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Abstra
t. In this paper, we propose a multiobje
tive optimization ap-

proa
h based on a mi
ro geneti
 algorithm (mi
ro-GA) whi
h is a geneti


algorithm with a very small population (four individuals were used in our

experiment) and a reinitialization pro
ess. We use three forms of elitism

and a memory to generate the initial population of the mi
ro-GA. Our

approa
h is tested with several standard fun
tions found in the spe
ial-

ized literature. The results obtained are very en
ouraging, sin
e they

show that this simple approa
h 
an produ
e an important portion of the

Pareto front at a very low 
omputational 
ost.

1 Introdu
tion

A 
onsiderable number of evolutionary multiobje
tive optimization te
hniques

have been proposed in the past [3, 20℄. However, until re
ently, little emphasis

had been pla
ed on eÆ
ien
y issues. It is well known that the two main pro
esses

that 
onsume most of the running time of an EMOO algorithm are: the ranking

of the population (i.e., the 
omparisons required to determine non-dominan
e)

and the me
hanism to keep diversity (evolutionary algorithms tend to 
onverge

to a single solution be
ause of sto
hasti
 noise; it is therefore ne
essary to avoid

this with an additional me
hanism).

Re
ent resear
h has shown ways of improving the eÆ
ien
y of an EMOO

te
hnique (see for example [14, 6℄). The main emphasis has been on using an

external �le that stores nondominated ve
tors found during the evolutionary

pro
ess whi
h are reinserted later in the population (this 
an be seen as a form

of elitism in the 
ontext of multiobje
tive optimization [10, 17, 22℄).

Following the same line of thought of this 
urrent resear
h, we de
ided to

develop an approa
h in whi
h we would use a GA with a very small population



size and a reinitialization pro
ess (the so-
alled mi
ro-GA) 
ombined with an

external �le to store nondominated ve
tors previously found. Additionally, we

de
ided to in
lude an eÆ
ient me
hanism to keep diversity (similar to the adap-

tive grid method of Knowles & Corne [14℄). Our motivation was to show that a

mi
ro-GA 
arefully designed is suÆ
ient to generate the Pareto front of a multi-

obje
tive optimization problem. Su
h approa
h not only redu
es the amount of


omparisons required to generate the Pareto front (with respe
t to traditional

EMOO approa
hes based on Pareto ranking), but also allows us to 
ontrol the

amount of points that we wish to obtain from the Pareto front (su
h amount is

in fa
t a parameter of our algorithm).

2 Related Work

The term mi
ro-geneti
 algorithm (mi
ro-GA) refers to a small-population ge-

neti
 algorithm with reinitialization. The idea was suggested by some theoreti
al

results obtained by Goldberg [8℄, a

ording to whi
h a population size of 3 was

suÆ
ient to 
onverge, regardless of the 
hromosomi
 length. The pro
ess sug-

gested by Goldberg was to start with a small randomly generated population,

then apply to it the geneti
 operators until rea
hing nominal 
onvergen
e (e.g.,

when all the individuals have their genotypes either identi
al or very similar),

and then to generate a new population by transferring the best individuals of

the 
onverged population to the new one. The remaining individuals would be

randomly generated.

The �rst to report an implementation of a mi
ro-GA was Krishnakumar [15℄,

who used a population size of 5, a 
rossover rate of 1 and a mutation rate of zero.

His approa
h also adopted an elitist strategy that 
opied the best string found in

the 
urrent population to the next generation. Sele
tion was performed by hold-

ing 4 
ompetitions between strings that were adja
ent in the population array,

and de
laring to the individual with the highest �tness as the winner. Krishnaku-

mar [15℄ 
ompared his mi
ro-GA against a simple GA (with a population size

of 50, a 
rossover rate of 0.6 and a mutation rate of 0.001). Krishnakumar [15℄

reported faster and better results with his mi
ro-GA on two stationary fun
tions

and a real-world engineering 
ontrol problem (a wind-shear 
ontroller task). Af-

ter him, several other resear
hers have developed appli
ations of mi
ro-GAs [13,

7, 12, 21℄. However, to the best of our knowledge, the 
urrent paper reports the

�rst attempt to use a mi
ro-GA for multiobje
tive optimization, although some

may argue that the multi-membered versions of PAES 
an be seen as a form of

mi
ro-GA

1

[14℄. However, Knowles & Corne [14℄ 
on
luded that the addition of a

population did not, in general, improve the performan
e of PAES, and in
reased

the 
omputational overhead in an important way. Our te
hnique, on the other

1

We re
ently be
ame aware of the fa
t that Jaszkiewi
z [11℄ proposed an approa
h in

whi
h a small population initialized from a large external memory and utilized it for

a short period of time. However, to the best of our knowledgem this approa
h has

been used only for multiobje
tive 
ombinatorial optimization.



hand, uses a population and traditional geneti
 operators and, as we will show

in a further se
tion, it performs quite well.

3 Des
ription of the Approa
h

In this paper, we propose a mi
ro-GA with two memories: the population

memory, whi
h is used as the sour
e of diversity of the approa
h, and the

external memory, whi
h is used to ar
hive members of the Pareto optimal

set. Population memory is respe
tively divided in two parts: a repla
eable and

a non-repla
eable portion (the per
entages of ea
h 
an be regulated by the

user).

The way in whi
h our te
hnique works is illustrated in Fig. 1. First, an initial

random population is generated. This population feeds the population memory,

whi
h is divided in two parts as indi
ated before. The non-repla
eable portion

of the population memory will never 
hange during the entire run and is meant

to provide the required diversity for the algorithm. The initial population of

the mi
ro-GA at the beginning of ea
h of its 
y
les is taken (with a 
ertain

probability) from both portions of the population memory as to allow a greater

diversity.

During ea
h 
y
le, the mi
ro-GA undergoes 
onventional geneti
 operators:

tournament sele
tion, two-point 
rossover, uniform mutation, and elitism (re-

gardless of the amount of nondominated ve
tors in the population only one is

arbitrarily sele
ted at ea
h generation and 
opied inta
t to the following one). Af-

ter the mi
ro-GA �nishes one 
y
le (i.e., when nominal 
onvergen
e is a
hieved),

we 
hoose two nondominated ve
tors

2

from the �nal population (the �rst and

last) and 
ompare them with the 
ontents of the external memory (this memory

is initially empty). If either of them (or both) remains as nondominated after


omparing against the ve
tors in this external memory, then they are in
luded

there. All the dominated ve
tors are eliminated from the external memory. These

two ve
tors are also 
ompared against two elements from the repla
eable por-

tion of the population memory (this is done with a loop, so that ea
h ve
tor is

only 
ompared against a single position of the population memory). If either of

these ve
tors dominates to its mat
h in the population memory, then it repla
es

it. The idea is that, over time, the repla
eable part of the population memory

will tend to have more nondominated ve
tors. Some of them will be used in the

initial population of the mi
ro-GA to start new evolutionary 
y
les.

Our approa
h uses three types of elitism. The �rst is based on the notion that

if we store the nondominated ve
tors produ
ed from ea
h 
y
le of the mi
ro-GA,

we will not lose any valuable information obtained from the evolutionary pro
ess.

The se
ond is based on the idea that if we repla
e the population memory by

the nominal solutions (i.e., the best solutions found when nominal 
onvergen
e

is rea
hed), we will gradually 
onverge, sin
e 
rossover and mutation will have

a higher probability of rea
hing the true Pareto front of the problem over time.

2

This is assuming that we have two or more nondominated ve
tors. If there is only

one, then this ve
tor is the only one sele
ted.
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h our mi
ro-GA works.



This notion was hinted by Goldberg [8℄. Nominal 
onvergen
e, in our 
ase, is

de�ned in terms of a 
ertain (low) number of generations (typi
ally, two to �ve

in our 
ase). However, similarities among the strings (either at the phenotypi
al

or genotypi
al level) 
ould also been used as a 
riterion for 
onvergen
e. The

third type of elitism is applied at 
ertain intervals (de�ned by a parameter 
alled

\repla
ement 
y
le"). What we do is to take a 
ertain amount of points from

all the regions of the Pareto front generated so far and we use them to �ll in

the repla
eable memory. Depending on the size of the repla
eable memory, we


hoose as many points from the Pareto front as ne
essary to guarantee a uniform

distribution. This pro
ess intends to use the best solutions generated so far as

the starting point for the mi
ro-GA, so that we 
an improve them (either by

getting 
loser to the true Pareto front or by getting a better distribution). This

also avoids that the 
ontents of the repla
eable memory be
omes homogeneous.

To keep diversity in the Pareto front, we use an approa
h similar to the adap-

tive grid proposed by Knowles & Corne [14℄. The idea is that on
e the ar
hive

that stores nondominated solutions has rea
hed its limit, we divide the sear
h

spa
e that this ar
hive 
overs, assigning a set of 
oordinates to ea
h solution.

Then, ea
h newly generated nondominated solution will be a

epted only if the

geographi
al lo
ation to where the individual belongs is less populated than the

most 
rowded lo
ation. Alternatively, the new nondominated solution 
ould also

be a

epted if the individual belongs to a lo
ation outside the previously spe�-


ied boundaries. In other words, the less 
rowded regions are given preferen
e

so that the spread of the individuals on the Pareto front 
an be more uniform.

The pseudo-
ode of the algorithm is the following:

fun
tion Mi
ro-GA

begin

Generate starting population P of size N

and store its 
ontents in the population memory M

=* Both portions of M will be �lled with random solutions *=

i=0

while i < Max do

begin

Get the initial population for the mi
ro-GA (P

i

) from M

repeat

begin

Apply binary tournament sele
tion

based on nondominan
e

Apply two-point 
rossover and uniform mutation

to the sele
ted individuals

Apply elitism (retain only one nondominated ve
tor)

Produ
e the next generation

end

until nominal 
onvergen
e is rea
hed

Copy two nondominated ve
tors from P

i

to the external memory E



if E is full when trying to insert ind

b

then adaptive grid(ind

b

)

Copy two nondominated ve
tors from P

i

to M

if i mod repla
ement 
y
le

then apply se
ond form of elitism

i=i+1

end while

end fun
tion

The adaptive grid requires two parameters: the expe
ted size of the Pareto

front and the amount of positions in whi
h we will divide the solution spa
e for

ea
h obje
tive. The �rst parameter is de�ned by the size of the external memory

and it is provided by the user. The se
ond parameter (the amount of positions in

whi
h we will divide the solution spa
e) has to be provided by the user as well,

although we have found that our approa
h is not very sensitive to it (e.g., in most

of our experiments a value of 15 or 25 provided very similar results). The pro
ess

of determining the lo
ation of a 
ertain individual has a low 
omputational 
ost

(it is based on the values of its obje
tives as indi
ated before). However, when

the individual is out of range, we have to relo
ate all the positions. Nevertheless,

this last situation does not o

ur too often, and we allo
ate a 
ertain amount of

extra room in the �rst and last lo
ations of the grid to minimize the o

urren
e

of this situation.

When the external memory is full, then we use the adaptive grid to de
ide

what nondominated ve
tors will be eliminated. The adaptive grid will try to

balan
e the amount of individuals representing ea
h of the elements of the Pareto

set, so that we 
an get a uniform spread of points along the Pareto front.

4 Comparison of Results

Several test fun
tions were taken from the spe
ialized literature to 
ompare our

approa
h. In all 
ases, we generated the true Pareto fronts of the problems using

exhaustive enumeration (with a 
ertain granularity) so that we 
ould make a

graphi
al 
omparison of the quality of the solutions produ
ed by our mi
ro-GA.

Sin
e the main aim of this approa
h has been to in
rease eÆ
ien
y, we ad-

ditionally de
ided to 
ompare running times of our mi
ro-GA against those of

the NSGA II [6℄ and PAES [14℄. In the following examples, the NSGA was run

using a population size of 100, a 
rossover rate of 0.8 (using SBX), tournament

sele
tion, and a mutation rate of 1/vars, where vars = number of de
ision vari-

ables of the problem. In the following examples, PAES was run using a depth of

5, a size of the ar
hive of 100, and a mutation rate of 1/bits, where bits refers

to the length of the 
hromosomi
 string that en
odes the de
ision variables. The

amount of �tness fun
tion evaluations was set su
h that the NSGA II, PAES

and the mi
ro-GA 
ould reasonably 
over the true Pareto front of ea
h problem.



4.1 Test Fun
tion 1

Our �rst example is a two-obje
tive optimization problem de�ned by Deb [5℄:

Minimize f

1

(x

1

; x

2

) = x

1

(1)

Minimize f

2

(x

1

; x

2

) =

g(x

2

)

x

1

(2)

where:

g(x

2

) = 2:0� exp

(

�

�

x

2

� 0:2

0:004

�

2

)

� 0:8 exp

(

�

�

x

2

� 0:6

0:4

�

2

)

(3)

and 0:1 � x

1

� 1:0, 0:1 � x

2

� 1:0.
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Fig. 2. Comparison of results for the �rst test fun
tion.

The parameters used by the mi
ro-GA for this example were: size of the ex-

ternal memory = 100, size of the population memory = 50, number of iterations

= 1500, number of iterations of the mi
ro-GA (to a
hieve nominal 
onvergen
e)

= 2, number of subdivisions of the adaptive grid = 25, 
rossover rate = 0.7,



mutation rate = 0.029, per
entage of non-repla
eable memory = 0.3, population

size (of the mi
ro-GA) = 4, repla
ement 
y
le at every 50 iterations.

Our �rst test fun
tion has a lo
al Pareto front to whi
h a GA 
an be easily

attra
ted. Fig. 2 shows the true Pareto front for this problem with a 
ontinuous

line, and the results found by the NSGA II, PAES and our mi
ro-GA are shown

with points. Similar fronts were found by the three approa
hes. For this exam-

ple, both the NSGA II and PAES performed 12,000 evaluations of the �tness

fun
tion. The average running time of ea
h algorithm (over 20 runs) were the fol-

lowing: 2.601 se
onds for the NSGA II (with a standard deviation of 0.33555913),

1.106 se
onds for PAES (with a standard deviation of 0.25193672) and only 0.204

se
onds for the mi
ro-GA (with a standard deviation of 0.07764461).

4.2 Test Fun
tion 2

Our se
ond example is a two-obje
tive optimization problem proposed by S
haf-

fer [18℄ that has been used by several resear
hers [19, 1℄:

Minimize f

1

(x) =

8

>

>

<

>

>

:

�x if x � 1

�2 + x if 1 < x � 3

4� x if 3 < x � 4

�4 + x if x > 4

(4)

Minimize f

2

(x) = (x� 5)

2

(5)

and �5 � x � 10.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 50, number of iterations = 150, number

of iterations of the mi
ro-GA (to a
hieve nominal 
onvergen
e) = 2, number of

subdivisions of the adaptive grid = 25, 
rossover rate = 0.7, mutation rate =

0.056 (1/L, where L=18 bits in this 
ase), per
entage of non-repla
eable memory

= 0.3, population size (of the mi
ro-GA) = 4, repla
ement 
y
le at every 25

iterations.

This problem has a Pareto front that is dis
onne
ted. Fig. 3 shows the true

Pareto front for this problem with a 
ontinuous line (the verti
al line is obviously

not part of the true Pareto front, but it appears be
ause we used linear segments

to 
onne
t every pair of nondominated points). We used points to represent the

solutions found by the NSGA II, PAES and our mi
ro-GA.

Again, similar Pareto fronts were found by the three approa
hes. For this ex-

ample, both the NSGA II and PAES performed 1,200 evaluations of the �tness

fun
tion. The average running time of ea
h algorithm (over 20 runs) were the fol-

lowing: 0.282 se
onds for the NSGA II (with a standard deviation of 0.00014151),

0.107 se
onds for PAES (with a standard deviation of 0.13031718) and only 0.017

se
onds for the mi
ro-GA (with a standard deviation of 0.0007672).
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Fig. 3. Comparison of results for the se
ond test fun
tion.

4.3 Test Fun
tion 3

Our se
ond example is a two-obje
tive optimization problem de�ned by Deb [5℄:

Minimize f

1
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and 0 � x

1

� 1, �30 � x

2

� 30.

This problem has 60 lo
al Pareto fronts. Fig. 4 shows the true Pareto front

for this problem with a 
ontinuous line. The results obtained by the NSGA II,

PAES and our mi
ro-GA are displayed as points.

The parameters used by the mi
ro-GA for this example were: size of the ex-

ternal memory = 100, size of the population memory = 50, number of iterations

= 700, number of iterations of the mi
ro-GA (to a
hieve nominal 
onvergen
e)
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Fig. 4. Comparison of results for the third test fun
tion.

= 4, number of subdivisions of the adaptive grid = 25, 
rossover rate = 0.7,

mutation rate = 0.029, per
entage of non-repla
eable memory = 0.3, population

size (of the mi
ro-GA) = 4, repla
ement 
y
le at every 50 iterations.

On
e again, the fronts produ
ed by the three approa
hes are very similar.

For this example, both the NSGA II and PAES performed 11,200 evaluations

of the �tness fun
tion. The average running time of ea
h algorithm (over 20

runs) were the following: 2.519 se
onds for the NSGA II (with a standard de-

viation of 0.03648403), 2.497 se
onds for PAES (with a standard deviation of

1.03348519) and only 0.107 se
onds for the mi
ro-GA (with a standard deviation

of 0.00133949).

4.4 Test Fun
tion 4

Our fourth example is the so-
alled \unitation versus pairs" problem [9℄, whi
h

involves the maximization of two fun
tions over bit strings. The �rst fun
tion, f

1

is the number of pairs of adja
ent 
omplementary bits found in the string, and

the se
ond fun
tion, f

2

is the numbers of ones found in the string. The Pareto

front in this 
ase is dis
rete. We used a string length of 28, and therefore, the

true Pareto front is 
omposed of 15 points.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 15, number of iterations = 1250, number

of iterations of the mi
ro-GA (to a
hieve nominal 
onvergen
e) = 1, number

of subdivisions of the adaptive grid = 3, 
rossover rate = 0.5, mutation rate
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Fig. 5. Results of the mi
ro-GA for the fourth test fun
tion.



= 0.035, per
entage of non-repla
eable memory = 0.2, population size (of the

mi
ro-GA) = 4, repla
ement 
y
le at every 25 iterations.

Fig. 5 shows the results obtained by our mi
ro-GA for the fourth test fun
-

tion. A total of 13 (out of 15) elements of the Pareto optimal set were found on

average (only o

asionally was our approa
h able to �nd the 15 target elements).

PAES was also able to generate 13 elements of the Pareto optimal set on average,

and the NSGA II was only able to generate 8 elements on average.

For this example, both the NSGA II and PAES performed 5,000 evaluations

of the �tness fun
tion. The average running time of ea
h algorithm (over 20 runs)

were the following: 2.207 se
onds for the NSGA II, 0.134 se
onds for PAES and

only 0.042 se
onds for the mi
ro-GA.

Borges & Barbosa [2℄ reported that were able to �nd the 15 elements of the

Pareto optimal set for this problem, using a population size of 100 and 5,000

evaluations of the �tness fun
tion, although no a
tual running times of their

approa
h were reported.

4.5 Test Fun
tion 5

Our �fth example is a two-obje
tive optimization problem de�ned by Kursawe

[16℄:

Minimize f

1

(x) =

n�1

X

i=1

�

�10 exp

�

�0:2

q

x

2

i

+ x

2

i+1

��

(10)

Minimize f

2

(x) =

n

X

i=1

�

jx

i

j

0:8

+ 5 sin(x

i

)

3

�

(11)

where:

�5 � x

1

; x

2

; x

3

� 5 (12)

Fig. 6 shows the true Pareto front for this problem as points. The results

obtained by the NSGA II, PAES and our mi
ro-GA are also shown as points.

It is worth mentioning that PAES 
ould not eliminate some of the dominated

points in the runs performed.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 50, number of iterations = 3000, number

of iterations of the mi
ro-GA (to a
hieve nominal 
onvergen
e) = 2, number

of subdivisions of the adaptive grid = 25, 
rossover rate = 0.7, mutation rate

= 0.019, per
entage of non-repla
eable memory = 0.3, population size (of the

mi
ro-GA) = 4, repla
ement 
y
le at every 50 iterations.

For this example, both the NSGA II and PAES performed 2,400 evaluations

of the �tness fun
tion. The average running time of ea
h algorithm (over 20 runs)

were the following: 6.481 se
onds for the NSGA II (with a standard deviation of

0.053712), 2.195 se
onds for PAES (with a standard deviation of 0.25408319) and

only 0.704 se
onds for the mi
ro-GA (with a standard deviation of 0.00692099).
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Fig. 6. Comparison of results for the �fth test fun
tion.

5 Con
lusions and Future Work

We have introdu
ed an approa
h that uses a GA with a very small population

and a reinitialization pro
ess to generate the Pareto front of a multiobje
tive

optimization problem. The te
hnique has a exhibited a low 
omputational 
ost

when 
ompared to the NSGA II and PAES in a few test fun
tions. The approa
h

uses three forms of elitism, in
luding an external �le of nondominated ve
tors

and a re�lling pro
ess that allows us to approa
h the true Pareto front in a

su

essive manner. Also, we use an adaptive grid (similar to the one used by

PAES [14℄) that maintains diversity in an eÆ
ient way.

The approa
h still needs more validation (parti
ularly, with MOPs that have

more de
ision variables and 
onstraints), and needs to be 
ompared with other

EMOO approa
hes (under similar 
onditions) using some of the metri
s that

have been proposed in the literature (see for example [22℄). We only provided

running times produ
ed on a PC, but a more exhaustive 
omparison is obviously

la
king. However, the preliminary results presented in this paper, indi
ate the

potential of the approa
h.

Some other future work will be to re�ne part of the pro
ess, so that we 
an

eliminate some of the additional parameters that the approa
h needs. Sin
e some

of them are not very 
riti
al (e.g., the number of grid subdivisions, or the amount

of iterations to rea
h 
riti
al 
onvergen
e), we 
ould probably automati
ally

preset them to a reasonable value so that the user does not need to provide

them.



Finally, we are also interested in using this approa
h as a basis to develop a

model of in
orporation of preferen
es from the de
ision maker [4℄.
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