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México, D.F. 07300, MEXICOoello�s.investav.mx
“We will say that members of a collectivity enjoy maximum ophelimity in a certain position
when it is impossible to find a way of moving from that positionvery slightly in such a
manner that the ophelimity enjoyed by each of the individuals in the collectivity increases
or decreases. That is to say, any small displacement in departing from that position
necessarily has the effect of increasing the ophelimity which certain individuals enjoy,
and decreasing that which others enjoy, of being agreeable to some and disagreeable to
others”

—Vilfredo Pareto,Manual of Political Economy, 1896

Abstract In this chapter, we will review some of the most representative research in the field
of evolutionary multiobjective optimization. We will discuss the historical roots
of multiobjective optimization, the motivation to use evolutionary algorithms,
and the most popular techniques currently in use. Then, we will discuss some of
the research currently under way, including our own. At the end, we will provide
what we consider to be some of the most promising paths of future research.
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1. INTRODUCTION
Most optimization problems naturally have several objectives to be achieved

(normally conflicting with each other), but in order to simplify their solution,
they are treated as if they had only one (the remaining objectives are normally
handled as constraints). These problems with several objectives, are called
“multiobjective” or “vector” optimization problems, and were originally studied
in the context of economics. However, scientists and engineers soon realized
that such problems naturally arise in all areas of knowledge.

Over the years, the work of a considerable amount of operational researchers
has produced an important number of techniques to deal with multiobjective op-
timization problems (Miettinen, 1998). However, it was until relatively recently
that researchers realized of the potential of evolutionaryalgorithms (EAs) in
this area.

This chapter will review the most important research in the area now called
Evolutionary Multi-Objective Optimization, or EMOO for short. The impor-
tance of this field is reflected by a significant increment (mainly during the last
five years) of technical papers in international conferences and peer-reviewed
journals, special sessions in international conferences and interest groups in the
Internet1.

The organization of this chapter is the following: first, we will provide
some basic concepts used in multiobjective optimization. Then, we will briefly
discuss the historical roots of this discipline, and the motivation for using evolu-
tionary algorithms. After that, we will do a critical reviewof the most popular
EMOO techniques currently available, including some of their applications.
Finally, we will discuss some of the research currently under way, including
our own. We will finish this chapter with a brief discussion ofwhat we consider
to be some of the most promising paths of future research.

2. DEFINITIONS
We are interested in solving multiobjective optimization problems (MOPs)

of the form:

minimize [f1(~x); f2(~x); : : : ; fk(~x)℄ (7.1)

subject to them inequality constraints:gi(~x) � 0 i = 1; 2; : : : ;m (7.2)

and thep equality constraints:

1The author maintains an EMOO repository which currently includes over 650 bibliographical entries at:http://www.lania.mx/~oello/EMOO/with a mirror athttp://www.jeo.org/emo/
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wherek is the number of objective functionsfi : Rn ! R. We call~x =[x1; x2; : : : ; xn℄T the vector of decision variables. We wish to determine from
among the setF of all numbers which satisfy (7.2) and (7.3) the particular setx�1; x�2; : : : ; x�n which yields the optimum values of all the objective functions.

2.1 PARETO OPTIMUM
It is rarely the case that there is a single point that simultaneously optimizes

all the objective functions. Therefore, we normally look for “trade-offs”, rather
than single solutions when dealing with multiobjective optimization problems.
The notion of “optimum” is therefore, different. The most commonly adopted
notion of optimality is that originally proposed by FrancisYsidro Edgeworth
(1881) and later generalized by Vilfredo Pareto (1896). Although some authors
call Edgeworth-Pareto optimumto this notion (see for example Stadler (1988)),
we will use the most commonly accepted term:Pareto optimum.

We say that a vector of decision variables~x� 2 F is Pareto optimalif there
does not exist another~x 2 F such thatfi(~x) � fi(~x�) for all i = 1; : : : ; k andfj(~x) < fj(~x�) for at least onej.

In words, this definition says that~x� is Pareto optimal if there exists no fea-
sible vector of decision variables~x 2 F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Unfor-
tunately, this concept almost always gives not a single solution, but rather a
set of solutions called thePareto optimal set. The vectors~x� correspoding to
the solutions included in the Pareto optimal set are callednondominated. The
plot of the objective functions whose nondominated vectorsare in the Pareto
optimal set is called thePareto front.

3. HISTORICAL ROOTS
John von Neumann and Oskar Morgenstern (1944) were the first to recognize

the existence of optimization problems in economics that were “a peculiar
and disconcerting mixture of several conflicting problems”. However, no real
contribution to the solution of such problems was made untilthe 1950s.

Harold W. Kuhn and Albert W. Tucker (1951) introduced a vector-valued
objective function in mathematical programming—avector maximum prob-
lem, and derived the optimality conditions for efficient solutions. The so-called
“proper efficiency” in the context of multiobjective optimization was also for-
mulated in this seminal paper that many consider as the first serious attempt to
derive a theory in this area. This same direction was later followed by Arrow
et al. (1953) who used the term “admissible” instead of “efficient” points.
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However, multiobjective optimization theory remained relatively undevel-
oped during the 1950s, and the subject was scarcely covered by only a few
authors (see for example (Koopman, 1953) and (Karlin, 1959)).

The applicationof multiobjective optimization to domainsoutside economics
began with the work of Tjalling Koopmans (1951) in production theory and with
the work of Marglin (1967) in water resources planning. The first application
of multiobjective optimization in engineering was in the early 1960s (Zadeh,
1963), but its use became generalized until the 1970s (Stadler, 1975; Cohon,
1978).

Good reviews of existing mathematical programming techniques for multi-
objective optimization can be found in a variety of references (see for example
(Cohon and Marks, 1975), (Hwang et al., 1980), and (Miettinen, 1998)).

Evolutionary algorithms have been successfully applied toa variety of op-
timization problems with very large (intractable) search spaces, noise, non-
differentiable and even dynamic objective functions in thelast few years (Gold-
berg, 1989; Michalewicz, 1996; Mitchell, 1996; Gen and Cheng, 1997).

The potential of evolutionary algorithms in this field was hinted in the late
1960s by Rosenberg (1967), but the first implementation was produced until
the mid-1980s (Schaffer, 1985). Evolutionary algorithms seem particularly
appropriate to solve multiobjective optimization problems because they deal
simultaneously with a set of possible solutions (the so-called population) which
allows us to find several members of the Pareto optimal set in asingle run of
the algorithm, instead of having to perform a series of separate runs as in the
case of the traditional mathematical programming techniques. Additionally,
evolutionary algorithms are less succeptible to the shape or continuity of the
Pareto front (e.g., they can easily deal with non-convex Pareto fronts), whereas
these two issues are a real concern for mathematical programming techniques.

Evolutionary algorithms are not the only heuristic technique that has been
used to solve multiobjective optimization problems. The good performance
exhibited by some algorithms (e.g., tabu search and simulated annealing) in
combinatorial optimization problems has led researchers to develop multiobjec-
tive versions of them (Hansen, 1996; Ehrgott, 2000; Czyzak and Jaszkiewicz,
1997; Gandibleux et al., 1997; Romero and Manzanares, 1999). Some re-
searchers have also suggested hybrids between genetic algorithms and other
heuristics (e.g., tabu search (Kurahashi and Terano, 2000)) for multiobjective
optimization. Nevertheless, our review will only concentrate on evolutionary
multiobjective optimization techniques.

4. A QUICK SURVEY OF EMOO APPROACHES
A considerable number of EMOO techniques have been proposedin the last

few years and it is not our intention to enumerate them all in this chapter (inter-
ested readers should refer to (Coello, 1999) and (Veldhuizen, 1999) for more
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detailed surveys of EMOO approaches). Therefore, we will concentrate our
discussion on those techniques that have been more popular among researchers
or that are very recent (and promising according to our own personal criterion).
The techniques discussed are the following: Aggregating functions, VEGA,
MOGA, NSGA, NPGA, target vector approaches and two recent approaches:
PAES and SPEA.

4.1 AGGREGATING FUNCTIONS
Knowing that an EA2 needs scalar fitness information to work, it is almost

natural to propose a combination of all the objectives into asingle one us-
ing either an addition, multiplication or any other combination of arithmetical
operations that we could devise. In fact, this is also the oldest mathematical pro-
gramming method for multiobjective optimization, since itcan be derived from
the Kuhn-Tucker conditions for nondominated solutions (Kuhn and Tucker,
1951). An example of this approach is a sum of weights of the form:

min
kXi=1 wifi(~x) (7.4)

wherewi � 0 are the weighting coefficients representing the relative im-
portance of thek objective functions of our problem. It is usually assumed
that kXi=1 wi = 1 (7.5)

4.1.1 STRENGTHS AND WEAKNESSES

The main strengths of this method are its simplicity and efficiency (compu-
tationally speaking). It can work properly in simple (convex) MOPs with few
objective functions. This approach is normally used to generate a single (or
a few) nondominated solution that can be used as an initial solution for other
techniques. One of its main weaknesses is the difficulty to determine the set of
weights that can appropriately scale the objectives when wedo not have enough
information about the problem. Its most serious drawback isthat it cannot gen-
erate proper members of the Pareto optimal set when the Pareto front is concave
regardless of the weights used (Das and Dennis, 1997).

2We will use the generic termEvolutionary Algorithmthroughout this chapter, although most of the EMOO
approaches discussed use genetic algorithms.
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4.1.2 SOME APPLICATIONS

Task planning (Jakob et al., 1992).

System-level synthesis (Blickle et al., 1996).

Truss optimization (Liu et al., 1998).

4.2 VEGA
David Schaffer (1985) proposed an approach that he called theVector Eval-

uated Genetic Algorithm(VEGA), and that differed of the simple genetic algo-
rithm (GA) only in the way in which selection was performed. This operator
was modified so that at each generation a number of sub-populations was gener-
ated by performing proportional selection according to each objective function
in turn. Thus, for a problem withk objectives and a population size ofM , k
sub-populations of sizeM=k each would be generated. These sub-populations
would be shuffled together to obtain a new population of sizeM , on which the
GA would apply the crossover and mutation operators in the usual way.

The solutions generated by VEGA are locally nondominated, but not nec-
essarily globally nondominated. VEGA presents the so-called “speciation”
problem (i.e., we could have the evolution of “species” within the population
which excel on different objectives). This problem arises because this tech-
nique selects individuals who excel in one objective, without looking at the
others. The potential danger doing that is that we could haveindividuals with
what Schaffer (1985) called “middling” performance3 in all dimensions, which
could be very useful for compromise solutions, but that willnot survive under
this selection scheme, since they are not in the extreme for any dimension of
performance (i.e., they do not produce the best value for anyobjective function,
but only moderately good values for all of them). Speciationis undesirable
because it is opposed to our goal of finding compromise solutions.

4.2.1 STRENGTHS AND WEAKNESSES

The main advantages of this technique are its simplicity andits efficiency.
However, as we mentioned before, the “middling” problem prevents the tech-
nique from finding the compromise solutions that we normallyaim to produce.
In fact, if proportional selection is used with VEGA (as Schaffer did), the shuf-
fling and merging of all the sub-populations corresponds to averaging the fitness
components associated with each of the objectives (Richardson et al., 1989). In
other words, under these conditions, VEGA behaves as an aggregating approach
and therefore, it is subject to the same problems of such techniques.

3By “middling”, Schaffer meant an individual with acceptable performance, perhaps above average, but not
outstanding for any of the objective functions.



Evolutionary Multiobjective Optimization vii

4.2.2 SOME APPLICATIONS

Groundwater pollution containment (Ritzel et al., 1994).

Constraint-handling (Surry et al., 1995; Coello, 2000c).

Scheduling (Hilliard et al., 1989).

4.3 MOGA
Fonseca and Fleming (1993) proposed theMulti-Objective Genetic Algo-

rithm (MOGA). The approach consists of a scheme in which the rank ofa
certain individual corresponds to the number of individuals in the current pop-
ulation by which it is dominated. All nondominated individuals are assigned
rank1, while dominated ones are penalized according to the population density
of the corresponding region of the trade-off surface.

Fitness assignment is performed in the following way (Fonseca and Fleming,
1993):

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank1) to the
worst (rankn � N ) in the way proposed by Goldberg (1989) (the so-called
Pareto ranking assignment process), according to some function, usually
linear, but not necessarily.

3. Average the fitnesses of individuals with the same rank, sothat all of them
will be sampled at the same rate.

MOGA is combined with mating restrictions and sharing on theobjective
function values to preserve diversity (Deb and Goldberg, 1989). The authors
of this method also provided some guidelines regarding the way in which niche
sizes can be estimated.

4.3.1 STRENGTHS AND WEAKNESSES

MOGA has been a very popular EMOO technique (particularly within the
control community), not only because it is relatively simple to implement, but
also because of its good overall performance (Coello, 1996). Its main weakness
is its dependence on the sharing factor (how to maintain diversity is the main
issue when dealing with EMOO approaches in general). However, as indicated
before, Fonseca and Fleming (1993) have provided some guidelines regarding
the way to compute niche sizes.

4.3.2 SOME APPLICATIONS

Controllers design (Tan and Li, 1997; Chipperfield and Fleming, 1995;
Schroder et al., 1997)
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Co-synthesis of hardware-software embedded systems (Dickand Jha, 1998)

Truss design (Narayanan and Azarm, 1999)

4.4 NSGA
The Nondominated Sorting Genetic Algorithm(NSGA) was proposed by

Srinivas and Deb (1994), and is based on several layers of classifications of
the individuals. Before selection is performed, the population is ranked on the
basis of domination (using Pareto ranking): all nondominated individuals are
classified into one category (with a dummy fitness value, which is proportional
to the population size). To maintain the diversity of the population, these
classified individuals are shared (in decision variable space) with their dummy
fitness values. Then this group of classified individuals is removed from the
population and another layer of nondominated individuals is considered (i.e.,
the remainder of the population is re-classified). The process continues until all
individuals in the population are classified. Since individuals in the first front
have the maximum fitness value, they always get more copies than the rest of
the population.

4.4.1 STRENGTHS AND WEAKNESSES

Some researchers have reported that NSGA has a lower overallperformance
than MOGA, and it seems to be also more sensitive to the value of the sharing
factor than MOGA (Coello, 1996; Veldhuizen, 1999). However, Deb et al.
(2000a,2000b) have recently proposed a new version of this algorithm, called
NSGA-II, which is more efficient (computationally speaking), uses elitism and
a crowded comparison operator that keeps diversity withoutspecifying any
additional parameters. The new approach has not been extensively tested yet,
but it certainly looks promising.

4.4.2 SOME APPLICATIONS

Investment portfolio optimization (Vedarajan et al., 1997).

Optimization of low-thrust interplanetary spacecraft trajectories (Hartmann
et al., 1998).

Optimization of an industrial nylon 6 semibatch reactor (Mitra et al., 1998).

4.5 NPGA
Hornet al. (1994) proposed theNiched Pareto Genetic Algorithm, whichuses

a tournament selection scheme based on Pareto dominance. Two individuals
are compared against a set of members of the population (typically, 10% of the
population size). When both competitors are either dominated or nondominated
(i.e., when there is a tie), the result of the tournament is decided through fitness
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sharing in the objective domain (a technique calledequivalent class sharing
was used in this case) (Horn et al., 1994).

4.5.1 STRENGTHS AND WEAKNESSES

Since this approach does not apply Pareto ranking to the entire population,
but only to a segment of it at each run, its main strength are that it is faster than
MOGA and NSGA4. Furthermore, it also produces good nondominated fronts
that can be kept for a large number of generations (Coello, 1996). However,
its main weakness is that besides requiring a sharing factor, this approach also
requires an additional parameter: the size of the tournament.

4.5.2 SOME APPLICATIONS

Design of laminated ceramic composites (Belegundu et al., 1994).

Airfoil design (Quagliarella and Vicini, 1997).

Manufacturing cell formation problems (Pierreval and Plaquin, 1998).

4.6 TARGET VECTOR APPROACHES
Under this name we will consider approaches in which the decision maker

has to assign targets or goals that wishes to achieve for eachobjective5. The EA
in this case, tries to minimize the difference between the current solution found
and the vector of goals (different metrics can be used for that purpose). The
most popular techniques included here are hybrids with: Goal Programming
(Deb, 1999c; Wienke et al., 1992), Goal Attainment (Wilson and Macleod,
1993; Zebulum et al., 1998) and the min-max approach (Hajelaand Lin, 1992;
Coello and Christiansen, 1998).

4.6.1 STRENGTHS AND WEAKNESSES

The main strength of these methods is their efficiency (computationally
speaking) because they do not require a Pareto ranking procedure. However,
their main weakness is the definition of the desired goals which requires some
extra computational effort. Furthermore, these techniques will yield a nondom-
inated solution only if the goals are chosen in the feasible domain, and such
condition may certainly limit their applicability.

4Pareto ranking isO(kM2), wherek is the number of objectives andM is the population size
5Although target vector approaches can be considered as another aggregating approach, we decided to discuss
them separately because these techniques can generate (under certain conditions) non-convex portions of
the Pareto front, whereas approaches based on weighted sumscannot.
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4.6.2 SOME APPLICATIONS

Design of multiplierless IIR filters (Wilson and Macleod, 1993).

Structural optimization (Sandgren, 1994; Hajela and Lin, 1992).

Optimization of the counterweight balancing of a robot arm (Coello et al.,
1998).

4.7 RECENT APPROACHES
Recently, several new EMOO approaches have been developed.We consider

important to discuss briefly at least two of them: PAES and SPEA.
ThePareto Archived Evolution Strategy(PAES) was introduced by Knowles

& Corne (2000a). This approach is very simple: it uses a (1+1)evolution
strategy (i.e., a single parent that generates a single offspring) together with a
historical archive that records all the nondominated solutions previously found
(such archive is used as a comparison set in a way analogous tothe tournament
competitors in the NPGA). PAES also uses a novel approach to keep diversity,
which consists of a crowding procedure that divides objective space in a re-
cursive manner. Each solution is placed in a certain grid location based on the
values of its objectives. A map of such grid is maintained, indicating the amount
of solutions that reside in each grid location. Since the procedure is adaptive, no
extra parameters are required (except for the number of divisions of the objec-
tive space). Furthermore, the procedure has a lower computational complexity
than traditional niching methods. PAES has been used to solve the off-line rout-
ing problem (Knowles and Corne, 1999) and the adaptive distributed database
management problem (Knowles and Corne, 2000).

TheStrength Pareto Evolutionary Algorithm(SPEA) was introduced by Zit-
zler & Thiele (1999). This approach was conceived as a way of integrating
different EMOO techniques. SPEA uses an archive containingnondominated
solutions previously found (the so-called external nondominated set). At each
generation, nondominated individuals are copied to the external nondominated
set. For each individual in this external set, a strength value is computed. This
strength is similar to the ranking value of MOGA, since it is proportional to the
number of solutions to which a certain individual dominates. The fitness of each
member of the current population is computed according to the strengths of all
external nondominated solutions that dominate it. Additionally, a clustering
technique is used to keep diversity. SPEA has been used to explore trade-offs
of software implementations for DSP algorithms (Zitzler etal., 1999) and to
solve 0/1 knapsack problems (Zitzler and Thiele, 1999).

Recently, we have been experimenting with a micro-GA (a GA with small
population and a reinitialization mechanism (Krishnakumar, 1989)) for mul-
tiobjective optimization (Coello and Toscano, 2001). Our approach uses two
memories: 1) a population memory, which is used as the sourceof diversity,
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and 2) an external memory, which is used to archive members ofthe Pareto
optimal set found during the evolutionary process. Our micro-GA uses a pop-
ulation of four individuals, which undergo binary tournament selection, two
point crossover and uniform mutation until nominal convergence is achieved
(a small number of iterations is used in our case, but other criteria could also
be used). Through the use of different forms of elitism and a reinitialization
process that mixes good solutions previously found with random solutions, we
gradually approach the true Pareto front of a problem. To keep diversity, we
use an approach similar to the adaptive grid proposed by Knowles & Corne
(2000a). The idea is that once the archive that stores nondominated vectors
(i.e., the external memory) has reached its limit, we dividethe search space that
this archive covers, assigning a set of coordinates to each vector. Then, each
newly generated nondominated vector will be accepted only if the geographical
location to where it belongs is less populated than the most crowded location,
or if it belongs to a location outside the previously specified boundaries (i.e., if
it forms a new niche). The approach has a very low computational cost (with
respecto to Pareto ranking) and we can regulate the amount ofpoints from the
Pareto front that we wish to find through the size of the external memory. Our
preliminary results indicate that our micro-GA is able to generate the Pareto
front of difficult test functions (i.e., disconnected and concave Pareto fronts)
that have been previously adopted to evaluate EMOO techniques (Coello and
Toscano, 2001).

5. CURRENT RESEARCH
Being a very active area of research, EMOO has seen a lot of changes in the

last few years and the research trends are constantly changing. We will focus our
discussion in this section to two main areas that currently interest us: constraint-
handling for evolutionary optimization, and incorporation of preferences into
an EMOO algorithm. These two areas have not been studied in enough depth
and, from our particular point of view, seem very promising.

5.1 HANDLING CONSTRAINTS
An interesting application of EMOO techniques that we have recently ex-

plored is in constraint-handling (for single-objective evolutionary optimiza-
tion). The most straightforward approach is to redefine the single-objective
optimization off(~x) as a multiobjective optimization problem in which we will
havem+ 1 objectives, wherem is the number of constraints6. Then, we can
apply any EMOO technique to the new vector�v = (f(~x); f1(~x); : : : ; fm(~x)),
wheref1(~x); : : : ; fm(~x) are the original constraints of the problem. An ideal

6The assumption that we havem constraints will hold throughout this section.
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solution~x would thus havefi(~x)=0 for 1 � i � m andf(~x) � f(~y) for all
feasible~y (assuming minimization).

However, it should be clear that in single-objective optimization problems
we do not want just good trade-offs; we want to find the best possible solutions
that do not violate any constraints. Therefore, a mechanismsuch as Pareto
ranking may be useful to approach the feasible region, but once we arrive to
it, we will need to guide the search with a different mechanism so that we can
reach the global optimum. In order to achieve this goal, we should also be able
to maintain diversity in the population. These aspects are the main focus of the
research briefly reviewed in this section.

Surry et al. (1997) proposed the use of Pareto ranking and VEGA to handle
constraints. In their approach, called COMOGA, the population is ranked based
on constraint violations (counting the number of individuals dominated by each
solution). Then, one portion of the population is selected based on constraint
ranking, and the rest based on real cost (fitness) of the individuals. COMOGA
compared fairly with a penalty-based approach in a pipe-sizing problem, and
was less sensitive to changes in the parameters, but the results achieved were
not better than those found with a penalty function (Surry and Radcliffe, 1997).
It should be added that COMOGA requires several extra parameters, although
its authors argue that the technique is not particularly sensitive to the values of
such parameters.

Parmee and Purchase (1994) implemented a version of VEGA that handled
the constraints of a gas turbine problem as objectives to allow a GA to locate a
feasible region within the highly constrained search spaceof this application.
However, VEGA was not used to further explore the feasible region, and instead
the authors used specialized operators that would create a variable-size hyper-
cube around each feasible point to help the GA to remain within the feasible
region at all times. It is important to notice that no real attempt to reach the
global optimum was made in this case.

Camponogara & Talukdar (1997) proposed to restate a single objective op-
timization problem in such a way that two objectives would beconsidered: the
first would be to optimize the original objective function and the second would
be to minimize: �(~x) = mXi=1 max[0; gi(~x)℄� (7.6)

where� is normally 1 or 2.
Once the problem is redefined, nondominated solutions with respect to the

two new objectives are generated. The solutions found definea search directiond = (xi � xj)=jxi � xjj, wherexi 2 Si, xj 2 Sj, andSi andSj are Pareto
sets. The direction searchd is intended to simultaneously minimize all the
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objectives. Line search is performed in this direction so that a solutionx can
be found such thatx dominatesxi andxj (i.e.,x is a better compromise than
the two previous solutions found). Line search takes the place of crossover in
this approach, and mutation is essentially the same, where the directiond is
projected onto the axis of one variablej in the solution space. Additionally,
a process of eliminating half of the population is applied atregular intervals
(only the less fitted solutions are replaced by randomly generated points).

This approach has obvious problems to keep diversity, as it is reflected by
the need to discard the worst individuals at each generation. Also, the use of
line search increases the computational cost of the approach and it is not clear
what is the impact of the segment chosen to search in the overall performance
of the algorithm.

Jiménez et al. (1999) proposed the use of a min-max approach (Chankong
and Haimes, 1983) to handle constraints. The main idea of this technique is to
apply a set of simple rules to decide the (binary tournament)selection process:

1. If the two individuals being compared are both feasible, then select based
on the minimum value of the objective function.

2. If one of the two individuals being compared is feasible and the other one
is infeasible, then select the feasible individual.

3. If both individuals are infeasible, then select based on the maximum con-
straint violation (maxgj(~x); for j = 1; : : : ;m). The individual with the
lowest maximum violation wins.

A subtle problem with this approach is that the evolutionaryprocess first
concentrates only on the constraint satisfaction problem and therefore it samples
points in the feasible region essentially at random (Surry et al., 1995). This
means that in some cases (e.g., when the feasible region is disjoint) we might
land in an inappropriate part of the feasible region from which we will not be
able to escape. However, this approach may be a good alternative to find a
feasible point in a heavily constrained search space. Deb (2000) proposed a
similar approach but using tournament selection based on feasibility. However,
niching was required to maintain diversity in the population.

Coello (2000c) proposed the use of a population-based multiobjective op-
timization technique such as VEGA to handle each of the constraints of a
single-objective optimization problem as an objective. Ateach generation, the
population is split intom+1 sub-populations (m is the number of constraints),
so that a fraction of the population is selected using the (unconstrained) objec-
tive function as its fitness and another fraction uses the first constraint as its
fitness and so on. This approach provided good results in several optimization
problems (Coello, 2000c). Its main disadvantage was related to scalability is-
sues. However, in a recent application in combinational circuit design we were
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able to successfully deal with up to 49 objective functions (Coello et al., 2000b).
Furthermore, the approach showed an important improvement(in terms of effi-
ciency) with respect to a previous GA-based approach developed by us for the
same task (Coello et al., 2000a).

Recently, we have also explored the use of selection based ondominance
(which was defined in terms of feasibility) to handle constraints (Coello, 2000a).
Our approach uses stochastic universal sampling so that theselection pressure
is not too high and no extra procedures are required to maintain diversity. Also,
adaptive crossover and mutation rates were adopted as part of the approach.

The key for future research in this area is not only to adapt other EMOO
approaches to handle constraints, but to exploit domain knowledge as much as
possible. An example of this is the recent work by Ray et al. (2000) in which
solutions are ranked separately based on the value of their objective functions
and their constraints. Then a set of mating restrictions areapplied based on
the information that each individual has of its own feasibility (this idea was
inspired on an earlier approach by Hinterding and Michalewicz (1998)), so that
the global optimum can be reached through cooperative learning.

Other approaches are also possible. For example, we could combine an
EMOO approach with a mechanism to incorporate preferences from the user
(the topic discussed in the next section). Such preferences, however, could
be directly derived from the problem (using the domain knowledge available),
instead of requiring an active participation from the user.

5.2 INCORPORATION OF PREFERENCES
By looking at most of the EMOO papers in the literature, one gets the impres-

sion that researchers seem to forget that the solution of a MOP really involves
three stages: measurement, search, and decision making. Most EMOO re-
search tends to concentrate on issues related to the search of nondominated
vectors. However, these nondominated vectors do not provide any insight into
the process of decision making itself (the decision maker (DM) still has to
choose manually one of the several alternatives produced),since they are really
a useful generalization of a utility function under the conditions of minimum
information (i.e., all attributes are considered as havingequal importance; in
other words, the DM does not express any preferences of the attributes). Thus,
the issue is how to incorporate the DM’s preferences into an EMOO approach
as to guide the search only to the regions of main interest forthe DM.

One way to classify techniques that incorporate preferences from the DM
is based on the moment (within the search process) at which preferences are
expressed. According to this criterion, preferences can beexpressed (Horn,
1997): a priori, a posteriori, or in aninteractiveway when using EAs.

If preferences are expresseda priori, the DM has to define them in advance
(before actually performing the search). An example of thisare the aggregating
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approaches discussed in Section 4.1. Shaw & Fleming (1997),Greenwood et
al. (1997), and Cvetković & Parmee (2000) have proposeda priori schemes to
incorporate preferences into an EMOO approach.

In the second case, we search first, and decide later. Most EMOO approaches
(those that use Pareto ranking) fall into this category. In this case, we use an
EA to search the “best possible” alternatives, where “best possible” normally
means members of the Pareto optimal set. Massebeuf et al. (1999) proposed
ana posteriorischeme to incorporate preferences into an EMOO approach.

The third case is the less common in the EA literature: approaches that
allow to guide the search of the EA using preferences from theDM, but in an
interactive way (i.e., assuming that such preferences can change over time).
Tanino et al. (1993) and Fonseca & Fleming (1993,1998) proposedinteractive
schemes to incorporate preferences into an EMOO approach7.

The Operations Research (OR) literature has normally favored interactive
approaches for several reasons (Monarchi et al., 1973):

1. It is normally the case that the DM wishes to find trade-offsthat satisfy only
a certain set of criteria, instead of wishing to find solutions that are the best
trade-off considering all criteria at the same time.

2. The preferences of the DM can (and normally do) change overtime.

3. The DM normally learns through the search process and tends to change (in
consequence) his aspirations or desires.

If we analyze the literature on multi-criteria decision making (MCDM), we
find another way of classifying approaches to incorporate preferences. In this
case, two main lines of thought are normally considered: theso-called French
School, which is based on the outranking concept (Vincke, 1995) and the Amer-
ican School, which is based on the Multi-Attribute Utility Theory (MAUT)
(Hwang and Masud, 1979). Both outranking and MAUT can be useda priori,
a posteriori or in an interactive way.

Outranking relationships are built under the form of pairwise comparisons
of the objects under study (a graph representing preferences is normally used).
Pairs of objects are compared to determine if there exists preference, indiffer-
ence, or incomparability between them. Weights for each objective are derived
from these pairwise comparisons. It is important, however,to be aware of
the fact that these pairwise comparisons may lead to intransitive or incomplete
relations (van Huylenbroeck, 1995). The main drawbacks of outranking ap-
proaches are their high computational cost when there is a large amount of
alternatives, the high amount of parameters that they require, and the difficul-
ties to define some of these alternatives (e.g., the “degree of credibility”) (Brans

7The approach was also used to handle constraints.
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et al., 1986). Rekiek et al. (2000) and Massebeuf et al. (1999) have proposed
EMOO approaches that incorporate preferences using PROMETHEE (Brans
et al., 1986) (Preference Ranking Organization METHod for Enrichment Eval-
uations), which is an outranking approach.

MAUT is based on the formulation of an overall utility function. Although
it is normally assumed that such utility function can be obtained, when that is
not possible, then nondominated solutions can be used (i.e., we assume that all
objectives are given the same importance). Certain flexibility can be obtained
through the concept of “weak dominance” (Loucks, 1975), which can be used
to express a certain lack of conviction. It is also possible for the DM to express
indifference, which means that both vectors under comparison are equivalent
and that it does not matter which one is selected. It is worth mentioning that
“indifference” is not the same that “incomparability” (as defined in outranking
methods), because the second indicates vectors with strongopposite merits
(van Huylenbroeck, 1995). MAUT does not allow intransitivities to occur. This
considerably simplifies the modelling of the preferences. However, it is not very
difficult to produce an example in which intransitivities “naturally” emerge
(see for example (van Huylenbroeck, 1995)). Greenwood et al. (1997) and
Cvetkovíc & Parmee (2000) have proposed EMOO approaches that incorporate
preferences using utility functions.

Despite this research, there is an obvious lack of models forthe incorporation
of preferences into an EMOO approach. Issues such as scalability and the
presence of several DMs deserve special attention when devising such a model.

As we have indicated before (Coello, 2000b), we believe thatthere are several
approaches from OR that could be easily coupled with EAs. Approaches such
as PROTRADE (PRObabilistic TRAde-off DEvelopment method)(Goicoechea
et al., 1979) andSEMOPS (Sequential Multi-Objective Problem Solving method)
(Monarchi et al., 1973) could be easily tailored to incorporate preferences into
EMOO approaches. Both approaches are interactive and assume a degree of
uncertainty from the DM with respect to the trade-offs of theobjectives under
study. Compromise programming (Duckstein, 1984) is also promising, and
it has in fact been used by some EMOO researchers (see for example (Deb,
1999a) and (Bentley and Wakefield, 1997)). However, more complex articu-
lations of preferences are possible if the approach is used interactively (it has
been normally used as ana priori technique).

We believe that a key issue to foster the development of this area in the future
is that EMOO researchers be aware of the work done by operational researchers
in MCDM. It should be clear to EMOO researchers that searching efficiently
nondominated vectors is not the only important topic in multiobjective opti-
mization.
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6. FUTURE RESEARCH PATHS
As has been indicated before in some of the sections of this chapter, a lot of

work remains to be done in this area. We will describe next some of the future
research paths that we consider most promising in this area:

Combinatorial Optimization: We believe that EMOO researchers can bene-
fit from the considerable amount of work done in combinatorial optimization
by relying on multiobjective versions of such problems. Such problems are
not only challenging, but have also been studied in great depth (Ehrgott
and Gandibleux, 2000). The benchmarks available for problems like the
0/1 knapsack can be used to test EMOO approaches. Such idea has been
explored by a few EMOO researchers (for example (Zitzler andThiele,
1999; Jaszkiewicz, 2000)), but more work in this direction is still necessary.

Efficient data structures: EMOO researchers have paid little attention to the
data structures used to store nondominated vectors. Operational researchers
have used, for example, domination-free quad trees where a nondominated
vector can be retrieved from the tree very efficiently. Checking if a new
vector is dominated by the vectors in one of these trees can also be done very
efficiently (Habenicht, 1982). Efficiency has been emphasized in EMOO
research until recently (Deb et al., 2000a), mainly regarding the number of
comparisons performed for ranking the population and to maintain diversity,
but a lot of work is still necessary.

Theoretical issues: There are very few theoretical studies related to EMOO,
andmost of them concentrate onconvergence issues (Rudolph, 1998; Rudolph
and Agapie, 2000; Hanne, 2000; Veldhuizen and Lamont, 1998), or on ways
to compute niche sizes (Fonseca and Fleming, 1993; Horn et al., 1994).
However, many other important areas have not been studied. It would be
very interesting to study, for example, the structure of fitness landscapes
in MOPs. Such study could provide some insights regarding the sort of
problems that are particularly difficult for EAs and could also provide clues
regarding the design of more powerful EMOO techniques. Also, there
is a need for detailed studies of the different aspects involved in the par-
allelization of EMOO techniques (e.g., load balancing, impact on Pareto
convergence, performance issues, etc.), including new algorithms that are
more suitable for parallelization than those currently in use.

There are also several other research areas that are worth exploring. For
example: development of MOP test functions (Veldhuizen andLamont, 1999;
Deb, 1999b; Deb and Meyarivan, 2000), appropriate metrics that allow us to
evaluate performance in a quantitative way (Zitzler et al.,2000; Veldhuizen,
1999; Fonseca and Fleming, 1996), to study in more depth the role of local
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search in multiobjective optimization (Ishibuchi and Murata, 1996; Parks and
Miller, 1998; Knowles and Corne, 2000; Coello and Toscano, 2001), etc. Some
of these areas are actively being pursued by several researchers nowadays.

7. SUMMARY
We have tried to give a general perspective of the research that has been done

and that is currently under way in evolutionary multiobjective optimization,
including our own. Starting with a short discussion on the origins of a separate
discipline devoted to the study of MOPs, we have led our discussion towards
the main motivations to use EAs in these types of problems.

We have stressed the importance of studying the several issues involved in
solving a MOP, rather than just focusing our research in the development of
efficient procedures to generate nondominated vectors. Decision making is as
important (or maybe more) than just generating trade-offs for a MOP, and most
EMOO researchers seem to overlook this matter.

We have also indicated some promising research trends (fromour personal
perspective), from which the lack of theoretical studies remains as the area that
requires more attention from EMOO researchers.

Finally, we have also surveyed the main EMOO approaches currently in use,
indicating some of their applications reported in the literature, as well as their
advantages and disadvantages.

But overall, one of the most reiterative issues that we have underlined in this
chapter has been the importance of relying on the work done inOR as a basis
for pursuing research in EMOO. The awareness of the important contributions
to multiobjective optimization that operational researchers have made will help
EMOO researchers to have a wider perspective of the field and adeeper under-
standing of the fundamental problems that need to be solved in this discipline.
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