for the maximum points localisation would result highly
beneficial for the optimisation process. An example of such ”fast localization
strategy” will be discussed in the next section.

To assess the ability of the proposed design strategy, here a double-
pancake magnet has been considered [121], composed by a bulk field coil
(coil A in Figure 8.4) and two couples of symmetrical compensation coils
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Figure 8.4: HTS magnet poloidal cross section describing the geometrical
parameters.

(coils B and C in Figure 8.4). Each compensation coil is realised with just
one double-pancake, while the number of double-pancakes in the bulk magnet
is a design parameter. Only geometrical parameters have been considered
for optimisation because the coils are series connected and then the feeding
current, common to all of them, can be deduced from the knowledge of the
desired field and of the tentative geometry. The optimal configuration is
searched by varying the design parameters of the compensation coils, while
the double-pancake coils forming the bulk magnet are forced to be equal,
with the inner radius Rint fixed. Of course, symmetry is taken into account
to reduce the number of design parameters to be optimised. This results
in an objective function depending on 6 parameters: the thickness and the
length of the bulk magnet, plus the inner radius and the radial thickness of
the two compensation coils.
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8.2.1 Optimisation strategy

The optimisation task has been performed in two phases. During the first
one, a set of quasi-optimal configurations has been found by using an adaptive-
hybrid GA. The results of the first phase have been used as starting points
for a deterministic ”deep” optimisation based on a deterministic gradient
search.

The adaptive-hybrid GA, already described in Section 4.5.1, incorporates,
inside a genetic structure, a deterministic search operator and an adaptive
operators choosing rule. Here the possibility of a deterministic step is in-
troduced with a directional mutation operator, that forces mutation in the
direction opposite to the gradient: the gradient is computed by using nu-
merically computed derivatives [11]. In addition, the operators occurrence
probabilities are adapted during the evolution process to improve the rate of
convergence and to escape from both the local minima and too early conver-
gence: during the evolution, the probability of the recombination operator
decreases, while the probabilities of the mutation and directional mutation
operators increase.

In the ”quasi-stochastic” phase the goal is thus to find some good starting
points for the following deterministic step. In this second phase, the number
of optimisation parameters decreases to 5. As a matter of fact, the bulk
magnet length varies in a discrete way, as it depends on the number of double-
pancakes. In the first step, it has been neglected the discrete character of
this parameter, allowing a ”continuous” optimisation. In the second phase,
the discrete approximation of the optimum found is kept fixed, as the main
interest is on the correction coils.

The coils radial thickness is a discrete parameter too, given by the number
of tape turns, but it is treated as a continuous variable thanks to the small
value of aspect ratio of tape.

Another difference from the previous step is the way adopted to locate
the maximum field points, which is based on a sensitivity analysis approach
applied to the relationship among the magnet shape and the field map in
the outer region of the magnet. Even for optimised configurations, the most
critical working point lays at the end of the magnet (Figure 8.5) due to the
high radial field component still achieved in the outer coils. Therefore the
region to be searched for the minimum critical current can be restricted to the
external double-pancakes of the bulk magnet and to the two compensation
coils.

In order to minimise the computational burden while keeping a suitable
precision in the maximum field localisation, only the field variation due to
difference between the present configuration and a reference one has been



CHAPTER 8. RESULTS 97

Figure 8.5: HTS magnet: sketch of the computational approach for the fast
field map evaluation scheme (just one fictitious coil is reported).

computed at each step. As the procedure starts, a high accurate field inter-
polation based on spline functions is found for a set of predefined evaluation
points in a region which includes the most external three coils. Then, in the
due course of the optimisation, a coarser spline interpolation of the field due
to a set of five fictitious coils (one for each DOF) representing the difference
between the starting configuration and the current one is computed inside
each of the three outer coils of the present configuration. Thanks to the lin-
earity of the problem, the field map inside the outer coils is then assumed to
be the superposition of the fine map and the coarser ones, and its maximum
is localised. The difference field at each step is compared with the fine one:
if it is higher than a fixed threshold, the fine map interpolation is updated
by using the present configuration, which becomes the new reference geome-
try. In Figure 8.5 a schematic drawing is reported to illustrate the fast field
computation scheme: note that, for the sake of simplicity, in this picture just
one of the fictitious coil needed to compute the difference field is reported.

8.2.2 Results

The optimisation scheme described has been adopted for the design of a HTS
double-pancake magnet with a central field of Bdes = 4 T . The inner bulk
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Min Max
L (mm) 30 100

Rext (mm) 35 90
Rint1,2 (mm) 25 90
∆R1,2 (mm) 5 65

Table 8.6: HTS magnet geometrical limits.

Coil Tape length Length L Rext Rint Turns
[m] [mm] [mm] [mm]

Bulk 145 111 76.75 25.0 225
1st couple 66.5 7.4 76.74 58.8 78
2nd couple 98.5 7.4 72.75 41.47 136

Table 8.7: HTS magnet best configuration.

magnet radius has been set to Rint = 0.025 m while the numerical ranges
for the optimisation parameters are reported in Table 8.6. A population of
100 individuals has been bred for 50 generations, by adopting the operators
probabilities according to the adaptive strategy described earlier. Then a de-
terministic step has been applied to the results achieved in the first stochastic
phase.

The optimal solution found is reported in Table 8.7 and plotted in Fig-
ure 8.6: the width of each double-pancake is assumed equal to 7.4 mm. The
working current to achieve the desired field is I = 67.2A, while the whole
amount of superconductor tape for the magnet is about 2500 m.

The same central field can be achieved also with a standard solenoid con-
figuration with optimised aspect ratio and the same inner radius. However,
this latter configuration requires about 2800 m of superconductor, therefore
more than 10% tape length can be saved with our optimised configuration.

In Figure 8.7 the field distribution at one end of the magnet is shown, in
the case of presence and absence of the two outer double-pancake ”correcting”
coils. Both field distribution are normalised with respect to the central field.
The figure shows clearly the effect of the outer coils, which modify the field
distribution in the terminal region of the magnet, decreasing the radial field
component and allowing to achieve higher critical current values.

8.3 Sensitivity analysis on tolerances

”If you get enough data, whatever thing can be demonstrated by statistical
methods” (from The Murphy’s Law [122])
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Figure 8.6: Proposed HTS magnet configuration.

As already recalled in Section 4.5.2, the available performances of an
electromagnetic device can be strongly affected by manufacturing and as-
sembling tolerances which make the actual machine somehow different from
the project one. In particular, for the optimal design of superconducting
magnets for MRI, little changes to the device geometry can deeply degrade
the field uniformity.

It has been shown that some device configurations are more sensible than
other ones with respect to the performances by little changes in the building
parameters. Therefore it is useful for the designer to use some tool capable
to evaluate the sensitivity of a design solution to construction errors. An
effective designer-aiding tool is here presented [51].

The device specifications are usually satisfied by a number of different
magnet layouts. If the optimisation procedure is able to provide a set of
solutions characterised by the same ”field quality” (i.e. the level of homo-
geneity inside the VOI), the designer can have the opportunity to select the
final configuration.

An important element in ranking the solutions could be the robustness
against the manufacturing tolerances. Here a possible ranking is proposed
through a Monte Carlo method, based on the dependence of the field quality
with respect to the mechanical tolerances. The most attractive solution can
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Figure 8.7: Optimised HTS magnet: field distribution in the terminal part
of the windings, in the cases of presence (solid) and absence (dashed) of the
compensation coils.
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be chosen as the one characterised by the lowest values of the mean and the
variance of the field dishomogeneity. In principle, other statistical moments
can also be considered to have a wider description of the dependence of the
magnet performance with respect to the design parameters.

In the following sections, the basis of the Sensitivity Analysis (SA) through
statistical methods are briefly introduced; the concepts are then particu-
larised to the design of MRI magnets, highlighting advantages and draw-
backs; and finally a test case is presented and discussed to show the effec-
tiveness of the approach.

8.3.1 Sensibility analysis in MRI magnet design

As a general rule, due to construction tolerances in coil manufacturing and
magnet assembly, the actual performance of a MRI magnet usually does not
meet the specifications, requiring an additional coil system to compensate
such errors. Of course, a configuration less sensitive to constructional er-
rors will be more attractive, because it would require lower correction. In
addition, the knowledge of the homogeneity sensitivity with respect to the
construction parameters also gives useful information for the magnet build-
ing phase, because it reveals the mechanical parameters requiring the most
of attention in manufacturing.

It should be noted that the SA can also be performed with respect to
others parameters than the design ones. As a matter of fact, in the design
phase, in order to reduce the computational burden, the number of DOF
has to be kept as low as possible. Afterwards, in the SA phase, further
parameters can be considered. As an example, symmetry hypothesis can be
abandoned to better describe the actual constructional issues.

In addition, it should be noticed that the derivative of the OF in the opti-
misation parameters vanish at the optimal solution because of the stationary
condition. However, usually the OF is a complex function combining a num-
ber of elementary quality functions, including the homogeneity, the conductor
volume and so on. In this case, the derivatives of each elementary function
do not necessarily vanish, also because of numerical errors or optimisation
issues, and their knowledge should be very useful.

The most common approaches to the error SA in the engineering practice
can be classified in two main categories: Linearisation Methods (LM) and
Statistical Methods (SM). In the latter category a prominent role is played
by the Monte Carlo method (MC) [31] .

In the LM, the optimised configuration is perturbed by small variations
of the design parameters. The performance of the ”perturbed” device is
then evaluated and, assuming a linear behaviour of the performance with
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respect to the parameters, the sensitivity is evaluated with a simple finite
difference approach. Such a method, although requiring a minimum amount
of computation burden, allows only ”local” SA. In addition, only the effect
of one parameter at a time can be considered.

In the SM, on the other hand, a large number of different configurations
are considered, by randomly varying the design parameters around a refer-
ence configuration according to their statistical properties, in a range given
by the uncertainty on the various parameters. At the expense of a much
higher computational burden, SM provide a better assessment of the device
performance within the uncertainties space defined by the mechanical toler-
ances. In addition, the correlation between the design parameters and the
device performance can be also easily estimated, giving information on the
most sensible parameters.

Obviously, the reliability of a statistical approach depends on the level of
accuracy reached in the probability density function (PDF) approximation;
therefore, the number of configuration in the statistical population should be
carefully chosen. In order to check the reliability of the analysis, a suitable set
of estimators for the statistical moments of the device performance have to be
introduced. It has been shown that the convergence of statistical moments
estimators of the output variables represents a quite effective indicator of
convergence in the approximation of PDF [123].

As already reported (see Section 2.3.2), in the case of the design of mag-
nets for MRI, the main performance figure is the homogeneity of the magnetic
field in the Volume of Interest (VOI). The axial-symmetric spherical harmon-
ics expansion of the field (2.2) is here used. In Figure 8.8 the contour plot
in ppm (part per million) of a typical field map in the high uniformity VOI
region is shown.

The availability of analytical relationships allows to better verify the
method convergence, preventing from undesirable effects due to the adop-
tion of approximated formulae. As a matter of fact, from the numerical
point of view the approximations or the truncation errors in evaluating the
field homogeneity could act as a superimposed random noise which prevent
from a correct interpretation of its statistical behaviour. Of course, once the
statistical characterisation of the expansion coefficients has been performed,
it is very easy to assess the statistical properties of the performance figure,
namely the field homogeneity in the case of MRI magnets.

The moments obtained with the statistical analysis are powerful indices
of the design robustness. In particular, the mean value indicates the most
likely value of the performance, while the variance indicates the global ro-
bustness of the configuration. In addition, a number of effective information
is also provided by the cross correlation coefficients among input (mechan-
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Figure 8.8: Typical MRI field contour plot in the VOI.

ical) parameters and output (performance figures) values. As a matter of
fact, a cross correlation coefficient equal to 0 means that the two considered
variables are uncorrelated, while a cross correlation coefficient equal to -1
or 1 means a linear dependence between the variables, which indicates that
the impact of the considered input parameters on the device performance
is very strong. Here the following estimator has been adopted for the cross
correlation coefficients:

rhi =

N∑
j=1

(pij − p̄i)
(
hj − h̄

)

√
N∑

j=1
(pij − p̄i)

2
N∑

j=1

(
hj − h̄

)2
(8.6)

where i = 1, . . . , np, with np the number of input parameters, N is the number
of MC runs, p̄i is the estimator of the mean of the i-th parameter, pi,j is the
value of i-th parameter at the j-th run, hj is the j-th field homogeneity and
h̄ the homogeneity mean.

Anyway, the cross correlation coefficients just indicate how close is the
correlation among parameters, but do not give any indication about how large
is the effect on the output parameters of variations of the input parameters.
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On the other hand such a measure can be given by a non-normalised second
order moment such as the variance, an estimator of which is defined as:

shi =
1

n− 1

N∑

j=1

(pij − p̄i)
(
hj − h̄

)
(8.7)

with i = 1, . . . , np. These moments provide an indication about the most
sensible parameters comparable to those provided by LM.

Moreover, the large number of cases needed to SM makes available a
sampling of the relationship between the perturbed parameters and the per-
formance figure. Therefore, as an additional fallout, it is possible to create
a function interpolation of such a relationship in the complete tolerance do-
main. From this interpolation, which is not obliged to be linear, it is possible
to estimate the complete ”design sensitivity”, in a way that can be considered
a non-linear generalisation of the rationale behind the LM.

Thus, SM provide a much broader amount of information than LM but
suffer from the serious drawback of requiring higher computation time to
perform a reliable analysis. They appear to be particularly well suited for
those cases in which the assessment of performance for a single test design
can be accomplished with the use of analytical formulae.

8.3.2 Assessment of performance for the proposed al-
gorithm

In this section, the analysis of a typical MRI magnet is performed by means
of a statistical approach based on the MC method. In order to asses the
achievement of the approach, while keeping the computational effort low, only
those mechanical uncertainties which do not affect the coils axial-symmetry
have been taken into account.

Such an analysis mainly provides the designer an easy and clear way
to assess the performance of different configurations with respect to con-
structional issues. The most effective way to represent the performance of a
configuration is therefore to use a number of charts providing the graphical
description of the statistical behaviour of the input and output parameters.

On the other hand, synthetic information about the configuration robust-
ness and sensitivity is given by the statistical moments of the input parame-
ters and by the resulting moments of the field homogeneity (or, equivalently,
the expansion coefficients Anm). In fact, for given statistical characteristics
of the input parameters, the more similar is the mean field homogeneity to
the nominal value and the lower is its variance, the more robust will be the
configuration, while the higher is the covariance between a parameter and
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Figure 8.9: MRI magnet poloidal cross section with eight coils.

Coil Zmin Zmax Rmin Rmax
1 & 5 0.015 0.031 0.037 0.074
2 & 6 0.015 0.031 0.017 0.035
3 & 7 0.015 0.031 0.027 0.054
4 & 8 0.015 0.031 0.013 0.025

Table 8.8: MRI magnets: standard deviation of geometric tolerances in mm
(mean=0).

the field homogeneity, the more sensible the configuration is with respect to
that parameter.

In this example, the reference magnet configuration is composed by 8 su-
perconducting coils: this design has been obtained by means of an optimised
design method. In the nominal configuration, the device produces a central
field of 3 T with a field homogeneity of 5 ppm over a 10 cm diameter VOI:
the magnet poloidal cross section is sketched in Figure 8.9. The same figure
also shows for one coil the geometrical parameters affected by the random
uncertainties in the MC analysis. The mechanical tolerances have been mod-
elled by using Gaussian distributions with variances chosen coherently with
their confidence interval, as previously described. In Table 8.8, the standard
deviations of the random uncertainties are reported, where the mean values
are zero: the resulting total number of independent random variables is 32.

An important issue is the reliability of the MC simulation, which in turn
depends on the number of runs in the statistical analysis. A possible way
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to verify the convergence of the main performance figures towards meaning-
ful statistical quantities is to check the stability of the statistical moments
(i.e. mean, variance or even higher order statistics) versus the number of
configurations. In Figure 8.10, it is reported the behaviour of the average of
the coefficients A20, A30, A40 in ppm against the number of runs: in these
tests, the convergence of the analysis was achieved after 10000 runs. In Fig-
ure 8.11, the PDF obtained for the A30 coefficient is plotted: the distribution
has a mean of 0.7 and a standard deviation of 9.3. On the same graph, a
normal (Gaussian) PDF with the same mean and standard deviation is also
plotted.

Such information for each expansion coefficients is very useful to the de-
sign of a shimming corrective system, as the typical MRI magnet shimming
system is composed by independent sets of coils, each specialised to counter-
act one of the terms Anm. Therefore the knowledge of the coefficients PDF
makes it possible to determine the geometrical and electrical parameters of
the shim coils.

The PDF of the field homogeneity is non symmetric (Figure 8.12) with
respect to the reference configuration value (equal to 5.723) and shows the fol-
lowing values: mean=41 ppm, standard deviation=24, maximum value=162
ppm, minimum value=5 ppm.

The Figure 8.13 reports the covariance coefficients among the field coef-
ficient A30 and the input variables of the MC analysis. Such a plot can be
useful to reveal the most sensible project parameters and it can also give
useful information about the convergence of the simulation. In fact, homol-
ogous parameters of symmetric coils should show the same modulus of the
covariance. For this purpose, in Figure 8.13 the covariance values have been
clustered for each of the 8 coils using the same shading for corresponding
parameters.

8.3.3 Section summary

A statistical method to assess the effects of manufacturing tolerances on the
field homogeneity for an MRI magnet has been presented. The method is
useful to evaluate the robustness of a design solution giving more information
than a deterministic approach. Results of such methodology can provide a
clear outline of the performances range of the actual device. The statisti-
cal behaviour of the field harmonic coefficient expansion, predicted by the
presented approach, is also important for the designer to determine the shim-
ming system, after a magnet configuration has been selected.
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8.4 Marides: an industrial tool

The previous research results have been applied to the development of an
industrial-oriented design tool. In the framework of the CREATE (Consorzio
per la Ricerca e le Applicazioni Tecniche dell’Elettromagnetismo, Napoli)
consortium, a research contract has been exploited for the Ansaldo CRIS
(Consorzio Ricerche Innovative per il Sud): the main goal of the contract is
to study and to implement methodologies for the optimal design of Magnetic
Resonance Imaging (MRI) magnets and to develop a computer code able to
help the designer for such a task.

Following the specifications of the industrial partner, a design environ-
ment has been implemented by using the Matlab language: the resulting
code is named Marides, which stands for ”Magnetic Resonance Imaging De-
sign”. Marides is characterised by an easy-to-use graphical interface (GUI)
in such a way to be effectively used also by people not-expert in optimisation
techniques. A typical GUI screen (see Figure 8.14) shows in the upper left
corner a text windows listing input or results data; in the lower left corner a
graphical window with the magnet coil sections, where in each coil section is
sketched a map of the current density ratio with respect to the critical one;
in the lower right corner, another graphical window plots the magnetic flux
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Figure 8.14: Marides GUI.

density field in the VOI region. The input data can be inserted by using
pop-down menus commands or, for the expert user, by a text file.

The main topics about the MRI magnets design are already been pre-
sented in Section 2.3.2 and 8.3.1. The Marides code adopts two determin-
istic optimisation strategies: a quadratic quasi-Newton and a simplex algo-
rithm [13]. As a general rule, the deterministic strategies are a much more
”local search” approach than the stochastic ones, being strongly affected by
the selection of the initial solution. But in an industrial design process, usu-
ally ”good” initial designs are already available by the previous experiences
and often the task is ”just” to optimise them with respect to the customer
specifications.

In a typical design session, the preliminary optimisation is performed
by assuming the design geometrical variables can continuously vary. In the
practical magnet construction, however, the coils are built by using super-
conducting wires which are wound in the caves of a drum: each coil is char-
acterised by the two integer numbers of turns along the magnet axis and of
superimposed radial layers. After the choice of a wire and of the assembling
compactness factors (depending on the assembling procedure and tools), the
optimal solution found has to be therefore discretised. The new solution is
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usually somehow different from the optimal one and it has to be optimised
again by keeping now the coils lengths and thicknesses fixed and letting the
coils barycenter positions continuously move.

After the optimisation phase, with the Marides code it is possible to
perform a Monte Carlo sensitivity analysis to evaluate the robustness of
the proposed solution by the correlation indices among the coils geometrical
variables and the field uniformity. In addition the MC analysis evaluates
the (pseudo-)worst case configuration inside the parameters tolerances: this
result is useful to properly design a possible shimming corrective coils system.

8.5 Solution robustness in optimal MRI mag-

nets design

To evaluate the practical effectiveness of the method proposed in Section
4.5.3, the design of a MRI superconducting magnet has been considered [53].
As already reported, for the design of magnets for MRI, the main performance
figure is the homogeneity of the magnetic field inside the VOI. The spherical
harmonics expansion of the axialsymmetric field (2.2) is used and the lack of
homogeneity Unif(x) for the magnet configuration x is defined as in (2.3).
The following OF has been used:

OF (x) = w1Unif(x) + w2V ol(x) + w3Comp(x) (8.8)

where V ol(x) is the magnets volume, computed, with good approximation,
as

V ol(x) =
∑

coils

2πRmin∆Z∆R (8.9)

and normalised by the maximum allowed coils volume, and Comp(x) is a
measure of the compactness of the device, defined as the overall length of the
magnet normalised by the maximum allowed length. The weights in (8.8)
have been set to w1 = 0.4 and w2 = w3 = 1. It should noticed that the
volume of the magnets determines the total amount of used superconductor
and therefore it provides an important figure of the device cost.

The main goal of the device is a central magnetic field of 3 T with a
field homogeneity of 2 ppm over a 10 cm diameter spherical volume. The
magnet configuration treated here is composed by 6 superconducting coils: a
typical magnet poloidal cross section is sketched in Figure 8.15. In the same
figure are also reported, for one coil, the geometrical parameters supposed
to be affected by the random uncertainties, i.e. the coils inner radius Rmin,
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Figure 8.15: MRI magnet poloidal cross section with six coils.

the coils barycentre axial coordinates Zb, the coil length ∆Z and the coil
thickness ∆R. Due to technical reasons, the inner radii of all the coils are
assumed to be the same. The coils are symmetric with respect to the z = 0
plane: therefore the total number of independent variables is 10.

The mechanical tolerances has been modelled by using Gaussian distri-
butions with variances chosen coherently with their confidence interval. The
modified OF is defined as in (4.16). The tolerances are assumed to be the
same for all design geometrical parameters and equal to 0.1 mm. with a
Gaussian PDF with σ = 3.8823 ∗ 10−5. The normalised weights in (4.16)
assume the values of P1 = P3 = 0.1922 and P2 = 0.6156.

A preliminary analysis by GA has provided a set of four different mag-
nets layouts, each one corresponding to a local minimum of the OF. The
geometrical parameters and the OF values are reported in Table 8.9 for the
four magnets. The first three coils of the four solutions are sketched in Fig-
ure 8.16. We can see that the magnet A, C and D layouts are very similar:
one of the difficulties of many engineering optimisation problem is that the
local minima can be very close in the search space but often separated by
regions of unfeasible solutions.

By ranking the magnets by the values of the OF, the best solution re-
sults the magnet A and the worst one is the magnet B. Even if, for this
multidimensional space problem, it is not easy to visualize in some way the
geometrical behavior of an OF in the search space, we can imagine that an
attraction region is linked to each local minimum, in the same way as for the
simple mono-dimensional previous test problem in Section 4.5.3.
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Figure 8.16: Different MRI magnet solution layouts: coils 1, 2 and 3.

Magnet A Magnet B Magnet C Magnet D
Rmin 0.2204 0.2155 0.2210 0.2198
Zb,1 0.0482 0.0582 0.0488 0.0491
∆Z1 0.0437 0.0835 0.0446 0.0495
∆R1 0.0179 0.0110 0.0190 0.0164
Zb,2 0.1527 0.1833 0.1536 0.1503
∆Z2 0.0551 0.0505 0.0490 0.0352
∆R2 0.0159 0.0183 0.0192 0.0251
Zb,3 0.3019 0.2845 0.3004 0.2932
∆Z3 0.0724 0.0723 0.0792 0.0888
∆R3 0.0293 0.0209 0.0285 0.0245
OF 33.71 74.95 36.32 37.00

Table 8.9: MRI magnets: coils dimensions (in meters) for the different mag-
nets and OF values.
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Magnet A Magnet B Magnet C Magnet D
OF 33.71 74.95 36.32 37.00
OF 46.54 122.51 46.49 58.03

Table 8.10: MRI magnets: robustness for different magnets.

In order to compare the solutions also on the basis of the robustness,
in Table 8.10 the values of the OF and of the modified OF for each of the
previous magnets are reported. By ranking the magnets by the values of the
modified OF, now the best solutions is the magnet C and the worst one is
again the magnet B. The use of the modified OF can be therefore used by
the designer as a post-processing tool to add the robustness analysis to the
optimisation phase.

In addiction, the modified OF expression has been directly inserted in the
GA for the evaluation of the individuals fitness. By starting the evolution
from the same initial populations used before, a new layout not similar to
any of the previous magnets has been found as global minimum: this solution
(magnet E, in Table 8.11) exhibits a modified OF value of 45.71 and this is
the lowest found value. The unmodified OF value of the new solution is a
quite good 42.66, which is bigger than the best values of Table 8.10: therefore
this solutions would be hardly selected by the optimisation process by using
the standard OF expression. As shown for the demonstration example, the
modification of the OF causes little movements of the minima in the search
space: in this multidimensional search space problem, it is not easy to show if
the new minima are in the same attraction regions than the previous solutions
layouts.

8.6 Robust design and Biodiversity

The knowledge of the Pareto Front of the problem and the SA of the different
Pareto optimal solutions proposed in Section 4.5.5, can be used for the choice
of a possible solution for some particular design requirements, allowing the
Decision Maker to take into account both the design robustness and the
importance of different weighting of the various partial objectives.

To test the method proposed in Section 4.5.5, the TEAM 22 problem with
three parameters has been selected: the IGA with different OF s has been
used to find the Pareto optimal solutions. Multiple runs have been performed
and nine non-dominated solutions have then been retained to provide an
estimate of the Pareto Front. The resulting points of the Pareto Front are
plotted in Figure 8.17, where the first objective F1 is the energy term in
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Magnet E
Rmin 0.2202
Zb,1 0.05064
∆Z1 0.0533
∆R1 0.01782
Zb,2 0.1578
∆Z2 0.06251
∆R2 0.01571
Zb,3 0.2968
∆Z3 0.09126
∆R3 0.02566
OF 42.66
OF 45.71

Table 8.11: MRI magnets: most robust solution found.

(3.19) and the second objective F2 is the stray field term. For this ”real
case” problem, it is not possible to give indications about the Pareto Front
to be connected or not, as made for the analytical case in Section 4.1.1.

Monte Carlo analysis has been then performed for a tolerance of 0.01 mm
on the three design parameters, with 5000 runs for each point of the Pareto
Front. A so narrow and non-realistic tolerance range is a consequence of the
high sensibility of this benchmark problem to small variations of the design
parameters. As examples, the PDF for the optimal point related to the weight
w1 = 0.2450 is reported in Figure 8.18 for the objective F1 and in Figure 8.19
for the objective F2. For each run of MC analysis, the mean values µ and the
standard deviations σ of the PDF for the F1 and F2 objectives are computed.

In Table 8.12 the values of the differences between the mean and the refer-
ence values for each point is reported together with the standard deviation.
Note that the standard deviation for the second objective (the magnetic
stray field) is at least three orders of magnitude less that the first objec-
tive (the stored energy) and therefore the magnetic stray field is statistically
much less sensible to small design variations than the stored energy. The
differences between the mean and the reference values of objectives show a
non-uniform behaviour of the Pareto points, with some points (for instance
see the rows 5, 7 and 8 in Table 8.12) subjected to statistical worsening of
both objectives from small design changes: these can be indicated as points
worse than the other ones.

From a ”Decision Maker” point of view, such information is quite relevant,
as it allows to select configurations with smallest energy sensitivity as the
stray field is rather not sensitive to uncertainties.
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Figure 8.17: Pareto Front for the TEAM 22 problem.

µ(F1)− F1 µ(F2)− F2 σ(F1) ∗ 1e− 11 σ(F2) ∗ 1e− 14
w1 = 0.0025 -4.346e-8 7.579e-11 0.1030 0.1798
w1 = 0.21 -3.588e-10 1.802e-6 0.0976 0.1844
w1 = 0.23 2.342e-8 -1.934e-6 0.1016 0.1763
w1 = 0.245 -1.307e-9 1.759e-10 0.1026 0.1812
w1 = 0.315 2.425e-8 6.534e-7 0.1069 0.1998
w1 = 0.3425 1.6636e-8 -5.320e-7 0.1011 0.1841
w1 = 0.3525 1.933e-8 4.167e-6 0.0969 0.1832
w1 = 0.435 6.971e-10 7.794e-5 0.1120 0.2379
w1 = 0.8475 2.697e-8 -8.010e-5 0.1037 0.1628

Table 8.12: TEAM 22 problem: difference between mean value and reference
one and standard deviation of partial objectives for different Pareto points.
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8.6.1 Section summary

The effect of constructive parameters uncertainties on electromagnetic de-
vices optimal design has been assessed by using Monte Carlo analysis. In
order to analyse the impact of such uncertainties also in the case of multi-
objective problems but not limiting the analysis to a particular selection of
the relative importance of the different objectives, Pareto optimality has been
adopted in the optimisation problem definition. Pareto Front has been gener-
ated by using multipopulation GA with biodiversity for the three parameters
TEAM 22 benchmark problem, through a statistical analysis.

Different behaviour of the points has been evidenced with respect to the
robustness of each design solution to construction tolerances. The proposed
strategy can be used by the designer to rank and to compare the possible
problem solutions, allowing to perform a robust design of electromagnetic
devices.



Chapter 9

Conclusions

The design of superconducting magnets and other power devices can achieve
a great benefit by the multi-objective optimisation techniques. The evolu-
tionary models may efficiently be used for such a task: they are able to
incorporate all objectives and constraints of real world design problems and
to fulfill the high quality and robustness requirements today demanded by
electric devices. There is a large research interest in these evolutionary opti-
misation models and new strategies and concepts are in the developing phase,
often with a cross-fertilisation with other ”soft computing” areas, such as
fuzzy logic and neural networks.

In particular Genetic Algorithms have been extended to parallel comput-
ing area, gaining fast performances and acquiring new paradigms.

In this Thesis, all these topics have been introduced and discussed and
new strategies have been proposed and applied to industrial relevant prob-
lems.

Two of the main results of this work are the two carried out ”prototypes”:
the Marides code and the Beosun machine. They put in action many of the
presented concepts.

Along the development phases of this Thesis, a number of scientific papers
have been published or presented to conferences: they have been here already
referenced [10], [51], [53], [80], [93], [103], [118], [121].

The research topics of this Thesis could be further developed in the fol-
lowing areas:

� Implementation of Pareto based evolutionary approaches with suitable
definition of individuals ranking.

� Non-random generation of the initial populations: the use of concept of
quasi-Monte Carlo strategy can improve the initial exploration of the
search space.

121
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� Linking of the optimisation codes with external ”black boxes” pro-
grams, for problems where analytical solutions cannot be used. Real
world electromagnetic problems are solved by using Finite Elements
or Boundary Elements commercial codes: they can usually read input
scripts and therefore can be inserted in an optimisation loop, as already
done in Chapter 6 for the inverse problem resolution.



Appendix A

Code Fragments

A.1 Weights for robust OF

function [w1,w2,w3,x1,x2,x3]=Compute_weights(DeltaX)

% -----------------------------------------------------------

% Compute weights for

% Robust Optimisation with tolerance effect

%

% Tolerances = DeltaX

% Gaussian distribution

%

% See Section 4.5.3 for nomenclature

%

% by Dr. Marco Cioffi

% Department of Information Engineering

% Second University of Naples

% Aversa - Italy

%

% (15 November 2002)

%

ConfidenceRange = 0.99; % Same for all variables

% Evaluate sigma

k_sigma = fsolve(’0.99-erf(x/sqrt(2))’,1);

sigma = DeltaX/k_sigma;

Area_refus = cdf(’Normal’,-DeltaX,0,sigma); % Cut refused area

123
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Area = 1-2*Area_refus; % Reduced area

a=-DeltaX/3;

b=+DeltaX/3;

% Points x1, x2, x3 : see Figure 4.4

x1 = -2*DeltaX/3;

x2 = 0;

x3 = +2*DeltaX/3;

w1=(cdf(’Normal’,a,0,sigma)-cdf(’Normal’,-DeltaX,0,sigma))/(a+DeltaX)/Area

w2 = (cdf(’Normal’,b,0,sigma)-cdf(’Normal’,a,0,sigma))/(b-a)/Area

w3 = w1

somma = w1+w2+w3

% Normalised weights

w1=w1/somma;

w2=w2/somma;

w3=w3/somma

% End of function
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A.2 IGA Aggression: create new MPI com-

municators

c Create new communicators

Subroutine Create_SubComm_ECT(size_slave,

& process_ranks,nslave,isslave,nrank,my_COMM,my_rank,

& my_island,my_rank_subCOMM,size_subCOMM,

& size_island,slave_in_island)

c For 3 islands on 6 slaves

c isslave = 1 : it is a slave process of a multiple island where

c nslave is the number of the island

c isslave = 255 for master

c process_ranks = list of the ranks for the new group

c nslave(i) = island of the process i

c nrank(i) = local master process of island i

c by Dr. Marco Cioffi

c Department of Information Engineering

c Second University of Naples

c Aversa - Italy

c

c (15 November 2002)

implicit none

include ’mpif.h’

integer size,size_island,size_slave, slave_in_island

c Maximum number of slaves

integer max_slaves

parameter (max_slaves=20)

integer process_ranks(0:max_slaves-1),nslave(0:max_slaves-1)

integer proc,isslave(0:max_slaves-1),count1,nrank(0:max_slaves-1)

integer my_rank_subCOMM,size_subCOMM,group_subCOMM(0:max_slaves-1)

& ,subCOMM(0:max_slaves-1)

integer i,j, my_COMM, my_rank,my_island, iisland,

& group_world,ierror,my_rank_world
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integer ii, jj

call MPI_COMM_RANK(MPI_COMM_WORLD,my_rank_world,ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierror)

c Number of islands: c 3 islands with groups of two/three

processes

size_island = 3

slave_in_island = size_slave/size_island

c Get the group underlying MPI_COMM_WORLD

call MPI_COMM_GROUP(MPI_COMM_WORLD,group_world, ierror)

c Initialize isslave (also master)

do i = 0, size_slave

nslave(i) = 255

isslave(i) = 255

end do

c Loop on islands

do ii = 1, size_island

iisland = ii-1

c Create process map

do jj=1, slave_in_island

process_ranks(jj-1) = slave_in_island*(ii-1)1

nslave(slave_in_island*(ii-1)1) = iisland

isslave(slave_in_island*(ii-1)1) = 1

end do

nrank(iisland) = slave_in_island*(ii-1)

c Create the new group group_subCOMM on the process_ranks

c list of ranks

call MPI_GROUP_INCL(group_world, slave_in_island,

& process_ranks, group_subCOMM(iisland), ierror)

c Create the new communicator subCOMM on the process_ranks

c list of ranks

call MPI_COMM_CREATE(MPI_COMM_WORLD, group_subCOMM(iisland),
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& subCOMM(iisland), ierror)

end do

c End loop on islands

c Only in slaves (=subCOMM)

if (isslave(my_rank_world) .ne. 255) then

c Assign island paraeters

my_island = nslave(my_rank_world)

my_COMM = subCOMM(my_island)

my_rank = my_rank_world

call MPI_COMM_RANK(my_COMM,my_rank_subCOMM,ierror)

call MPI_COMM_SIZE(my_COMM,size_subCOMM,ierror)

c End if: Only in slaves (=subCOMM)

end if

return

end
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