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Summary. This chapter presents a brief review of some of the most relevant re-
search currently taking place in evolutionary multiobjective optimization. The main
topics covered include algorithms, applications, metrics, test functions, and theory.
Some of the most promising future paths of research are also addressed.

1 Introduction

Evolutionary Algorithms (EAs) are heuristics that use natural selection as
their search engine to solve problems. The use of EAs for search and opti-
mization tasks has become very popular in the last few years with a constant
development of new algorithms, theoretical achivements and novel applica-
tions [49, 5, 84]. One of the emergent research areas in which EAs have be-
come increasingly popular is multiobjective optimization. In multiobjective
optimization problems, we have two or more objective functions to be opti-
mized at the same time, instead of having only one. As a consequence, there is
no unique solution to multiobjective optimization problems, but instead, we
aim to find all of the good trade-off solutions available (the so-called Pareto
optimal set).

The first implementation of a multi-objective evolutionary algorithm
(MOEA) dates back to the mid-1980s [108, 109]. Since then, a considerable
amount of research has been done in this area, now known as evolutionary
multiobjective optimization (EMO for short). The growing importance of this
field is reflected by a significant increment (mainly during the last ten years)
of technical papers in international conferences and peer-reviewed journals,
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books, special sessions at international conferences and interest groups on the
Internet [20].1

The main motivation for using EAs to solve multiobjective optimization
problems is because EAs deal simultaneously with a set of possible solutions
(the so-called population) which allows us to find several members of the
Pareto optimal set in a single run of the algorithm, instead of having to per-
form a series of separate runs as in the case of the traditional mathematical
programming techniques [83]. Additionally, EAs are less susceptible to the
shape or continuity of the Pareto front (e.g., they can easily deal with dis-
continuous and concave Pareto fronts), whereas these two issues are a real
concern for mathematical programming techniques [15, 29, 20].

2 Basic Concepts

The emphasis of this chapter is the solution of multiobjective optimization
problems (MOPs) of the form:

minimize [fl (X)J f2 (X)J RN fk (X)] (1)

subject to the m inequality constraints:

and the p equality constraints:

hix)=0 i=1,2,...,p (3)

where k is the number of objective functions f; : R — R. We call x =
[z1,Za, ... ,wn]T the vector of decision variables. We wish to determine from
among the set F of all vectors which satisfy (2) and (3) the particular set
of values z7,z3,...,2} which yield the optimum values of all the objective
functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions of a multiobjective optimization problem. There-
fore, we normally look for “trade-offs”, rather than single solutions when deal-
ing with multiobjective optimization problems. The notion of “optimality” is
therefore, different in this case. The most commonly adopted notion of opti-
mality is that originally proposed by Francis Ysidro Edgeworth [37] and later
generalized by Vilfredo Pareto [92]. Although some authors call this notion

! The author maintains an EMO repository which currently contains over 1450
bibliographical entries at: http://delta.cs.cinvestav.mx/~ccoello/EM00, with
a mirror at http://www.lania.mx/~ccoello/EM00/
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Edgeworth-Pareto optimality (see for example [114]), we will use the most
commonly accepted term: Pareto optimality.

We say that a vector of decision variables x* € F is Pareto optimal if there
does not exist another x € F such that f;(x) < f;(x*) foralli =1,...,k and
fij(x) < fj(x*) for at least one j.

In words, this definition says that x* is Pareto optimal if there exists no
feasible vector of decision variables x € F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Un-
fortunately, this concept almost always gives not a single solution, but rather
a set of solutions called the Pareto optimal set. The vectors x* correspoding
to the solutions included in the Pareto optimal set are called nondominated.
The image of the Pareto optimal set under the objective functions is called
Pareto front.

3 Algorithms

The potential of evolutionary algorithms for solving multiobjective optimiza-
tion problems was hinted as early as the late 1960s by Rosenberg in his PhD
thesis [104]. Rosenberg’s study contained a suggestion that would have led
to multiobjective optimization if he had carried it out as presented. His sug-
gestion was to use multiple properties (nearness to some specified chemical
composition) in his simulation of the genetics and chemistry of a population
of single-celled organisms. Since his actual implementation contained only one
single property, the multiobjective approach could not be shown in his work.
The first actual implementation of what it is now called a multi-objective
evolutionary algorithm (or MOEA, for short) was Schaffer’s Vector Evaluation
Genetic Algorithm (VEGA), which was introduced in the mid-1980s, mainly
aimed for solving problems in machine learning [108, 109, 110]. Since then, a
wide variety of algorithms have been proposed in the literature [20, 15, 16].
We can roughly divide MOEASs into the following types:

Aggregating Functions
Population-based Approaches
Pareto-based Approaches

We will briefly discuss each of them in the following subsections.

3.1 Aggregating Functions

Perhaps the most straightforward approach to handle multiple objectives with
any technique is to use a combination of all the objectives into a single one us-
ing either an addition, multiplication or any other combination of arithmetical
operations that we could think of. These techniques are normally known as
“aggregating functions”, because they combine (or “aggregate”) all the objec-
tives of the problem into a single one. In fact, aggregating approaches are the
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oldest mathematical programming methods for multiobjective optimization,
since they can be derived from the Kuhn-Tucker conditions for nondominated
solutions [69].

An example of this approach is a linear sum of weights of the form:

k
min sz’fi(x) (4)

where w; > 0 are the weighting coefficients representing the relative im-
portance of the k objective functions of our problem. It is usually assumed
that

Zwi =1 (5)

Aggregating functions may be linear (as the previous example) or non-
linear (e.g., the aggregating functions adopted by game theory [101, 95], goal
programming [28, 127], goal attainment [128, 130] and the min-max algorithm
[54, 13]). Both types of aggregating functions have been used with evolution-
ary algorithms in a number of occasions, with relative success.

Aggregating functions have been largely underestimated by EMO re-
searchers mainly because of the well-known limitation of linear aggregating
functions (i.e., they cannot generate non-convex portions of the Pareto front
regardless of the weight combination used [24]). Note however that nonlinear
aggregating functions do not necessarily present such limitation [20]. In fact,
even linear aggregating functions can be cleverly defined such that concave
Pareto fronts can be generated [63]. However, the EMO community tends
to show little interest in new algorithms based on aggregating functions and
therefore their relatively low popularity among EMO researchers.

3.2 Population-based Approaches

In these techniques, the population of an EA is used to diversify the search, but
the concept of Pareto dominance is not directly incorporated into the selection
process. The classical example of this sort of approach is the Vector Evalu-
ated Genetic Algorithm (VEGA), proposed by Schaffer [109]. VEGA basically
consists of a simple genetic algorithm with a modified selection mechanism.
At each generation, a number of sub-populations are generated by performing
proportional selection according to each objective function in turn. Thus, for
a problem with k objectives, k sub-populations of size M/k each are gener-
ated (assuming a total population size of M). These sub-populations are then
shuffled together to obtain a new population of size M, on which the genetic
algorithm (GA) applies the crossover and mutation operators.

VEGA has several problems, from which the most serious is that its selec-
tion scheme is opposed to the concept of Pareto dominance. If, for example,
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there is an individual that encodes a good compromise solution for all the
objectives, but it is not the best in any of them, it will be discarded. Note
however, that such individual should really be preserved because it encodes a
Pareto optimal solution. Schaffer suggested some heuristics to deal with this
problem. For example, to use a heuristic selection preference approach for non-
dominated individuals in each generation, to protect individuals that encode
Pareto optimal solutions but are not the best in any single objective function.
Also, crossbreeding among the “species” could be encouraged by adding some
mate selection heuristics instead of using the random mate selection of the
traditional GA. Nevertheless, the fact that Pareto dominance is not directly
incorporated into the selection process of the algorithm remains as its main
disadvantage.

One interesting aspect of VEGA is that despite its drawbacks it remains in
current use by some researchers mainly because it is appropriate for problems
in which we want the selection process to be biased and in which we have
to deal with a large number of objectives (e.g., when handling constraints as
objectives in single-objective optimization [12]).

Other researchers have proposed variations of VEGA or other similar
population-based approaches (e.g., [87, 103, 112, 126]). Despite the limita-
tions of these approaches, their simplicity has attracted several researchers
and we should expect to see more work on population-based approaches in
the next few years.

3.3 Pareto-based Approaches

Taking as a basis the main drawbacks of VEGA, Goldberg discussed on pages
199 to 201 of his famous book on genetic algorithms [49] a way of tackling
multiobjective problems. His procedure consists of a selection scheme based
on the concept of Pareto optimality. Goldberg not only suggested what would
become the standard MOEA for several years, but also indicated that stochas-
tic noise would make such algorithm useless unless some special mechanism
was adopted to block convergence. Niching or fitness sharing [32] was sug-
gested by Goldberg as a way to maintain diversity and avoid convergence of
the GA to a single solution.

Pareto-based approaches can be historically studied as covering two gen-
erations. The first generation is characterized by the use of fitness sharing and
niching combined with Pareto ranking (as defined by Goldberg or adopting a
slight variation). The most representative algorithms from the first generation
are the following;:

1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm
was proposed by Srinivas and Deb [113]. The approach is based on several
layers of classifications of the individuals as suggested by Goldberg [49].
Before selection is performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classified into one category
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(with a dummy fitness value, which is proportional to the population size,
to provide an equal reproductive potential for these individuals). To main-
tain the diversity of the population, these classified individuals are shared
with their dummy fitness values. Then this group of classified individuals
is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classified.
Stochastic remainder proportionate selection is adopted for this technique.
Since individuals in the first front have the maximum fitness value, they
always get more copies than the rest of the population. This allows to
search for nondominated regions, and results in convergence of the pop-
ulation toward such regions. Sharing, by its part, helps to distribute the
population over this region (i.e., the Pareto front of the problem).

Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et
al. [58]. The NPGA uses a tournament selection scheme based on Pareto
dominance. The basic idea of the algorithm is the following: Two individ-
uals are randomly chosen and compared against a subset from the entire
population (typically, around 10% of the population). If one of them is
dominated (by the individuals randomly chosen from the population) and
the other is not, then the nondominated individual wins. When both com-
petitors are either dominated or nondominated (i.e., there is a tie), the
result of the tournament is decided through fitness sharing [51].

Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca
and Fleming [44]. In MOGA, the rank of a certain individual corresponds
to the number of chromosomes in the current population by which it is
dominated. Consider, for example, an individual x; at generation ¢, which
is dominated by pgt) individuals in the current generation.
The rank of an individual is given by [44]:

rank(z;,t) =1+ P (6)

k3

All nondominated individuals are assigned rank 1, while dominated ones
are penalized according to the population density of the corresponding
region of the trade-off surface.

Fitness assignment is performed in the following way [44]:

a) Sort population according to rank.

b) Assign fitness to individuals by interpolating from the best (rank 1)
to the worst (rank n < M) in the way proposed by Goldberg (1989),
according to some function, usually linear, but not necessarily.

c) Average the fitnesses of individuals with the same rank, so that all of
them are sampled at the same rate. This procedure keeps the global
population fitness constant while maintaining appropriate selective
pressure, as defined by the function used.
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The second generation of MOEAs was born with the introduction of the
notion of elitism. In the context of multiobjective optimization, elitism usu-
ally (althought not necessarily) refers to the use of an external population
(also called secondary population) to retain the nondominated individuals.
However, the use of this external file raises several questions:

How does the external file interact with the main population?

What do we do when the external file is full?

Do we impose additional criteria to enter the file instead of just using
Pareto dominance?

Note that elitism can also be introduced through the use of a (u + A)-
selection in which parents compete with their children and those which are
nondominated (and possibly comply with some additional criterion such as
providing a better distribution of solutions) are selected for the following
generation.

The most representative second generation MOEAs are the following:

1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm

was introduced by Zitzler and Thiele [134]. This approach was conceived
as a way of integrating different MOEAs. SPEA uses an archive containing
nondominated solutions previously found (the so-called external nondom-
inated set). At each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this external set, a
strength value is computed. This strength is similar to the ranking value
of MOGA, since it is proportional to the number of solutions to which a
certain individual dominates.
In SPEA, the fitness of each member of the current population is com-
puted according to the strengths of all external nondominated solutions
that dominate it. Additionally, a clustering technique called “average link-
age method” [85] is used to keep diversity.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): This approach
has three main differences with respect to its predecessor [132]: (1) it in-
corporates a fine-grained fitness assignment strategy which takes into ac-
count for each individual the number of individuals that dominate it and
the number of individuals by which it is dominated; (2) it uses a near-
est neighbor density estimation technique which guides the search more
efficiently, and (3) it has an enhanced archive truncation method that
guarantees the preservation of boundary solutions.

3. Pareto Archived Evolution Strategy (PAES): This algorithm was in-
troduced by Knowles and Corne [67]. PAES consists of a (1+1) evolution
strategy (i.e., a single parent that generates a single offspring) in combi-
nation with a historical archive that records some of the nondominated
solutions previously found. This archive is used as a reference set against
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which each mutated individual is being compared. An interesting aspect
of this algorithm is its procedure used to maintain diversity which con-
sists of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location based on the
values of its objectives (which are used as its “coordinates” or “geograph-
ical location”). A map of such grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is adap-
tive, no extra parameters are required (except for the number of divisions
of the objective space).

Nondominated Sorting Genetic Algorithm IT (NSGA-II): Deb et al.
[30, 31, 33] proposed a revised version of the NSGA [113], called NSGA-
II, which is more efficient (computationally speaking), uses elitism and
a crowded comparison operator that keeps diversity without specifying
any additional parameters. The NSGA-II does not use an external mem-
ory as the previous algorithms. Instead, its elitist mechanism consists of
combining the best parents with the best offspring obtained (i.e., a (u+\)-
selection).

. Niched Pareto Genetic Algorithm 2 (NPGA 2): Erickson et al. [39]

proposed a revised version of the NPGA [58] called the NPGA 2. This al-
gorithm uses Pareto ranking but keeps tournament selection (solving ties
through fitness sharing as in the original NPGA). In this case, no external
memory is used and the elitist mechanism is similar to the one adopted by
the NSGA-II. Niche counts in the NPGA 2 are calculated using individ-
uals in the partially filled next generation, rather than using the current
generation. This is called continuously updated fitness sharing, and was
proposed by Oei et al. [89].

Pareto Envelope-based Selection Algorithm (PESA): This algo-
rithm was proposed by Corne et al. [22]. This approach uses a small inter-
nal population and a larger external (or secondary) population. PESA uses
the same hyper-grid division of phenotype (i.e., objective funcion) space
adopted by PAES to maintain diversity. However, its selection mechanism
is based on the crowding measure used by the hyper-grid previously men-
tioned. This same crowding measure is used to decide what solutions to
introduce into the external population (i.e., the archive of nondominated
vectors found along the evolutionary process). Therefore, in PESA, the
external memory plays a crucial role in the algorithm since it determines
not only the diversity scheme, but also the selection performed by the
method. There is also a revised version of this algorithm, called PESA-II
[21]. This algorithm is identical to PESA, except for the fact that region-
based selection is used in this case. In region-based selection, the unit of
selection is a hyperbox rather than an individual. The procedure consists
of selecting (using any of the traditional selection techniques [50]) a hy-
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perbox and then randomly select an individual within such hyperbox. The
main motivation of this approach is to reduce the computational costs as-
sociated with traditional MOEAs (i.e., those based on Pareto ranking).

Population Memory

Random

Population Replaceable Non-Replaceable

Fill in e
both parts

of the
population

Initial
Population

memory

¢%

Selection

{

Crossover

{

!

Elitism

|

New
Population

!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
!
I

Mutation !
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I

Filter

{

External
Memory

Fig. 1. Diagram that illustrates the way in which the micro-GA for multiobjective
optimization works [19].

7. Micro Genetic Algorithm: This approach was introduced by Coello
Coello & Toscano Pulido [18, 19]. A micro-genetic algorithm is a GA with
a small population and a reinitialization process. The way in which the
micro-GA works is illustrated in Figure 1. First, a random population is
generated. This random population feeds the population memory, which
is divided in two parts: a replaceable and a non-replaceable portion. The
non-replaceable portion of the population memory never changes during
the entire run and is meant to provide the required diversity for the algo-
rithm. In contrast, the replaceable portion experiences changes after each
cycle of the micro-GA.
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The population of the micro-GA at the beginning of each of its cycles
is taken (with a certain probability) from both portions of the popula-
tion memory so that there is a mixture of randomly generated individuals
(non-replaceable portion) and evolved individuals (replaceable portion).
During each cycle, the micro-GA undergoes conventional genetic opera-
tors. After the micro-GA finishes one cycle, two nondominated vectors are
chosen? from the final population and they are compared with the con-
tents of the external memory (this memory is initially empty). If either of
them (or both) remains as nondominated after comparing it against the
vectors in this external memory, then they are included there (i.e., in the
external memory). This is the historical archive of nondominated vectors.
All dominated vectors contained in the external memory are eliminated.

The micro-GA uses then three forms of elitism: (1) it retains nondomi-
nated solutions found within the internal cycle of the micro-GA, (2) it uses
a replaceable memory whose contents is partially “refreshed” at certain
intervals, and (3) it replaces the population of the micro-GA by the nom-
inal solutions produced (i.e., the best solutions found after a full internal
cycle of the micro-GA).

EMO researchers are still wondering about the sort of algorithms that will
give rise to the third generation, but the emphasis seems to be on algorithmic
efficiency [17, 62] and on spatial data structures that improve the efficiency of
the storage in the external population [40, 43, 53, 86]. We should also expect
to see more work on the true role of elitism in evolutionary multiobjective
optimization [98, 78].

4 Applications

An analysis of the evolution of the EMO literature reveals some interesting
facts. From the first EMO approach published in 1985 [109] up to the first sur-
vey of the area published in 1995 [45], the number of published papers related
to EMO is relatively low. However, from 1995 to our days, the increase of
EMO-related papers is exponential. Today, the EMO repository registers over
1450 papers, from which a vast majority are applications. The vast number
of EMO papers currently available makes it impossible to attempt to produce
a detailed review of them in this section. Instead, we will discuss the most
popular application fields, indicating some of the specific areas within them
in which researchers have focused their main efforts.

Current EMO applications can be roughly classified in three large groups:
engineering, industrial and scientific. Some specific areas within each of these
groups are indicated next.

2 This is assuming that there are two or more nondominated vectors. If there is
only one, then this vector is the only one selected.
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We will start with the engineering applications, which are, by far, the most
popular in the literature. This should not be too surprising, since engineer-
ing disciplines normally have problems with better understood mathematical
models which facilitates the use of evolutionary algorithms. A representative
sample of engineering applications is the following (aeronautical engineering
seems to be the most popular subdiscipline within this group):

Electrical engineering [118, 1, 99]
Hydraulic engineering [102, 39, 46]
Structural engineering [73, 14, 82]
Aeronautical engineering [97, 88, 80]
Robotics [91, 117, 90]

Control [7, 116, 71]
Telecommunications [9, 70, 96]

Civil engineering [42, 6, 65]
Transport engineering [10, 48, 79]

Industrial applications occupy the second place in popularity in the EMO
literature. Within this group, scheduling is the most popular subdiscipline. A
representative sample of industrial applications is the following;:

Design and manufacture [4, 100, 107]
Scheduling [60, 115, 8]
Management [61, 68, 36]

Finally, we have a variety of scientific applications, from which the most
popular are (for obvious reasons) those related to computer science:

Chemistry [64, 57, 72]

Physics [93, 95, 52]

Medicine [26, 2, 74]

Computer science [25, 47, 38, 81]

The above distribution of applications indicates a strong interest for devel-
oping real-world applications of EMO algorithms (something not surprising
considering that most real-world problems are of a multiobjective nature).
Furthermore, the previous sample of EMO applications should give a general
idea of the application areas that have not been explored yet, some of which
are mentioned in the following section.

5 Test Functions

One of the fundamental issues when proposing an algorithm is to have a
standard methodology to validate it. As part of this methodology, certain
test functions (i.e., a benchmark) is required. In the early days of EMO re-
search, very simple unconstrained bi-objective test functions were adopted
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[54, 113, 58]. However, in the last few years several researchers have produced
an important number of test functions that have become standard in the EMO
community [27, 124, 20, 34]. Such test functions present certain difficulties for
traditional EAs and mathematical programming techniques used for multi-
objective optimization (e.g., multifrontality, disconnected or concave Pareto
fronts). Note however that no serious theoretical study has been performed
regarding the characteristics that make a multiobjective problem difficult for
an MOEA and some apparently “difficult” test functions have been found to
be relatively easy for most MOEAs [20].

Today, the transition from two to three objective functions is taking place
in the literature, and high-dimensional problems are the current focus of study
among EMO researchers [35]. We should expect that more complex test func-
tions appear in the literature in the next few years, emphasizing aspects such
as the presence of noise, uncertainty, dynamic objective functions, and epis-
tasis, among other issues [94, 20, 119, 59].

6 Metrics

The definition of appropriate metrics is very important to be able to vali-
date an algorithm. However, when dealing with multiobjective optimization
problems, there are several reasons why the qualitative assessment of results
becomes difficult. The initial problem is that we will be generating several
solutions, instead of only one (we aim to generate as many elements as pos-
sible of the Pareto optimal set). The second problem is that the stochastic
nature of evolutionary algorithms makes it necessary to perform several runs
to assess their performance. Thus, our results have to be validated using sta-
tistical analysis tools. Finally, we may be interested in measuring different
things. For example, we may be interested in having a robust algorithm that
approximates the global Pareto front of a problem consistently, rather than
an algorithm that converges to the global Pareto front but only occasionally.
Also, we may be interested in analyzing the behavior of an evolutionary algo-
rithm during the evolutionary process, trying to establish its capabilities to
keep diversity and to progressively converge to a set of solutions close to the
global Pareto front of a problem.

Three are normally the issues to take into consideration to design a good
metric in this domain [131]:

1. Minimize the distance of the Pareto front produced by our algorithm with
respect to the global Pareto front (assuming we know its location).

2. Maximize the spread of solutions found, so that we can have a distribution
of vectors as smooth and uniform as possible.

3. Maximize the number of elements of the Pareto optimal set found.
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The research produced in the last few years has included a wide variety of
metrics that assess the performance of an MOEA in one of the three aspects
previously indicated [20]. Some examples are the following:

1. Error Ratio (ER): This metric was proposed by Van Veldhuizen [120]
to indicate the percentage of solutions (from the nondominated vectors
found so far) that are not members of the true Pareto optimal set:

n

ER = Li;l G, (7)

where n is the number of vectors in the current set of nondominated vec-
tors available; e; = 0 if vector ¢ is a member of the Pareto optimal set,
and e; = 1 otherwise. It should then be clear that ER = 0 indicates an
ideal behavior, since it would mean that all the vectors generated by our
MOEA belong to the Pareto optimal set of the problem. This metric ad-
dresses the third issue from the list previously provided.

2. Generational Distance (GD): The concept of generational distance was
introduced by Van Veldhuizen & Lamont [122] as a way of estimating how
far are the elements in the set of nondominated vectors found so far from
those in the Pareto optimal set and is defined as:

w3
GD = Ez’:l di (8)
n

where n is the number of vectors in the set of nondominated solutions
found so far and d; is the Euclidean distance (measured in objective space)
between each of these and the nearest member of the Pareto optimal set.
It should be clear that a value of GD = 0 indicates that all the elements
generated are in the Pareto optimal set. Therefore, any other value will
indicate how “far” we are from the global Pareto front of our problem.

This metric addresses the first issue from the list previously provided.

3. Spacing (SP): Here, one desires to measure the spread (distribution) of
vectors throughout the nondominated vectors found so far. Since the “be-
ginning” and “end” of the current Pareto front found are known, a suitably
defined metric judges how well the solutions in such front are distributed.
Schott [111] proposed such a metric measuring the range (distance) vari-
ance of neighboring vectors in the nondominated vectors found so far.
This metric is defined as:

S8 [Ty @-dy, )

n-liE

where d; = minj(| flz(x) - flj(x) | + | fé(x) - f'27(x) |): hi=1...,n, d
is the mean of all d;, and n is the number of nondominated vectors found
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so far. A value of zero for this metric indicates all members of the Pareto
front currently available are equidistantly spaced. This metric addresses
the second issue from the list previously provided.

Many other metrics exist (see for example [123, 124, 20, 29]), but some
recent theoretical results seem to indicate that they may not be as reliable as
we think and further research in this direction is necessary [133, 66, 135].

7 Theory

The weakest aspect of the current EMO research lies on the theoretical foun-
dations of the area. Most of the current research concentrates on proving
convergence of MOEAs [105, 106, 55, 56, 121, 76].

However, several research topics are still open. For example:

e Study the structure of fitness landscapes in multiobjective optimization
problems [129, 3].

e There are no current attempts to answer a fundamental question: what
makes difficult a multiobjective optimization problem for an MOEA?

e Develop a formal framework to analyze and prove convergence of parallel
MOEA:s.

e We know that if too many objective functions are used, the concept of
Pareto dominance will eventually lead us to a situation in which all the
individuals in the population will be nondominated. The question is then,
what is the theoretical limit for Pareto ranking assuming finite size popu-
lations?

Perform run-time analysis of an MOEA [77].

It is necessary to provide definitions of robustness, convergence, and di-
versity (among others) in the context of evolutionary multiobjective opti-
mization that are acceptable by the EMO community at large [75].

8 Promising Paths for Future Research

After providing a general overview of the research currently done in evolu-
tionary multiobjective optimization, it is important to indicate now what are
some of the areas and problems that represent the most promising research
challenges for the next few years. Some of these promising paths for future
research are the following:

e Incorporation of preferences in MOEAs: Despite the efforts of some
researchers to incorporate user’s preferences into MOEAs as to narrow the
search, most of the multicriteria decision making techniques developed in
Operations Research have not been applied in evolutionary multiobjective
optimization [11, 23]. Such incorporation of preferences is very important
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in real-world applications since the user will only need one Pareto optimal
solution and not the whole set as normally assumed by EMO researchers.

e Dynamic Test Functions: After tackling static problems with two and
three objective functions, the next logical step is to develop MOEAs that
can deal with dynamic test functions [41] (i.e., test functions in which the
Pareto front moves over time due to the existence of random variables).

e Highly-Constrained Search Spaces: There is little work in the current
literature regarding the solution of multiobjective problems with highly-
constrained search spaces. However, it is rather common to have such
problems in real-world applications and it is then necessary to develop
novel constraint-handling techniques that can deal with highly-constrained
search spaces efficiently.

e Parallelism: We should expect more work on parallel MOEAs in the
next few years. Currently, there is a noticeable lack of research in this area
[20, 125] and it is therefore open to new ideas. It is necessary to have more
algorithms, formal models to prove convergence, and more real-world ap-
plications that use parallelism.

e Theoretical Foundations: It is quite important to develop the theoreti-
cal foundations of MOEAs. Although a few steps have been taken regard-
ing proving convergence using Markov Chains (e.g., [105, 106]), much more
work remains to be done as indicated in Section 7 (see [20]).

9 Conclusions

This chapter has discussed some of the most relevant research currently tak-
ing place in evolutionary multiobjective optimization. The main topics dis-
cussed include algorithms, metrics, test functions and theoretical foundations
of EMO. The overview provided intends to give the reader a general picture
of the current state of the field so that newcomers can analyze the current
progress in their areas of interest.

Additionally, we have provided some possible paths of future research that
seem promising in the short and medium term. The areas indicated should
provide research material for those interested in making contributions in evo-
lutionary multiobjective optimization. The areas described present challenges
that are likely to determine the future research directions in this area.
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