MOPSO : A Proposal for Multiple
Objective Particle Swarm Optimization

Carlos A. Coello Coello
CINVESTAV-IPN
Depto. de Ing. Elect./Seccién de Computacién
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D. F. 07300

ccoello@cs.cinvestav.mx

Abstract- This paper introduces a proposal to
extend the heuristic called “particle swarm opti-
mization” (PSO) to deal with multiobjective op-
timization problems. Our approach uses the con-
cept of Pareto dominance to determine the flight
direction of a particle and it maintains previously
found nondominated vectors in a global reposi-
tory that is later used by other particles to guide
their own flight. The approach is validated using
several standard test functions from the special-
ized literature. Our results indicate that our ap-
proach is highly competitive with current evolu-
tionary multiobjective optimization techniques.

1 Introduction

The use and development of heuristics-based multiob-
jective optimization techniques has significantly grown
in the last few years [2]. One of the recent research
trends has been to produce algorithms that are more ef-
ficient. This aim for efficiency normally requires clever
techniques to maintain diversity (such as the adaptive
grid used by PAES [8]) and the use of small population
sizes [1]. Particle swarm optimization (PSO) is a rela-
tively recent heuristic inspired by the choreography of
a bird flock. Despite its current success in diverse opti-
mization tasks [7], PSO remains as one of the heuristics
for which not much work on multiobjective optimization
has been done so far.

In this paper, we present a proposal, called “multi-
objective particle swarm optimization” (MOPSO),
which allows the PSO algorithm to be able to deal with
multiobjective optimization problems. The approach is
relatively simple to implement, it is population-based,
it uses an external memory (called “repository”) and
a geographically-based approach to maintain diversity.
MOPSO is validated using some standard test func-
tions reported in the specialized literature and compared
against two highly competitive EMO algorithms: the
Pareto Archived Evolution Strategy [8] (PAES) and the
Non-dominated Sorting Genetic Algorithm II [4] (NSGA
II).

Maximino Salazar Lechuga
Maestria en Inteligencia Artificial
Sebastian Camacho No. 5
LANIA-Universidad Veracruzana
Xalapa, Veracruz, México 91090

msalazar@mail.mia.uv.mx

2 Particle Swarm Optimization

Kennedy & Eberhart [7] proposed an approach called
“particle swarm optimization” (PSO) which was inspired
on the choreography of a bird flock. The approach can be
seen as a distributed behavioral algorithm that performs
(in its more general version) multidimensional search. In
the simulation, the behavior of each individual is affected
by either the best local (i.e., within a certain neighbor-
hood) or the best global individual. The approach uses
then the concept of population and a measure of per-
formance similar to the fitness value used with evolu-
tionary algorithms. Also, the adjustments of individuals
are analogous to the use of a crossover operator. How-
ever, this approach introduces the use of flying potential
solutions through hyperspace (used to accelerate conver-
gence) which does not seem to have an analogous mech-
anism in traditional evolutionary algorithms. Another
important difference is the fact that PSO allows individ-
uals to benefit from their past experiences whereas in
an evolutionary algorithm, normally the current popula-
tion is the only “memory” used by the individuals. PSO
has been successfully used for both continuous nonlin-
ear and discrete binary single-objective optimization [7].
Particle swarm optimization seems particularly suitable
for multiobjective optimization mainly because of the
high speed of convergence that the algorithm presents
for single-objective optimization [7].

To the best of our knowledge, there have been only
two previous proposals to extend PSO to handle mul-
tiobjective objectives. One of them is an unpublished
document [9], and the other one is a paper yet to be
published [10]. In both cases, Pareto dominance is used
to generate a list of leaders that guide the search. Note,
however, that in neither of these cases the proposed al-
gorithm uses a secondary population nor is compared
against other evolutionary multiobjective techniques us-
ing standard test functions and metrics.

3 Description of the Approach

The analogy of particle swarm optimization with evolu-
tionary algorithms makes evident the notion that using

a Pareto ranking scheme [6] could be the straightforward
way to extend the approach to handle multiobjective op-
timization problems. The historical record of best solu-
tions found by a particle (i.e., an individual) could be
used to store nondominated solutions generated in the
past (this would be similar to the notion of elitism used
in evolutionary multiobjective optimization). The use
of global attraction mechanisms combined with a histor-
ical archive of previously found nondominated vectors
would motivate convergence towards globally nondomi-
nated solutions.

Therefore, our proposal is based on the idea of having
a global repository in which every particle will deposit
its flight experiences after each flight cycle. Additionally,
the updates to the repository are performed considering
a geographically-based system defined in terms of the
objective function values of each individual. This tech-
nique is inspired on the external file used with the Pareto
Archive Evolution Strategy (PAES) [8]. The repository
previously mentioned is used by the particles to identify
a leader that will guide the search. We implemented a
mechanism such that each particle may choose a differ-
ent guide. Our mechanism is based on the generation
of hypercubes which are produced dividing the search
space explored.

The algorithm of MOPSO is the following:

1. Initialize the population POP:
(a) FORi=0TO MAX /* MAX = number of

particles */
(b) Initialize POP][i]

2. Initialize the speed of each particle:

(a) FOR i =0TO MAX
(b) VEL[i] =0

3. Evaluate each of the particles in POP.

4. Store the positions of the particles that represent
nondominated vectors in the repository REP.

5. Generate hypercubes of the search space explored
so far, and locate the particles using these hyper-
cubes as a coordinate system where each particle’s
coordinates are defined according to the values of
its objective functions.

6. Initialize the memory of each particle (this memory
serves as a guide to travel through the search space.
This memory is also stored in the repository):

(a) FORi=0TO MAX
(b) PBESTSJ[i] = POPi]

7. WHILE maximum number of cycles has not been
reached DO

(a) Compute the speed of each particle! using the
following expression:

VEL[] =W x VEL[i] + Ry x
(PBESTSJi] — POPi]) +
R» x (REP[h] — POPIi)

where W (inertia weight) takes a value of 0.4;
Ry and Ry are random numbers in the range
[0..1]; PBESTS[i] is the best position that
the particle i has had?; REPIh] is a value
that is taken from the repository; the index
h is selected in the following way: those hy-
percubes containing more than one particle
are assigned a fitness equal to the result of
dividing any number z > 1 (we used z = 10
in our experiments) by the number of parti-
cles that they contain. This aims to decrease
the fitness of those hypercubes that contain
more particles and it can be seen as a form of
fitness sharing [5]. Then, we apply roulette-
wheel selection using these fitness values to
select the hypercube from which we will take
the corresponding particle. Once the hyper-
cube has been selected, we select randomly
a particle within such hypercube. POPIJi] is
the current value of the particle 1.

(b) Compute the new positions of the particles
adding the speed produced from the previous
step:

POPJi] = POPli| + VELli] (1)

(¢) Maintain the particles within the search space
in case they go beyond its boundaries (avoid
generating solutions that do not lie on valid
search space).

(d) Evaluate each of the particles in POP.

(e) Update the contents of REP together with
the geographical representation of the parti-
cles within the hypercubes. This update con-
sists of inserting all the currently nondomi-
nated locations into the repository. Any dom-
inated locations from the repository are elim-
inated in the process. Since the size of the
repository is limited, whenever it gets full,
we apply a secondary criterion for retention:
those particles located in less populated ar-
eas of objective space are given priority over
those lying in highly populated regions.

1Each particle has a dimensionality that can vary depending on
the problem solved. When we say that we compute the speed of a
particle, we refer to computing the speed for each of its dimensions.

2We will explain later on how do we define “better” in this
context.

(f) When the current position of the particle is
better than the position contained in its mem-
ory, the particle’s position is updated using:

PBESTS[i] = POPJi] (2)

The criterion to decide what position from
memory should be retained is simply to apply
Pareto dominance (i.e., if the current position
is dominated by the position in memory, then
the position in memory is kept; otherwise, the
current position replaces the one in memory;
if neither of them is dominated by the other,
then we select one of them randomly).

(g) Increment the loop counter

8. END WHILE

4 Comparison of Results

Several test functions were taken from the specialized lit-
erature to compare our approach. However, due to space
limitations, only three were included here. To compare
our results in a quantitative way we used two criteria:
average running time of the algorithm (using the same
number of fitness function evaluations), and the follow-
ing metric defined in objective space by Zitzler et al.
[12]:

1 - _
M;=:—- Y min {|d-d|5deY} (3)

| Y|
d'ey’

where: Y'Y C Y are the sets of objective vectors that
correspond to a set of pairwise nondominating decision
vectors X', X C X, respectively, and X corresponds to
the decision variables of the problem. It should be ob-
vious that M{ gives the average distance to the Pareto
optimal set. Therefore, we should aim to minimize this
value (see [12] for further details). To compute M7, we
generated the global Pareto front for each of the test
functions by enumeration.

MOPSO was compared against two recent algorithms
that are representative of the state of the art in evo-
lutionary multiobjective optimization: the NSGA II [4]
and PAES? [g].

In the following examples, the NSGA II was run using
a population size of 200, a crossover rate of 0.8, tourna-
ment selection, and a mutation rate of 1/vars, where
vars = number of decision variables of the problem. In
the following examples, PAES was run using a depth of
five, a size of the archive of 200, and a mutation rate

3The source code of the NSGA II and PAES (orig-
inal versions from their corresponding authors) may
be downloaded from the EMOO repository located at
http://www.lania.mx/"ccoello/EMO0/EMO0software.html

of 1/L, where L refers to the length of the chromosomic
string that encodes the decision variables.

MOPSO* used a population of 40 particles, a reposi-
tory size of 200 particles and 30 divisions for the adaptive
grid. Our implementation uses a real-numbers represen-
tation and it is therefore intended for continuous search
spaces. Note, however, that PSO can also be used with
binary representation (see [7] for details).

To allow a fair comparison of running times, all the
experiments were performed on a PC with a Pentium II
processor running at 333 MHz, 128 Mb of RAM and a
hard drive of 6 Gbytes. Our implementation was com-
piled using GNU C running under Linux Red Hat release
7.1.

4.1 Test Function 1

Our first test function was proposed by Deb [3]:

Min f1(1'1,£L'2) =1 (4)

Min f2(.Z'1,IE2) = (1 + 103&'2) X

(67
X1 Z1 .
1- . 2
[(1 n 10x2> T+ 10z, Sn(2maz)

where:

0§$1,$2S1 (5)

and ¢ = 4, o = 2. This problem has its Pareto front
disconnected and consistent on 4 Pareto curves.

Figure 1 shows the Pareto fronts produced by the
NSGA-II, PAES and MOPSO for the first test func-
tion. For this example, the three algorithms performed
4000 evaluations of the fitness function. The average
running time of each algorithm (over 20 runs) were the
following: 2.402 seconds for the NSGA II, 2.08 seconds
for PAES and only 0.076 seconds for our MOPSO. The
average values of the metric M{ were the following:
0.002536 for the NSGA II (with a standard deviation
of 0.000138), 0.002881 for PAES (with a standard de-
viation of 0.00213), and 0.002057 for MOPSO (with a
standard deviation of 0.000286).

4.2 Test Function 2
Our second test function was proposed by Schaffer [11]:

-z ifx <1
. 242 fl<xz<3
Min fi(z) = 4—z if3<a:24 (6)
44z ifzx>4
Min fo(z) = (2 —5) (7

4MOPSO will soon become available for download from the
EMOQO repository previously indicated.

08 -
0.6

0.4

%

o
T

0.6

TonsGan T+

*

L

Figure 1: Pareto fronts produced by the NSGA II (left), PAES (middle), and MOPSO (right) for the first test

L L L L L L L L
0 01 02 03 04 05 06 07 08 09

0.6

e

08

06 [

04

02

02t

04l

Pl '

PAES '+

et
g

I AL
e

0

L L L L L L L L
01 02 03 04 05 06 07 08 09

i

" paES +

function
18 T T 18
NSGA Il +
16 \ B 16
14 4 14 |
12+ o 12
10 g 10
o % o
8 g 8
6 g 6
4+ 4 4t
2 B 2 b
Mt
o . e 0
-1 -0.5 0 05 1

i

Figure 2: Pareto fronts produced by the NSGA II (left), PAES (middle), and MOPSO (right) for the second test

function

L
05

e T

" MoPso '+

AR

oy

i

L L L L L L L L
0 01 02 03 04 05 06 07 08 09

MoPSO + |

16 5\
%
kY
14 \\
12 | \
\k
10 F Q\
s |
6|
4
2|
-
s g
0 . . Bl 2T
1 05 0 05 1

L

where: —5 <z < 10.

This problem also has a disconnected Pareto front.
Figure 2 shows the Pareto fronts produced by the
NSGA-II, PAES and MOPSO for the second test func-
tion. For this example, the three algorithms performed
1200 fitness function evaluations. The average running
time of each algorithm (over 20 runs) were the follow-
ing: 0.812 seconds for the NSGA II, 0.339 seconds for
PAES and only 0.046 seconds for our MOPSO. The
average values of the metric M{ were the following:
0.001594 for the NSGA II (with a standard deviation
of 0.000122), 0.070003 for PAES (with a standard devi-
ation of 0.158081), and 0.00147396 for MOPSO (with a
standard deviation of 0.00020178).

4.3 Test Function 3

Our third example was proposed by Deb [3]:

Minimize fi(z1,32) = 3 (8)

Minimize fo(z1,22) = g(x1,22) - h(21,22) (9)

where:
g(w1,72) = 11+ 23 — 10 - cos(2mz2) (10)
h(zr,zs) =4 17V % if fi(21,22) < g(21,22)
0 otherwise
(11)

and 0 <z, <1, -30 < z2 < 30.

This problem has 60 “local” Pareto fronts to which
the population could be easily attracted (i.e., the prob-
lem is multifrontal [2]).

Figures 3 shows the Pareto fronts produced by the
NSGA-II, PAES and MOPSO for the third test func-
tion. For this example, the three algorithms performed
3200 fitness function evaluations. The average running
time of each algorithm (over 20 runs) were the follow-
ing: 2.1165 seconds for the NSGA II, 1.641 seconds for
PAES and only 0.098 seconds for our MOPSQO. The
average values of the metric M{ were the following:
0.094644 for the NSGA II (with a standard deviation
of 0.117608), 0.259664 for PAES (with a standard devi-
ation of 0.573286), and 0.0011611 for MOPSO (with a
standard deviation of 0.0007205).

5 Discussion of Results

In the test functions used (including those not included
in the paper), MOPSO performed reasonably well® in

5MOPSO remained as a competitive algorithm, althought not
necessarily better than the other two in all cases.

terms of the metric adopted and it required lower com-
putational times than any of the two other algorithms
tried. The graphical representation of the results ob-
tained by each method also seem to indicate a good be-
havior of the proposed algorithm (see Figures 1, 2, and
3).

Finally, we want to mention briefly what are the pa-
rameters used by MOPSO and some of the suggested
guidelines to fine tune them:

e Number of particles: This is equivalent to the
population size of a genetic algorithm. We recom-
mend using between 20 and 80 particles.

e Number of cycles: This parameter is related to
the number of particles. The relationship tends to
be inversely proportional (i.e., to larger number of
particles, smaller number of cycles and viceversa).
We recommend to use between 80 and 120.

e Number of divisions: It allows us to determine
the number of hypercubes that will be generated
in objective function space. We recommend to use
between 30 and 50 divisions.

e Size of the repository: This parameter is used
to delimit the maximum number of nondominated
vectors that can be stored in the repository. The
value of this parameter will determine the quality
of the Pareto front produced.

6 Conclusions and Future Work

It is important to indicate that PSO is an unconstrained
search technique. Therefore, it is necessary to develop
an additional mechanism to deal with constrained mul-
tiobjective optimization problems. We have focused this
paper only on the generation of nondominated vectors
and in the mechanism to maintain diversity, but we have
not dealt with constrained test functions®. The exten-
sion to handle constrained problems is, however, not too
difficult to develop and it is currently under way. A
sensitivity analysis is also under way, so that we can de-
termine the role of each of the parameters used in the
performance of the algorithm (particularly those control-
ling the flight direction of the particles). Finally, we are
also in the process of validating our algorithm using ad-
ditional metrics and some other minor refinements to the
implementation may take place in the process.

Acknowledgements

The first author gratefully acknowledges support from
CONACyT through project 34201-A. The second au-
thor acknowledges support from CONACyT through a

6The approach proposed in [10] uses a sophisticated constraint-
handling procedure which seems to be very successful to guide the
search in multiobjective problems.

15+

05

NSGAIl +

05 -

N
"
*a

+

PAES +

M,

MOPSO +

e 0

QM*%M

.
™ o ‘ ‘ ‘ L e

L L L L L
0 02 0.4 0.6 08 1 0 0.2 0.4
f1 f1

L
0.6 0.8

1 0 0.2 0.4 0.6 08 1

Figure 3: Pareto fronts produced by the NSGA II (left), PAES (middle), and MOPSO (right) for the third test

function

scholarship to pursue graduate studies at the Maestria
en Inteligencia Artificial of LANTA and the Universidad
Veracruzana.

Bibliography

[1] Carlos A. Coello Coello and Gregorio Toscano
Pulido. Multiobjective Optimization using a Micro-
Genetic Algorithm. In Lee Spector, Erik D. Good-
man, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,
Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and Fvo-
lutionary Computation Conference (GECCO’2001),
pages 274-282, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

Carlos A. Coello Coello, David A. Van Veldhuizen,
and Gary B. Lamont. FEwvolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Aca-
demic Publishers, Boston, 2002. ISBN 0-3064-6762-
3. (in Press).

Kalyanmoy Deb. Multi-Objective Genetic Al-
gorithms: Problem Difficulties and Construction

of Test Problems. FEwolutionary Computation,
7(3):205-230, Fall 1999.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratab,
and T. Meyarivan. A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Op-
timization: NSGA-II. In Proceedings of the Parallel
Problem Solving from Nature VI Conference, pages
849-858. Springer, 2000.

Kalyanmoy Deb and David E. Goldberg. An In-
vestigation of Niche and Species Formation in Ge-

[6]

[7]

(8]

[9]

[10]

[11]

[12]

netic Function Optimization. In J. David Schaffer,
editor, Proceedings of the Third International Con-
ference on Genetic Algorithms, pages 42-50, San
Mateo, California, June 1989. George Mason Uni-
versity, Morgan Kaufmann Publishers.

David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Publishing Company, Reading, Mas-
sachusetts, 1989.

James Kennedy and Russell C. Eberhart. Swarm
Intelligence. Morgan Kaufmann Publishers, San
Francisco, California, 2001.

Joshua D. Knowles and David W. Corne. Approx-
imating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Compu-
tation, 8(2):149-172, 2000.

Jacqueline Moore and Richard Chapman. Applica-
tion of Particle Swarm to Multiobjective Optimiza-
tion. Department of Computer Science and Soft-
ware Engineering, Auburn University, 1999.

Tapabrata Ray, Tai Kang, and Seow Kian Chye.
Multiobjective Design Optimization by an Evolu-
tionary Algorithm. Engineering Optimization, 2002.
(In Press).

J. David Schaffer. Multiple Objective Optimization
with Vector Evaluated Genetic Algorithms. PhD
thesis, Vanderbilt University, 1984.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele.
Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computa-
tion, 8(2):173-195, Summer 2000.

