
Evolutionary Multiobjective Optimization
using a Cultural Algorithm

Carlos A. Coello Coello and Ricardo Landa Becerra

Abstract— In this paper, we present the first proposal to use a
cultural algorithm to solve multiobjective optimization problems.
Our proposal uses evolutionary programming, Pareto ranking and
elitism (i.e., an external population). The approach proposed is val-
idated using several examples taken from the specialized literature.
Our results are compared with respect to the NSGA-II, which is
an algorithm representative of the state-of-the-art in evolutionary
multiobjective optimization. The performance of our approach in-
dicates that cultural algorithms are a viable alternative for multi-
objective optimization.

Keywords— cultural algorithms, multiobjective optimization,
evolutionary programming.

I. INTRODUCTION

In recent years, evolutionary algorithms have been
widely used for multiobjective optimization, obtaining
very promising results [3], [2]. An important advantage
of evolutionary algorithms over traditional techniques
used for multiobjective optimization is that the former
operate over a set of solutions at a time. Therefore, evo-
lutionary algorithms can produce several elements of the
Pareto optimal set in a single run rather than generating
one at a time as traditional mathematical programming
approaches.

Cultural algorithms [18] are a technique that incorpo-
rates domain knowledge obtained during the evolutionary
process as to make the search process more efficient. Cul-
tural algorithms have been successfully applied to sev-
eral types of optimization problems (e.g., in constrained
single-objective optimization problems [20], [12], [13],
[4]). However, until now, nobody had proposed a cul-
tural algorithm for multiobjective optimization adopting
Pareto ranking and elitism. Ours is then the first proposal
in this direction.

II. BASIC CONCEPTS

Definition 1 (General MOP): Find the vector
������� ����
	���� 	�������	��������� which will satisfy the � inequality con-

straints:

�
��� ������ �"!#�%$
	'&(������)	 � (1)

the * equality constraints

+ ��� ����,�-�"!.�/$
	'&(������0	 * (2)

and will optimize the vector function

�1 � ����2� � 1 � � ����)	 1 � ����0	�������	 143 � ���� ��� (3)

CINVESTAV-IPN, Evolutionary Computation Group
Depto. de Ing. Elect./Sección de Computación,
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D. F. 07300,
ccoello@cs.cinvestav.mx,
rlanda@computacion.cs.cinvestav.mx

where
��5� � � � 	6� 	������)	�� � �7� is the vector of decision

variables. 8
Definition 2 (Pareto Optimality:): A point

����:9�; is
Pareto optimal if for every

��<9=; and > �@?A$
	'&(������0	'B�C
either, D �FE
GA� 1 ��� ����H� 1 ��� �� � �6� (4)

or, there is at least one !H9 > such that

1 � � ����JI 1 � � �� � � (5)

8
(; is the feasible region). In words, this definition says

that
���� is Pareto optimal if there exists no feasible vector�� which would decrease some criterion without causing

a simultaneous increase in at least one other criterion.

Definition 3 (Pareto Dominance): A vector
�KL�

�FK � 	�������	�K 3 � is said to dominate
�MN�L�FM � 	�������	6M 3 � (de-

noted by
�K<O �M) if and only if u is partially less than v, i.e.,D !,9P?A$A	������)	'B�CA	�K �#Q M ��RTS !29U?A$
	������0	�B�CWV4K �#X M � . 8

Definition 4 (Pareto Optimal Set): For a given MOP�1 �F��� , the Pareto optimal set (Y �) is defined as:

Y � VZ�%?��[9[;]\
^ S �`_a9=; �1 �b�`_7�JO �1 �F���0CA� (6)

8
Definition 5 (Pareto Front:): For a given MOP

�1 �b���
and Pareto optimal set Y � , the Pareto front (YWc �) is de-
fined as:

YWc � VZ�%? �Kd� �1 �e� 1 � �F���0	�������	 143 �b���6�f\g�h9 Y � C�� (7)

8
III. NOTIONS OF CULTURAL ALGORITHMS

Cultural algorithms were developed by Robert G.
Reynolds as a complement to the metaphor adopted by
evolutionary algorithms, which was mainly focused on
genetic concepts and on the natural selection mechanism
[18]. Cultural algorithms are based on some theories pro-
posed in sociology and archaelogy to model cultural evo-
lution. Such theories indicate that cultural evolution can
be seen as an inheritance process that occurs at two levels:
the micro-evolutionary level, and the macro-evolutionary
level.

At the micro-evolutionary level, individuals are de-
scribed in terms of “behavioral traits” (which can be
socially acceptable or unacceptable). These behav-
ioral traits are passed from generation to generation
using several socially motivated operators. At the
macro-evolutionary level, individuals are able to generate

“mappa” [17], or generalized descriptions of their expe-
riences. Individual mappa can be merged and modified
to form “group mappa” using a set of generic or problem
specific operators. Both levels share a communication
link.

The micro-evolutionary level refers to the knowledge
acquired by individuals through generations which, once
encoded and stored is used to guide the behavior of the
individuals that belong to a certain population [17], [7].
Reynolds attempts to capture this double inheritance phe-
nomenon in the cultural algorithm [18]. The goal is to in-
crease the learning or convergence rates of the algorithm
as to provide a better response to a large number of prob-
lems [10].

Cultural algorithms operate on two spaces. First, they
operate on the population space as any other evolution-
ary computation technique in which a set of individuals
(called population) is adopted. Each individual has a set
of features independent from each other which allows us
to determine its fitness. Through time, such individuals
can be replaced by some of its descendants, obtained af-
ter applying a set of operators to the population.

The second space is the belief space, where the knowl-
edge acquired by the individuals along the evolutionary
process is stored. The information contained in this space
must be accesible to any individual, so that it can use it to
modify its behavior.

To unify both spaces, a communication protocol is es-
tablished such that it dictates rules regarding the type of
information to be exchanged between these two spaces.
For example, to update the belief space, the individual ex-
periences of a select set of individuals are incorporated.
This select group of individuals is obtained with the func-
tion acceptance which is applied to the entire population.
On the other hand, the operators that modify the popu-
lation (i.e., recombination and mutation) and the selec-
tion operator are modified by the function influence. This
function acts in such a way that the individuals resulting
from the application of the operators tend to approach the
desirable behavior while staying away from undesirable
behaviors. Such desirable and undesirable behaviors are
defined in terms of the information stored in the belief
space. These two functions are used to establish the com-
munication between the two spaces (i.e., population and
belief). The interactions between these two spaces can be
appreciated in Figure 1 [19].

Following this model, we have designed a cultural al-
gorithm for multiobjective optimization, trying to take
advantage of its main features.

IV. DESCRIPTION OF OUR APPROACH

We propose the use of a cultural algorithm combined
with evolutionary programming (Cultural Algorithm with
Evolutionary Programming [1], or CAEP). The pseudo-
code of our approach is shown in Algorithm 1. Here, we
can clearly see the similarities of our approach with tradi-
tional evolutionary programming [8], and we also include
the steps where the belief space is incorporated.

The problems that we are interested in solving have �
decision variables and B objective functions. The popula-
tion consists of a set of individuals, each of which repre-

Influence

Selection
Performance

Variation

Function

Acceptance

Adjust

Beliefs

Population

Fig. 1. Spaces of a cultural algorithm.

Algorithm 1 Basic structure of the cultural algorithm for
multiobjective optimization.

Generate the initial population of size *
Evaluate the initial population
Initialize the belief space
Repeat

Apply mutation
to generate * offspring (we now
have & * individuals in the population)

Evaluate each offspring
Perform binary tournaments, randomly

choosing � contenders for each
individual. The decisions taken
in the tournaments will be
influenced by the information
stored in the belief space.

Select the * individuals with
the largest number of victories
in the tournaments, to produce the
population of the following generation

Add the new nondominated individuals
to the external memory (file)

Update belief space with the individuals
added to the external memory

While stopping condition is not met

sents a possible solution to the problem. Each individual
contains the � decision variables of the problem to be
solved. The population is initialized with * individuals
randomly generated using a uniform distribution within
the allowable range for each decision variable. The ex-
ternal memory indicated in the Algorithm 1 is an external
file (or secondary population) where the nondominated
individuals found along the evolutionary are stored. The
final contents of this file is the set of solutions presented
by the algorithm to the user. This external memory has a
maximum size � that corresponds to the number of non-
dominated solutions that we aim to obtain. Next, we de-
tail the structure of the belief space adopted, together with
the remaining steps of the algorithm.

A. Structure of the Belief Space

The belief space consists of two parts: the phenotypic
normative part and a grid which is used to emphasize the

��� � K � � ��� K � ����� ��� 3 K � 3
Fig. 2. Phenotypic normative part

lf1
lf2 uf2

f2

uf1

f1

Fig. 3. Grid in the belief space for a problem with two objective func-
tions. In this case, ���
	����	�� (eight sub-intervals in each dimen-
sion).

generation of nondominated solutions that are uniformly
distributed along the Pareto front. This grid is a variation
of the adaptive grid proposed by Knowles and Corne [14].

The phenotypic normative part contains only the lower
and upper bounds,

� � � and K � � , of the intervals for each
objective function (! � $
	�������	�B) within which the grid
will be built. This grid will be used to place each non-
dominated solution in some sort of coordinate system
where the values of the objective functions are used to
place each solution (see Figure 2).

Once we have these intervals, we only need to know
the number of identical sub-divisions to apply to each of
them (� � , with !#�%$
	�������	�B), so that we can build the grid
in phenotypic space. An example of the grid adopted is
shown in Figure 3.

As a result, we will have � � � ����� � 3 cells, which will
all have the same dimensions. The values � � are input
parameters required by the algorithm. For each cell, we
store the count of the number of nondominated individ-
uals stored in the secondary memory that are contained
within. This is useful to obtain an appropriate distribu-
tion of the nondominated solutions, avoiding that they
all cluster together around a certain portion of the Pareto
front.

B. Initialization of the Belief Space

In order to initialize the belief space is necessary to
have an initial population, because we will use the non-
dominated individuals from that population (it can be
proved that in any population of size greater than zero
there is at least one nondominated individual [23]).

B.1 Initialization of the Phenotypic Normative Part

The initialization of the phenotypic normative part of
the belief space consists of finding the extrema of each
objective function for the nondominated individuals of
the initial population. These extrema are stored in

��� � andK � � , so that we can place the grid in the region where the
nondominated individuals known so far are located.

lf1
lf2 uf2

f2

f1

uf1

Current grid

Possible previous grid

Known Pareto front

Fig. 4. The update of the phenotypic normative part of the belief space
aims to contain the entire Pareto front known so far within the grid.

B.2 Initialization of the Grid

The grid is created taking as intervals the values stored
in the phenotypic normative part, and we use the input
paramters � � to divide such grid. The counters of the
nondominated individuals contained within each cell are
initializaed to zero.

C. Updating Belief Space

The belief space grid is updated at each generation,
whereas the phenotypic normative part is updated at each� ����������� ����� generations, where � ����������� ����� is a parameter
defined by the user.

C.1 Updating the Grid

In order to update the grid, we simply increment the
counters of the nondominated individuals by the number
of individuals added to the external memory during the
current generation. The update of the grid is very sim-
ple, and that is the reason why we do it at every gen-
eration. For the update of this part of the belief space,
the acceptance function uses the population of the exter-
nal memory and only chooses the new individuals within
that population.

C.2 Updating the Phenotypic Normative Part

The update of the phenotypic normative part is not
done at each generation, because it involves the rebuild-
ing of the grid and, therefore, it is a process that could
seriously affect the computational efficiency of the algo-
rithm. For this update, we also use the population con-
tained in the secondary memory.

Again, as in the initialization of this phenotypic nor-
mative part, we need to identify the extrema for each ob-
jective function contained in the external memory. These
values are stored in

� � � and K � � for ! � $A	������)	�B . With
the new values, we build the grid, which covers the entire
Pareto front known so far (see Figure 4) and that probably
has limits beyond the boundaries of the previous grid.

After initializing the grid, all the counters are set to
zero and it is then necessary to add all the individuals
from the external memory to the counter of their corre-
sponding cell, so that the belief space is ready again to be
used.

D. Mutation

The information stored in the belief space belongs to
the phenotypic space of our problem. Therefore, it is dif-
ficult to use it to self-adapt the mutation operator (since
mutation operates on genotypic space). Given this incon-
venience, we leave the mutation parameters as inputs for
the algorithm, which must be provided by the user (i.e.,
no self-adaptation mechanism is adopted).

The Gaussian mutation operator adopted in our algo-
rithm is based on the following expression:

�`_� � �`����� � � 	����

where: � � is the ! -th variable of individual � , � _� is the! -th variable of the new individual � _ obtained after ap-
plying mutation, and � ��� 	���� is a random variable with
a normal distribution that has a mean � and a standard
deviation � . In our case, � will always be zero, and � is a
parameter provided by the user. Mutation is then applied
for !2� $A	������)	 � , and it operates on the main population.
Therefore, at the end of the process, we will have a pop-
ulation of size & * .
E. Tournament Selection

Tournament selection is performed considering a main
population of size & * . Each individual is confronted
against other � individuals which are randomly chosen
from the main population. Tournament rules are the fol-
lowing:

1. If an individual dominates his contender, then the
dominating individual wins.

2. If the individuals confronted are non-comparable,
or if the values of their objective functions are the
same, then:

(a) If both lie within the grid of the belief space, then
the individual located in the less populated cell
(according to the cell counters) wins.

(b) If one of the individuals lies outside the grid, then
it automatically wins.

The first rule should be straightforward, since we are
simply giving preference to nondominated individuals so
that we can approach the Pareto front. In the second
point, we appreciate the influence of the belief space in
the decisions made during the tournament. The first sub-
part of the second point aims to distribute solutions in
a uniform way among the cells, so that we can produce
a better distributed Pareto front. Finally, if we have the
case indicated in the second subpart of the second point,
it means that we have found a solution that is beyond the
Pareto front known so far. Since this solution will gener-
ate a new segment of the Pareto front, it is important to
keep it. Figure 5 shows the case in which an individual
lies outside the grid.

Once the tournaments finish, we select the individu-
als with the largest number of victories to be part of the
following generation. We can see that these tournaments
are similar to those of the NPGA [11], where each tour-
nament competitor is compared with respect to random
sample of the population. However, in the NPGA we ap-
ply Pareto ranking with respect to the sample randomly

lf1
lf2 uf2

f2

uf1

f1

New nondominated solution

Known Pareto front

Fig. 5. Tournament in the case in which an individual lies outside the
grid. The point found is a new extrema of the Pareto front known
so far and it is therefore important to keep it.

selected, whereas in our algorithm we compare individ-
ually, counting the number of victories (as it is normally
done in evolutionary programming).

F. Adding Individuals to the External Memory

The external memory must contain only nondominated
individuals, without repetition. To add such individuals
to the external memory, we use the following rules:

1. If the individual that we want to add is domi-
nated by another individual contained in the external
memory, then the new individual is not added.

2. If the individual that we want to add dominates
some individual contained in the external memory,
then it is introduced in its place, but it is still com-
pared with respect to everybody else. If the same in-
dividual recently added dominates another one, then
the dominated individual is removed from the exter-
nal memory.

3. If the individual that we want to add is not dom-
inated and it does not dominate any other individ-
ual in the external memory, and if the number of
individuals in the external memory is less than the
maximum allowable value � , then we add the new
individual at the end.

4. If the individual that we want to add is not domi-
nated and it does not dominate any other individual
in the external memory, but the external memory is
already full, then we locate an individual whose cell
contains more individuals that the cell to which the
new individual would belong (in case it is added).
Then, we replace the old individual by the new one.
This will motivate a better distribution of nondomi-
nated solutions along the Pareto front.

V. COMPARISON OF RESULTS

In order to validate our proposed approach, we used
a set of test functions which have commonly been
adopted as a benchmark in the specialized literature
[3]. The first test function, MOP1, was proposed by
Schaffer [21]; our second test function, MOP2, was
proposed by Fonseca [9]; our third test function MOP3
was proposed by Poloni [16]. MOP4 was proposed by
Kursawe [15]; Finally, MOP6 was designed following
Deb’s methodology [5]. All these functions have variable

degrees of difficulty. There are problems with convex
and concave Pareto fronts, continuous and disconnected,
and problems with two and with three objective func-
tions. The mathematical description of these problems is
provided next:

MOP1. Minimize:�1 �b���H�/� 1 � �F���0	 1 �b�����
where:

1 � �F��� � �
1 �F��� � �F���5&
�

and � $ � � Q � Q $ � � .
MOP2. Minimize:�1 � ����H�/� 1 � � ����0	 1 � ����6�
where:

1 � � ���� � $������	�
 � �� �� ��� � � � $�
��� ��

1 � ���� � $������	�
 � �� �� ��� � � � $�
� � ��

and ��� Q �`� Q � (!.�%$
	'&(��).

MOP3. Maximize:�1 � ����,�e� 1 � �F� 	�� �0	 1 �b�a	�� �6�
where:
1 � �b�a	�� � � � � $ � ��� � ��� � � �-��� ��� � �1 �b�a	�� � � � � �b� ���A� �-��� � $ � �

with:� � � � �! #"�$% $�� &#&(')"�$ ��"�$*%f&+�N$
�! #&�'," &� � $
�! #"�$% $���&(')"�$ � &#"�$*%f&+� � �! #&�'," &� � � � �! #"�$%J��� &-&�')" � ��"�$%.��� $A� -&�')"/�� � $
�! #"�$%J����&(')"(� � &#"�$%.���U� � -&�')"/�
and ��0 Q � 	�� Q 0 .

MOP4. Minimize:�1 � ����H�/� 1 � � ����0	 1 � ����6�
where:

1 � � ���� � �/1 ��
�*� �32 � $��)4)5 176�8 �9 � :<;=�>?:<;=*@/ACB

1 � ���� �
��
�� � �6\ � � \ � �D #"�$*% �F�FE� �6�

with: G
� � � HI � �

and �J Q � �,Q (!#�@$A	�& 	��).
MOP6. Minimize:�1 �F� 	�� �,�/� 1 � �b�a	��(�)	 1 �F� 	�� ���

where:
1 � �b�a	�� � � �
1 �b�a	�� � � � $ � $��K�(�ML $�� � �

$ � $��N� �PO ��
$ � $ �N� "�$%a� &N0 � ���RQ

with: � �S� , T �-& , y � Q �a	�� Q $.
The parameters adopted by our CAEP are the follow-

ing: * �VU , � � $ �
� , W � � : �V�, (��
�
� , � � � ������ � ��� �&4� , � � � $ � (! � $
	������)	�B), � �YX �Z , � � $.
The total number of objective function evaluations dur-
ing one execution of our algorithm is computed using
* � W � � : �%$g� . For the examples used in this paper, we
performed 210,006 evaluations per run.

We compared CAEP with respect to the NSGA-II [6],
which used the following parameters: population size =
100, maximum number of generations = 2100, crossover
rate = 0.9, mutation rate =

�
� , SBX parameter = 10 y

mutation parameter = 100. These values have been sug-
gested by the author of the algorithm, except for the max-
imum number of generations, which was chosen in such
a way that the total number of evaluationes performed by
the NSGA-II was approximately the same as CAEP. The
NSGA-II performed 210,100 objective function evalua-
tions per run.

Table I shows the statistics of each of the three metrics
adopted to allow a quantitative comparison: error ratio
(ER) [23], generational distance (GD) [23] and spacing
(SP) [22] for ten independent runs of each algorithm.

Figure 6 shows the average behavior of each of the two
algorithms compared (CAEP y NSGA-II) for the first test
function. Based on the results shown in Table I we can
see that, in this case, CAEP obtained better results for the
three metrics adopted.

Figure 7 shows the average behavior of each of the
two algorithms compared in MOP2. In this case, our ap-
proach had a high error ratio (approximately 50%). With
respect to generational distance, both algorithms had low
values. With respect to spacing, the NSGA-II had values
slightly higher than those of CAEP.

Figure 8 shows the average behavior of each of the two
algorithms compared in MOP3. In this case, the NSGA-
II had a lower generational distance than our approach,
but a higher error ratio. This problem has a disconnected
Pareto front and, therefore, spacing does not correctly re-
flect the performance of an algorithm. With respect to
spacing, the NSGA-II had better values than CAEP.

Figure 9 shows the average behavior of the two algo-
rithms in MOP4. In this case, all the metrics indicate
better values for the NSGA-II, but our algorithm covers
a region of the Pareto front that the NSGA-II can never
cover, as Figure 9 indicates.

Figure 10 shows the average behavior of the two al-
gorithms in MOP6. In this case, both algorithms have

f2

f1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

CAEP
NSGA−II

Fig. 6. Comparison of results between our algorithm (CAEP) and the NSGA-II for MOP1.

f1

f2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NSGA−II
CAEP

Fig. 7. Comparison of results between our algorithm (CAEP) and the NSGA-II for MOP 2.

f1

f2

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

NSGA−II
CAEP

Fig. 8. Comparison of results between our algorithm (CAEP) and the NSGA-II for MOP3.

f1

f2

−14

−12

−10

−8

−6

−4

−2

0

−19.5 −19 −18.5 −18 −17.5 −17 −16.5 −16 −15.5 −15 −14.5

NSGA−II
CAEP

Fig. 9. Comparison of results between our algorithm (CAEP) and the NSGA-II for MOP4.

f1

f2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NSGA−II
CAEP

Fig. 10. Comparison of results between our algorithm (CAEP) and the NSGA-II for MOP6.

very low error ratio values (the NSGA-II almost always
produces 0%), but our approach has a lower generational
distance than the NSGA-II. Regarding spacing, we again
have values slightly better for the NSGA-II, but this is
caused by the disconnected Pareto front of this problem.

In summary, our results indicate that CAEP has a com-
petitive behavior with respect to the NSGA-II, which is
representative of the state-of-the-art in evolutionary mul-
tiobjective optimization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the first proposal to
use cultural algorithms for multiobjective optimization
incorporating Pareto-based selection. We have shown
how adding a belief space to an evolutionary program-
ming algorithm can be beneficial and represents a viable
alternative to solve multiobjective problems.

The small comparative study presented in this paper
validates the viability of our proposal. However, we obvi-
ously still need to do a more in-depth study in which other
evolutionary multiobjective optimization techniques and
more test functions are involved. Additionally, there are
still a few limitations of CAEP that require a more careful
analysis. For example, CAEP tends to lose diversity very
quickly in some cases. In order to deal with this prob-

lem, we are currently designing an alternative scheme to
maintain diversity which emphasizes efficiency (compu-
tationally speaking). We are also interested in improving
the mechanism adopted to generate a uniform distribution
of nondominated solutions along the Pareto front. This is
motivated by the fact that our current mechanism still has
some flaws and sometimes the distribution produced by
our algorithm is not as good as expected.

ACKNOWLEDGMENTS

The first author acknowledges support from the mexi-
can Consejo Nacional de Ciencia y Tecnologı́a (CONA-
CyT) through project number 34201-A. The second au-
thor acknowledges support from CONACyT through a
scholarship to pursue graduate studies at CINVESTAV-
IPN’s Electrical Engineering Department (Computer Sci-
ence Section).

REFERENCES

[1] Chan-Jin Chung and Robert G. Reynolds. CAEP: An Evolution-
based Tool for Real-Valued Function Optimization using Cultural
Algorithms. Journal on Artificial Intelligence Tools, 7(3):239–
292, 1998.

[2] Carlos A. Coello Coello. An Updated Survey of GA-Based Mul-
tiobjective Optimization Techniques. ACM Computing Surveys,
32(2):109–143, June 2000.

[3] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B.

TABLE I

COMPARISON OF RESULTS.

ER GD SP
MOP CAEP NSGA-II CAEP NSGA-II CAEP NSGA-II
1 Average 0.003 0.008059 0.000946 0.061548 0.037342 0.058298

Std. Dev. 0.006749 0.005818 0.000046 0.002711 0.002674 0.009385
Min. 0 0 0.000899 0.058940 0.034057 0.043401
Max. 0.02 0.017857 0.001045 0.067989 0.042604 0.075381

2 Average 0.911 0.574 0.001103 0.000280 0.010931 0.007241
Std. Dev. 0.046774 0.034059 0.000171 0.000034 0.001040 0.000741
Min. 0.84 0.53 0.000934 0.000230 0.009493 0.006015
Max. 0.98 0.63 0.001514 0.000349 0.012157 0.008287

3 Average 0.149 0.209 0.015321 0.001941 0.607229 0.092216
Std. Dev. 0.069194 0.041218 0.026480 0.000078 1.025953 0.008415
Min. 0.06 0.15 0.001942 0.001822 0.065285 0.081569
Max. 0.28 0.28 0.076256 0.002107 2.80319 0.106568

4 Average 0.876 0.144 0.022522 0.002892 0.139053 0.038378
Std. Dev. 0.101017 0.049035 0.008002 0.000203 0.049507 0.003837
Min. 0.64 0.05 0.013604 0.002525 0.094707 0.031393
Max. 0.97 0.21 0.037278 0.003199 0.242052 0.044254

6 Average 0.028 0 0.000259 0.000337 0.014476 0.008266
Std. Dev. 0.018135 0 0.000028 0.000013 0.005168 0.000918
Min. 0 0 0.000220 0.000318 0.009296 0.006851
Max. 0.06 0 0.000302 0.000355 0.022920 0.010127

Lamont. Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, New York, 2002.

[4] Carlos A. Coello Coello and Ricardo Landa Becerra. Adding
Knowledge and Efficient Data Structures to Evolutionary Pro-
gramming: A Cultural Algorithm for Constrained Optimization.
In W.B. Langdon, E.Cantú-Paz, K. Mathias, R. Roy, D. Davis,
R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A.C. Schultz, J. F. Miller, E. Burke, and
N.Jonoska, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2002), pages 201–209, San
Francisco, California, July 2002. Morgan Kaufmann Publishers.

[5] Kalyanmoy Deb. Multi-Objective Genetic Algorithms: Prob-
lem Difficulties and Construction of Test Problems. Evolutionary
Computation, 7(3):205–230, Fall 1999.

[6] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Me-
yarivan. A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA–II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, April 2002.

[7] W. H. Durham. Co-evolution: Genes, Culture, and Human Diver-
sity. Stanford University Press, Stanford, California, 1994.

[8] Lawrence J. Fogel. Artificial Intelligence through Simulated Evo-
lution. Forty Years of Evolutionary Programming. John Wiley &
Sons, Inc., New York, 1999.

[9] Carlos M. Fonseca and Peter J. Fleming. Multiobjective Genetic
Algorithms Made Easy: Selection, Sharing, and Mating Restric-
tion. In Proceedings of the First International Conference on Ge-
netic Algorithms in Engineering Systems: Innovations and Appli-
cations, pages 42–52, Sheffield, UK, September 1995. IEE.

[10] Benjamin Franklin and Marcel Bergerman. Cultural algorithms:
Concepts and experiments. In Proc. of the 2000 Congress on Evo-
lutionary Computation, pages 1245–1251, Piscataway, NJ, 2000.
IEEE Service Center.

[11] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A
Niched Pareto Genetic Algorithm for Multiobjective Optimiza-
tion. In Proceedings of the First IEEE Conference on Evolution-
ary Computation, IEEE World Congress on Computational Intel-
ligence, volume 1, pages 82–87, Piscataway, New Jersey, June
1994. IEEE Service Center.

[12] Xidong Jin and Robert G. Reynolds. Using Knowledge-Based
Evolutionary Computation to Solve Nonlinear Constraint Opti-
mization Problems: a Cultural Algorithm Approach. In 1999
Congress on Evolutionary Computation, pages 1672–1678, Wash-
ington, D.C., July 1999. IEEE Service Center.

[13] Xidong Jin and Robert G. Reynolds. Mining Knowledge in Large-
Scale Databases Using Cultural Algorithms with Constraint Han-
dling Mechanisms. In Proceedings of the Congress on Evolution-
ary Computation 2000 (CEC’2000), volume 2, pages 1498–1506,
Piscataway, New Jersey, July 2000. IEEE Service Center.

[14] Joshua D. Knowles and David W. Corne. Approximating the Non-

dominated Front Using the Pareto Archived Evolution Strategy.
Evolutionary Computation, 8(2):149–172, 2000.

[15] Frank Kursawe. A variant of evolution strategies for vector op-
timization. In H. P. Schwefel and R. Männer, editors, Parallel
Problem Solving from Nature. 1st Workshop, PPSN I, volume 496
of Lecture Notes in Computer Science, pages 193–197, Berlin,
Germany, oct 1991. Springer-Verlag.

[16] Carlo Poloni, Giovanni Mosetti, and Stefano Contessi. Multiob-
jective Optimization by GAs: Application to System and Compo-
nent Design. In Computational Methods in Applied Sciences ’96:
Invited Lectures and Special Technological Sessions of the Third
ECCOMAS Computational Fluid Dynamics Conference and the
Second ECCOMAS Conference on Numerical Methods in Engi-
neering, pages 258–264, Chichester, 1996. Wiley.

[17] A. C. Renfrew. Dynamic Modeling in Archaeology: What, When,
and Where? In S. E. van der Leeuw, editor, Dynamical Model-
ing and the Study of Change in Archaelogy. Edinburgh University
Press, Edinburgh, Scotland, 1994.

[18] Robert G. Reynolds. An Introduction to Cultural Algorithms. In
A. V. Sebald and L. J. Fogel, editors, Proceedings of the Third
Annual Conference on Evolutionary Programming, pages 131–
139. World Scientific, River Edge, New Jersey, 1994.

[19] Robert G. Reynolds. Cultural algorithms: Theory and applica-
tions. In David Corne, Marco Dorigo, and Fred Glover, editors,
New Ideas in Optimization, pages 367–377. McGraw-Hill, Lon-
don, 1999.

[20] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta.
Using cultural algorithms for constraint handling in GENOCOP.
In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, edi-
tors, Proceedings of the Fourth Annual Conference on Evolution-
ary Programming, pages 298–305. MIT Press, Cambridge, Mas-
sachusetts, 1995.

[21] J. David Schaffer. Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms. In Genetic Algorithms and their
Applications: Proceedings of the First International Conference
on Genetic Algorithms, pages 93–100. Lawrence Erlbaum, 1985.

[22] J. R. Schott. Fault Tolerant Design Using Single and Multicrite-
ria Genetic Algorithm Optimization. Master’s thesis, Department
of Aeronautics and Astronautics, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, May 1995.

[23] David A. Van Veldhuizen. Multiobjective Evolutionary Algo-
rithms: Classifications, Analyses, and New Innovations. PhD the-
sis, Department of Electrical and Computer Engineering. Grad-
uate School of Engineering. Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, May 1999.

