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“We will say that members of a collectivity enjoy maximumadhity in a certain position
when it is impossible to find a way of moving from that positiery slightly in such a
manner that the ophelimity enjoyed by each of the indiviglirathe collectivity increases
or decreases. That is to say, any small displacement in diegafrom that position
necessarily has the effect of increasing the ophelimityclvisertain individuals enjoy,
and decreasing that which others enjoy, of being agreeab&ome and disagreeable to
others”
—Vilfredo ParetoManual of Political Economyl1896

Abstract Inthis chapter, we will review some of the most represemeatisearch in the field
of evolutionary multiobjective optimization. We will digss the historical roots
of multiobjective optimization, the motivation to use aviibnary algorithms,
and the most popular techniques currently in use. Then, Welistuss some of
the research currently under way, including our own. At the,eve will provide
what we consider to be some of the most promising paths ofdugsearch.
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1. INTRODUCTION

Most optimization problems naturally have several obyastito be achieved
(normally conflicting with each other), but in order to sinfipltheir solution,
they are treated as if they had only one (the remaining dlgscare normally
handled as constraints). These problems with several thlgec are called
“multiobjective” or “vector” optimization problems, andexe originally studied
in the context of economics. However, scientists and erginsoon realized
that such problems naturally arise in all areas of knowledge

Over the years, the work of a considerable amount of operalti@searchers
has produced an important number of techniques to deal wittiohjective op-
timization problems (Miettinen, 1998). However, it wasilredatively recently
that researchers realized of the potential of evolutioragprithms (EAS) in
this area.

This chapter will review the most important research in tfeaanow called
Evolutionary Multi-Objective Optimization, or EMOO for elt. The impor-
tance of this field is reflected by a significant increment (yadluring the last
five years) of technical papers in international confersrexed peer-reviewed
journals, special sessions in international conferenodsraerest groups in the
Internet.

The organization of this chapter is the following: first, wdlvprovide
some basic concepts used in multiobjective optimizatidment we will briefly
discuss the historical roots of this discipline, and theiwadion for using evolu-
tionary algorithms. After that, we will do a critical revieaf the most popular
EMOO techniques currently available, including some ofrtla@plications.
Finally, we will discuss some of the research currently ungay, including
our own. We will finish this chapter with a brief discussionadfat we consider
to be some of the most promising paths of future research.

2. DEFINITIONS

We are interested in solving multiobjective optimizatiaomipems (MOPS)
of the form:

minimize [f1(7), fo(#), .., fu ()] (7.2)

subject to then inequality constraints:

gi(#) >0 i=1,2,....,m (7.2)

and thep equality constraints:

1The author maintains an EMOO repository which currentiyiides over 650 bibliographical entries at:
http://www.lania.mx/~ccoello/EMO0/ with a mirror athttp://www.jeo.org/emo/
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hi(Z) =0 i=1,2,....p (7.3)

wherefk is the number of objective functiong : R* — R. We call¥ =

[T1,Ta,. .. ,mn]T the vector of decision variables. We wish to determine from
among the sef of all numbers which satisfy (7.2) and (7.3) the particuletr s
x], x5, ..., 2, which yields the optimum values of all the objective funogo

21 PARETO OPTIMUM

It is rarely the case that there is a single point that sirmeltausly optimizes
all the objective functions. Therefore, we normally look fwade-offs”, rather
than single solutions when dealing with multiobjectiveimitation problems.
The notion of “optimum?” is therefore, different. The mosnmmonly adopted
notion of optimality is that originally proposed by Frandsidro Edgeworth
(1881) and later generalized by Vilfredo Pareto (1896) héligh some authors
call Edgeworth-Pareto optimuio this notion (see for example Stadler (1988)),
we will use the most commonly accepted terRareto optimum

We say that a vector of decision variabl#sc F is Pareto optimalif there
does not exist anothat € F such thatf;(¥) < f;(#*) foralli =1,...,k and
[i(Z) < fj(&*) for at least ong.

In words, this definition says that is Pareto optimal if there exists no fea-
sible vector of decision variablese F which would decrease some criterion
without causing a simultaneous increase in at least one otierion. Unfor-
tunately, this concept almost always gives not a singletisplubut rather a
set of solutions called thBareto optimal set The vectorse™* correspoding to
the solutions included in the Pareto optimal set are caltsttiominated The
plot of the objective functions whose nondominated vecéwesin the Pareto
optimal set is called thPareto front

3.  HISTORICAL ROOTS

John von Neumann and Oskar Morgenstern (1944) were thedfiestbgnize
the existence of optimization problems in economics thatewa peculiar
and disconcerting mixture of several conflicting problemdbwever, no real
contribution to the solution of such problems was made tim¢l1950s.

Harold W. Kuhn and Albert W. Tucker (1951) introduced a ves@aued
objective function in mathematical programming-vactor maximum prob-
lem, and derived the optimality conditions for efficient sotuts. The so-called
“proper efficiency” in the context of multiobjective optimgtion was also for-
mulated in this seminal paper that many consider as the érsius attempt to
derive a theory in this area. This same direction was latéovied by Arrow
et al. (1953) who used the term “admissible” instead of “effi¢’ points.



However, multiobjective optimization theory remainedatelely undevel-
oped during the 1950s, and the subject was scarcely coveredlip a few
authors (see for example (Koopman, 1953) and (Karlin, 1959)

The application of multiobjective optimization to domamsside economics
began with the work of Tjalling Koopmans (1951) in produntibeory and with
the work of Marglin (1967) in water resources planning. Thstfapplication
of multiobjective optimization in engineering was in thelgd 960s (Zadeh,
1963), but its use became generalized until the 1970s @taf75; Cohon,
1978).

Good reviews of existing mathematical programming techesgfor multi-
objective optimization can be found in a variety of referesn¢see for example
(Cohon and Marks, 1975), (Hwang et al., 1980), and (Miettjri®98)).

Evolutionary algorithms have been successfully applied tariety of op-
timization problems with very large (intractable) seargaces, noise, non-
differentiable and even dynamic objective functions inlds few years (Gold-
berg, 1989; Michalewicz, 1996; Mitchell, 1996; Gen and CGet997).

The potential of evolutionary algorithms in this field wasteid in the late
1960s by Rosenberg (1967), but the first implementation wadyzed until
the mid-1980s (Schaffer, 1985). Evolutionary algorithnegra particularly
appropriate to solve multiobjective optimization probkimecause they deal
simultaneously with a set of possible solutions (the stedadopulation) which
allows us to find several members of the Pareto optimal sefsingle run of
the algorithm, instead of having to perform a series of sarmns as in the
case of the traditional mathematical programming techesquAdditionally,
evolutionary algorithms are less succeptible to the shamatinuity of the
Pareto front (e.g., they can easily deal with non-conveetedronts), whereas
these two issues are a real concern for mathematical progragrechniques.

Evolutionary algorithms are not the only heuristic teclugighat has been
used to solve multiobjective optimization problems. Thed)@erformance
exhibited by some algorithms (e.g., tabu search and siedilahnealing) in
combinatorial optimization problems has led researclaigvelop multiobjec-
tive versions of them (Hansen, 1996; Ehrgott, 2000; CzyzrakJaszkiewicz,
1997; Gandibleux et al., 1997; Romero and Manzanares, 198®me re-
searchers have also suggested hybrids between genetrihatgp and other
heuristics (e.g., tabu search (Kurahashi and Terano, 28@0inultiobjective
optimization. Nevertheless, our review will only concexér on evolutionary
multiobjective optimization techniques.

4. A QUICK SURVEY OF EMOO APPROACHES

A considerable number of EMOO techniques have been propogbd last
few years and it is not our intention to enumerate them atis ¢chapter (inter-
ested readers should refer to (Coello, 1999) and (Veldhyiz899) for more
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detailed surveys of EMOO approaches). Therefore, we witiceatrate our
discussion on those techniques that have been more poputgigeresearchers
or that are very recent (and promising according to our owsgrel criterion).
The techniques discussed are the following: Aggregatimgtfans, VEGA,
MOGA, NSGA, NPGA, target vector approaches and two receptagehes:
PAES and SPEA.

41  AGGREGATING FUNCTIONS

Knowing that an EA needs scalar fitness information to work, it is almost
natural to propose a combination of all the objectives intsirgle one us-
ing either an addition, multiplication or any other combioa of arithmetical
operations that we could devise. Infact, this is also thegilthathematical pro-
gramming method for multiobjective optimization, sincean be derived from
the Kuhn-Tucker conditions for nondominated solutions HKwand Tucker,
1951). An example of this approach is a sum of weights of thefo

k
=1

wherew; > 0 are the weighting coefficients representing the relative im
portance of the: objective functions of our problem. It is usually assumed
that

k

Z w; =1 (7.5)

=1

411 STRENGTHSAND WEAKNESSES

The main strengths of this method are its simplicity and igfficy (compu-
tationally speaking). It can work properly in simple (cory®OPs with few
objective functions. This approach is normally used to gatieea single (or
a few) nondominated solution that can be used as an initiatiso for other
techniques. One of its main weaknesses is the difficulty terdene the set of
weights that can appropriately scale the objectives whediowvet have enough
information about the problem. Its most serious drawbadfasit cannot gen-
erate proper members of the Pareto optimal set when thedHeoat is concave
regardless of the weights used (Das and Dennis, 1997).

2We will use the generic termvolutionary Algorithrthroughout this chapter, although most of the EMOO
approaches discussed use genetic algorithms.
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412 SOME APPLICATIONS
m Task planning (Jakob et al., 1992).

= System-level synthesis (Blickle et al., 1996).

= Truss optimization (Liu et al., 1998).

42 VEGA

David Schaffer (1985) proposed an approach that he caleddttor Eval-
uated Genetic AlgorithfVEGA), and that differed of the simple genetic algo-
rithm (GA) only in the way in which selection was performedhig operator
was modified so that at each generation a number of sub-gamdavas gener-
ated by performing proportional selection according tcdhealgjective function
in turn. Thus, for a problem witlk objectives and a population size df, &
sub-populations of siz&//k each would be generated. These sub-populations
would be shuffled together to obtain a new population of 8izeon which the
GA would apply the crossover and mutation operators in thalusay.

The solutions generated by VEGA are locally nondominatexd niot nec-
essarily globally nondominated. VEGA presents the scedafspeciation”
problem (i.e., we could have the evolution of “species” witthe population
which excel on different objectives). This problem arisesduse this tech-
nigue selects individuals who excel in one objective, withimoking at the
others. The potential danger doing that is that we could radigiduals with
what Schaffer (1985) called “middling” performaride all dimensions, which
could be very useful for compromise solutions, but that wit survive under
this selection scheme, since they are not in the extremenfpdanension of
performance (i.e., they do not produce the best value fooaigctive function,
but only moderately good values for all of them). Speciai®mndesirable
because it is opposed to our goal of finding compromise swisti

421 STRENGTHSAND WEAKNESSES

The main advantages of this technique are its simplicity isndfficiency.
However, as we mentioned before, the “middling” problenvprés the tech-
nique from finding the compromise solutions that we normaiiy to produce.
In fact, if proportional selection is used with VEGA (as Siteadid), the shuf-
fling and merging of all the sub-populations corresponds¢oaging the fitness
components associated with each of the objectives (Risbaret al., 1989). In
otherwords, under these conditions, VEGA behaves as argafing approach
and therefore, it is subject to the same problems of suchmigobs.

3By “middling”, Schaffer meant an individual with acceptatgerformance, perhaps above average, but not
outstanding for any of the objective functions.
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422 SOME APPLICATIONS
= Groundwater pollution containment (Ritzel et al., 1994).

m Constraint-handling (Surry et al., 1995; Coello, 2000c).
= Scheduling (Hilliard et al., 1989).

43 MOGA

Fonseca and Fleming (1993) proposed hhalti-Objective Genetic Algo-
rithm (MOGA). The approach consists of a scheme in which the ran& of
certain individual corresponds to the number of individual the current pop-
ulation by which it is dominated. All nondominated indivala are assigned
rank 1, while dominated ones are penalized according to the ptpaldensity
of the corresponding region of the trade-off surface.

Fitness assignment is performed in the following way (Foasad Fleming,
1993):

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from thesb@ank1) to the

worst (rankn < N) in the way proposed by Goldberg (1989) (the so-called

Pareto ranking assignment process), according to someidanaisually
linear, but not necessarily.

3. Average the fitnesses of individuals with the same rankhaball of them
will be sampled at the same rate.

MOGA is combined with mating restrictions and sharing on dbgective
function values to preserve diversity (Deb and Goldber@g9)9 The authors
of this method also provided some guidelines regarding #aeiwwhich niche
sizes can be estimated.

431 STRENGTHSAND WEAKNESSES

MOGA has been a very popular EMOO technique (particularlihinithe
control community), not only because it is relatively simpb implement, but
also because of its good overall performance (Coello, 1986inain weakness
is its dependence on the sharing factor (how to maintairrsilyeis the main
issue when dealing with EMOO approaches in general). Homvasendicated
before, Fonseca and Fleming (1993) have provided somelg&deegarding
the way to compute niche sizes.

432 SOME APPLICATIONS

m Controllers design (Tan and Li, 1997; Chipperfield and Fregnil995;
Schroder et al., 1997)
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m Co-synthesis of hardware-software embedded systems ébitkdha, 1998)

= Truss design (Narayanan and Azarm, 1999)

44  NSGA

The Nondominated Sorting Genetic AlgorithfNSGA) was proposed by
Srinivas and Deb (1994), and is based on several layers séifitations of
the individuals. Before selection is performed, the popaitais ranked on the
basis of domination (using Pareto ranking): all nondongdandividuals are
classified into one category (with a dummy fitness value, ivisgroportional
to the population size). To maintain the diversity of the wlapon, these
classified individuals are shared (in decision variablespwith their dummy
fitness values. Then this group of classified individualemeoved from the
population and another layer of nondominated individualsdnsidered (i.e.,
the remainder of the population is re-classified). The ppso®ntinues until all
individuals in the population are classified. Since indixt$ in the first front
have the maximum fitness value, they always get more copéestte rest of
the population.

441 STRENGTHSAND WEAKNESSES

Some researchers have reported that NSGA has a lower operfdrmance
than MOGA, and it seems to be also more sensitive to the vdltresharing
factor than MOGA (Coello, 1996; Veldhuizen, 1999). Howeveeb et al.
(20004a,2000b) have recently proposed a new version of kiisitom, called
NSGA-II, which is more efficient (computationally speakjngses elitism and
a crowded comparison operator that keeps diversity wittspeicifying any
additional parameters. The new approach has not been exdigrtested yet,
but it certainly looks promising.

442  SOME APPLICATIONS
= Investment portfolio optimization (Vedarajan et al., 1997

= Optimization of low-thrust interplanetary spacecrafjectories (Hartmann
et al., 1998).

= Optimization of an industrial nylon 6 semibatch reactortflslet al., 1998).

45 NPGA

Hornetal. (1994) proposed théched Pareto Genetic Algorithrwhich uses
a tournament selection scheme based on Pareto dominaneeindiwiduals
are compared against a set of members of the populatiorcéiyi10% of the
population size). When both competitors are either dorethat nondominated
(i.e., when there is a tie), the result of the tournament csasl through fitness
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sharing in the objective domain (a technique cakeglivalent class sharing
was used in this case) (Horn et al., 1994).

451 STRENGTHSAND WEAKNESSES

Since this approach does not apply Pareto ranking to theegudpulation,
but only to a segment of it at each run, its main strength aeitls faster than
MOGA and NSGA. Furthermore, it also produces good nondominated fronts
that can be kept for a large number of generations (Coell®619However,
its main weakness is that besides requiring a sharing fabisrapproach also
requires an additional parameter: the size of the tournamen

452 SOME APPLICATIONS
= Design of laminated ceramic composites (Belegundu et @941

m Airfoil design (Quagliarella and Vicini, 1997).

= Manufacturing cell formation problems (Pierreval and Riag1998).

46 TARGET VECTOR APPROACHES

Under this name we will consider approaches in which thesi@eimaker
has to assign targets or goals that wishes to achieve foragetiive. The EA
in this case, tries to minimize the difference between theecu solution found
and the vector of goals (different metrics can be used fdrphgoose). The
most popular techniques included here are hybrids with: | ®oagramming
(Deb, 1999c; Wienke et al., 1992), Goal Attainment (Wilsord aMacleod,
1993; Zebulum et al., 1998) and the min-max approach (Hajadelin, 1992;
Coello and Christiansen, 1998).

46.1 STRENGTHSAND WEAKNESSES

The main strength of these methods is their efficiency (cdatmnally
speaking) because they do not require a Pareto ranking guoze However,
their main weakness is the definition of the desired goal€lwvréquires some
extra computational effort. Furthermore, these techréquié yield a nondom-
inated solution only if the goals are chosen in the feasilblmain, and such
condition may certainly limit their applicability.

“4Pareto ranking i€ (kM?2), wherek is the number of objectives ard is the population size

5Although target vector approaches can be considered aseramjgregating approach, we decided to discuss
them separately because these techniques can generage ¢ent@in conditions) non-convex portions of
the Pareto front, whereas approaches based on weightedcsmmt.
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46.2 SOME APPLICATIONS
» Design of multiplierless IIR filters (Wilson and Macleod,93).

m Structural optimization (Sandgren, 1994; Hajela and L892).

= Optimization of the counterweight balancing of a robot afdoéllo et al.,
1998).

4.7 RECENT APPROACHES

Recently, several new EMOO approaches have been develdfgcbnsider
important to discuss briefly at least two of them: PAES and APE

ThePareto Archived Evolution Strategl?AES) was introduced by Knowles
& Corne (2000a). This approach is very simple: it uses a (lenvbjution
strategy (i.e., a single parent that generates a singlprofty together with a
historical archive that records all the nondominated sahgt previously found
(such archive is used as a comparison set in a way analogthus tlmurnament
competitors in the NPGA). PAES also uses a novel approachdp Hiversity,
which consists of a crowding procedure that divides objectipace in a re-
cursive manner. Each solution is placed in a certain gridtioa based on the
values of its objectives. A map of such grid is maintainedidgating the amount
of solutions that reside in each grid location. Since thegdure is adaptive, no
extra parameters are required (except for the number aofidivé of the objec-
tive space). Furthermore, the procedure has a lower cortigugh complexity
than traditional niching methods. PAES has been used te sodvoff-line rout-
ing problem (Knowles and Corne, 1999) and the adaptiveilliged database
management problem (Knowles and Corne, 2000).

TheStrength Pareto Evolutionary Algorith(PEA) was introduced by Zit-
Zler & Thiele (1999). This approach was conceived as a waytegrating
different EMOO techniques. SPEA uses an archive containorglominated
solutions previously found (the so-called external nonihated set). At each
generation, nondominated individuals are copied to thereat nondominated
set. For each individual in this external set, a strengthevéd computed. This
strength is similar to the ranking value of MOGA, since itisjportional to the
number of solutions to which a certain individual dominat€ke fitness of each
member of the current population is computed accordingédatrengths of all
external nondominated solutions that dominate it. Addaity, a clustering
technique is used to keep diversity. SPEA has been used lorextpade-offs
of software implementations for DSP algorithms (Zitzleraét 1999) and to
solve 0/1 knapsack problems (Zitzler and Thiele, 1999).

Recently, we have been experimenting with a micro-GA (a G#wsimall
population and a reinitialization mechanism (Krishnakyni®89)) for mul-
tiobjective optimization (Coello and Toscano, 2001). Oppr@ach uses two
memories: 1) a population memory, which is used as the safrdesersity,
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and 2) an external memory, which is used to archive membetiseoPareto
optimal set found during the evolutionary process. Our 0HGHA uses a pop-
ulation of four individuals, which undergo binary tournameselection, two
point crossover and uniform mutation until nominal conegrge is achieved
(a small number of iterations is used in our case, but othegria could also
be used). Through the use of different forms of elitism andiaitialization
process that mixes good solutions previously found witldcam solutions, we
gradually approach the true Pareto front of a problem. Tqldieersity, we
use an approach similar to the adaptive grid proposed by Keso& Corne
(2000a). The idea is that once the archive that stores nomadea vectors
(i.e., the external memory) has reached its limit, we ditigesearch space that
this archive covers, assigning a set of coordinates to eacton Then, each
newly generated nondominated vector will be accepted diigigeographical
location to where it belongs is less populated than the nrogtded location,
or if it belongs to a location outside the previously spedifundaries (i.e., if
it forms a new niche). The approach has a very low computatioost (with
respecto to Pareto ranking) and we can regulate the amoyairts from the
Pareto front that we wish to find through the size of the extienmemory. Our
preliminary results indicate that our micro-GA is able tongmate the Pareto
front of difficult test functions (i.e., disconnected anchcave Pareto fronts)
that have been previously adopted to evaluate EMOO tecasif@oello and
Toscano, 2001).

5. CURRENT RESEARCH

Being a very active area of research, EMOO has seen a lot afyelsan the
last few years and the research trends are constantly argangie will focus our
discussion in this section to two main areas that currentsrest us: constraint-
handling for evolutionary optimization, and incorporatiof preferences into
an EMOO algorithm. These two areas have not been studiedimgéndepth
and, from our particular point of view, seem very promising.

51 HANDLING CONSTRAINTS

An interesting application of EMOO techniques that we haeently ex-
plored is in constraint-handling (for single-objectiveokutionary optimiza-
tion). The most straightforward approach is to redefine thgls-objective
optimization off (%) as a multiobjective optimization problem in which we will
havem + 1 objectives, wheren is the number of constrairfts Then, we can
apply any EMOO technique to the new vectot= (f (%), f1(Z),..., fm(Z)),
where f, (%), ..., fn (%) are the original constraints of the problem. An ideal

6The assumption that we hawe constraints will hold throughout this section.
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solution# would thus havef;(#)=0 for1 < i < m and f(¥) < f(y) for all
feasibley (assuming minimization).

However, it should be clear that in single-objective optiation problems
we do not want just good trade-offs; we want to find the bessipés solutions
that do not violate any constraints. Therefore, a mechasigsoh as Pareto
ranking may be useful to approach the feasible region, boé ave arrive to
it, we will need to guide the search with a different mechango that we can
reach the global optimum. In order to achieve this goal, veeikhalso be able
to maintain diversity in the population. These aspectstaertain focus of the
research briefly reviewed in this section.

Surry et al. (1997) proposed the use of Pareto ranking andA/t&Gandle
constraints. Intheir approach, called COMOGA, the popuoiteis ranked based
on constraint violations (counting the number of indiviudominated by each
solution). Then, one portion of the population is selectagdnl on constraint
ranking, and the rest based on real cost (fitness) of theithdils. COMOGA
compared fairly with a penalty-based approach in a pipegiproblem, and
was less sensitive to changes in the parameters, but thiésrashieved were
not better than those found with a penalty function (Suriy Radcliffe, 1997).
It should be added that COMOGA requires several extra pass)although
its authors argue that the technique is not particularlisigr to the values of
such parameters.

Parmee and Purchase (1994) implemented a version of VEGAdnaled
the constraints of a gas turbine problem as objectives dwadl GA to locate a
feasible region within the highly constrained search spddhis application.
However, VEGA was not used to further explore the feasildére and instead
the authors used specialized operators that would creadable-size hyper-
cube around each feasible point to help the GA to remain withe feasible
region at all times. It is important to notice that no reakatpt to reach the
global optimum was made in this case.

Camponogara & Talukdar (1997) proposed to restate a sifgjézive op-
timization problem in such a way that two objectives wouldbasidered: the
first would be to optimize the original objective functiondethe second would
be to minimize:

O () = Y _ max0, g:(#))" (7.6)

where/ is normally 1 or 2.

Once the problem is redefined, nondominated solutions w#pect to the
two new objectives are generated. The solutions found defsearch direction
d = (z; — x;)/|zi — xj|, wherex; € S;, z; € S;, andS; andS; are Pareto
sets. The direction searchis intended to simultaneously minimize all the
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objectives. Line search is performed in this direction sat #insolutionz can
be found such that dominatesr; andz; (i.e., z is a better compromise than
the two previous solutions found). Line search takes theeptd crossover in
this approach, and mutation is essentially the same, wherelitectiond is
projected onto the axis of one variablan the solution space. Additionally,
a process of eliminating half of the population is appliedegfular intervals
(only the less fitted solutions are replaced by randomly gead points).

This approach has obvious problems to keep diversity, asréflected by
the need to discard the worst individuals at each genera#dso, the use of
line search increases the computational cost of the appraadt it is not clear
what is the impact of the segment chosen to search in thelbgeréformance
of the algorithm.

Jiménez et al. (1999) proposed the use of a min-max approacmkGhg
and Haimes, 1983) to handle constraints. The main idea®tebhnique is to
apply a set of simple rules to decide the (binary tournamsigction process:

1. If the two individuals being compared are both feasithentselect based
on the minimum value of the objective function.

2. If one of the two individuals being compared is feasibld #re other one
is infeasible, then select the feasible individual.

3. If both individuals are infeasible, then select basedhenmhaximum con-
straint violation (maxy;(z), forj = 1,...,m). The individual with the
lowest maximum violation wins.

A subtle problem with this approach is that the evolutionprgcess first
concentrates only on the constraint satisfaction probledrilzerefore it samples
points in the feasible region essentially at random (Sutrgtl.e 1995). This
means that in some cases (e.g., when the feasible regiosjeat) we might
land in an inappropriate part of the feasible region fromahhive will not be
able to escape. However, this approach may be a good altertatfind a
feasible point in a heavily constrained search space. De@0j2proposed a
similar approach but using tournament selection basedawilfgity. However,
niching was required to maintain diversity in the populatio

Coello (2000c) proposed the use of a population-based objdtitive op-
timization technique such as VEGA to handle each of the cains$ of a
single-objective optimization problem as an objective eAth generation, the
population is split intan + 1 sub-populationsrg is the number of constraints),
so that a fraction of the population is selected using thedostrained) objec-
tive function as its fitness and another fraction uses thedaosstraint as its
fitness and so on. This approach provided good results imadeygtimization
problems (Coello, 2000c). Its main disadvantage was kaecalability is-
sues. However, in a recent application in combination@utirdesign we were
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able to successfully deal with up to 49 objective functidbsdllo et al., 2000Db).
Furthermore, the approach showed an important improve(retarms of effi-

ciency) with respect to a previous GA-based approach dpediby us for the
same task (Coello et al., 2000a).

Recently, we have also explored the use of selection basebmmance
(whichwas defined in terms of feasibility) to handle coristi(Coello, 2000a).
Our approach uses stochastic universal sampling so thaetaetion pressure
is not too high and no extra procedures are required to maidieersity. Also,
adaptive crossover and mutation rates were adopted asfbe approach.

The key for future research in this area is not only to adapenEMOO
approaches to handle constraints, but to exploit domaiwladge as much as
possible. An example of this is the recent work by Ray et &00@® in which
solutions are ranked separately based on the value of thjgictive functions
and their constraints. Then a set of mating restrictionsag@ied based on
the information that each individual has of its own fea#i(this idea was
inspired on an earlier approach by Hinterding and Michatzwi998)), so that
the global optimum can be reached through cooperativeitearn

Other approaches are also possible. For example, we coubhthine an
EMOO approach with a mechanism to incorporate preferences the user
(the topic discussed in the next section). Such prefererftasgever, could
be directly derived from the problem (using the domain kremgie available),
instead of requiring an active participation from the user.

5.2 INCORPORATION OF PREFERENCES

By looking at most of the EMOO papers in the literature, ons e impres-
sion that researchers seem to forget that the solution of & k#@lly involves
three stages: measurement, search, and decision makingt BMOO re-
search tends to concentrate on issues related to the sdandm@ominated
vectors. However, these nondominated vectors do not peay insight into
the process of decision making itself (the decision makevY3till has to
choose manually one of the several alternatives produsette they are really
a useful generalization of a utility function under the citiods of minimum
information (i.e., all attributes are considered as hawnggal importance; in
other words, the DM does not express any preferences oftifileuses). Thus,
the issue is how to incorporate the DM’s preferences into OB approach
as to guide the search only to the regions of main intereshisDM.

One way to classify techniques that incorporate prefereficen the DM
is based on the moment (within the search process) at whafergnces are
expressed. According to this criterion, preferences caexpgessed (Horn,
1997): a priori, a posteriori or in aninteractiveway when using EAs.

If preferences are expressadgpriori, the DM has to define them in advance
(before actually performing the search). An example oféinésthe aggregating
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approaches discussed in Section 4.1. Shaw & Fleming (1@&&gnwood et
al. (1997), and Cvetkoti& Parmee (2000) have proposagriori schemes to
incorporate preferences into an EMOO approach.

Inthe second case, we search first, and decide later. Most@&&fpProaches
(those that use Pareto ranking) fall into this category.hia tase, we use an
EA to search the “best possible” alternatives, where “bessible” normally
means members of the Pareto optimal set. Massebeuf et &9)(poposed
ana posteriorischeme to incorporate preferences into an EMOO approach.

The third case is the less common in the EA literature: appres: that
allow to guide the search of the EA using preferences fronDiuk but in an
interactive way (i.e., assuming that such preferences bange over time).
Tanino et al. (1993) and Fonseca & Fleming (1993,1998) mwegimteractive
schemes to incorporate preferences into an EMOO appfoach

The Operations Research (OR) literature has normally &/oteractive
approaches for several reasons (Monarchi et al., 1973):

1. Itis normally the case that the DM wishes to find trade-tifés satisfy only
a certain set of criteria, instead of wishing to find solusidhat are the best
trade-off considering all criteria at the same time.

2. The preferences of the DM can (and normally do) changetower.

3. The DM normally learns through the search process andtenchange (in
consequence) his aspirations or desires.

If we analyze the literature on multi-criteria decision rmak(MCDM), we
find another way of classifying approaches to incorporagfgoences. In this
case, two main lines of thought are normally considered:sthealled French
School, which is based on the outranking concept (Vinck@518nd the Amer-
ican School, which is based on the Multi-Attribute Utilitth&ory (MAUT)
(Hwang and Masud, 1979). Both outranking and MAUT can be asgdori,
a posteriori or in an interactive way.

Outranking relationships are built under the form of paggvcomparisons
of the objects under study (a graph representing prefessisagormally used).
Pairs of objects are compared to determine if there exigfemnce, indiffer-
ence, or incomparability between them. Weights for eachailve are derived
from these pairwise comparisons. It is important, howet@rpe aware of
the fact that these pairwise comparisons may lead to irtramsr incomplete
relations (van Huylenbroeck, 1995). The main drawbacksubfamking ap-
proaches are their high computational cost when there isga lamount of
alternatives, the high amount of parameters that they regand the difficul-
ties to define some of these alternatives (e.g., the “dedredibility”) (Brans

"The approach was also used to handle constraints.
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et al., 1986). Rekiek et al. (2000) and Massebeuf et al. (1B8% proposed
EMOO approaches that incorporate preferences using PRGNHEET(Brans
et al., 1986) (Preference Ranking Organization METHod faiéhment Eval-
uations), which is an outranking approach.

MAUT is based on the formulation of an overall utility funati. Although
it is normally assumed that such utility function can be oi#d, when that is
not possible, then nondominated solutions can be usegdWeeassume that all
objectives are given the same importance). Certain flaéilihn be obtained
through the concept of “weak dominance” (Loucks, 1975),ackldan be used
to express a certain lack of conviction. Itis also possiblatie DM to express
indifference, which means that both vectors under comparage equivalent
and that it does not matter which one is selected. It is wortintioning that
“indifference” is not the same that “incomparability” (asfohed in outranking
methods), because the second indicates vectors with stppgsite merits
(van Huylenbroeck, 1995). MAUT does not allow intransti®s to occur. This
considerably simplifies the modelling of the preferencesweler, itis not very
difficult to produce an example in which intransitivitiesdturally” emerge
(see for example (van Huylenbroeck, 1995)). Greenwood.e(¥)97) and
Cvetkovi & Parmee (2000) have proposed EMOO approaches that inedepo
preferences using utility functions.

Despite this research, there is an obvious lack of modethé&incorporation
of preferences into an EMOO approach. Issues such as ditglaid the
presence of several DMs deserve special attention whegidg\such a model.

As we have indicated before (Coello, 2000b), we believettieae are several
approaches from OR that could be easily coupled with EAs.régghes such
as PROTRADE (PRObabilistic TRAde-off DEvelopment meth@t)icoechea
etal., 1979) and SEMOPS (Sequential Multi-Objective RrobEolving method)
(Monarchi et al., 1973) could be easily tailored to incogierpreferences into
EMOO approaches. Both approaches are interactive and assulagree of
uncertainty from the DM with respect to the trade-offs of tigectives under
study. Compromise programming (Duckstein, 1984) is alsmmnising, and
it has in fact been used by some EMOO researchers (see forpdxdbeb,
1999a) and (Bentley and Wakefield, 1997)). However, moreptexnarticu-
lations of preferences are possible if the approach is ugedsictively (it has
been normally used as apriori technique).

We believe that a key issue to foster the development of teesia the future
is that EMOO researchers be aware of the work done by opegdtiesearchers
in MCDM. It should be clear to EMOO researchers that seagckificiently
nondominated vectors is not the only important topic in mbjective opti-
mization.
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6. FUTURE RESEARCH PATHS

As has been indicated before in some of the sections of thigteh a lot of
work remains to be done in this area. We will describe nextesofithe future
research paths that we consider most promising in this area:

m Combinatorial OptimizationWe believe that EMOO researchers can bene-
fit from the considerable amount of work done in combinataimization
by relying on multiobjective versions of such problems. Ispmoblems are
not only challenging, but have also been studied in greathdéphrgott
and Gandibleux, 2000). The benchmarks available for probléke the
0/1 knapsack can be used to test EMOO approaches. Such igldmeda
explored by a few EMOO researchers (for example (Zitzler &hcele,
1999; Jaszkiewicz, 2000)), but more work in this directigstill necessary.

» Efficient data structureEEMOO researchers have paid little attention to the
data structures used to store nondominated vectors. Qpehtesearchers
have used, for example, domination-free quad trees wheom@ominated
vector can be retrieved from the tree very efficiently. Chieghf a new
vector is dominated by the vectors in one of these trees sarbaldone very
efficiently (Habenicht, 1982). Efficiency has been empleasim EMOO
research until recently (Deb et al., 2000a), mainly regaydhe number of
comparisons performed for ranking the population and totaai diversity,
but a lot of work is still necessary.

m Theoretical issuesThere are very few theoretical studies related to EMOO,
and most of them concentrate on convergence issues (Rydoigpd; Rudolph
and Agapie, 2000; Hanne, 2000; Veldhuizen and Lamont, 1998n ways
to compute niche sizes (Fonseca and Fleming, 1993; Horn,et394).
However, many other important areas have not been studtedould be
very interesting to study, for example, the structure ofefsis landscapes
in MOPs. Such study could provide some insights regardimegstirt of
problems that are particularly difficult for EAs and could@provide clues
regarding the design of more powerful EMOO techniques. Atbere
is a need for detailed studies of the different aspects webin the par-
allelization of EMOO techniques (e.g., load balancing, attpon Pareto
convergence, performance issues, etc.), including newrithgns that are
more suitable for parallelization than those currently $e.u

There are also several other research areas that are wqufbriey. For
example: development of MOP test functions (Veldhuizen lzandont, 1999;
Deb, 1999b; Deb and Meyarivan, 2000), appropriate methasdllow us to
evaluate performance in a quantitative way (Zitzler et 2000; Veldhuizen,
1999; Fonseca and Fleming, 1996), to study in more depthdleeof local
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search in multiobjective optimization (Ishibuchi and Miaral996; Parks and
Miller, 1998; Knowles and Corne, 2000; Coello and Toscaf§]12, etc. Some
of these areas are actively being pursued by several rémzamowadays.

1. SUMMARY

We have tried to give a general perspective of the reseaatih#s been done
and that is currently under way in evolutionary multiobjeetoptimization,
including our own. Starting with a short discussion on thigios of a separate
discipline devoted to the study of MOPs, we have led our disicun towards
the main motivations to use EAs in these types of problems.

We have stressed the importance of studying the severasssuolved in
solving a MOP, rather than just focusing our research in #neelbpment of
efficient procedures to generate nondominated vectorsisidaanaking is as
important (or maybe more) than just generating trade-off@fMOP, and most
EMOO researchers seem to overlook this matter.

We have also indicated some promising research trends @uompersonal
perspective), from which the lack of theoretical studignaes as the area that
requires more attention from EMOO researchers.

Finally, we have also surveyed the main EMOOQO approachesitilyrin use,
indicating some of their applications reported in the &tere, as well as their
advantages and disadvantages.

But overall, one of the most reiterative issues that we hagedined in this
chapter has been the importance of relying on the work do@Rras a basis
for pursuing research in EMOO. The awareness of the impbc@mtributions
to multiobjective optimization that operational rese@mshhave made will help
EMOQO researchers to have a wider perspective of the field alegper under-
standing of the fundamental problems that need to be soh/#udd discipline.
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