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Abstract

In this paper, we propose a micro genetic al-
gorithm with three forms of elitism for mul-
tiobjective optimization. We show how this
relatively simple algorithm coupled with an
external file and a diversity approach based
on geographical distribution can generate ef-
ficiently the Pareto fronts of several difficult
test functions (both constrained and uncon-
strained). A metric based on the average dis-
tance to the Pareto optimal set is used to
compare our results against two evolution-
ary multiobjective optimization techniques
recently proposed in the literature.

1 INTRODUCTION

Despite the considerable volume of research on evo-
lutionary multiobjective optimization (see for exam-
ple [4, 1, 16]), until recently, little emphasis had been
placed on developing efficient techniques. The usual
approach has been to use a ranking procedure to clas-
sify a population of individuals based on their Pareto
dominance. This ranking procedure normally con-
sumes most of the running time of an evolutionary
multiobjective optimization technique'. Pareto rank-
ing is O(kM?), where k is the number of objective
functions and M is the size of the population. Addi-
tionally, an extra mechanism is required to preserve
diversity (some form of fitness sharing [3] is normally
adopted). This generally implies the use of another
process that is O(M?).

Some authors have recently addressed efficiency issues

!This is obviously considering the academic test func-
tions that most researchers have used so far. In real-
world problems, most of the computational time is nor-
mally spent evaluating the fitness functions of the problem.

Gregorio Toscano Pulido
Maestria en Inteligencia Artificial
LANTA-Universidad Veracruzana

Sebastian Camacho No. 5
Xalapa, Veracruz, México 91090
gtoscano@mia.uv.mx

in the context of evolutionary multiobjective optimiza-
tion (e.g., [10, 2]). Knowing the sources of inefficiency
of traditional evolutionary multiobjective optimization
techniques, several researchers have focused their re-
cent efforts on reducing the checkings for nondomi-
nance and in the development of efficient approaches
to keep diversity. Regarding the first issue, the main
emphasis has been on using an external file that stores
nondominated vectors found during the evolutionary
process. These vectors are put back into the popula-
tion at later generations (this can be seen as a form of
elitism in the context of multiobjective optimization
[6, 18]). Regarding the second issue, the main em-
phasis has been on using clustering techniques [2] or
approaches based on geographical positioning of indi-
viduals in an adaptive grid [10].

Also, some researchers have suggested the use of a dis-
tributed GA in which Pareto dominance is applied only
to neighbors within a certain region [13]. Such sort of
approach can handle the two problems previously men-
tioned simultaneously. The approach is efficient be-
cause Pareto dominance is applied in parallel to small
groups of individuals. Diversity does not require an
extra mechanism, since it naturally emerges from the
distributed population. However, to take advantage of
these features of the algorithm, a parallel architecture
is necessary.

Our approach was to use a GA with a very small popu-
lation size and a reinitialization process (a micro-GA)
to solve multiobjective optimization problems of differ-
ent degrees of complexity. To validate the performance
of our approach, we used a metric previously defined
in the literature to compare our results against two
techniques that are representative of the state-of-the-
art in evolutionary multiobjective optimization algo-
rithms: the Nondominated Sorting Genetic Algorithm
IT (NSGA II) [2] and the Pareto Archived Evolution
Strategy (PAES) [10].



2 PREVIOUS WORK

The term micro-genetic algorithm (micro-GA) refers
to a small-population genetic algorithm with reinitial-
ization. The approach was derived from some theo-
retical results obtained by Goldberg [5], according to
which a population size of three was sufficient to con-
verge, regardless of the chromosomic length. The pro-
cess suggested by Goldberg was to start with a small
randomly generated population, then apply to it the
genetic operators until reaching nominal convergence
(e.g., when all the individuals have their genotypes ei-
ther identical or very similar), and then to generate
a new population by transferring the best individu-
als of the converged population to the new one. The
remaining individuals would be randomly generated.

The first to report an implementation of a micro-GA
was Krishnakumar [11], who used a population size
of five, a crossover rate of one and a mutation rate
of zero. His approach also adopted an elitist strat-
egy that copied the best string found in the current
population to the next generation. Selection was per-
formed by holding four competitions between strings
that were adjacent in the population array, and declar-
ing to the individual with the highest fitness as the
winner. Krishnakumar [11] compared his micro-GA
against a simple GA (with a population size of 50, a
crossover rate of 0.6 and a mutation rate of 0.001). He
reported faster and better results with his micro-GA
on two stationary functions and a real-world engineer-
ing control problem (a wind-shear controller task). Af-
ter him, several other researchers have developed ap-
plications of micro-GAs (e.g., [8, 17]). However, the
work reported in this paper represents, to the best of
our knowledge, the first attempt to use a micro-GA
for multiobjective optimization.

Regarding similar work, we are only aware of an ap-
proach developed by Jaszkiewicz [7] in which a small
population initialized from a large external memory is
used for a short period of time. However, to the best
of our knowledge, this approach has been used only
for multiobjective combinatorial optimization. Some
could also argue that the multi-membered versions of
PAES can be seen as a form of micro-GA. However, the
authors of PAES concluded that the addition of a pop-
ulation did not, in general, improve the performance of
their approach, and increased the computational over-
head in an important way [10].

3 DESCRIPTION OF OUR
APPROACH

The way in which our technique works is illustrated
in Figure 1. First, a random population is generated.
This random population feeds the population mem-
ory, which is divided in two parts: a replaceable and a
non-replaceable portion. The non-replaceable portion
of the population memory will never change during
the entire run and is meant to provide the required di-
versity for the algorithm. In contrast, the replaceable
portion will experience changes after each cycle of the
micro-GA.

The population of the micro-GA at the beginning of
each of its cycles is taken (with a certain probability)
from both portions of the population memory so that
we can have a mixture of randomly generated individ-
uals (non-replaceable portion) and evolved individuals
(replaceable portion).

During each cycle, the micro-GA undergoes conven-
tional genetic operators (binary representation is used
in our implementation): tournament selection, two-
point crossover, uniform mutation, and elitism. Af-
ter the micro-GA finishes one cycle, we choose two
nondominated vectors? from the final population and
compare them with the contents of the external mem-
ory (this memory is initially empty). If either of them
(or both) remains as nondominated after comparing it
against the vectors in this external memory, then they
are included there (i.e., in the external memory). This
is our historical archive of nondominated vectors. All
dominated vectors contained in the external memory
are eliminated.

The same two vectors previously mentioned are also
compared against two elements from the replaceable
portion of the population memory. If either of these
vectors dominates to its match in the population mem-
ory, then it replaces it. Otherwise, the vector is dis-
carded. Over time, the replaceable part of the popu-
lation memory will tend to have more nondominated
vectors, some of which will be used in some of the ini-
tial populations of the micro-GA.

Our approach uses three types of elitism. The first
is based on the notion that if we store the nondomi-
nated vectors produced from each cycle of the micro-
GA, we will not lose any valuable information obtained
from the evolutionary process. The second is based on
the idea that if we replace the population memory by
the nominal solutions (i.e., the best solutions found

2This is assuming that we have two or more nondomi-
nated vectors. If there is only one, then this vector is the
only one selected.
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Figure 1: Diagram that illustrates the way in which our micro-GA works.

when nominal convergence is reached), we will gradu-
ally converge, since crossover and mutation will have
a higher probability of reaching the true Pareto front
of the problem over time. Nominal convergence, in
our case, is defined in terms of a certain (low) num-
ber of generations (two to five in our case). The third
type of elitism is applied at certain intervals (defined
by a parameter called “replacement cycle”). We take
a certain number of points from all the regions of the
Pareto front generated so far and we use them to fill
the replaceable memory. Depending on the size of the
replaceable memory, we choose as many points from
the Pareto front as necessary to guarantee a uniform
distribution. This process allows us to use the best
solutions generated so far as the starting point for the
micro-GA, so that we can improve them (either by
getting closer to the true Pareto front or by getting a
better distribution).

To keep diversity in the Pareto front, we use an
approach similar to the adaptive grid proposed by
Knowles & Corne [10]. Once the archive that stores
nondominated solutions has reached its limit, we di-
vide the objective search space that this archive covers,
assigning a set of coordinates to each solution. Then,
each newly generated nondominated solution will be

accepted only if the geographical location to where
the individual belongs has fewer individuals than the
most crowded location. Alternatively, the new non-
dominated solution could also be accepted if the in-
dividual belongs to a location outside the previously
specified boundaries.

The adaptive grid requires two parameters: the ex-
pected size of the Pareto front and the number of po-
sitions in which we will divide the solution space for
each objective. The first parameter is defined by the
size of the external memory. We have found that our
approach is not very sensitive to the second parameter
(e.g., in our experiments a value of 15 or 25 provided
very similar results). The process of determining the
location of a certain individual has a low computa-
tional cost (it is based on the values of its objectives
as indicated before). However, when the individual
is out of range, we have to relocate all the positions.
Nevertheless, this last situation does not occur too of-
ten, and we allocate a certain amount of extra room
in the first and last locations of the grid to minimize
its occurrence.



4 COMPARISON OF RESULTS

Several test functions were taken from the specialized
literature to compare our approach. In all cases, we
generated the true Pareto fronts of the problems using
exhaustive enumeration (with a certain granularity)
so that we could make a graphical comparison of the
quality of the solutions produced by our micro-GA.
Additionally, we decided to use one of the metrics de-
fined in objective space by Zitzler et al. [18]:

My=— 3 min {Ja-d|5deY} ()

Ry
d'ey’

where: Y',Y C Y are the sets of objective vectors
that correspond to a set of pairwise nondominating
decision vectors X', X C X, respectively, and X cor-
responds to the decision variables of the problem. It
should be obvious that M{ gives the average distance
to the Pareto optimal set. Therefore, we should aim
to minimize this value (see [18] for further details).

Since the main aim of this approach has been to in-
crease efficiency, we additionally decided to compare
running times of our micro-GA against two very fast
algorithms: the NSGA II [2] and PAES? [10].

In the following examples, the NSGA II was run using
a population size of 100, a crossover rate of 0.8, tour-
nament selection, and a mutation rate of 1/vars, where
vars = number of decision variables of the problem. In
the following examples, PAES was run using a depth of
five, a size of the archive of 100, and a mutation rate of
1/L, where L refers to the length of the chromosomic
string that encodes the decision variables.

For constrained functions, we used a very simple ap-
proach. Whenever two individuals were compared, we
checked their constraints. If both were feasible, non-
dominance was directly applied. If one was feasible
and the other was infeasible, the feasible would dom-
inate. If both were infeasible, then the one with the
lowest amount of constraint violation would dominate
the other. This same approach was used in PAES. The
NSGA II has its own constraint-handling mechanism,
so we did not have to implement one for it.

To allow a fair comparison of running times, all the
experiments were performed on a PC with a Pentium

3Readers interested in reproducing these experi-
ments may download the source code of the NSGA
IT and PAES (original versions from their correspond-
ing authors) from the EMOO repository located at

http://www.lania.mx/~ccoello/EM00/EM00software.html.

The code of the micro-GA is available from the authors
upon request.

ITT processor running at 650 MHz, 128 Mb of RAM
and a hard drive of 15 Gbytes. Our implementation
was compiled using GNU C running under Linux Red
Hat release 6.2.

Several test functions were used to validate our ap-
proach, but due to space limitations, only the results
corresponding to the four test functions shown in Ta-
ble 1 were included in this paper. In all our exper-
iments, our micro-GA used a crossover rate of 0.7,
an external memory of 100 individuals, a number of
iterations to achieve nominal convergence of two, a
population memory of 50 individuals, a percentage of
non-replaceable memory of 0.3, a population size (for
the micro-GA itself) of four individuals, and 25 sub-
divisions of the adaptive grid. The other parameters
used are shown in Table 2. Note that the mutation
rate was always 1/L (L = length of the chromosomic
string).

Figures 2, 3, 4, and 5, show the results produced by
the NSGA II, PAES and our micro-GA in the four
test functions adopted. The true Pareto fronts of each
problem are also shown in each figure.

Results are summarized in Table 3. In all the uncon-
strained test functions used, the micro-GA obtained
the lowest CPU time and the lowest value of the met-
ric Mf. For the constrained test functions (such as
functions three and four), the NSGA II obtained the
lowest value of the metric, and the micro-GA placed
second. However, note that for the third test function,
the micro-GA only took a third of the running time
than the NSGA II and it covered most of the Pareto
front of the problem unlike the other two algorithms.

5 ANALYSIS OF RESULTS

There are a few things that we can say about the
observed behavior of the three algorithms compared.
The NSGA 1II is a very good algorithm that provides
elegant solutions and a good performance (in terms
of CPU time). However, we have found that in some
test functions the NSGA II is not able to cover prop-
erly the whole Pareto front. We believe that its ex-
ploratory capabilities could be improved, and that its
main strength is its extraordinary capability to exploit
a promising region of the search space, once it finds it.
This last point is in fact the main weakness of our
micro-GA in its current form. However, our micro-
GA has compared relatively well in terms of the met-
ric adopted and it obtained the lowest computational
costs in all the test functions used. In fact, for the case
of the unconstrained test functions used, the micro-GA
exhibited the best overall performance. That is also an



Table 1: Test Functions used to validate our micro-GA

TEST FUNCTION OBJECTIVES SOURCE
-z ifz<1
242 ifl<xz<3
14—z if3<x<4
—4+zx ifz>4
Min fa(z) = (z —5)?
T5< <10
2 Min f;(7) = Y0 (—mexp (—0.2\/x3 +x§+l)) [12]
Min fo(%) = Y1, (|zi|®® + 5sin(z;)?)
—5 < ®1,22,73 <5

3 Max fi(z,y) = —2° +y [9]
Max fo(z,y) =tz +y+1
lr+y-— 13 <0

g:c +y— % <0
52 +y—30<0
4 Max fi(z,y) = (z—2)?+ (y —1)? +2 [15]
Max fa(2,y) = 9z — (y — 1)®

2?2 +y? —225<0
z—3y+10<0

1 Min fi(z) = [14]

Table 2: Some of the parameters used by our micro-GA for each of four test functions (TF) used to validate our
approach (the other parameters were kept constant in all our experiments)

PARAMETER TF1 | TF2 | TF3 TF4
number of iterations 150 | 3000 | 2500 1500
mutation rate 0.056 | 0.019 | 0.0217 | 0.0192
replacement cycle (iterations) | 25 50 50 100
0 . M o . \“\o\ . o . M

-1 05 0 05 1 -1 05 0 05 1 15 -1 05 0 05 1
i L L

Figure 2: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the first
test function



Table 3: Comparison of results. Results are reported over 20 runs

TEST FUNCTION 1
Perf. measure NSGA II PAES micro-GA
average M7 0.00161422 0.0675201338 | 0.001530162
variance of M} 0.0000000200 0.0169825683 | 0.0000005886
average running time 0.282s 0.107s 0.017s
fitness function evals. 1,200 1,200 1,200
TEST FUNCTION 2
average M7 0.13777005 0.42445655 0.13460185
variance of M7 0.0000288497 0.0645582672 | 0.0000479001
average running time 6.481s 2.195s 0.704s
fitness function evals. 24,000 24,000 24,000
TEST FUNCTION 3
average M{ 0.04684924 0.399809545 0.26210439
variance of M{ 0.0064993289 0.2463272535 | 0.0622687130
average running time 6.4857s 68.937s 2.6896s
fitness function evals. 20,000 20,000 20,000
TEST FUNCTION 4
average My 0.2951232 5.6864776 0.4046362
variance of M7 0.0015191459 384.12725166 | 0.0214295578
average running time 4.038s 56.6706s 3.4679s
fitness function evals. 12,000 12,000 12,000
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Figure 3: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the second

test function
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indicative that our approach to incorporate constraints
may not be the most appropriate for the micro-GA
and we are studying other techniques. Finally, PAES
has difficulty with disconnected Pareto fronts, since
in those cases it exhibited its worst behavior. Also,
the approach used to handle constraints with PAES
(the same adopted for the micro-GA) may not be the
most appropriate and it probably had some impact on
its performance. Nevertheless, a more comprehensive
study is still necessary (using more test functions and
other metrics) to derive more general conclusions.

6 THE PARAMETERS OF OUR
APPROACH

Since our micro-GA uses several parameters that are
not typical of evolutionary multiobjective optimization
approaches, we performed several experiments to try
to determine a set of values that can be used by default
(i.e., when nothing about the problem is known).

The size of the external memory is a parameter that
should be easy to setup, since it corresponds to the
number of nondominated vectors that the user wishes
to find.

Regarding the size of the population memory, we rec-
ommend to set it to 50% of the size of the external
memory. The reason is that if a larger percentage is
used, the number of individuals to undergo evolution
becomes too large. On the other hand, if the percent-
age is lower, we can easily lose diversity.

For the number of iterations of the micro-GA, we found
that a value between two and five seems to work well.
It is important to be aware of the fact that a larger
value for this parameter implies a greater CPU cost for
the algorithm. However, a larger value provides Pareto
fronts with a better spread. Therefore, the setup of
this parameter is really a trade-off between efficiency
and quality of the solutions found.

Regarding the number of subdivisions of the adaptive
grid, the recommended range is a value between 5 and
100. As a default value, we suggest 25, which is the
value that provided the best overall performance in
our experiments. Larger values for this parameter will
provide a better spread of the Pareto front, but will
sacrifice efficiency and memory requirements.

For the percentage of non-replaceable memory, we sug-
gest to use 0.3, since this value ensures that for each
pair of individuals evolved, one will be randomly se-
lected (i.e., this promotes diversity).

Finally, for the replacement cycle, we suggest to use a

value between 25 and n (where n is the total number
of iterations). We have used values between 25 and
200 for this parameter. However, this is a parameter
that requires special attention and we intend to study
its behavior in more detail to try to derive more gen-
eral values within a narrower range. This value is also
critical for our algorithm, because if it is too small,
the algorithm may converge to a local Pareto front. If
it is too large, the replacement of the population at
each cycle may not be enough to guarantee the nec-
essary diversity. So far, the value proposed has been
empirically set up for each particular problem.

7 CONCLUSIONS AND FUTURE
WORK

We have proposed the use of a GA with a very small
population size (only four individuals) and a reini-
tialization process to solve multiobjective optimization
problems. Our approach has been compared against
the NSGA IT and PAES in several test functions. In
the unconstrained test functions used, our approach
has been able to converge faster (in terms of CPU
time) to the true Pareto front than the two other
algorithms analyzed. Also, it has performed better
than them in terms of a metric previously proposed
in the specialized literature. In the constrained func-
tions, however, its performance has not been as good
as that of the NSGA II, although it has been better
than PAES. Also, in some cases, it produced a bet-
ter distribution along the Pareto front than any of the
other two algorithms analyzed.

Our initial future work will be to analyze other ap-
proaches to handle constraints in our micro-GA and
to study the capabilities of our algorithm to exploit a
certain promising region of the search space (the main
advantage of the NSGA II over our approach). We
will also perform a careful sensitivity study of the pa-
rameters of the algorithm so that we can provide more
general guidelines to set them up, and we also aim to
eliminate some of the parameters currently used.
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