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Abstract

In this paper, we propose an algorithm to
solve multiobjective optimization problems
(either constrained or unconstrained) using
the clonal selection principle. Our approach
is compared with respect to another algo-
rithm that is representative of the state-of-
the-art in evolutionary multiobjective opti-
mization. For our comparative study, two
metrics are adopted and graphical compar-
isons with respect to the true Pareto front
of each problem are also included. Results
indicate that the proposed approach is very
promising.

1 Introduction

The immune system is one of the most important bio-
logical mechanisms humans possess since our own life
depends on it. In recent years, several researchers have
developed computational models of the immune sys-
tem that attempt to capture some of their most re-
markable features such as its self-organizing capability
[11, 9].

From the information processing perspective, the im-
mune system can be seen as a parallel and distributed
adaptive system [10, 3]. It is capable of learning, it
uses memory and is able of associative retrieval of in-
formation in recognition and classification tasks. Par-
ticularly, it learns to recognize patterns, it remembers
patterns that it has been shown in the past and its
global behavior is an emergent property of many local
interactions [3]. All these features of the immune sys-
tem provide, in consequence, great robustness, fault
tolerance, dynamism and adaptability [9]. These are
the properties of the immune system that mainly at-
tract researchers to try to emulate it in a computer.

In this paper, we propose an approach to solve multi-
objective optimization problems (either with or with-
out constraints) based on the clonal selection principle.

2 The Immune System

The main goal of the immune system is to protect the
human body from the attack of foreign (harmful) or-
ganisms. The immune system is capable of distinguish-
ing between the normal components of our organism
and the foreign material that can cause us harm (e.g.,
bacteria). These foreign organisms are called antigens.

The molecules called antibodies play the main role on
the immune system response. The immune response is
specific to a certain foreign organism (antigen). When
an antigen is detected, those antibodies that best rec-
ognize an antigen will proliferate by cloning. This
proccess is called clonal selection principle [4].

The new cloned cells undergo high rate mutations or
hypermutation in order to increase their receptor pop-
ulation (called repertoire). These mutations experi-
enced by the clones are proportional to their affinity
to the antigen.

The highest affinity antibodies experiment the lowest
mutation rates, whereas the lowest affinity antibodies
have high mutation rates. After this mutation process
ends, some clones could be dangerous for the body and
should therefore be eliminated.

After these clonation and hypermutation processes fin-
ish, the immune system has improved the antibodies’
affinity, which results on the antigen neutralization
and elimination.

At this point, the immune system must return to
its normal conditions, eliminating the excedent cells.
However, some cells remain circulating throughout the
body as memory cells. When the immune system is
later attacked by the same type of antigen (or a sim-



ilar one), these memory cells are activated, present-
ing a better and more efficient response. This second
encounter with the same antigen is called secondary
response.

The algorithm proposed in this paper is based on the
clonal selection principle previously described.

3 Multiobjective Optimization

Multiobjective optimization (also called multicriteria
optimization, multiperformance or vector optimiza-
tion) can be defined as the problem of finding [15]:

a vector of decision variables which satisfies
constraints and optimizes a vector function
whose elements represent the objective func-
tions. These functions form a mathematical
description of performance criteria which are
usually in conflict with each other. Hence,
the term “optimize” means finding such a
solution which would give the values of all
the objective functions acceptable to the de-
signer.

Formally, we can state the general multiobjective op-
timization problem (MOP) as follows:

Definition 1 (General MOP): Find the vector
& = [zt 25,...,22]" which will satisfy the m inequal-

ity constraints:

gz('f) 20 l=1727 -,m (1)
the p equality constraints
hi()=0 i=1,2,...,p (2)

and optimizes the vector function

where T = [$1,$2,...,$n]T is the wvector of decision
variables. O

In other words, we wish to determine from among the
set F of all numbers which satisfy (1) and (2) the par-
ticular set 27, x5, . . ., ), which yields the optimum val-
ues of all the k objective functions of the problem.

Another important concept is that of Pareto optimal-
ity, which was stated by Vilfredo Pareto in the XIX

century [16], and constitutes by itself the origin of re-
search in multiobjective optimization:

Definition 2 (Pareto Optimality:): We say that
Z* € F, is Pareto optimal if for every ¥ € Q and
I={1,2,...,k} either,

D (@) = 143 @)

or, there is at least one i € I such that (assuming
mazximization)

fi(&) < fi(T) (5)
O

In words, this definition says that #* is Pareto optimal
if there exists no feasible vector & which would increase
some criterion without causing a simultaneous decre-
ment in at least one other criterion.

Pareto optimal solutions are also termed non-inferior,
admissible, or efficient solutions [2]; their correspond-
ing vectors are termed nondominated. These solutions
may have no clearly apparent relationship besides their
membership in the Pareto optimal set. This is the set
of all solutions whose corresponding vectors are non-
dominated with respect to all other comparison vec-
tors. When plotted in objective space, the nondom-
inated vectors are collectively known as the Pareto
front.

4 The Proposed Approach

As indicated before, our algorithm is based on the
clonal selection principle, modeling the fact that only
the highest affinity antibodies to the antigens will pro-
liferate. Our algorithm uses the concept of Pareto
dominance to generate nondominated vectors. Also,
an external (or secondary) memory is used to store
nondominated vectors found along the evolutionary
process, in order to move towards the true Pareto front
over time (this can be seen as a form of elitism in evo-
lutionary multiobjective optimization [2]).

4.1 The Algorithm

Our algorithm is the following:

1. Generate randomly the initial population.

2. Initialize the secondary memory so that it is
empty.



3. Determine for each individual in the population,
if it is (Pareto) dominated or not. For constrained
problems, determine if an individual is feasible or
not.

4. Split the population into antigens and antibod-
ies. The division criterion is Pareto dominance
(i.e., nondominated individuals are the antigens
and dominated individuals are the antibodies).
In constrained problems, feasible individuals are
antigens, too. Note that either of the two criteria
(Pareto dominance or feasibility) is sufficient for
an individual to be considered an antigen. How-
ever, to guide the search properly, we distinguish
between “very good” (or ideal) antigens and those
which are only “good”. For that sake, we assign
a weight (w) to each antigen according to the fol-
lowing rules:

e w = 4 for nondominated and feasible anti-
gens (the best ones).

e w = 3 for nondominated antigens (even if
infeasible).

e w = 2 for feasible antigens (even if they are
dominated).

Note that in the previous rules, Pareto dominance
is given more importance than feasibility. These
values were arbitrarily adopted to give more or
less importance to each of the cases previously
indicated. Note however, that the same values
are adopted in all the examples presented in this
paper. Also, note that in unconstrained problems,
all nondominated individuals are made antigens
with a w = 2.

5. Copy the antigens (with w = 4 for constrained
problems and with w = 2 for unconstrained prob-
lems) to the secondary memory.

6. Select an antigen (regardless of its weight) at ran-
dom.

7. Assign a fitness value to each of the antibodies ac-
cording to their matching value (Z) with respect
to the antigen (randomly) chosen from the previ-
ous step (see Figure 1). Note that a new antigen
is randomly selected for each antibody.

8. Select the @ fittest antibodies from the antibodies
pool where the fitness criterion is defined by the
value of Z.

9. Create a number N of copies of the antibodies
selected.

Antigen: 011110010

Antibody: |0 11001110

Matches: 5
Length: 3 2
Matchvalue 5 + 3 + 2 =2

Figure 1: Matching measure between an antigen and
an antibody. The weights w are used to increase the
value of Z when an antibody matches a highly desir-
able antigen (i.e., nondominated and feasible).

10. Assign a mutation rate (M R) to each clone, ac-
cording to their similarity with an antigen ran-
domly chosen. The higher the similarity the lower
the mutation rate, and viceversa.

11. Apply mutation rate M R to each clone.

12. The new population is formed by the union of the
original antibodies and their clones.

13. The population size is returned to its origi-
nal value, allowing the nondominated individuals
(and the feasible ones if dealing with a constrained
problem) survive.

14. Go back to step 3 until convergence occurs or af-
ter reaching a certain (predetermined) number of
iterations.

The antigen-antibody matching measure (Z) adopted
in this paper is adapted from Farmer’s proposal [7].
This matching measure counts the number of matching
bits of the two strings compared as well as the number
of consecutive matching bits. For example, if we have
three contiguous similarities on the strings we add a
value of 3 raised to its w value to the total matching
measure (see figure 1).

Note that this algorithm is not really a genetic algo-
rithm since no sexual recombination takes place. In-
stead, only a clonation of individuals is used to gener-
ate the new population of the algorithm.

4.2 Secondary Memory

We use a secondary or external memory as an eli-
tist mechanism in order to maintain the best solutions
found along the process. The individuals stored in this
memory are all nondominated not only with respect
to each other but also with respect to all of the pre-
vious individuals who attempted to enter the external
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Space covered by the grid for objective 1

Figure 2: An adaptive grid to hadle the secondary
memory

memory. Therefore, the external memory stores our
approximation to the true Pareto front of the prob-
lem.

In order to enforce a uniform distribution of nondom-
inated solutions that cover the entire Pareto front
of a problem, we use the adaptive grid proposed by
Knowles and Corne [13] (see Figure 2).

Ideally, the size of the external memory should be infi-
nite. However, since this is not possible in practice, we
must set a limit to the number of nondominated solu-
tions that we want to store in this secondary memory.
By enforcing this limit, our external memory will get
full at some point even if there are more nondominated
individuals wishing to enter. When this happens, we
use an additional criterion to allow a nondominated in-
dividual to enter the external memory: region density
(i-e., individuals belonging to less densely populated
regions are given preference).

The algorithm for the implementation of the adaptive
grid is the following:

1. Divide objective function space according to the
number of subdivisions set by the user.

2. For each individual in the external memory, de-
termine the cell to which it belongs.

3. If the external memory is full, then determine
which is the most crowded cell.

4. To determine if a certain antigen is allowed to
enter the external memory, do the following:

o If it belongs to the most crowded cell, then it
is not allowed to enter.

e Otherwise, the individual is allowed to en-
ter. For that sake, we eliminate a (randomly

chosen) individual that belongs to the most
crowded cell in order to have an available slot
for the antigen.

5 Experiments

In order to validate our approach, we used several
test functions reported in the standard evolutionary
multiobjective optimization literature [5, 20, 2]. In
each case, we generated the true Pareto front of the
problem (i.e., the solution that we wished to achieve)
by enumeration using parallel processing techniques.
Then, we plotted the Pareto front generated by our
algorithm, which we call the multiobjective immune
system algorithm (MISA). The results indicated be-
low were found using the following parameters: Max-
imum number of iterations = 150, population size =
70, clonation rate = 0.8, number of clones = 15, size
of the external memory = 100. The above parameters
produce a total of 138,000 fitness function evaluations.

MISA was compared against the micro-genetic algo-
rithm for multiobjective optimization, which was re-
cently proposed [1]. This algorithm is representative
of the state-of-the-art in evolutionary multiobjective
optimization and has been found to produce similar
or better results than the NSGA-II [6] and PAES [13].

To allow a fair comparison, the micro-GA performed
the same number of fitness function evaluations as
MISA.

Despite the graphical comparisons performed, the two
following metrics were adopted to compare our results:

e Two Set Coverage (SC): This metric was pro-
posed in [22], and it can be termed relative cov-
erage comparison of two sets. Consider X', X" C
X' as two sets of phenotype decision vectors.
SC is defined as the mapping of the order pair
(X', X' to the interval [0, 1].

s Ha"eX";3a'eX ! = a"}|

! n
SC(X', X" X

(6)

If all points in X’ dominate or are equal to all
points in X", then by definition SC =1. SC =0
implies the opposite. In general, SC (X', X") and
SC(X",X") both have to be considered due to
set intersections not being empty. Of course, this
metric can be used for both spaces (objective
function or decision variable space), but in this
case we applied it in objective function space. The
advantage of this metric is that it is easy to cal-
culate and provides a relative comparison based



upon dominance numbers between generations or
algorithms.

e Spacing (S): This metric was proposed by Schott
[18] as a way of measuring the range (distance)
variance of neighboring vectors in the Pareto front
known. This metric is defined as:

where d; = min;(| f{(%) — f{(@) | + | f3(@) -
3@ 1), i,j = 1,...,n, d is the mean of all d;,
and n is the number of vectors in the Pareto front
found by the algorithm being evaluated. A value
of zero for this metric indicates all the nondomi-
nated solutions found are equidistantly spaced.

The parameters used by the micro-GA for the exper-
iments reported below are the following: maximum
number of generations = 8400, population size = 4,
number of grid subdivisions = 25, memory size = 50,
crossover rate = 0.8, number of iterations to achieve
nominal convergence = 4, size of the external mem-
ory = 100. We the previous parameters, the micro-
GA performs a total of 138,000 fitness function evalu-
ations.

Example 1

Minimize: F = (f1(z,y), f2(z,y)), where

fl(may) = z,
fo(z,y) = (1+10y) =
r ., r
-7 10y) 17 10y sin(2mqa)]

and0<z,y<1l,qg=4, a=2.

The comparison of results between the true Pareto
front of this example and the Pareto front produced
by MISA is shown in Figure 3. Note that the Pareto
front is disconnected (it consists of four Pareto curves).
In this case: SC(MISA,micro— GA) = 0.304 and
SC(micro—GA, MISA) = 0.29. This indicates a very
similar behavior from both algorithms and we can say
that there is a tie among the final nondominated so-
lutions produced by the two algorithms. In terms of
spacing, the results are presented in Table 1. Note
that the average results of MISA are better than those
of the micro-GA.

Table 1: Spacing for example 1

best average worst std.dev.

MISA 0.008853 | 0.114692 | 0.62904 | 0.175955
micro-GA | 0.007773 | 0.177104 | 0.991838 | 0.319061

Table 2: Spacing for example 2

best average worst std.dev.

MISA 0.008853 | 0.107427 | 0.209062 | 0.054843
micro-GA | 0.04119 0.1446 | 1.197458 | 0.253813

Example 2

Our second example is a two-objective optimization
problem proposed by Schaffer [17] that has been used
by several researchers [19]:

—T 1fa: S 1
C e 24z ifl<xz<3
Minimize f;(z) = 4—z if3<z<4 ®
44z ifx>4
Minimize f,(z) = (z —5)° )

and =5 < z < 10.

The comparison of results between the true Pareto
front of this example and the Pareto front pro-
duced by MISA is shown in Figure 4. In this case:
SC(MISA,micro — GA) = 0.487 and SC(micro —
GA, MISA) =0.56. Asin the previous example, these
values indicate a very similar behavior from both al-
gorithms and we can say that there is a tie among the
final nondominated solutions produced by the two al-
gorithms. In terms of spacing, the results are shown in
Table 2. Note again that the average results of MISA
are better than those of the micro-GA.

Example 3

The third example is the three-objective function prob-
lem proposed by Viennet [21]:

Minimize: F = (f1(z,y), f2(z,), f3(z,y))
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Figure 4: Comparison of results for the second test function. The true Pareto front of the problem is shown as
a continuous line (note that the vertical segment is NOT part of the Pareto front and is shown only to facilitate
drawing the front) and the Pareto front found by MISA is shown as crosses.



where:

52 2
hy = & 22) L 131) +3,
_ (z+y—-3)?  (2y—=)?
fQ(Z',y) - 175 + 17 - 137
_ Br-2y+4)?  (z—y+1)?
fg(l",y) - ) 27
+15

and: 4 <z,y<4,y<—-dx+4,z>-1,y>z—2.

The comparison of results between the true Pareto
front of this example and the Pareto front pro-
duced by MISA is shown in Figure 5. In this case:
SC(MISA,micro — GA) = 0.673 and SC(micro —
GA,MISA) = 0.605. As in the previous example,
these values indicate a very similar behavior from both
algorithms and we can say that there is a tie among
the final nondominated solutions produced by the two
algorithms. In terms of spacing, the results are shown
in Table 3. Note that the average results of the micro-
GA are better than those of MISA. In this case, MISA
had a poorer performance in terms of uniform distri-
bution than the micro-GA.

Example 4

The fourth example was proposed by Kita [12]:
Maximize F' = (fl (Z’, y)a f2(ma y))

where:

fl(may) = —$2+y,

1
fa(z,y) = sx4+y+1

2

37;3/20702 %$+y_%702 %m_}—y_%:OZ
52+ y — 30.

The comparison of results between the true Pareto
front of this example and the Pareto front pro-
duced by MISA is shown in Figure 6. In this case:
SC(MISA,micro — GA) = 1.00 and SC(micro —
GA,MISA) = 0.145. In this case, MISA produced so-
lutions that clearly dominated or were equal to those
generated by the micro-GA (therefore the value of 1.0).
This clearly indicates a better behavior of MISA. In
terms of spacing, the results are shown in Table 4. In
terms of this metric, the average results of the micro-
GA are better than those of MISA. Note however, that
since the solutions generated by the micro-GA are cov-
ered (i.e., dominated) by those produced by MISA, the

Table 4: Spacing for example 4

best average worst std.dev.
MISA 0.141532 | 0.518706 | 1.145541 | 0.349627
micro-GA | 0.039568 | 0.115826 | 0.830159 | 0.180039

fact that these solutions have a more uniform distri-
bution is less relevant, since these solutions are poorer
than those generated by MISA.

Example 5

Our fifth example is a two-objective optimization
problem defined by Kursawe [14]:

n—1

Minimize f;(Z) = Z (—10 exp (—0.2\/:%2 + mfﬂ))
i=1

(10)

n
Minimize f5(&) =Y _ (|lz:|*® + 5sin(z;)®)  (11)

i=1

where:

—5S$1,JE2,$3S5 (12)

The comparison of results between the true Pareto
front of this example and the Pareto front pro-
duced by MISA is shown in Figure 7. In this case:
SC(MISA,micro— GA) = 0.3490 and SC(micro —
GA,MISA) = 0.96. In this case, the micro-GA pro-
duced solutions that clearly dominated or were equal
to those generated by MISA (therefore the value very
close to 1.0). This clearly indicates a better behav-
ior of the micro-GA. In terms of spacing, the results
are shown in Table 5. Note that the average results
of MISA are better than those of the micro-GA. Note
however, that since the solutions generated by MISA
are covered (i.e., dominated) by those produced by the
micro-GA, the fact that these solutions have a more
uniform distribution is less relevant, since these solu-
tions are poorer than those generated by the micro-
GA.

Summarizing, we can see that our approach has a very
competitive behavior with respect to the micro-GA
when dealing with unconstrained test functions. How-
ever, in constrained test functions is not as competi-
tive (in general), but the results are still acceptable as
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Table 3: Spacing for example 3

best average worst std.dev.
MISA 0.382708 | 0.515023 | 0.632426 | 0.057835
micro-GA | 0.270519 | 0.294236 | 0.315999 | 0.012565
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Figure 6: Comparison of results for the fourth test function. The true Pareto front of the problem is shown as
a continuous line and the Pareto front found by MISA is shown as crosses.

Table 5: Spacing for example 5

best average worst std.dev.
MISA 2.008484 | 2.382588 | 3.201155 | 0.292547
micro-GA | 2.945237 | 3.299231 | 3.905389 | 0.353365
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Figure 7: Comparison of results for the fifth test function. The true Pareto front of the problem is shown as a
continuous line (note that the horizontal segment is NOT part of the Pareto front and is shown only to facilitate
drawing the front) and the Pareto front found by MISA is shown as crosses.

can be seen in the corresponding graphs. Nevertheless,
further improvements are required so that MISA can
incorporate constraints more efficiently into its fitness
function.

6 Conclusions and Future Work

We have presented a new multiobjective optimization
algorithm based on the clonal selection principle. The
approach seems promising and is able to produce re-
sults similar or better than those generated by an al-
gorithm that represents the state-of-the-art in evolu-
tionary multiobjective optimization when dealing with
unconstrained test functions. However, the algorithm
still requires further improvements so that it can han-
dle constraints more efficiently. Such work is currently
under way.

Additionally, we will be performing direct comparisons
with other evolutionary multiobjective optimization
techniques such as PAES [13], the NSGA-II [6] and
MOGA [8] with elitism. In such comparative study,
additional metrics will be implemented.

Our goal is to produce a highly competitive algorithm
(based on the artificial immune system) that repre-
sents a viable alternative to solve multiobjective opti-
mization problems of any kind (either constrained or
unconstrained).

Acknowledgements

We thank the comments of the anonymous reviewers
that greatly helped us to improve the contents of this
paper. The first author gratefully acknowledges sup-
port from CONACyT through project 34201-A. The
second author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at
the Computer Science Section of the Electrical Engi-
neering Department at CINVESTAV-IPN.

References

[1] Carlos A. Coello Coello and Gregorio Toscano
Pulido. Multiobjective Optimization using a
Micro-Genetic Algorithm. In Lee Spector, Erik D.
Goodman, Annie Wu, W.B. Langdon, Hans-
Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and
Edmund Burke, editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference
(GECCO’2001), pages 274-282, San Francisco,
California, 2001. Morgan Kaufmann Publishers.

[2] Carlos A. Coello Coello, David A. Van Veld-
huizen, and Gary B. Lamont. FEuvolutionary Al-
gorithms for Solving Multi-Objective Problems.
Kluwer Academic Publishers, New York, May
2002. ISBN 0-3064-6762-3.

[3] Dipankar Dasgupta, editor. Artificial Immune
Systems and Their Applications. Springer-Verlag,
Berlin, 1999.



[4]

[5

8

[9]

[10]

[11]

[12]

Leandro Nunes de Castro and Fernando José Von
Zuben. Artificial Inmune Systems: Part I - Ba-
sic Theory and Applications. Technical Report
TR-DCA 01/99, FEEC/UNICAMP, Brazil, De-
cember 1999.

Kalyanmoy Deb. Multi-Objective Genetic Al-
gorithms: Problem Difficulties and Construction

of Test Problems. Ewolutionary Computation,
7(3):205-230, Fall 1999.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal,
and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II. IEEE Trans-
actions on Evolutionary Computation, 6(2):182—
197, April 2002.

J. D. Farmer, N. H. Packard, and A. S. Perelson.
The Immune System, Adaptation, and Machine
Learning. Physica D, 22:187-204, 1986.

Carlos M. Fonseca and Peter J. Fleming. Ge-
netic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generaliza-
tion. In Stephanie Forrest, editor, Proceedings of
the Fifth International Conference on Genetic Al-
gorithms, pages 416423, San Mateo, California,
1993. Morgan Kauffman Publishers.

Stephanie Forrest and Steven A. Hofmeyr. Im-
munology as Information Processing. In L.A.
Segel and 1. Cohen, editors, Design Principles for
the Immune System and Other Distributed Au-
tonomous Systems, Santa Fe Institute Studies in
the Sciences of Complexity, pages 361-387. Ox-
ford University Press, 2000.

Steven A. Frank. The Design of Natural and Ar-
tificial Adaptive Systems. Academic Press, New
York, 1996.

John E. Hunt and Denise E. Cooke. An adap-
tative, distributed learning systems based on the
immune system. In Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cy-
bernatics, pages 2494-2499, 1995.

Hajime Kita, Yasuyuki Yabumoto, Naoki Mori,
and Yoshikazu Nishikawa. Multi-Objective Op-
timization by Means of the Thermodynamical
Genetic Algorithm. In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-
Paul Schwefel, editors, Parallel Problem Solving
from Nature—PPSN IV, Lecture Notes in Com-
puter Science, pages 504-512, Berlin, Germany,
September 1996. Springer-Verlag.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Joshua D. Knowles and David W. Corne. Ap-
proximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. FEwvolution-
ary Computation, 8(2):149-172, 2000.

Frank Kursawe. A Variant of Evolution Strategies
for Vector Optimization. In H. P. Schwefel and
R. Mianner, editors, Parallel Problem Solving from
Nature. 1st Workshop, PPSN I, volume 496 of
Lecture Notes in Computer Science, pages 193—
197, Berlin, Germany, oct 1991. Springer-Verlag.

Andrzej Osyczka. Multicriteria optimization for
engineering design. In John S. Gero, editor,
Design Optimization, pages 193-227. Academic
Press, 1985.

Vilfredo Pareto. Cours D’Economie Politique,
volume I and II. F. Rouge, Lausanne, 1896.

J. David Schaffer. Multiple Objective Optimiza-
tion with Vector Evaeluated Genetic Algorithms.
PhD thesis, Vanderbilt University, 1984.

Jason R. Schott. Fault Tolerant Design Using
Single and Multicriteria Genetic Algorithm Op-
timization. Master’s thesis, Department of Aero-
nautics and Astronautics, Massachusetts Institute
of Technology, Cambridge, Massachusetts, May
1995.

N. Srinivas and Kalyanmoy Deb. Multiobjec-
tive Optimization Using Nondominated Sorting in
Genetic Algorithms. Ewvolutionary Computation,
2(3):221-248, Fall 1994.

David A. Van Veldhuizen and Gary B. Lam-
ont. MOEA Test Suite Generation, Design &
Use. In Annie S. Wu, editor, Proceedings of
the 1999 Genetic and Evolutionary Computation
Conference. Workshop Program, pages 113-114,
Orlando, Florida, July 1999.

Rémy Viennet, Christian Fontiex, and Ivan Marc.
New Multicriteria Optimization Method Based on
the Use of a Diploid Genetic Algorithm: Example
of an Industrial Problem. In J. M. Alliot, E. Lut-
ton, E. Ronald, M. Schoenauer, and D. Snyers,
editors, Proceedings of Artificial Evolution (Euro-
pean Conference, selected papers), pages 120-127,
Brest, France, September 1995. Springer-Verlag.

Eckart Zitzler, Kalyanmoy Deb, and Lothar
Thiele. Comparison of Multiobjective Evolution-
ary Algorithms: Empirical Results. Fvolutionary
Computation, 8(2):173-195, Summer 2000.



