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Abstrat. In this paper, we propose a multiobjetive optimization ap-

proah based on a miro geneti algorithm (miro-GA) whih is a geneti

algorithm with a very small population (four individuals were used in our

experiment) and a reinitialization proess. We use three forms of elitism

and a memory to generate the initial population of the miro-GA. Our

approah is tested with several standard funtions found in the speial-

ized literature. The results obtained are very enouraging, sine they

show that this simple approah an produe an important portion of the

Pareto front at a very low omputational ost.

1 Introdution

A onsiderable number of evolutionary multiobjetive optimization tehniques

have been proposed in the past [3, 20℄. However, until reently, little emphasis

had been plaed on eÆieny issues. It is well known that the two main proesses

that onsume most of the running time of an EMOO algorithm are: the ranking

of the population (i.e., the omparisons required to determine non-dominane)

and the mehanism to keep diversity (evolutionary algorithms tend to onverge

to a single solution beause of stohasti noise; it is therefore neessary to avoid

this with an additional mehanism).

Reent researh has shown ways of improving the eÆieny of an EMOO

tehnique (see for example [14, 6℄). The main emphasis has been on using an

external �le that stores nondominated vetors found during the evolutionary

proess whih are reinserted later in the population (this an be seen as a form

of elitism in the ontext of multiobjetive optimization [10, 17, 22℄).

Following the same line of thought of this urrent researh, we deided to

develop an approah in whih we would use a GA with a very small population



size and a reinitialization proess (the so-alled miro-GA) ombined with an

external �le to store nondominated vetors previously found. Additionally, we

deided to inlude an eÆient mehanism to keep diversity (similar to the adap-

tive grid method of Knowles & Corne [14℄). Our motivation was to show that a

miro-GA arefully designed is suÆient to generate the Pareto front of a multi-

objetive optimization problem. Suh approah not only redues the amount of

omparisons required to generate the Pareto front (with respet to traditional

EMOO approahes based on Pareto ranking), but also allows us to ontrol the

amount of points that we wish to obtain from the Pareto front (suh amount is

in fat a parameter of our algorithm).

2 Related Work

The term miro-geneti algorithm (miro-GA) refers to a small-population ge-

neti algorithm with reinitialization. The idea was suggested by some theoretial

results obtained by Goldberg [8℄, aording to whih a population size of 3 was

suÆient to onverge, regardless of the hromosomi length. The proess sug-

gested by Goldberg was to start with a small randomly generated population,

then apply to it the geneti operators until reahing nominal onvergene (e.g.,

when all the individuals have their genotypes either idential or very similar),

and then to generate a new population by transferring the best individuals of

the onverged population to the new one. The remaining individuals would be

randomly generated.

The �rst to report an implementation of a miro-GA was Krishnakumar [15℄,

who used a population size of 5, a rossover rate of 1 and a mutation rate of zero.

His approah also adopted an elitist strategy that opied the best string found in

the urrent population to the next generation. Seletion was performed by hold-

ing 4 ompetitions between strings that were adjaent in the population array,

and delaring to the individual with the highest �tness as the winner. Krishnaku-

mar [15℄ ompared his miro-GA against a simple GA (with a population size

of 50, a rossover rate of 0.6 and a mutation rate of 0.001). Krishnakumar [15℄

reported faster and better results with his miro-GA on two stationary funtions

and a real-world engineering ontrol problem (a wind-shear ontroller task). Af-

ter him, several other researhers have developed appliations of miro-GAs [13,

7, 12, 21℄. However, to the best of our knowledge, the urrent paper reports the

�rst attempt to use a miro-GA for multiobjetive optimization, although some

may argue that the multi-membered versions of PAES an be seen as a form of

miro-GA

1

[14℄. However, Knowles & Corne [14℄ onluded that the addition of a

population did not, in general, improve the performane of PAES, and inreased

the omputational overhead in an important way. Our tehnique, on the other

1

We reently beame aware of the fat that Jaszkiewiz [11℄ proposed an approah in

whih a small population initialized from a large external memory and utilized it for

a short period of time. However, to the best of our knowledgem this approah has

been used only for multiobjetive ombinatorial optimization.



hand, uses a population and traditional geneti operators and, as we will show

in a further setion, it performs quite well.

3 Desription of the Approah

In this paper, we propose a miro-GA with two memories: the population

memory, whih is used as the soure of diversity of the approah, and the

external memory, whih is used to arhive members of the Pareto optimal

set. Population memory is respetively divided in two parts: a replaeable and

a non-replaeable portion (the perentages of eah an be regulated by the

user).

The way in whih our tehnique works is illustrated in Fig. 1. First, an initial

random population is generated. This population feeds the population memory,

whih is divided in two parts as indiated before. The non-replaeable portion

of the population memory will never hange during the entire run and is meant

to provide the required diversity for the algorithm. The initial population of

the miro-GA at the beginning of eah of its yles is taken (with a ertain

probability) from both portions of the population memory as to allow a greater

diversity.

During eah yle, the miro-GA undergoes onventional geneti operators:

tournament seletion, two-point rossover, uniform mutation, and elitism (re-

gardless of the amount of nondominated vetors in the population only one is

arbitrarily seleted at eah generation and opied intat to the following one). Af-

ter the miro-GA �nishes one yle (i.e., when nominal onvergene is ahieved),

we hoose two nondominated vetors

2

from the �nal population (the �rst and

last) and ompare them with the ontents of the external memory (this memory

is initially empty). If either of them (or both) remains as nondominated after

omparing against the vetors in this external memory, then they are inluded

there. All the dominated vetors are eliminated from the external memory. These

two vetors are also ompared against two elements from the replaeable por-

tion of the population memory (this is done with a loop, so that eah vetor is

only ompared against a single position of the population memory). If either of

these vetors dominates to its math in the population memory, then it replaes

it. The idea is that, over time, the replaeable part of the population memory

will tend to have more nondominated vetors. Some of them will be used in the

initial population of the miro-GA to start new evolutionary yles.

Our approah uses three types of elitism. The �rst is based on the notion that

if we store the nondominated vetors produed from eah yle of the miro-GA,

we will not lose any valuable information obtained from the evolutionary proess.

The seond is based on the idea that if we replae the population memory by

the nominal solutions (i.e., the best solutions found when nominal onvergene

is reahed), we will gradually onverge, sine rossover and mutation will have

a higher probability of reahing the true Pareto front of the problem over time.

2

This is assuming that we have two or more nondominated vetors. If there is only

one, then this vetor is the only one seleted.
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Fig. 1. Diagram that illustrates the way in whih our miro-GA works.



This notion was hinted by Goldberg [8℄. Nominal onvergene, in our ase, is

de�ned in terms of a ertain (low) number of generations (typially, two to �ve

in our ase). However, similarities among the strings (either at the phenotypial

or genotypial level) ould also been used as a riterion for onvergene. The

third type of elitism is applied at ertain intervals (de�ned by a parameter alled

\replaement yle"). What we do is to take a ertain amount of points from

all the regions of the Pareto front generated so far and we use them to �ll in

the replaeable memory. Depending on the size of the replaeable memory, we

hoose as many points from the Pareto front as neessary to guarantee a uniform

distribution. This proess intends to use the best solutions generated so far as

the starting point for the miro-GA, so that we an improve them (either by

getting loser to the true Pareto front or by getting a better distribution). This

also avoids that the ontents of the replaeable memory beomes homogeneous.

To keep diversity in the Pareto front, we use an approah similar to the adap-

tive grid proposed by Knowles & Corne [14℄. The idea is that one the arhive

that stores nondominated solutions has reahed its limit, we divide the searh

spae that this arhive overs, assigning a set of oordinates to eah solution.

Then, eah newly generated nondominated solution will be aepted only if the

geographial loation to where the individual belongs is less populated than the

most rowded loation. Alternatively, the new nondominated solution ould also

be aepted if the individual belongs to a loation outside the previously spe�-

ied boundaries. In other words, the less rowded regions are given preferene

so that the spread of the individuals on the Pareto front an be more uniform.

The pseudo-ode of the algorithm is the following:

funtion Miro-GA

begin

Generate starting population P of size N

and store its ontents in the population memory M

=* Both portions of M will be �lled with random solutions *=

i=0

while i < Max do

begin

Get the initial population for the miro-GA (P

i

) from M

repeat

begin

Apply binary tournament seletion

based on nondominane

Apply two-point rossover and uniform mutation

to the seleted individuals

Apply elitism (retain only one nondominated vetor)

Produe the next generation

end

until nominal onvergene is reahed

Copy two nondominated vetors from P

i

to the external memory E



if E is full when trying to insert ind

b

then adaptive grid(ind

b

)

Copy two nondominated vetors from P

i

to M

if i mod replaement yle

then apply seond form of elitism

i=i+1

end while

end funtion

The adaptive grid requires two parameters: the expeted size of the Pareto

front and the amount of positions in whih we will divide the solution spae for

eah objetive. The �rst parameter is de�ned by the size of the external memory

and it is provided by the user. The seond parameter (the amount of positions in

whih we will divide the solution spae) has to be provided by the user as well,

although we have found that our approah is not very sensitive to it (e.g., in most

of our experiments a value of 15 or 25 provided very similar results). The proess

of determining the loation of a ertain individual has a low omputational ost

(it is based on the values of its objetives as indiated before). However, when

the individual is out of range, we have to reloate all the positions. Nevertheless,

this last situation does not our too often, and we alloate a ertain amount of

extra room in the �rst and last loations of the grid to minimize the ourrene

of this situation.

When the external memory is full, then we use the adaptive grid to deide

what nondominated vetors will be eliminated. The adaptive grid will try to

balane the amount of individuals representing eah of the elements of the Pareto

set, so that we an get a uniform spread of points along the Pareto front.

4 Comparison of Results

Several test funtions were taken from the speialized literature to ompare our

approah. In all ases, we generated the true Pareto fronts of the problems using

exhaustive enumeration (with a ertain granularity) so that we ould make a

graphial omparison of the quality of the solutions produed by our miro-GA.

Sine the main aim of this approah has been to inrease eÆieny, we ad-

ditionally deided to ompare running times of our miro-GA against those of

the NSGA II [6℄ and PAES [14℄. In the following examples, the NSGA was run

using a population size of 100, a rossover rate of 0.8 (using SBX), tournament

seletion, and a mutation rate of 1/vars, where vars = number of deision vari-

ables of the problem. In the following examples, PAES was run using a depth of

5, a size of the arhive of 100, and a mutation rate of 1/bits, where bits refers

to the length of the hromosomi string that enodes the deision variables. The

amount of �tness funtion evaluations was set suh that the NSGA II, PAES

and the miro-GA ould reasonably over the true Pareto front of eah problem.



4.1 Test Funtion 1

Our �rst example is a two-objetive optimization problem de�ned by Deb [5℄:

Minimize f
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and 0:1 � x

1

� 1:0, 0:1 � x

2

� 1:0.
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Fig. 2. Comparison of results for the �rst test funtion.

The parameters used by the miro-GA for this example were: size of the ex-

ternal memory = 100, size of the population memory = 50, number of iterations

= 1500, number of iterations of the miro-GA (to ahieve nominal onvergene)

= 2, number of subdivisions of the adaptive grid = 25, rossover rate = 0.7,



mutation rate = 0.029, perentage of non-replaeable memory = 0.3, population

size (of the miro-GA) = 4, replaement yle at every 50 iterations.

Our �rst test funtion has a loal Pareto front to whih a GA an be easily

attrated. Fig. 2 shows the true Pareto front for this problem with a ontinuous

line, and the results found by the NSGA II, PAES and our miro-GA are shown

with points. Similar fronts were found by the three approahes. For this exam-

ple, both the NSGA II and PAES performed 12,000 evaluations of the �tness

funtion. The average running time of eah algorithm (over 20 runs) were the fol-

lowing: 2.601 seonds for the NSGA II (with a standard deviation of 0.33555913),

1.106 seonds for PAES (with a standard deviation of 0.25193672) and only 0.204

seonds for the miro-GA (with a standard deviation of 0.07764461).

4.2 Test Funtion 2

Our seond example is a two-objetive optimization problem proposed by Shaf-

fer [18℄ that has been used by several researhers [19, 1℄:

Minimize f

1

(x) =

8

>

>

<

>

>

:

�x if x � 1

�2 + x if 1 < x � 3

4� x if 3 < x � 4

�4 + x if x > 4

(4)

Minimize f

2

(x) = (x� 5)

2

(5)

and �5 � x � 10.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 50, number of iterations = 150, number

of iterations of the miro-GA (to ahieve nominal onvergene) = 2, number of

subdivisions of the adaptive grid = 25, rossover rate = 0.7, mutation rate =

0.056 (1/L, where L=18 bits in this ase), perentage of non-replaeable memory

= 0.3, population size (of the miro-GA) = 4, replaement yle at every 25

iterations.

This problem has a Pareto front that is disonneted. Fig. 3 shows the true

Pareto front for this problem with a ontinuous line (the vertial line is obviously

not part of the true Pareto front, but it appears beause we used linear segments

to onnet every pair of nondominated points). We used points to represent the

solutions found by the NSGA II, PAES and our miro-GA.

Again, similar Pareto fronts were found by the three approahes. For this ex-

ample, both the NSGA II and PAES performed 1,200 evaluations of the �tness

funtion. The average running time of eah algorithm (over 20 runs) were the fol-

lowing: 0.282 seonds for the NSGA II (with a standard deviation of 0.00014151),

0.107 seonds for PAES (with a standard deviation of 0.13031718) and only 0.017

seonds for the miro-GA (with a standard deviation of 0.0007672).
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Fig. 3. Comparison of results for the seond test funtion.

4.3 Test Funtion 3

Our seond example is a two-objetive optimization problem de�ned by Deb [5℄:

Minimize f
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and 0 � x

1

� 1, �30 � x

2

� 30.

This problem has 60 loal Pareto fronts. Fig. 4 shows the true Pareto front

for this problem with a ontinuous line. The results obtained by the NSGA II,

PAES and our miro-GA are displayed as points.

The parameters used by the miro-GA for this example were: size of the ex-

ternal memory = 100, size of the population memory = 50, number of iterations

= 700, number of iterations of the miro-GA (to ahieve nominal onvergene)
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Fig. 4. Comparison of results for the third test funtion.

= 4, number of subdivisions of the adaptive grid = 25, rossover rate = 0.7,

mutation rate = 0.029, perentage of non-replaeable memory = 0.3, population

size (of the miro-GA) = 4, replaement yle at every 50 iterations.

One again, the fronts produed by the three approahes are very similar.

For this example, both the NSGA II and PAES performed 11,200 evaluations

of the �tness funtion. The average running time of eah algorithm (over 20

runs) were the following: 2.519 seonds for the NSGA II (with a standard de-

viation of 0.03648403), 2.497 seonds for PAES (with a standard deviation of

1.03348519) and only 0.107 seonds for the miro-GA (with a standard deviation

of 0.00133949).

4.4 Test Funtion 4

Our fourth example is the so-alled \unitation versus pairs" problem [9℄, whih

involves the maximization of two funtions over bit strings. The �rst funtion, f

1

is the number of pairs of adjaent omplementary bits found in the string, and

the seond funtion, f

2

is the numbers of ones found in the string. The Pareto

front in this ase is disrete. We used a string length of 28, and therefore, the

true Pareto front is omposed of 15 points.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 15, number of iterations = 1250, number

of iterations of the miro-GA (to ahieve nominal onvergene) = 1, number

of subdivisions of the adaptive grid = 3, rossover rate = 0.5, mutation rate
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Fig. 5. Results of the miro-GA for the fourth test funtion.



= 0.035, perentage of non-replaeable memory = 0.2, population size (of the

miro-GA) = 4, replaement yle at every 25 iterations.

Fig. 5 shows the results obtained by our miro-GA for the fourth test fun-

tion. A total of 13 (out of 15) elements of the Pareto optimal set were found on

average (only oasionally was our approah able to �nd the 15 target elements).

PAES was also able to generate 13 elements of the Pareto optimal set on average,

and the NSGA II was only able to generate 8 elements on average.

For this example, both the NSGA II and PAES performed 5,000 evaluations

of the �tness funtion. The average running time of eah algorithm (over 20 runs)

were the following: 2.207 seonds for the NSGA II, 0.134 seonds for PAES and

only 0.042 seonds for the miro-GA.

Borges & Barbosa [2℄ reported that were able to �nd the 15 elements of the

Pareto optimal set for this problem, using a population size of 100 and 5,000

evaluations of the �tness funtion, although no atual running times of their

approah were reported.

4.5 Test Funtion 5

Our �fth example is a two-objetive optimization problem de�ned by Kursawe

[16℄:

Minimize f

1

(x) =

n�1

X

i=1

�

�10 exp

�

�0:2

q

x

2

i

+ x

2

i+1

��

(10)

Minimize f

2

(x) =

n

X

i=1

�

jx

i

j

0:8

+ 5 sin(x

i

)

3

�

(11)

where:

�5 � x

1

; x

2

; x

3

� 5 (12)

Fig. 6 shows the true Pareto front for this problem as points. The results

obtained by the NSGA II, PAES and our miro-GA are also shown as points.

It is worth mentioning that PAES ould not eliminate some of the dominated

points in the runs performed.

The parameters used for this example were: size of the external memory =

100, size of the population memory = 50, number of iterations = 3000, number

of iterations of the miro-GA (to ahieve nominal onvergene) = 2, number

of subdivisions of the adaptive grid = 25, rossover rate = 0.7, mutation rate

= 0.019, perentage of non-replaeable memory = 0.3, population size (of the

miro-GA) = 4, replaement yle at every 50 iterations.

For this example, both the NSGA II and PAES performed 2,400 evaluations

of the �tness funtion. The average running time of eah algorithm (over 20 runs)

were the following: 6.481 seonds for the NSGA II (with a standard deviation of

0.053712), 2.195 seonds for PAES (with a standard deviation of 0.25408319) and

only 0.704 seonds for the miro-GA (with a standard deviation of 0.00692099).
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Fig. 6. Comparison of results for the �fth test funtion.

5 Conlusions and Future Work

We have introdued an approah that uses a GA with a very small population

and a reinitialization proess to generate the Pareto front of a multiobjetive

optimization problem. The tehnique has a exhibited a low omputational ost

when ompared to the NSGA II and PAES in a few test funtions. The approah

uses three forms of elitism, inluding an external �le of nondominated vetors

and a re�lling proess that allows us to approah the true Pareto front in a

suessive manner. Also, we use an adaptive grid (similar to the one used by

PAES [14℄) that maintains diversity in an eÆient way.

The approah still needs more validation (partiularly, with MOPs that have

more deision variables and onstraints), and needs to be ompared with other

EMOO approahes (under similar onditions) using some of the metris that

have been proposed in the literature (see for example [22℄). We only provided

running times produed on a PC, but a more exhaustive omparison is obviously

laking. However, the preliminary results presented in this paper, indiate the

potential of the approah.

Some other future work will be to re�ne part of the proess, so that we an

eliminate some of the additional parameters that the approah needs. Sine some

of them are not very ritial (e.g., the number of grid subdivisions, or the amount

of iterations to reah ritial onvergene), we ould probably automatially

preset them to a reasonable value so that the user does not need to provide

them.



Finally, we are also interested in using this approah as a basis to develop a

model of inorporation of preferenes from the deision maker [4℄.
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