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Abstract- In this paper, we propose a multi-objective evo-
lutionary algorithm that incor porates some coevolution-
ary concepts. The primary design goal of the proposed
approach isto reduce the total number of objective func-
tion evaluations required to produce a reasonably good
approximation of thetrue Pareto front of a problem. The
main idea of the proposed approach isto concentrate the
search effort on promising regions that arise during the
evolutionary process as a byproduct of a mechanism that
subdivides decision variable space based on an estimate
of the relative importance of each decision variable. The
proposed approach is validated using several test func-
tions taken from the specialized literature and it is com-
pared with respect to three approachesthat arerepresen-
tative of the state-of-the-art in evolutionary multiobjec-
tive optimization.

1 Introduction

Despite the considerable volume of research on evolution-
ary multiobjective optimization [4], little emphasis has been
placed on certain algorithmic design aspects such as effi-
ciency [6, 10, 3]. Additionally, the use of coevolutionary
mechanisms (which have strong links to game theory [2]) has
been scarce in the evolutionary multiobjective optimization
literature. The main motivation of the work reported here was
precisely to take advantage of some coevolutionary concepts
to design a multi-objective evolutionary algorithm (MOEA)
that can be more efficient (in terms of fitness function evalu-
ations). The main idea of the proposed algorithm is to obtain
information along the evolutionary process as to subdivide
the search space into n subregions, and then to use a sub-
population for each of these subregions. At each generation,
these different subpopulations (which evolve independently
using Fonseca and Fleming’s ranking scheme [8]) “cooper-
ate” and “compete” among themselves and from these differ-
ent processes we obtain a single Pareto front. Each individual
contained in the Pareto optimal set has a label that indicates
the subpopulation to which it belongs. These labels are used
to determine which subpopulations contributed with more so-
lutions. The size of each subpopulation is adjusted based on
their contribution to the current Pareto front (i.e., subpopu-
lations which contributed more are allowed a larger popula-
tion size and viceversa). Thus, those populations contributing
with more nondominated individuals have a higher reproduc-
tion probability. The proposed approach uses the adaptive
grid proposed in [10] to store the nondominated vectors ob-

tained along the evolutionary process, enforcing a more uni-
form distribution of such vectors along the Pareto front.

2 Statement of the Problem

We are interested in solving problems of the type:

minimize [f1(X), f2(X),..., fk(X)] 1)

subject to:
g(X)>0 i=12,....m 2
h(X)=0 i=1,2,...,p (3)

where k is the number of objective functions f; : R" — R We
call X = [x1,%,... ,xn]T the vector of decision variables. We
thus wish to determine from the set # of all the vectors that
satisfy (2) and (3) to the vector X3,x5,...,%; that are Pareto
optimal. We say that a vector of decision variables X* € F
is Pareto optimum if there does not exist another X € F such
that f;(X) < f;(X*) foreveryi=1,...,kand f;(X) < f;(X*) for
at least one j. The vectors X* corresponding to the solutions
included in the Pareto optimal set are called nondominated.
The objective function values corresponding to the elements
of the Pareto optimal set are called the Pareto front of the
problem.

3 Coevolution

We call coevolution to a change in the genetic composition
of a species (or group of species) as a response to a genetic
change of another one. In a more general sense, coevolution
refers to a reciprocal evolutionary change between species
that interact with each other. The term “coevolution” is usu-
ally attributed to Ehrlich and Raven who published a paper on
their studies performed with butterflies and plants in the mid-
1960s [7]. However, several other researchers used the term
before them. In fact, the original idea of coevolution was
apparently introduced by Darwin [5]. The relationships be-
tween the populations of two different species A and B can be
described considering all their possible types of interactions.
Such interaction can be positive or negative depending on the
consequences that such interaction produces on the popula-
tion. Evolutionary computation researchers have developed
several coevolutionary approaches in which normally two or
more species relate to each other using one of the previously
indicated schemes. Also, in most cases, such species evolve
independently through a genetic algorithm. The key issue in



these coevolutionary algorithms is that the fitness of an indi-
vidual in a population depends on the individuals of a differ-
ent population. There are two main classes of coevolutionary
algorithms in the evolutionary computation literature:

e Those based on competition relationships: In this case,
the fitness of an individual is the result of a series of
“encounters” with other individuals (e.g., [11, 15]).

e Those based on cooperation relationships: In this case,
the fitness of an individual is the result of a collabora-
tion with individuals of other species (or populations)
(e.g., [14, 13)).

4 Related Work

There are very few references in the literature in which co-
evolutionary concepts are used to solve multiobjective opti-
mization problems. We will review the main ones in this
section. Parmee & Watson [12] proposed a collaborative
scheme in which they use one population to optimize each
of the objective functions of a problem. The method is re-
ally created to converge to a single (ideal) trade-off solu-
tion. However, through the use of penalties the algorithm can
maintain diversity in the population. These penalties relate
to variability in the decision variables’ values. The authors
also store solutions produced during the evolutionary process
so that the user can analyze the historical paths traversed by
the algorithm. Barbosa and Barreto [1] proposed a coopera-
tive approach for solving a graph layout generation problem.
The approach uses two populations (a separate genetic algo-
rithm is used for each of them and information is exchanged
through a shared fitness function): a graph layout population
(i.e., individuals that contain the coordinates of all vertices in
the graph) and a population of weights (i.e., individuals that
contain, each one, a set of weights to be applied on the dif-
ferent aesthetic objectives imposed on the problem). Each of
the solutions produced by the system are presented to a user
who ranks them based on (subjective) preferences. This rank-
ing is used to determine fitness of the population of weights.
Keerativuttitumrong et.al [9] proposed a cooperative scheme
in which one population is defined for each decision variable
of the problem. The evolution of each of these populations
is controlled through Fonseca and Fleming’s MOGA [8]. In
order to evaluate an individual in any population, individuals
from the other populations must be selected in order to com-
plete a solution (this is because each population only encodes
one decision variable).

5 Description of Our Approach

The main idea of our approach is to try to focus the search ef-
forts only towards the promising regions of the search space.
In order to determine what regions of the search space are
promising, our algorithm performs a relatively simple analy-
sis of the current Pareto front. The evolutionary process of

our approach is divided in 4 stages. The change of stage is
controlled by a certain number of generations during which
we run the algorithm. Our current version equally divides the
full evolutionary run into four parts (i.e., the total number of
generations is divided by four), and each stage is allocated
one of these four parts.

5.1 First Stage

During the first stage (first 25% of the total number of gener-
ations), the algorithm is allowed to explore all of the search
space, by using a population of individuals which are selected
using Fonseca and Fleming’s Pareto ranking scheme [8]. Ad-
ditionally, the approach uses the adaptive grid proposed by
[10]. At the end of this first stage, the algorithm analyses
the current Pareto front (stored in the adaptive grid) in order
to determine what variables of the problem are more critical.
This analysis consists of looking at the current values of the
decision variables corresponding to the current Pareto front
(line 6, Figure 3). This analysis is performed independently
for each decision variable. The idea is to determine if the val-
ues corresponding to a certain variable are distributed along
all the allowable interval or if such values are concentrated on
a narrower range. When the whole interval is being used, the
algorithm concludes that keeping the entire interval for that
variable is important. However, if only a narrow portion is
being used, then the algorithm will try to identify portions of
the interval that can be discarded from the search process. As
a result of this analysis, the algorithm determines whether is
convenient or not to subdivide (and, in such case, it also de-
termines how many subdivisions to perform) the interval of a
certain decision variable. Each of these different regions will
be assigned a different population (line 7, Figure 3). We will
illustrate this process with an example. Let’s suppose that our
problem has two variables and that, after the analysis, the al-
gorithm determines that it is not convenient to subdivide the
interval of the first variable. Additionally, the algorithm de-
termines that the interval of the second variable must have
two subdivisions. What the algorithm does is to divide the in-
terval of the second decision variable into three parts of equal
size (i.e., add two subdivisions to the interval). The process
to decide how many populations to have and to which region
of the search space to assign each of them is illustrated in
Figure 1.

5.2 Second Stage

When reaching the second stage, the algorithm consists of
a certain number of populations looking each at different re-
gions of the search space. At each generation, the evolution of
all the populations takes place independently and, later on, the
nondominated elements from each population are sent to the
adaptive grid where they “cooperate” and “compete” in or-
der to conform a single Pareto front (line 10, Figure 3). Note
that in this case we are referring to global nondominance (i.e.,
with respect to all the search space) and not to local nondom-



Interval of the Interval of the

variable 1 variable 2
1 | 1] 2] 3
0 divisions 2 divisions
variable 1 variable 2
Population 1 ‘ 1 ‘ ‘ 1 ‘
Population2 | 1 2]
Population3 | 1 | ER
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Figure 2: Graphical representation of the second stage of our
algorithm.

inance. After this, we count the number of individuals that
each of the populations contributed to the current Pareto front.
Our algorithm is elitist (line 11, Figure 3), because after the
first generation of the second stage, all the populations that do
not provide any individual to the current Pareto front are au-
tomatically eliminated and the sizes of the other populations
are properly adjusted (i.e., those populations that contributed
more to the current Pareto front get their sizes proportion-
ally increased and those who contribute less get their sizes
decreased). Each population is assigned or removed individ-
uals such that its final size is proportional to its contribution
to the current Pareto front. These individuals to be added or
removed are randomly generated/chosen. Thus, populations
compete with each other to get as many extra individuals as
possible. Note that it is, however, possible that the sizes of the
populations “converge” to a constant value once their contri-
bution to the current Pareto front does not change any longer
(i.e., from one generation to the next one). Figure 2 illustrates
the second stage of our algorithm.

5.3 Third Stage

During the third stage, we perform a check on the current
populations in order to determine how many (and which) of
them can continue (i.e., those populations which continue
contributing individuals to the current Pareto front) (line 5,

Figure 3). Over these (presumably good) populations, we will
apply the same process from the second stage (i.e., they will
be further subdivided and more populations will be created
in order to exploit these “promising regions” of the search
space). In order to determine the number of subdivisions that
are to be used during the third stage, we repeat the same anal-
ysis as before (i.e., the analysis performed during the first
stage). The individuals from the “good” populations are kept.
All the good individuals are distributed across the newly gen-
erated populations. A new count is undertaken so that the al-
gorithm can determine how many individuals are contributed
by each of the new populations to the current Pareto front.
Again, populations that do not contribute to the current Pareto
front are eliminated. Note however, that we define a mini-
mum population size and this size is enforced for all popula-
tions at the beginning of the third stage. After the first gen-
eration of the third stage, the size will be adjusted based on
the same criteria as before (i.e., the size of populations will
be modified based on their contribution to the current Pareto
front).

5.4 Fourth Stage

During this stage, we apply the same procedure of the third
stage in order to allow a fine-grained search.

5.5 Decision Variables Analysis

The mechanism adopted for the decision variables analysis
is very simple. Given a set of values within an interval, we
compute both the minimum average distance of each element
with respect to its closest neighbor and the total portion of
the interval that is covered by the individuals contained in the
current Pareto front. Then, only if the set of values covers
less than 80% of the total of the interval, the algorithm con-
siders appropriate to divide it. Once the algorithm decides
to divide the interval, the number of divisions gets increased
(without exceeding a total of 10 divisions per interval), as ex-
plained next. Let’s define range as the percentage of the total
of interval that is occupied by the values of the variable under
consideration. Let dyin be the minimum average distance be-
tween individuals and let divisions be the number of divisions
to perform in the interval of the variable:
if (range <0.8xinterval)
while (dmin <0.2xinterval)
{ divisions+ +; interval =0.2«interval; }

5.6 ParametersRequired

Our proposed approach requires the following parameters:
1. Crossover rate (pc) and mutation rate (pm).
2. Maximum number of generations (Gmax).

3. Size of the initial population (popsizeiit) to be used
during the first stage and minimum size of the sec-



1.gen=0
2. populations =1
3. while (gen < Gmax) {

4. if(gen = Gmax/4 or Gmax,/2 or 3 Gmax/4)
{
5. check_active_populations()
6. decision_variables_analysis()
(compute number of subdivisions)
7. construct_new_subpopulations()
(update populations)
}
8. for (i=1;i < populations;i+ +)
9. if (population i contributes
to the current Pareto front)
10. evolve_and_compete(i)
11. elitism()
12. reassign_resources()

13. gen++ }

Figure 3: Pseudocode of our algorithm.

ondary population (popsizesc) to be used during the
further stages.

6 Comparison of Results

To validate our approach, we used the methodology nor-
mally adopted in the evolutionary multiobjective optimiza-
tion literature [4]. We performed both quantitative com-
parisons (adopting four metrics) and qualitative comparisons
(plotting the Pareto fronts produced) with respect to three
MOEAs that are representative of the state-of-the-art in the
are: the microGA for multiobjective optimization [3], the
Pareto Archived Evolution Strategy (PAES) [10] and the Non-
dominated Sorting Genetic Algorithm 11 (NSGA-II) [6]. For
our comparative study, we implemented for four following
metrics:

1. Two Set Coverage (SC): This metric was proposed in
[19], and it can be termed relative coverage compari-
son of two sets. Consider X', X" as two sets of pheno-
type decision vectors. SC is defined as the mapping of
the order pair (X', X") to the interval [0, 1]:

'eX";JdeX @ = a'}|
X"

/
g:(xl,xll) é |{a (4)
If all points in X’ dominate or are equal to all points
in X", then by definition SC = 1. SC = 0 implies the
opposite. In general, SC(X’,X"”) and SC(X",X’) both
have to be considered due to set intersections not be-
ing empty. Of course, this metric can be used for both
spaces (objective function or decision variable space),
but in this case we applied it in objective function
space.

2. Spacing (SP): This metric was proposed by Schott [16]
as a way of measuring the range (distance) variance of

neighboring vectors in the Pareto front known. This
metric is defined as:

®=,/ ﬁ é(d_— d)? (5)

where di = minj (3, [fl,— ), i, j = 1,...,n, mis the
number of objectives, d is the mean of all d;, and n
is the number of vectors in the Pareto front found by
the algorithm being evaluated. A value of zero for this
metric indicates all the nondominated solutions found
are equidistantly spaced.

3. Generational Distance (GD): The concept of gener-
ational distance was introduced by Van Veldhuizen &
Lamont [18] as a way of estimating how far are the el-
ements in the Pareto front produced by our algorithm
from those in the true Pareto front of the problem. This
metric is defined as:

/3D d2
GD = £ (6)

n

where n is the number of nondominated vectors found
by the algorithm being analyzed and d; is the Euclidean
distance (measured in objective space) between each of
these and the nearest member of the true Pareto front. It
should be clear that a value of GD = 0 indicates that all
the elements generated are in the true Pareto front of
the problem. Therefore, any other value will indicate
how “far” we are from the global Pareto front of our
problem.

4. Error Ratio (ER): This metric was proposed by Van
Veldhuizen [17] to indicate the percentage of solutions
(from the nondominated vectors found so far) that are
not members of the true Pareto optimal set:

n
ER= 2=19 @

n
where n is the number of vectors in the current set of
nondominated vectors available; g = 0 if vectori is a
member of the Pareto optimal set, and ¢ = 1 other-
wise. It should then be clear that ER = 0 indicates an
ideal behavior, since it would mean that all the vectors
generated by our algorithm belong to the true Pareto
optimal set of the problem.

For each of the test functions shown below, we perform
30 runs per algorithm. The Pareto fronts that we will show
correspond to the median of the 30 runs with respect to the
ER metric.



Test Function 1 (6300 evaluations) |
CO-MOEA | microGA PAES | NSGA-II
best 0.46 0.42 0.02 0.0
median 0.61 0.77 0.07 0.02
ER worst 0.68 0.98 0.15 0.08
average 0.60 0.75 0.07 0.03
std. dev. 0.0610 0.1453 0.0297 0.0211
best 0.0003 0.0008 0.0001 0.0007
median 0.001 0.0089 0.0006 0.0008
GD worst 0.042 0.238 0.0659 0.0009
average 0.0049 0.0681 0.0066 0.0008
std. dev. 0.0085 0.0860 0.0163 0.0000
best 0.006 0.017 0.007 0.006
median 0.012 0.042 0.014 0.008
P worst 0.379 1.539 0.624 0.086
average 0.039 0.356 0.054 0.010
std. dev. 0.0727 0.5070 0.1411 0.0143
Test Function 1 - Two Set Coverage Metric SC
X C(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.54
microGA 0.14 0.0
PAES 0.37 0.63
NSGA-II 0.55 0.57
X C(X,PAES) C(X,NSGA-I1)
CO-MOEA 0.01 0.01
microGA 0.0 0.0
PAES 0.0 0.0
NSGA-II 0.07 0.0

Table 1: Comparison of results between our approach (de-
noted by CO-MOEA), the microGA [3], PAES [10] and the
NSGA-II [6] for test function 1.

6.1 Test Function 1

Minimize fi(x1,%2) = X1
Minimize fa(x1,x2) = (1.0410.0xp)
NG X1
1.0—-—"1 ——sin(21¢d
(10— 15 10.0m 101000 "(2Tx)
0.0<x1,% <1.0 (8)

In this example, our approach used: popsizepi: = 100,
popsizerec = 30. Table 1 shows the values of the metrics for
each of the MOEASs compared.

6.2 Test Function 2

_2\2 2
Minimize fi(x, %) = (a=2?%_ (e+1)? o
2 13
inimi  (xatx—3)?
Minimize fa(x1,X2) = s n
2% — x1)2
TSI

17

- — 20+ 4)?
Minimize f3(x1,%x2) = M

8
X1 — X2+ 1)2
tazXe+1) g —4.0<x1,% < 4.0
27
In this case, our approach used: popsizent = 20,

popsizerec = 20. Table 2 shows the values of the metrics for
each of the MOEASs compared.

Test Function 2 (1700 evaluations)
CO-MOEA | microGA | PAES | NSGA-II
best 0.02 0.04 0.0 0.03
median 0.08 0.1 0.03 0.06
ER worst 0.12 0.16 0.22 0.12
average 0.07 0.10 0.05 0.06
std. dev. 0.0253 0.033 0.0566 0.0221
best 0.099 0.0706 0.0134 0.1992
median 0.147 0.1353 0.0802 0.2503
GD worst 0.246 0.2175 0.2952 0.2982
average 0.150 0.1412 0.1009 0.2501
std. dev. 0.0306 0.0352 0.0708 0.0291
best 0.163 0.225 0.085 0.159
median 0.224 0.3 0.240 0.201
P worst 13 0.767 1.156 0.313
average 0.247 0.367 0.323 0.208
std. dev. 0.2038 0.1576 0.2265 0.0373
Test Function 2 - Two Set Coverage Metric SC
X C(X,CO-MOEA) C(X,microGA)
CO-MOEA 0.0 0.17
microGA 0.02 0.0
PAES 0.01 0.09
NSGA-II 0.09 0.10
X C(X,PAES) SC(X,NSGA-II)
CO-MOEA 011 0.09
microGA 0.03 0.05
PAES 0.0 0.06
NSGA-I| 0.03 0.0

Table 2: Comparison of results between our approach (de-
noted by CO-MOEA), the microGA [3], PAES [10] and the
NSGA-II [6] for test function 2.

6.3 Test Function 3

Minimize f1(x1,X2) = X1
g(x2)
X

Minimize fa(xg,%2) =

where:

g(x2) =2.0— e—(%&—lz)z . 0.88_()%_.2_'6)2

0.1<x1,%<1.0

In this example, our approach used: popsizenr = 100,
popsizerec = 30. Table 3 shows the values of the metrics for
each of the MOEAs compared.

7 Discussion of Results

In test function 1, we can see that the NSGA-I1 had the best
overall performance (both with respect to all the metrics and
with respect to the graphical results shown in Figure 4). It is
also clear that the microGA presented the worst performance
for this test function. Based on the values of the ER and SC
metrics, we can conclude that our approach had problems to
reach the true Pareto front of this problem. Note however, that
the values of GD and SP indicate that our approach converged
very closely to the true Pareto front and that it achieved a good
distribution of solutions. PAES had a good performance re-
garding closeness to the true Pareto front, but its performance
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Figure 4: Pareto fronts obtained by our approach (CO-MOEA), the microGA [3], PAES [10] and the NSGA-II [6] for test

function 1.

was not so good regarding uniform distribution of solutions
(this is corroborated graphically as well). In the second test
function, all the algorithms compared converged to the true
Pareto front, but their distribution of results was not as uni-
form as desirable (see the values of the SP metric from Ta-
ble 2 and Figure 5). Nevertheless, our approach and the mi-
croGA produced the best Pareto fronts (both in terms of close-
ness to the true Pareto front and in terms of distribution of
solutions) for this problem (see Figure 5).

Based on the values of the ER and SC metrics, the mi-
croGA and the NSGA-II had the best performance in test
function 3. However, when we analyze the graphical results
obtained for this problem (see Figure 6), the Pareto front ob-
tained by our approach looks quite similar to the fronts ob-
tained by both the microGA and the NSGA-II. Also note the
poor distribution of solutions obtained by PAES. An interest-
ing aspect of this test function is that it has a local attractor.
In the experiments performed, all the approaches converged
at least once to this false attractor (this explains that the worst
value of the ER metric is 1.0 for all of them). This had an ob-
vious impact on the standard deviation of the ER metric for
all the algorithms compared. It is also worth noticing that the
microGA had the lowest standard deviation for the ER metric
because it only converged once to the false attractor of this
test function.

8 Conclusions and Future Work

We have proposed a coevolutionary multi-objective evolu-
tionary algorithm whose main idea is to divide the search
space into different subregions, as to detect the most “promis-
ing” of such regions, focusing the search on them. The
proposed algorithm performs a relatively simple analysis to
detect what decision variables are the most important and,
based on such analysis, it divides the search space. The
proposed approach was validated using several test func-
tions taken from the specialized literature. Our compara-
tive study showed that the proposed approach is competi-
tive with respect three other algorithms that are representa-
tive of the state-of-the-art in evolutionary multiobjective op-
timization. Currently, the main drawback of our proposed ap-
proach is the number of populations that it could potentially
need to handle. Once the first phase has finished, the hum-
ber of populations that it could need to handle is given by:
divy x diva x - -+ x divagr. Thus, as part of our future work,
we are considering a redesign of the algorithm in which such
multiple populations are no longer needed. It is also impor-
tant to decrease the high selection pressure introduced by our
elitist scheme, since in our current version of the algorithm
this may cause premature convergence when a false attractor
exists. Additionally, we are considering the use of a cluster-
ing algorithm to determine the most critical decision variables
of the problem.
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Test Function 3 (9600 eval uations)
CO-MOEA | microGA PAES | NSGA-II
best 0.16 0.05 0.0 0.0
median 0.28 0.15 0.24 0.01
ER worst 10 10 1.0 1.0
average 0.40 0.19 0.44 0.243
std. dev. 0.277 0.180 0.4271 0.4251
best 0.01 0.0045 0.0027 0.0085
median 0.075 0.0349 0.0517 0.0091
GD worst 0.18 0.154 0.2257 0.2028
average 0.080 0.042 0.0771 0.0314
std. dev. 0.0361 0.0415 0.0717 0.0562
best 0.041 0.033 0.029 0.026
median 0.193 0.071 0.087 0.033
P worst 15 0.906 0.504 0.056
average 0.274 0.220 0.110 0.034
std. dev. 0.2186 0.2328 0.1065 0.0066
Test Function 3 - Two Set Coverage Metric SC
X C(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.09
microGA 0.24 0.0
PAES 0.06 0.04
NSGA-II 0.35 0.12
X SC(X,PAES) SC(X,NSGA-IT)
CO-MOEA 0.01 0.01
microGA 0.16 0.02
PAES 0.0 0.01
NSGA-II 0.24 0.0

Table 3: Comparison of results between our approach (de-
noted by CO-MOEA), the microGA [3], PAES [10] and the

NSGA-II [6] for test function 3.



