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Abstract- Despite the relatively high volume of

research conducted on evolutionary multiobjec-

tive optimization in the last few years, little at-

tention has been paid to the decision making pro-

cess that is required to select a �nal solution to

the multiobjective optimization problem at hand.

This paper reviews the most important prefer-

ence handling approaches used with evolution-

ary algorithms, analyzing their advantages and

disadvantages, and then, it proposes some of the

potential areas of future research in this disci-

pline.

1 Introduction

Most real-world problems are multiobjective in nature,

because they consider several objectives (or alternatives)

that are to be optimized simultaneously. Normally, these

objectives are non-commensurable (i.e., they are mea-

sured in di�erent units), and are in conict with each

other. Multiobjective optimization problems (MOPs)

have received considerable attention in Operations Re-

search (see for example [23, 7, 27, 12]), and they have re-

cently become a very popular area of researchwithin evo-

lutionary computation that is normally called Evolution-

ary Multiobjective Optimization
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(EMO) [14, 22, 45, 6].

It is important to be aware that the solution of a

MOP really involves three stages: measurement, search,

and decision making. The central issue in multi-criteria

decision making (MCDM) is normally how to measure a

certain utility value using a (generally complex) math-

ematical tool. If a reliable utility function is available,

then the decision has been implicitly made and its se-

lection is trivial. Thus, using a mechanical search pro-

cedure, the decision making process is unnecessary (i.e.,

it is implicit in the search itself). That should not be

the case, but unfortunately, it normally is. For example,

most EMO researchers tend to concentrate on issues re-

lated to the search of nondominated solutions. However,

these nondominated solutions do not provide any insight

into the process of decision making itself, since they are

really a useful generalization of a utility function un-

der the conditions of minimum information (i.e., all at-
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tributes are considered as having equal importance; in

other words, the decision maker (DM) does not express

any preferences of the attributes) [8, 13, 19].

Most of the current research on EMO has concen-

trated on adapting an evolutionary algorithm (EA) to

generate nondominated solutions. However, the artic-

ulation of preferences has been dealt with by very few

researchers (see for example [34, 8, 22, 13, 19]).

The purpose of this paper is to review the most rep-

resentative research on preferences articulation found in

the EMO literature, analyzing their contributions and

their weaknesses and sketching some of the potential re-

search areas that remain to be explored.

2 Multicriteria Decision Making

From the Operations Research (OR) perspective, there

are two main lines of thought regarding MCDM [44]:

1. The French school, which is mainly based on the

outranking concept [46], and

2. The American Multi Attribute Utility Theory

(MAUT) [24].

The �rst is based on an outranking relation which

is built up under the form of pairwise comparisons of

the objects under study. The main goal is to deter-

mine on the basis of all relevant information for each

pair of objects if there exists preference, indi�erence, or

incomparability. For this purpose, preference or domi-

nance indicators are de�ned and compared with certain

threshold values. The main drawback of this approach

is that it might become very expensive (computationally

speaking) when there is a large number of alternatives.

MAUT is, in contrast, based on the formulation of an

overall utility function, and its underlying assumption

is that such a utility function is available or can be ob-

tained through an interactive process. When this utility

function is not available, then the task will be to iden-

tify a set of nondominated solutions. In this case, strong

preference can only be concluded if there exists enough

evidence that one of the vectors is clearly dominating

the vector against which it is compared. Weak prefer-

ence (modelled as weak dominance [26]), on the other

hand, expresses a certain lack of conviction. Indi�erence

means that both vectors are equivalent and that it does

not matter which of them is selected. It is important to



distinguish this \indi�erence" from the \incomparabili-

ty" used with outranking methods, since the second in-

dicates vectors with strong opposite merits [44]. MAUT

does not work when there are intransitivities in the pref-

erences, which is something that frequently arises when

we deal with \incomparable" objects using an outrank-

ing approach [52].

These two main lines of thought lead us to de�ne three

types of operational attitude of the DM [37]:

1. To wish to exclude incomparability and completely

express the preferences by a unique criterion. This

would lead to an aggregating approach in which all

the criteria would be combined using a single util-

ity function that represents the global preferences

of the DM (this would correspond, for example, to

MAUT).

2. To accept incomparability and to use an outrank-

ing relation to model the preferences of the DM.

In this case, the DM only has to model those pref-

erences that he/she is capable of establishing ob-

jectively and realiably, and then use outranking

when such preferences cannot be established. In

this case, the DM is asked to compare the crite-

ria two by two and each objective is assigned a

weight derived from the eigenvector of the pair-

wise comparison matrix [44]. It is important to be

aware that these pairwise comparisons can lead to

intransitive or incomplete relations. One example

of this approach would be ELECTRE in its di�er-

ent versions [35, 38, 40].

3. To determine, through an interactive process, the

di�erent compromises based on local preferences.

In this case, the DM experiments with his/her lo-

cal preferences at each stage of the search process,

which allows to explore only a certain region of the

search space. When no further improvement is no

longer necessary or is impossible, then we say that

we have reached a compromise, which can be seen

as a local optimum relative to an implicit criterion.

An example of this approach is the STEP Method

(STEM) [3].

Both MAUT and outranking procedures can be ap-

plied in an interactive manner, and that is normally the

approach taken when there is not enough a priori infor-

mation of the objectives as to allow the DM to de�ne

his/her preferences in an accurate way.

Although a priori and a posteriori decision making

procedures are common in the OR literature [7], inter-

active approaches (i.e., the progressive articulation of

preferences) have been normally favored by researchers

[15] for several reasons [29]:

1. Perception is inuenced by the total set of elements

in a situation and the environment in which the

situation is embedded.

2. Individual preference functions or value structures

cannot be expressed analytically, although it is as-

sumed that the DM subscribes to a set of beliefs.

3. Value structures change over time, and preferences

of the DM can change over time as well.

4. Aspirations or desires change as a result of learning

and experience.

5. The DM normally looks at trade-o�s that satisfy

a certain set of criteria, rather than at optimizing

all the objectives at a time.

3 Preferences in Evolutionary Algorithms

As indicated by Horn [22], preferences can also be ex-

pressed a priori, a posteriori, or in an interactive way

when using EAs. If preferences are expressed a priori,

the DM has to de�ne his/her preferences in advance (be-

fore actually performing the search). The classical ex-

ample of this are the aggregating approaches in which

weights are de�ned beforehand to combine all the ob-

jectives into a single objective function. In the second

case, we search �rst, and decide later. This is the cat-

egory where most EMO approaches fall into (i.e., EMO

techniques based on Pareto ranking such as MOGA [13]

and NSGA [41]). In this case, we use an evolutionary al-

gorithm (EA) to search the \best possible" alternatives,

where \best possible" normally means nondominated or

Pareto optimal solutions. The third case is the less com-

mon in the EA literature: approaches that allow to guide

the search of the EA using preferences from the DM, but

assuming that such preferences could change over time.

There is very little work in which the handling of pref-

erences is explicitly dealt with in the EMO literature.

The most representative research within this area is the

following:

1. Goal attainment: Fonseca and Fleming [13] is

probably the earliest attempt to incorporate pref-

erences from the DM into an EA. The proposal was

to extend MOGA to accomodate goal information

as an additional criterion to non-dominance to as-

sign ranks to the population. The goal attainment

method [16] was used for this sake, so that the DM

could supply goals at each generation of the EA,

reducing in consequence the size of the set under

inspection and learning, at the same time, about

the trade-o�s between the objectives. This is an in-

teractive approach. They also proposed the use of

an expert system to automate the task of the DM.

Such an expert system would use built-in knowl-

edge obtained from the preferences expressed by

the (human) DM. Shaw and Fleming [39] used a



similar approach to incorporate preferences into a

scheduling problem, but in their case, preferences

were de�ned a priori. The main disadvantage of

this approach is that it requires the user to know

beforehand the ranges of variation of each objec-

tive in order to establish coherent goals. This could

be an expensive process (in terms of CPU time)

in many real-world applications. Nevertheless, the

approach is simple and easy to implement.

2. Utility functions: Greenwood et al. [19] used el-

ements of imprecisely speci�ed multi-attribute value

theory (ISMAUT) to perform imprecise ranking of

attributes [49]. The idea is to rank a set of so-

lutions of the MOP instead of explicitly rank the

attributes of the problem (this is implicitly done

by the approach). Preference information is also

incorporated into the survival criteria used by the

EA. This is an a priori approach. Its main disad-

vantage is that this method assumes that all at-

tributes are mutually, preferentially independent

(i.e., the value function associatedwith attribute a

i

is not a�ected by the values of some other attribute

a

j

, where j 6= i). That is not always the case, and

despite the fact that the approach would still work

when this asumption does not hold, it would cer-

tainly become more complicated. Also, since this

approach uses a utility function, the problems as-

sociated with this sort of approach that were pre-

viously mentioned are applicable here (e.g., unable

to handle intransitivities).

3. Preference Relations: Cvetkovi�c and Parmee

[8, 9] proposed the use of binary preference rela-

tions that can be expressed qualitatively (i.e., us-

ing words) and are then translated to quantita-

tive terms (i.e., weights) to narrow the search of

an EA. The weights generated can be used with a

simple aggregating approach or with Pareto rank-

ing. In the second case, the weights are used to

modify the de�nition of nondominance used by the

ranking scheme of the EA. This approach has some

resemblance with the Surrogate Worth Trade-O�

method [21]. This is also an a priori approach,

since the weights are assumed constant through-

out the optimization process, but nothing in the

approach really precludes its use in an interactive

way. Since this approach relies on the use of tran-

sitive relationships, it is also incapable of handling

intransitivities. The direct use of weights to esti-

mate the importance of solutions that have been

already identi�ed as Pareto optimal has been sug-

gested by other researchers as well (see for example

[4]).

4. Outranking: Rekiek et al. [34] proposed the

use of PROMETHEE (Preference Ranking Orga-

nization METHod for Enrichment Evaluations [5])

combined with an EA. PROMETHEEmethods be-

long to the family of outranking approaches (such

as ELECTRE) introduced by Bernard Roy. These

methods include two phases [5]:

� The construction of an outranking relation on

the di�erent criteria or objectives of the prob-

lem.

� The exploitation of this relation in order to

give an answer to the multiobjective opti-

mization problem.

In the �rst phase, a valued outranking relation

based on a generalization of the notion of crite-

rion is considered: a preference index is de�ned

and a valued outranking graph, representing the

preferences of the DM, is obtained.

The exploitation of the outranking relation is re-

alized by considering for each action a leaving and

an entering ow in the valued outranking graph:

a partial preorder (PROMETHEE I) or a com-

plete preorder (PROMETHEE II) on the set of

possible actions can be proposed to the DM in

order to achieve the decision problem. Rekiek et

al. [34] used PROMETHEE II to order each pop-

ulation processed by the EA (i.e., the algorithm

was used to select individuals from the popula-

tion). Preferences of certain objectives over the

others were expressed in the form of weights. This

is an a priori approach. Massebeuf et al [28]

used PROMETHEE II in an a posteriori form: an

EA would generate Pareto optimal solutions from

which PROMETHEE II would select a certain sub-

set based on the preferences of the DM (expressed

through preference relationships).

Brans et al. [5] criticize outranking methods be-

cause they require toomany parameters, the values

of which are to be �xed by the DM and the analyst.

They argue that even though some of these param-

eters have a real practical meaning and can, there-

fore, be �xed clearly, some others (such as concor-

dance discrepancies and discrimination thresholds)

playing an essential role in the procedures, only

have a technical character, and their inuence on

the results is not always well understood. More-

over, in some outranking approaches, the notion of

\degree of credibility" is rather di�cult for practi-

tioners [5].

5. Fuzzy Logic: Voget and Kolonko [47] used a fuzzy

controller that automatically regulates the selec-

tion pressure of an EA by using a set of prede�ned

goals that de�ne the \desirable" behavior of the

population. Although the approach was used only

to keep diversity in the population, it could easily



be extended to incorporate preferences of the DM.

The idea is similar to goal attainment, except that

in this case membership functions are used to ex-

press goals in vague terms (i.e., it allows to handle

uncertainties). A similar fuzzy controller was pro-

posed by Lee and Esbensen [25], but in their case,

on-line and o�-line performance of the EA were

used to guide the search. The main issue that de-

serves attention when extending this approach to

incorporate user's preferences is the de�nition of

the goals (the de�nition of membership functions

is the main issue when using fuzzy logic). An a

priori approach within these lines was proposed by

Pirjanian [33]. However, in this case, fuzzy rules

were used to compute weights that would narrow

the search of the EMO approach.

4 Issues that deserve attention

Regardless of the approach used to handle preferences

in an EA, there are several issues that should be kept in

mind:

1. Preserving dominance: It is important to make

sure that the preference relationships introduced in

the EA preserve existing dominance relationships.

Otherwise, the search would be biased towards un-

desired regions of the search space. Despite the

fact that this property can be easily preserved in

most cases (see for example [19]), it should be nev-

ertheless kept in mind when proposing approaches

to incorporate preferences into an EA.

2. Transitivity: As Cvetkovi�c and Parmee indicate

[9], the use or not of intransitivities has been sub-

ject of a lot of debate in OR. It is not di�cult

to come up with an example in which intransi-

tivies of preferences occur (see for example [44]).

The main argument against intransitivities is that

their absence considerably simpli�es the modelling

of the preferences (intransitivies can lead to con-

tradictions that are much more di�cult to handle).

However, the issue remains open, and the French

school of MCDM prefers to use outranking proce-

dures that allow intransitivities to occur. These

approaches have been combined with EAs only by

a few researchers, as seen in the previous section.

3. Scalability: Some early researchers indicated that

MUAT was sound only when few attributes were

considered [52]. EMO approaches in general are

victim of the \dimensionality curse" [2], because

they tend to become cumbersomeor even useless as

we increase the number of objectives. Approaches

such as preference relations, are sensitive to the

number of objectives and to changes in the order

of the questions asked to the DM. Cvetkovi�c and

Parmee [9] empirically show that the number of

questions that the DM needs to answer in their

approach are, on average, much less than the theo-

retical upper bound, but the numbers still get very

high as the amount of objectives increases (for ex-

ample, for 21 objectives, 62 questions must be an-

swered). This issue certainly deserves attention.

4. Several decision makers: If expressing the pref-

erences of a single DM is di�cult, the participation

of several (which is not rare in the real world) raises

additional questions. The main approach is to use

group preferences to aggregate the preferences of

each individual DM. However, the economist Ken-

neth J. Arrow [1] showed that apart from some

very special cases, utility functions cannot be used

in general to aggregate individual preferences into

a group utility function. The so-called Arrow's

Impossibility Theorem has very important conse-

quences in MCDM. To explain how it works, let's

consider the following assumptions [24]:

� Complete Domain: The utility function

should be able to de�ne an ordering for the

group, regardless of the individual members'

ordering.

� Positive Association of Social and Indi-

vidual Values: If the group ordering indi-

cates that alternative x is preferred to alter-

native y for a certain set of individual rank-

ings, and (1) if there are no changes on the

ordering of each individual, and (2) each indi-

vidual's paired comparison against x remains

unchanged or is modi�ed in x's favor, then

the group ordering must imply that x is still

preferred to y.

� The Independence of Irrelevant Alter-

natives: If an alternative is eliminated and

the preference relations for the remaining al-

ternatives remain unchanged for all the indi-

viduals, then the new group ordering should

remain the same as before.

� Individual's Sovereignity: For each pair

of alternatives x and y, there is some set of

individual orderings which causes x to be pre-

ferred to y.

� Nondictatorship: It is impossible that the

preferences of the group be always in agree-

ment with the preferences of a single individ-

ual.

So, what Arrow's Impossibility Theorem says is

that any joint decision process which is reasonably

democratic and respecting of individuality (follow-

ing the assumptions described before) is also irra-

tional or unreliable. It is likely to have at least



one of the following problems: a) the order of the

decisions a�ects the �nal outcome, b) the indepen-

dence of its elements might not be respected, and

c) the unanimous will of its elements might be ig-

nored.

Some authors have shown that Arrow's conditions

can be ignored in practical problems, but its mere

existence has triggered a considerable amount of

research in economics [36], and cannot be disre-

garded by EMO researchers.

5 Some potential research paths

There is a considerable amount of MCDM approaches

reported in the OR literature that have not been used

with EAs. Some examples are the following:

� PROTRADE: The motivation of this method

was to be able to handle risk in the development of

the objective trade-o�s, and at the same time being

able to accomodate the preferences of the DM in a

progressive manner. In this technique, we assume

that our MOP has a probabilistic objective func-

tion and probabilistic constraints [17]. According

to a 12-step algorithm, an initial solution is found

using a surrogate objective function, then a mul-

tiattribute utility function is formed leading to a

new surrogate objective function and a new solu-

tion. The solution is checked to see if it is satis-

factory to the DM. The process is repeated until

a satisfactory solution is reached, as described in

Goicoechea et al. [18]. The results of the multi-

objective optimization provide not only levels of

attainment of the objective function elements (as

in the goal attainment method), but also the prob-

abilities of reaching those levels. The technique is

interactive and is called probabilistic trade-o� de-

velopment method, or PROTRADE, for short. One

interesting aspect of this approach is that the DM

actually ranks objectives in order of importance

(a multi-attribute utility function is used to assist

the DM in articulating his/her preferences) at the

beginning of the process, and later uses pairwise

comparisons to reconcile these preferences with the

\real" (observed) behavior of the attributes. This

allows not only an interactive participation of the

DM, but it also allows him/her to gain knowledge

about the trade-o�s of the problem. The compu-

tational requirements of the technique are low and

it can be easily coupled with an EA.

� SEMOPS: This method was proposed by Monar-

chi, Kisiel and Duckstein [29], and it basically in-

volves the DM in an interactive fashion in the

search for a satisfactory course of action. It is in-

tended for cases in which the DM does not know

how to trade o� one objective versus another ex-

cept in a subjective way. A surrogate objective

function is used based on the goal and aspiration

levels of the DM. The goal levels are conditions

imposed on the DM by external forces, and the as-

piration levels are attainment levels of the objec-

tives which the DM personally desires to achieve

[29]. One would say, then, that goals do not change

once they are stated, but that the aspiration lev-

els may change during the iteration process. Op-

erationally, the Sequential Multiobjective Problem

Solving method (SEMOPS) is a three-step proce-

dure involving setup, iteration, and termination.

Setup involves structuring a principal problem and

a set of auxiliary problems with surrogate objective

function. The iteration step involves cycling be-

tween an optimization phase (by the analyst), and

an evaluation phase (by the DM) until a satisfac-

tory solution is reached, if it exists. The procedure

terminates when either a satisfactory solution is

found, or the DM concludes that none of the non-

dominated solutions obtained are satisfactory and

gives up in the search (he/she might re-start the

search process in that case). The resulting solu-

tions from each iteration are used in the evaluation

process to assist the DM to determine the \direc-

tion of change" for the next iteration. This tech-

nique allows the DM to change his/her mind as

he/she receives additional information about the

trade-o�s of the problem. At each cycle, the DM

is only asked to provide the most important un-

satis�ed goal (this is similar to the lexicographic

method [23]). Over time, the method generates

a complete ordering (equivalent to the direct use

of a utility function) using information from the

achievement of the DM's goals. A ranking scheme

is also possible at the beginning of the algorithm,

but the preferences can be changed over time. This

approach can also be easily coupled with an EA.

� Compromise Programming: In this method,

we try to minimize a function which de�nes a

global criterion which is a measure of how close the

DM can get to an ideal point

~

f

0

. The most com-

mon distance measure is the family of L

p

-metrics

[11]:
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into account in direct proportion to their magni-

tudes, which corresponds to `group utility' [51].

For 2 � p <1, the larger deviations carry greater

weight in L

p

; for p = 1, the largest deviation is

the only one taken into consideration, which leads

to a purely `individual utility' (min-max criterion

[31]), in which all weighted deviations are equal.

The `displaced ideal' technique [52] which proceeds

to de�ne an ideal point, and then proceeds to ap-

proach this ideal in an interactive manner (during

the process, the ideal point, which will displaced

closer or farther away from the feasible region), is

an extension of compromise programming.

Another variation of this technique is the method

suggested by Wierzbicki [50] in which the global

function has a form such that it penalizes the devi-

ations from the so-called reference objective. Any

reasonable or desirable point (i.e., any preference)

in the space of objectives chosen by the DM can

be considered as the reference objective.

Deb [10] and Bentley [4] have suggested variations

of compromise programming to bias the search of

an EMO approach, but there is plenty of room for

more research in this area. For example, more so-

phisticated articulations of preferences are possible

with this approach and, if used in an interactive

way (it is normally used as an a priori technique),

it can allow the DM to change his/her mind over

time and to adjust his/her goals (i.e., the ideal so-

lutions) according to the behavior of the trade-o�s

initially selected. Dynamic compromise program-

ming has been suggested in OR long ago [42], but

such an approach has not been coupled with an EA

so far, to the author's best knowledge.

Several other approaches can also be coupled with

EAs. For example, the concept of stochastic domi-

nance [12], the conict analysis model [44], the ex-

pected utility maximization [43], EVAMIX [48],

NAIADE [30], QUALIFLEX [32], and the multiob-

jective statistical method [20].

6 Conclusions

In this paper we have reviewed the most representative

approaches to incorporate preferences into an EMO al-

gorithm and we have discussed some of their advantages

and disadvantages. We have also provided a general view

of MCDM from an OR perspective, indicating some pos-

sible paths of future research.
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