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Summary. In this paper, we will briefly discuss the current state of the research
on evolutionary multiobjective optimization, emphasizing the main achievements
obtained to date. Achievements in algorithmic design are discussed from its early
origins until the current approaches which are considered as the “second genera-
tion” in evolutionary multiobjective optimization. Some relevant applications are
discussed as well, and we conclude with a list of future challenges for researchers
working (or planning to work) in this area in the next few years.

1 Introduction

Several years ago, researchers realized that the principle of “survival of the
fittest” used by nature could be simulated to solve problems [11]. This gave
rise to a type of heuristics known as Evolutionary Algorithms (EAs). EAs
have been very popular in search and optimization tasks in the last few years
with a constant development of new algorithms, theoretical achivements and
novel applications [15, 1].

One of the emergent research areas in which EAs have become increas-
ingly popular is multiobjective optimization. In multiobjective optimization
problems, we have two or more objective functions to be optimized at the
same time, instead of having only one. As a consequence, there is no unique
solution to multiobjective optimization problems, but instead, we aim to find
all of the good trade-off solutions available (the so-called Pareto optimal set).

The first implementation of a multi-objective evolutionary algorithm dates
back to the mid-1980s [36]. Since then, a considerable amount of research has
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been done in this area, now known as evolutionary multi-objective optimiza-
tion (EMO for short). The growing importance of this field is reflected by
a significant increment (mainly during the last eight years) of technical pa-
pers in international conferences and peer-reviewed journals, books, special
sessions in international conferences and interest groups on the Internet [6].1

Evolutionary algorithms seem also particularly desirable for solving multi-
objective optimization problems because they deal simultaneously with a set
of possible solutions (the so-called population) which allows us to find several
members of the Pareto optimal set in a single run of the algorithm, instead
of having to perform a series of separate runs as in the case of the traditional
mathematical programming techniques. Additionally, evolutionary algorithms
are less susceptible to the shape or continuity of the Pareto front (e.g., they
can easily deal with discontinuous and concave Pareto fronts), whereas these
two issues are a real concern for mathematical programming techniques [6].

This paper deals with some of the current and future research trends in
evolutionary multiobjective optimization. The paper is organized as follows.
Section 2 presents some basic concepts used in multiobjective optimization.
Section 3 briefly describes the origins of evolutionary multiobjective optimiza-
tion. Section 4 introduces the so-called first generation multiobjective evolu-
tionary algorithms. Second generation multiobjective evolutionary algorithms
are discussed in Section 5, emphasizing the role of elitism in evolutionary
multiobjective optimization. Finally, Section 7 discusses some of the research
trends that are likely to be predominant in the next few years.

2 Basic Concepts

The emphasis of this paper is the solution of multiobjective optimization
problems (MOPs) of the form:

minimize [f1(x), f2(x), ..., fi(x)] (1)
subject to the m inequality constraints:

and the p equality constraints:

hix)=0 i=1,2,...,p (3)

where k is the number of objective functions f; : R* — R. We call x =
[21, 22, ... ,xn]T the vector of decision variables. We wish to determine from

! The author maintains an EMO repository with over 1000 bibliographical
entries at: http://delta.cs.cinvestav.mx/"ccoello/EM00, with mirrors at
http://www.lania.mx/"ccoello/EM00/ and http://www.jeo.org/emo/
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among the set F of all vectors which satisfy (2) and (3) the particular set
of values z7,z3,..., 2} which yield the optimum values of all the objective
functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions. Therefore, we normally look for “trade-offs”, rather
than single solutions when dealing with multiobjective optimization problems.
The notion of “optimality” is therefore, different in this case. The most com-
monly adopted notion of optimality is the following:

We say that a vector of decision variables x* € F is Pareto optimal if there
does not exist another x € F such that f;(x) < fi(x*) foralli=1,...,k and
fi(x) < f;(x*) for at least one j.

In words, this definition says that x* is Pareto optimal if there exists no
feasible vector of decision variables x € F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Un-
fortunately, this concept almost always gives not a single solution, but rather
a set, of solutions called the Pareto optimal set. The vectors x* correspoding
to the solutions included in the Pareto optimal set are called nondominated.
The image of the Pareto optimal set under the objective functions is called
Pareto front.

3 On the origins of evolutionary multiobjective
optimization

The first actual implementation of what it is now called a multi-objective
evolutionary algorithm (or MOEA, for short) was Schaffer’s Vector Evaluated
Genetic Algorithm (VEGA), which was introduced in the mid-1980s, mainly
aimed for solving problems in machine learning [36]. VEGA basically consisted
of a simple genetic algorithm (GA) with a modified selection mechanism. At
each generation, a number of sub-populations were generated by performing
proportional selection according to each objective function in turn. Thus, for
a problem with k objectives, k sub-populations of size M/k each would be
generated (assuming a total population size of M). These sub-populations
would then be shuffled together to obtain a new population of size M, on
which the GA would apply the crossover and mutation operators in the usual
way. Schaffer realized that the solutions generated by his system were non-
dominated in a local sense, because their nondominance was limited to the
current population, which was obviously not appropriate. Also, he noted a
problem that in genetics is known as “speciation” (i.e., we could have the
evolution of “species” within the population which excel on different aspects
of performance). This problem arises because this technique selects individu-
als who excel in one dimension of performance, without looking at the other
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dimensions. The potential danger doing that is that we could have individ-
uals with what Schaffer called “middling” performance? in all dimensions,
which could be very useful for compromise solutions, but which will not sur-
vive under this selection scheme, since they are not in the extreme for any
dimension of performance (i.e., they do not produce the best value for any
objective function, but only moderately good values for all of them). Specia-
tion is undesirable because it is opposed to our goal of finding Pareto optimal
solutions. Although VEGA’s speciation can be dealt with using heuristics or
other additional mechanisms, it remains as the main drawback of VEGA.

From the second half of the 1980s up to the first half of the 1990s, few
other researchers developed MOEAs. Most of the work reported back then in-
volves rather simple evolutionary algorithms that use an aggregating function
(linear in most cases) [23], lexicographic ordering [14], and target-vector ap-
proaches (i.e., nonlinear aggregating functions) [19]. All of these approaches
were strongly influenced by the work done in the operations research com-
munity and in most cases did not require any major modifications to the
evolutionary algorithm adopted.

The algorithms proposed in this initial period are rarely referenced in the
current literature except for VEGA (which is still used by some researchers).
However, the period is of great importance because it provided the first in-
sights into the possibility of using evolutionary algorithms for multiobjective
optimization. The fact that only relatively naive approaches were developed
during this stage is natural considering that these were the initial attempts
to develop multiobjective extensions of an evolutionary algorithm. Such ap-
proaches kept most of the original evolutionary algorithm structure intact
(only the fitness function was modified in most cases) to avoid any complex
additional coding. The emphasis in incorporating the concept of Pareto dom-
inance into the search mechanism of an evolutionary algorithm would come
later.

4 MOEASs: First Generation

The major step towards the first generation of MOEAs was given by David
E. Goldberg on pages 199 to 201 of his famous book on genetic algorithms
published in 1989 [15]. In his book, Goldberg analyzes VEGA and proposes
a selection scheme based on the concept of Pareto optimality. Goldberg not
only suggested what would become the standard first generation MOEA, but
also indicated that stochastic noise would make such algorithm useless unless
some special mechanism was adopted to block convergence. First generation
MOEAs typically adopted niching or fitness sharing for that sake. The most
representative algorithms from the first generation are the following:

2 By “middling”, Schaffer meant an individual with acceptable performance, per-
haps above average, but not outstanding for any of the objective functions.
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1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm
was proposed by Srinivas and Deb [37]. The approach is based on several
layers of classifications of the individuals as suggested by Goldberg [15].
Before selection is performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the population size,
to provide an equal reproductive potential for these individuals). To main-
tain the diversity of the population, these classified individuals are shared
with their dummy fitness values. Then this group of classified individuals
is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classified.
Since individuals in the first front have the maximum fitness value, they
always get more copies than the rest of the population. This allows to
search for nondominated regions, and results in convergence of the pop-
ulation toward such regions. Sharing, by its part, helps to distribute the
population over this region (i.e., the Pareto front of the problem).

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et
al. [22]. The NPGA uses a tournament selection scheme based on Pareto
dominance. The basic idea of the algorithm is the following: Two individ-
uals are randomly chosen and compared against a subset from the entire
population (typically, around 10% of the population). If one of them is
dominated (by the individuals randomly chosen from the population) and
the other is not, then the nondominated individual wins. When both com-
petitors are either dominated or nondominated (i.e., there is a tie), the
result of the tournament is decided through fitness sharing [16].

3. Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca
and Fleming [12]. In MOGA, the rank of a certain individual corresponds
to the number of chromosomes in the current population by which it is
dominated. Consider, for example, an individual z; at generation ¢, which
is dominated by pgt) individuals in the current generation.

The rank of an individual is given by [12]:

rank(z;,t) = 1 + p{” (4)

All nondominated individuals are assigned rank 1, while dominated ones

are penalized according to the population density of the corresponding

region of the trade-off surface. Fitness assignment is performed in the

following way [12]:

a) Sort population according to rank.

b) Assign fitness to individuals by interpolating from the best (rank 1)
to the worst (rank n < M, where M is the total population size) in
the way proposed by Goldberg (1989), according to some function,
usually linear, but not necessarily.
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c) Average the fitnesses of individuals with the same rank, so that all of
them are sampled at the same rate. This procedure keeps the global
population fitness constant while maintaining appropriate selective
pressure, as defined by the function used.

The main questions raised during the first generation were:

e Are aggregating functions (so common before and even during the golden
years of Pareto ranking) really doomed to fail when the Pareto front is
non-convex [7]? Are there ways to deal with this problem? Is it worth
trying? Some recent work seems to indicate that even linear aggregating
functions are not death yet [25].

e Can we find ways to maintain diversity in the population without using
niches (or fitness sharing), which requires a process O(M?) where M refers
to the population size?

e If assume that there is no way of reducing the O(kM?) process required
to perform Pareto ranking (k is the number of objectives and M is the
population size), how can we design a more efficient MOEA?

e Do we have appropriate test functions and metrics to evaluate quantita-
tively an MOEA? Not many people worried about this issue until near
the end of the first generation. During this first generation, practically all
comparisons were done visually (plotting the Pareto fronts produced by
different algorithms) or were not provided at all (only the results of the
proposed method were reported).

e When will somebody develop theoretical foundations for MOEAs?

Summarizing, the first generation was characterized by the use of selec-
tion mechanisms based on Pareto ranking and fitness sharing was the most
common approach adopted to maintain diversity. Much work remained to be
done, but the first important steps towards a solid research area had been
already taken.

5 MOEAs: Second Generation

The second generation of MOEAs was born with the introduction of the no-
tion of elitism. In the context of multiobjective optimization, elitism usually
(although not necessarily) refers to the use of an external population (also
called secondary population) to retain the nondominated individuals. The
use of this external population (or file) raises several questions:

How does the external file interact with the main population?

What do we do when the external file is full?

Do we impose additional criteria to enter the file instead of just using
Pareto dominance?
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Elitism can also be introduced through the use of a (u + A)-selection in
which parents compete with their children and those which are nondominated
(and possibly comply with some additional criterion such as providing a better
distribution of solutions) are selected for the following generation.

The previous points bring us to analyze in more detail the true role of
elitism in evolutionary multiobjective optimization. For that sake, we will re-
view next the way in which some of the second-generation MOEAs implement,
elitism:

1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm
was introduced by Zitzler and Thiele [43]. This approach was conceived as
a way of integrating different MOEAs. SPEA uses an archive containing
nondominated solutions previously found (the so-called external nondom-
inated set). At each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this external set, a
strength value is computed. This strength is similar to the ranking value
of MOGA, since it is proportional to the number of solutions to which a
certain individual dominates. It should be obvious that the external non-
dominated set is in this case the elitist mechanism adopted. In SPEA the
fitness of each member of the current population is computed according
to the strengths of all external nondominated solutions that dominate it.
Additionally, a clustering technique called “average linkage method” [28]
is used to keep diversity.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has
three main differences with respect to its predecessor [42]: (1) it incorpo-
rates a fine-grained fitness assignment strategy which takes into account
for each individual the number of individuals that dominate it and the
number of individuals by which it is dominated; (2) it uses a nearest neigh-
bor density estimation technique which guides the search more efficiently,
and (3) it has an enhanced archive truncation method that guarantees
the preservation of boundary solutions. Thefore, in this case the elitist
mechanism is just an improved version of the previous.

3. Pareto Archived Evolution Strategy (PAES): This algorithm was in-
troduced by Knowles and Corne [26]. PAES consists of a (1+1) evolution
strategy (i.e., a single parent that generates a single offspring) in combi-
nation with a historical archive that records some of the nondominated
solutions previously found. This archive is used as a reference set against
which each mutated individual is being compared. Such a historical archive
is the elitist mechanism adopted in PAES. However, an interesting aspect
of this algorithm is the mechanism used to maintain diversity which con-
sists of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location based on the
values of its objectives (which are used as its “coordinates” or “geograph-
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ical location”). A map of such grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is adap-
tive, no extra parameters are required (except for the number of divisions
of the objective space).

Nondominated Sorting Genetic Algorithm IT (NSGA-II): Deb et al.
[8] proposed a revised version of the NSGA [37], called NSGA-II, which
is more efficient (computationally speaking), uses elitism and a crowded
comparison operator that keeps diversity without specifying any addi-
tional parameters. The NSGA-II does not use an external memory as the
previous algorithms. Instead, the elitist mechanism consists of combining
the best parents with the best offspring obtained (i.e., a (14 A)-selection).

. Niched Pareto Genetic Algorithm 2 (NPGA 2): Erickson et al. [9]

proposed a revised version of the NPGA [22] called the NPGA 2. This
algorithm uses Pareto ranking but keeps tournament selection (solving
ties through fitness sharing as in the original NPGA). In this case, no
external memory is used and the elitist mechanism is similar to the one
adopted by the NSGA-II. Niche counts in the NPGA 2 are calculated
using individuals in the partially filled next generation, rather than using
the current generation.

Micro Genetic Algorithm: This approach was introduced by Coello
Coello & Toscano Pulido [5]. A micro-genetic algorithm is a GA with
a small population and a reinitialization process. The micro-GA starts
with a random population that feeds the population memory, which is
divided in two parts: a replaceable and a non-replaceable portion. The
non-replaceable portion of the population memory never changes during
the entire run and is meant to provide the required diversity for the algo-
rithm. In contrast, the replaceable portion experiences changes after each
cycle of the micro-GA. The population of the micro-GA at the beginning
of each of its cycles is taken (with a certain probability) from both por-
tions of the population memory so that there is a mixture of randomly
generated individuals (non-replaceable portion) and evolved individuals
(replaceable portion). During each cycle, the micro-GA undergoes con-
ventional genetic operators. After the micro-GA finishes one cycle, two
nondominated vectors are chosen® from the final population and they are
compared with the contents of the external memory (this memory is ini-
tially empty). If either of them (or both) remains as nondominated after
comparing it against the vectors in this external memory, then they are
included there (i.e., in the external memory). This is the historical archive
of nondominated vectors. All dominated vectors contained in the external

3 This is assuming that there are two or more nondominated vectors. If there is

only one, then this vector is the only one selected.
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memory are eliminated. The micro-GA uses then three forms of elitism:
(1) it retains nondominated solutions found within the internal cycle of
the micro-GA, (2) it uses a replaceable memory whose contents is par-
tially “refreshed” at certain intervals, and (3) it replaces the population
of the micro-GA by the nominal solutions produced (i.e., the best solutions
found after a full internal cycle of the micro-GA).

Second generation MOEAs can be characterized by an emphasis on effi-
ciency and by the use of elitism (in the two main forms previously described).
During the second generation, some important theoretical work also took
place, mainly related to convergence [34, 20]. Also, metrics and standard test
functions were developed to validate new MOEAs [41].

The main concerns during the second generation (which we are still living
nowadays) are the following;:

e Are our metrics reliable? What about our test functions? We have found
out that developing good metrics is in itself a multiobjective optimization
problem, too. In fact, it is ironic that nowadays we are going back to trust-
ing more visual comparisons than metrics as during the first generation.

e Are we ready to tackle problems with more than two objective functions
efficiently? Is Pareto ranking doomed to fail when dealing with too many
objectives? If so, then what is the limit up to which Pareto ranking can
be used to select individuals reliably?

e What are the most relevant theoretical aspects of evolutionary multiob-
jective optimization that are worth exploring in the short-term?

6 Applications

An analysis of the evolution of the EMO literature reveals some interesting
facts (see [6] for details). From the first MOEA published in 1985 [36] up to
the first survey of the area published in 1995 [13], the number of published
papers related to EMO is relatively low. However, from 1995 to our days, the
increase of EMO-related papers is exponential. Today, the EMO repository
registers over 1000 papers, from which a vast majority are applications. The
vast number of EMO papers currently available makes it impossible to attempt
to produce a detailed review of them in this section. Instead, we will discuss
the most popular application fields, indicating some of the specific areas within
them in which researchers have focused their main efforts.

Current EMO applications can be roughly classified in three large groups:
engineering, industrial and scientific. Some specific areas within each of these
groups are indicated next. We will start with the engineering applications,
which are, by far, the most popular in the literature. This should not be too
surprising, since engineering disciplines normally have problems with better
understood mathematical models which facilitates the use of evolutionary al-
gorithms. A representative sample of engineering applications is the following
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(aeronautical engineering seems to be the most popular subdiscipline within
this group):

Electrical engineering [40]
Hydraulic engineering [33]
Structural engineering [27]
Aeronautical engineering [29]
Robotics [30]

Control [39]
Telecommunications [32]
Civil engineering [2]

Industrial applications occupy the second place in popularity in the EMO
literature. Within this group, scheduling is the most popular subdiscipline. A
representative sample of industrial applications is the following;:

e Design and manufacture [35]
e Scheduling [38]
e Management [24]

Finally, we have a variety of scientific applications, from which the most
popular are (for obvious reasons) those related to computer science:

Chemistry [21]
Physics [17]
Medicine [31]
Computer science [3]

The above distribution of applications indicates a strong interest for devel-
oping real-world applications of EMO algorithms (something not surprising
considering that most real-world problems are of a multiobjective nature).
Furthermore, the previous sample of EMO applications should give a general
idea of the application areas that have not been explored in enough depth yet
(e.g., computer vision, coordination of agents, pattern recognition, etc. [6]).

7 Future Challenges

Once we have been able to distinguish between the first and second gener-
ations in evolutionary multiobjective optimization, a reasonable question is:
where are we heading now? In the last few years, there has been a considerable
growth in the number of publications related to evolutionary multiobjective
optimization. However, the variety of topics covered is not as rich as the num-
ber of publications released each year. The current trend is to either develop
new algorithms (validating them with some of the metrics and test functions
available) or to develop interesting applications of existing algorithms. We will
finish this section with a list of some of the research topics that we believe
that will keep researchers busy during the next few years:
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e Incorporation of preferences in MOEAs: Despite the efforts of some
researchers to incorporate user’s preferences into MOEAS as to narrow the
search, most of the multicriteria decision making techniques developed in
Operations Research have not been applied in evolutionary multiobjective
optimization [4]. Such incorporation of preferences is very important in
real-world applications since the user only needs one Pareto optimal solu-
tion and not the whole set as normally assumed by EMO researchers.

e Highly-Constrained Search Spaces: There is little work in the current
literature regarding the solution of multiobjective problems with highly-
constrained search spaces. However, it is rather common to have such
problems in real-world applications and it is then necessary to develop
novel constraint-handling techniques that can deal with highly-constrained
search spaces efficiently.

e Parallelism: We should expect more work on parallel MOEAs in the
next few years. Currently, there is a noticeable lack of research in this
area [6] and it is therefore open to new ideas. It is necessary to have
more algorithms, formal models to prove convergence, and more real-world
applications that use parallelism.

e Theoretical Foundations: It is quite important to develop the theoreti-
cal foundations of MOEAs. Although a few steps have been taken regard-
ing proving convergence using Markov Chains (e.g., [34]), and analyzing
metrics [41], much more work remains to be done (see [6]).

e Use of More Efficient Data Structures: The usage of more efficient
data structures to store nondominated vectors is just beginning to be an-
alyzed in evolutionary multiobjective optimization (see for example [10]).
Note however, that such data structures have been in use for a relatively
long time in Operations Research [18].

8 Conclusions

This paper has provided a general view of the field known as evolutionary
multiobjective optimization. We have provided a historical analysis of the de-
velopment of the area, emphasizing the algorithmic differences between the
two main stages that we have undergone so far (the two so-called “genera-
tions”). The notion of elitism has been identified as the main responsible of
the current generation of algorithms used in this area. Also, some of the most
important issues (stated in the form of questions) raised during each of these
two generations were briefly indicated.

In the final part of the paper, we have discussed some of the most rele-
vant applications developed in the literature and we identified certain research
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trends. We have finished this paper with some promising areas of future re-
search in evolutionary multiobjective optimization, hoping that this informa-
tion may be useful to newcomers who whish to contribute to this emerging
research field.
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