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Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
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Abstract. In this chapter we present a brief analysis of the current research per-
formed on evolutionary multiobjective optimization. After analyzing first and
second generation multiobjective evolutionary algorithms, we address two im-
portant issues: the role of elitism in evolutionary multiobjective optimization and
the way in which concepts from multiobjective optimization can be applied to
constraint-handling techniques. We conclude with a discussion of some of the
most promising research trends in the years to come.

1 Introduction

Evolutionary algorithms have become an increasingly popular design and optimization
tool in the last few years, with a constantly growing development of new algorithms and
applications [1]. Despite this considerably large volume of research, new areas remain
to be explored with sufficient depth. One of them is the use of evolutionary algorithms
to solve multiobjective optimization problems.

The first implementation of a multi-objective evolutionary algorithm (MOEA) dates
back to the mid-1980s [45, 46]. Since then, a considerable amount of research has been
done in this area, now known as evolutionary multi-objective optimization (EMO for
short). The growing importance of this field is reflected by a significant increment
(mainly during the last eight years) of technical papers in international conferences and
peer-reviewed journals, books, special sessions in international conferences and interest
groups on the Internet [13].1

Evolutionary algorithms seem also particularly desirable for solving multiobjective
optimization problems because they deal simultaneously with a set of possible solutions
(the so-called population) which allows us to find several members of the Pareto optimal

1 The first author maintains an EMO repository with over 900 bibliographical en-
tries at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO, with mirrors at
http://www.lania.mx/˜ccoello/EMOO/ and http://www.jeo.org/emo/



set in a single run of the algorithm, instead of having to perform a series of separate runs
as in the case of the traditional mathematical programming techniques. Additionally,
evolutionary algorithms are less susceptible to the shape or continuity of the Pareto
front (e.g., they can easily deal with discontinuous and concave Pareto fronts), whereas
these two issues are a real concern for mathematical programming techniques [8].

This chapter deals with some of the current and future research trends in evolu-
tionary multiobjective optimization. The perspective adopted is derived from our own
research experience in the area and therefore the bias towards certain particular topics
of interest. The chapter is organized as follows. Section 2 presents some basic concepts
used in multiobjective optimization. Section 3 briefly describes the origins of evolu-
tionary multiobjective optimization. Section 4 introduces the so-called first generation
multiobjective evolutionary algorithms. Second generation multiobjective evolutionary
algorithms are discussed in Section 5, emphasizing the role of elitism in evolutionary
multiobjective optimization. Section 6 discusses ways in which multiobjective opti-
mization concepts have been and could be incorporated into constraint-handling tech-
niques (both for single and for multiobjective optimization). Finally, Section 7 discusses
some of the research trends that are likely to be predominant in the next few years.

2 Basic Concepts

The emphasis of this chapter is the solution of multiobjective optimization problems
(MOPs) of the form:

minimize � �������	��
�������	��
�������
��������	��� (1)

subject to the � inequality constraints:
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(79�
�������
(7 1 �;:
the vector of decision variables. We wish to determine from among the set < of all vec-
tors which satisfy (2) and (3) the particular set of values 7>=� 
(78= 
�������
?7@=1 which yield the
optimum values of all the objective functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes all the ob-
jective functions. Therefore, we normally look for “trade-offs”, rather than single solu-
tions when dealing with multiobjective optimization problems. The notion of “optimal-
ity” is therefore, different in this case. The most commonly adopted notion of optimality
is that originally proposed by Francis Ysidro Edgeworth [21] and later generalized by



Vilfredo Pareto [39]. Although some authors call this notion Edgeworth-Pareto opti-
mality (see for example [49]), we will use the most commonly accepted term: Pareto
optimality.

We say that a vector of decision variables ��=�� < is Pareto optimal if there does not
exist another ��� < such that � � ���	��� � � ��� =�� for all � ! #�
������ 
�. and ���%���	��� �	����� = �
for at least one 
 .

In words, this definition says that � = is Pareto optimal if there exists no feasible
vector of decision variables ��� < which would decrease some criterion without caus-
ing a simultaneous increase in at least one other criterion. Unfortunately, this concept
almost always gives not a single solution, but rather a set of solutions called the Pareto
optimal set. The vectors � = correspoding to the solutions included in the Pareto optimal
set are called nondominated. The image of the Pareto optimal set under the objective
functions is called Pareto front.

3 How it all started

The potential of evolutionary algorithms for solving multiobjective optimization prob-
lems was hinted as early as the late 1960s by Rosenberg in his PhD thesis [42]. Rosen-
berg’s study contained a suggestion that would have led to multiobjective optimization
if he had carried it out as presented. His suggestion was to use multiple properties
(nearness to some specified chemical composition) in his simulation of the genetics and
chemistry of a population of single-celled organisms. Since his actual implementation
contained only one single property, the multiobjective approach could not be shown in
his work.

The first actual implementation of what it is now called a multi-objective evolu-
tionary algorithm (or MOEA, for short) was Schaffer’s Vector Evaluation Genetic Al-
gorithm (VEGA), which was introduced in the mid-1980s, mainly aimed for solving
problems in machine learning [45–47].

VEGA basically consisted of a simple genetic algorithm (GA) with a modified se-
lection mechanism. At each generation, a number of sub-populations were generated by
performing proportional selection according to each objective function in turn. Thus, for
a problem with . objectives, . sub-populations of size ���. each would be generated
(assuming a total population size of � ). These sub-populations would then be shuf-
fled together to obtain a new population of size � , on which the GA would apply the
crossover and mutation operators in the usual way. Schaffer realized that the solutions
generated by his system were nondominated in a local sense, because their nondomi-
nance was limited to the current population, which was obviously not appropriate. Also,
he noted a problem that in genetics is known as “speciation” (i.e., we could have the
evolution of “species” within the population which excel on different aspects of perfor-
mance). This problem arises because this technique selects individuals who excel in one
dimension of performance, without looking at the other dimensions. The potential dan-
ger doing that is that we could have individuals with what Schaffer called “middling”
performance2 in all dimensions, which could be very useful for compromise solutions,

2 By “middling”, Schaffer meant an individual with acceptable performance, perhaps above av-
erage, but not outstanding for any of the objective functions.



but which will not survive under this selection scheme, since they are not in the extreme
for any dimension of performance (i.e., they do not produce the best value for any ob-
jective function, but only moderately good values for all of them). Speciation is unde-
sirable because it is opposed to our goal of finding Pareto optimal solutions. Although
VEGA’s speciation can be dealt with using heuristics or other additional mechanisms,
it remained as the main drawback of VEGA.

From the second half of the 1980s up to the first half of the 1990s, few other re-
searchers developed MOEAs. Most of the work reported back then involves rather sim-
ple evolutionary algorithms that use an aggregating function (linear in most cases) [33,
54], lexicographic ordering [24], and target-vector approaches [28]. All of these ap-
proaches were strongly influenced by the work done in the operations research com-
munity and in most cases did not require any major modifications to the evolutionary
algorithm adopted.

The algorithms proposed in this initial period are rarely referenced in the current
literature except for VEGA (which is still used by some researchers). However, the
period is of great importance because it provided the first insights into the possibility
of using evolutionary algorithms for multiobjective optimization. The fact that only
relatively naive approaches were developed during this stage is natural considering that
these were the initial attempts to develop multiobjective extensions of an evolutionary
algorithm. Such approaches kept most of the original evolutionary algorithm structure
intact (only the fitness function was modified in most cases) to avoid any complex
additional coding. The emphasis in incorporating the concept of Pareto dominance into
the search mechanism of an evolutionary algorithm would come later.

4 MOEAs: First Generation

The major step towards the first generation of MOEAs was given by David Goldberg
on pages 199 to 201 of his famous book on genetic algorithms published in 1989 [25].
In his book, Goldberg analyzes VEGA and proposes a selection scheme based on the
concept of Pareto optimality. Goldberg not only suggested what would become the stan-
dard first generation MOEA, but also indicated that stochastic noise would make such
algorithm useless unless some special mechanism was adopted to block convergence.
First generation MOEAs typically adopt niching or fitness sharing for that sake. The
most representative algorithms from the first generation are the following:

1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm was pro-
posed by Srinivas and Deb [48]. The approach is based on several layers of classi-
fications of the individuals as suggested by Goldberg [25]. Before selection is per-
formed, the population is ranked on the basis of nondomination: all nondominated
individuals are classified into one category (with a dummy fitness value, which is
proportional to the population size, to provide an equal reproductive potential for
these individuals). To maintain the diversity of the population, these classified in-
dividuals are shared with their dummy fitness values. Then this group of classified
individuals is ignored and another layer of nondominated individuals is consid-
ered. The process continues until all individuals in the population are classified.



Stochastic remainder proportionate selection is adopted for this technique. Since
individuals in the first front have the maximum fitness value, they always get more
copies than the rest of the population. This allows to search for nondominated re-
gions, and results in convergence of the population toward such regions. Sharing,
by its part, helps to distribute the population over this region (i.e., the Pareto front
of the problem).

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al. [32]. The
NPGA uses tournament selection scheme based on Pareto dominance. The basic
idea of the algorithm is the following: Two individuals are randomly chosen and
compared against a subset from the entire population (typically, around 10% of the
population). If one of them is dominated (by the individuals randomly chosen from
the population) and the other is not, then the nondominated individual wins. When
both competitors are either dominated or nondominated (i.e., there is a tie), the re-
sult of the tournament is decided through fitness sharing [27].

3. Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca and Flem-
ing [23]. In MOGA, the rank of a certain individual corresponds to the number of
chromosomes in the current population by which it is dominated. Consider, for ex-
ample, an individual 7 � at generation � , which is dominated by )

������ individuals in
the current generation.
The rank of an individual is given by [23]:

rank ��7 � 
��(�	! #�� )
������ (4)

All nondominated individuals are assigned rank # , while dominated ones are penal-
ized according to the population density of the corresponding region of the trade-off
surface.
Fitness assignment is performed in the following way [23]:
(a) Sort population according to rank.
(b) Assign fitness to individuals by interpolating from the best (rank # ) to the worst

(rank 	 ��
 ) in the way proposed by Goldberg (1989), according to some
function, usually linear, but not necessarily.

(c) Average the fitnesses of individuals with the same rank, so that all of them are
sampled at the same rate. This procedure keeps the global population fitness
constant while maintaining appropriate selective pressure, as defined by the
function used.

The main questions raised during the first generation were:

– Are aggregating functions (so common before and even during the golden years of
Pareto ranking) really doomed to fail when the Pareto front is non-convex [16]? Are
there ways to deal with this problem? Is it worth trying? Some recent work seems
to indicate that aggregating functions are not death yet [35].

– Can we find ways to maintain diversity in the population without using niches (or
fitness sharing), which requires a process � �
  � where 
 refers to the population
size?



– If assume that there is no way of reducing the � � . 
  � process required to perform
Pareto ranking ( . is the number of objectives and 
 is the population size), how
can we design a more efficient MOEA?

– Do we have appropriate test functions and metrics to evaluate quantitatively an
MOEA? Not many people worried about this issue until near the end of the first
generation. During this first generation, practically all comparisons were done vi-
sually (plotting the Pareto fronts produced by different algorithms) or were not
provided at all (only the results of the proposed method were reported).

– When will somebody develop theoretical foundations for MOEAs?

Summarizing, the first generation was characterized by the use of selection mech-
anisms based on Pareto ranking and fitness sharing was the most common approach
adopted to maintain diversity. Much work remained to be done, but the first important
steps towards a solid research area had been already taken.

5 MOEAs: Second Generation

The second generation of MOEAs was born with the introduction of the notion of
elitism. In the context of multiobjective optimization, elitism usually (althought not
necessarily) refers to the use of an external population (also called secondary popula-
tion) to retain the nondominated individuals. The use of this external file raises several
questions:

– How does the external file interact with the main population?
– What do we do when the external file is full?
– Do we impose additional criteria to enter the file instead of just using Pareto domi-

nance?

Elitism can also be introduced through the use of a ( � ��� )-selection in which parents
compete with their children and those which are nondominated (and possibly comply
with some additional criterion such as providing a better distribution of solutions) are
selected for the following generation.

The previous points bring us to analyze in more detail the true role of elitism in
evolutionary multiobjective optimization. For that sake, we will review next the way in
which some of the second-generation MOEAs implement elitism:

1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm was introduced
by Zitzler and Thiele [57]. This approach was conceived as a way of integrat-
ing different MOEAs. SPEA uses an archive containing nondominated solutions
previously found (the so-called external nondominated set). At each generation,
nondominated individuals are copied to the external nondominated set. For each
individual in this external set, a strength value is computed. This strength is similar
to the ranking value of MOGA, since it is proportional to the number of solutions
to which a certain individual dominates. It should be obvious that the external non-
dominated set is in this case the elitist mechanism adopted.



In SPEA, the fitness of each member of the current population is computed ac-
cording to the strengths of all external nondominated solutions that dominate it.
Additionally, a clustering technique called “average linkage method” [37] is used
to keep diversity.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has three main dif-
ferences with respect to its predecessor [56]: (1) it incorporates a fine-grained fit-
ness assignment strategy which takes into account for each individual the number
of individuals that dominate it and the number of individuals by which it is domi-
nated; (2) it uses a nearest neighbor density estimation technique which guides the
search more efficiently, and (3) it has an enhanced archive truncation method that
guarantees the preservation of boundary solutions.
Thefore, in this case the elitist mechanism is just an improved version of the previ-
ous.

3. Pareto Archived Evolution Strategy (PAES): This algorithm was introduced by
Knowles and Corne [36]. PAES consists of a (1+1) evolution strategy (i.e., a single
parent that generates a single offspring) in combination with a historical archive
that records some of the nondominated solutions previously found. This archive is
used as a reference set against which each mutated individual is being compared.
Such a historical archive is the elitist mechanism adopted in PAES. However, an in-
teresting aspect of this algorithm is the procedure used to maintain diversity which
consists of a crowding procedure that divides objective space in a recursive manner.
Each solution is placed in a certain grid location based on the values of its objec-
tives (which are used as its “coordinates” or “geographical location”). A map of
such grid is maintained, indicating the number of solutions that reside in each grid
location. Since the procedure is adaptive, no extra parameters are required (except
for the number of divisions of the objective space).

4. Nondominated Sorting Genetic Algorithm II (NSGA-II): Deb et al. [18–20] pro-
posed a revised version of the NSGA [48], called NSGA-II, which is more efficient
(computationally speaking), uses elitism and a crowded comparison operator that
keeps diversity without specifying any additional parameters. The NSGA-II does
not use an external memory as the previous algorithms. Instead, the elitist mecha-
nism consists of combining the best parents with the best offspring obtained (i.e., a
( � � � )-selection).

5. Niched Pareto Genetic Algorithm 2 (NPGA 2): Erickson et al. [22] proposed a
revised version of the NPGA [32] called the NPGA 2. This algorithm uses Pareto
ranking but keeps tournament selection (solving ties through fitness sharing as in
the original NPGA). In this case, no external memory is used and the elitist mech-
anism is similar to the one adopted by the NSGA-II. Niche counts in the NPGA 2
are calculated using individuals in the partially filled next generation, rather than
using the current generation. This is called continuously updated fitness sharing,
and was proposed by Oei et al. [38].



6. Pareto Envelope-based Selection Algorithm (PESA): This algorithm was pro-
posed by Corne et al. [15]. This approach uses a small internal population and a
larger external (or secondary) population. PESA uses the same hyper-grid division
of phenotype (i.e., objective funcion) space adopted by PAES to maintain diversity.
However, its selection mechanism is based on the crowding measure used by the
hyper-grid previously mentioned. This same crowding measure is used to decide
what solutions to introduce into the external population (i.e., the archive of non-
dominated vectors found along the evolutionary process). Therefore, in PESA, the
external memory plays a crucial role in the algorithm since it determines not only
the diversity scheme, but also the selection performed by the method. There is also
a revised version of this algorithm, called PESA-II [14]. This algorithm is iden-
tical to PESA, except for the fact that region-based selection is used in this case.
In region-based selection, the unit of selection is a hyperbox rather than an indi-
vidual. The procedure consists of selecting (using any of the traditional selection
techniques [26]) a hyperbox and then randomly select an individual within such hy-
perbox. The main motivation of this approach is to reduce the computational costs
associated with traditional MOEAs (i.e., those based on Pareto ranking). Again, the
role of the external memory in this case is crucial to the performance of the algo-
rithm.

7. Micro Genetic Algorithm: This approach was introduced by Coello Coello &
Toscano Pulido [11, 12]. A micro-genetic algorithm is a GA with a small population
and a reinitialization process. The way in which the micro-GA works is illustrated
in Figure 1. First, a random population is generated. This random population feeds
the population memory, which is divided in two parts: a replaceable and a non-
replaceable portion. The non-replaceable portion of the population memory never
changes during the entire run and is meant to provide the required diversity for the
algorithm. In contrast, the replaceable portion experiences changes after each cycle
of the micro-GA.
The population of the micro-GA at the beginning of each of its cycles is taken
(with a certain probability) from both portions of the population memory so that
there is a mixture of randomly generated individuals (non-replaceable portion) and
evolved individuals (replaceable portion). During each cycle, the micro-GA under-
goes conventional genetic operators. After the micro-GA finishes one cycle, two
nondominated vectors are chosen3 from the final population and they are compared
with the contents of the external memory (this memory is initially empty). If either
of them (or both) remains as nondominated after comparing it against the vectors
in this external memory, then they are included there (i.e., in the external mem-
ory). This is the historical archive of nondominated vectors. All dominated vectors
contained in the external memory are eliminated.
The micro-GA uses then three forms of elitism: (1) it retains nondominated so-
lutions found within the internal cycle of the micro-GA, (2) it uses a replaceable
memory whose contents is partially “refreshed” at certain intervals, and (3) it re-

3 This is assuming that there are two or more nondominated vectors. If there is only one, then
this vector is the only one selected.
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places the population of the micro-GA by the nominal solutions produced (i.e., the
best solutions found after a full internal cycle of the micro-GA). Therefore, the
micro-GA is another example of how elitism can play a vital role to improve the
performance of an evolutionary algorithm used for multiobjective optimization.

Second generation MOEAs can be characterized by an emphasis on efficiency and
by the use of elitism (in the two main forms previously described). During the second
generation, some important theoretical work also took place, mainly related to conver-
gence [43, 44, 29, 30, 53]. Also, metrics and standard test functions were developed to
validate new MOEAs [55, 52].

The main concerns during the second generation (which we are still living nowa-
days) are the following:

– Are our metrics reliable? What about our test functions? We have found out that
developing good metrics is in itself a multiobjective optimization problem, too. In
fact, it is ironic that nowadays we are going back to trusting more visual compar-
isons than metrics as during the first generation.

– Are we ready to tackle problems with more than two objective functions efficiently?
Is Pareto ranking doomed to fail when dealing with too many objectives? If so,
then what is the limit up to which Pareto ranking can be used to select individuals
reliably?

– What are the most relevant theoretical aspects of evolutionary multiobjective opti-
mization that are worth exploring in the short-term?

6 Relating constraint-handling and multiobjective optimization

Another research area within evolutionary multiobjective optimization that has not been
explored in enough detail in the current literature is constraint-handling (particularly for
single-objective optimization). We believe that it is important to study the relationship
between constraint-handling and multiobjective optimization because of two main rea-
sons: (1) constrained single-objective optimization problems can be re-stated as multi-
objective optimization problems in a natural way, and (2) this sort of constrained single-
objective optimization problems can be used to measure performance of MOEAs on a
more quantitative basis than when using conventional multiobjective test functions.

The most straightforward approach to use multiobjective optimization techniques
to solve a single-objective optimization problems is to redefine the single-objective op-
timization of �"���	� as a multiobjective optimization problem in which we will have
� � # objectives, where � is the number of constraints4. Then, we can apply any
MOEA to the new vector

�� ! � �"���	� 
��%�����	��
�������
���� ���	�?� , where �%�����	��
�������
���� ���	� are
the original constraints of the problem. An ideal solution � would thus have � � ���	� =0
for # � � � � and �"���	��� �"���"� for all feasible � (assuming minimization).

However, it should be clear that in single-objective optimization problems we do
not want just good trade-offs; we want to find the best possible solutions that do not
violate any constraints. Therefore, a mechanism such as Pareto ranking may be useful

4 The assumption that we have � constraints will hold throughout this section.



to approach the feasible region, but once we arrive to it, we will need to guide the
search with a different mechanism so that we can reach the global optimum. In order
to achieve this goal, we should also be able to maintain diversity in the population.
Some of the most representative attempts to use multiobjective optimization techniques
(or concepts) to handle constraints in single-objective optimization problems are the
following:

1. COMOGA: Surry et al. [50] proposed the use of Pareto ranking and VEGA to
handle constraints. In their approach, called COMOGA, the population is ranked
based on constraint violations (counting the number of individuals dominated by
each solution). Then, one portion of the population is selected based on constraint
ranking, and the rest based on real cost (fitness) of the individuals. COMOGA com-
pared fairly with a penalty-based approach in a pipe-sizing problem, and was less
sensitive to changes in the parameters, but the results achieved were not better than
those found with a penalty function [50]. It should be added that COMOGA re-
quires several extra parameters, although its authors argue that the technique is not
particularly sensitive to the values of such parameters.

2. VEGA: Parmee and Purchase [40] implemented a version of VEGA that handled
the constraints of a gas turbine problem as objectives to allow a GA to locate a feasi-
ble region within the highly constrained search space of this application. However,
VEGA was not used to further explore the feasible region, and instead the authors
used specialized operators that would create a variable-size hypercube around each
feasible point to help the GA to remain within the feasible region at all times. It
is important to notice that no real attempt to reach the global optimum was made
in this case. Coello [6] also proposed the use of a population-based multiobjective
optimization technique such as VEGA to handle each of the constraints of a single-
objective optimization problem as an objective. In this case, however, the goal was
to approximate the global optimum. At each generation, the population is split into
��� # sub-populations ( � is the number of constraints), so that a fraction of the
population is selected using the (unconstrained) objective function as its fitness
and another fraction uses the first constraint as its fitness and so on. This approach
provided good results in several optimization problems [6]. Its main disadvantage
was related to scalability issues. However, in a recent application in combinational
circuit design we were able to successfully deal with up to 49 objective functions
[7]. Furthermore, the approach showed an important improvement (in terms of ef-
ficiency) with respect to a previous GA-based approach developed by us for the
same task [4].

3. Line Search and Pareto Dominance: Camponogara & Talukdar [2] proposed to
restate a single objective optimization problem in such a way that two objectives
would be considered: the first would be to optimize the original objective function
and the second would be to minimize:

� ���	�	!
��
��� �

max � � 
 ��� ���	����� (5)



where � is normally 1 or 2. Once the problem is redefined, nondominated solutions
with respect to the two new objectives are generated. The solutions found define a
search direction � ! � 7 ��� 7 � � �� 7 ��� 7 
�� , where 7 � �	� � , 7 � �
� � , and � � and � �
are Pareto sets. The direction search � is intended to simultaneously minimize all
the objectives. Line search is performed in this direction so that a solution 7 can be
found such that 7 dominates 7 � and 7 � (i.e., 7 is a better compromise than the two
previous solutions found). Line search takes the place of crossover in this approach,
and mutation is essentially the same, where the direction � is projected onto the axis
of one variable 
 in the solution space. Additionally, a process of eliminating half
of the population is applied at regular intervals (only the less fitted solutions are
replaced by randomly generated points). This approach has obvious problems to
keep diversity, as it is reflected by the need to discard the worst individuals at each
generation. Also, the use of line search increases the computational cost of the ap-
proach and it is not clear what is the impact of the segment chosen to search in the
overall performance of the algorithm.

4. Min-Max: Jiménez et al. [34] proposed the use of a min-max approach [3] to han-
dle constraints. The main idea of this technique is to apply a set of simple rules to
decide the (binary tournament) selection process:

(a) If the two individuals being compared are both feasible, then select based on
the minimum value of the objective function.

(b) If one of the two individuals being compared is feasible and the other one is
infeasible, then select the feasible individual.

(c) If both individuals are infeasible, then select based on the maximum constraint
violation (max � �����	� 
 for 
 !$#�
������ 
?� ). The individual with the lowest max-
imum violation wins.

A subtle problem with this approach is that the evolutionary process first concen-
trates only on the constraint satisfaction problem and therefore it samples points in
the feasible region essentially at random [51]. This means that in some cases (e.g.,
when the feasible region is disjoint) we might land in an inappropriate part of the
feasible region from which we will not be able to escape. However, this approach
may be a good alternative to find a feasible point in a heavily constrained search
space. Deb [17] proposed a similar approach but using tournament selection based
on feasibility. However, niching was required to maintain diversity in the popula-
tion.

5. MOGA: Coello [5] explored the use of selection based on dominance (defined in
terms of feasibility) to handle constraints. In this case, ranking is performed at three
different levels: from two feasible individuals the one with the highest fitness is pre-
ferred; if one is feasible and the other infeasible, then the first is chosen; if both are
infeasible, then the individual with the lowest amount of constraint violation is cho-
sen. This approach uses stochastic universal sampling so that the selection pressure
is not too high and no extra procedures are required to maintain diversity. Also,
adaptive crossover and mutation rates were adopted as part of the approach.



6. NPGA: Coello & Mezura [10] proposed the use of tournaments based on nondom-
inance (as in the NPGA [32]) to handle constraints. An additional parameter, called
selection rank ( ��� ) is added to control the selection pressure of the approach. This
parameter makes unnecessary to use equivalent class sharing (as in the NPGA) to
maintain diversity and also decreases the (normally high) selection pressure origi-
nated from using tournament selection.

7. Domain Knowledge and Ranking: Ray et al. [41] proposed a technique to han-
dle constraints in which the population is ranked both in objective function space
and in constraint space. The selection strategy adopted eliminates weaknesses from
both spaces and ensures a better constraint satisfaction in the offspring produced.
The approach uses niches to maintain diversity with Euclidean distances being the
similary measure adopted. It also incorporates mating restrictions based on the in-
formation that each individual has of its own feasibility (this idea was inspired on an
earlier approach by Hinterding and Michalewicz [31]), so that the global optimum
can be reached through cooperative learning.

Some of the possible trends in this area are the following:

– Use of other MOEAs to handle constraints. Some of these techniques may be rather
simple and still remain highly competitive. See for example [9].

– Use of online and self-adaptation in constraint-handling techniques both for single-
and for multiobjective optimization.

– Extraction and reuse of knowlewdge obtained from the evolutionary process in
order to guide more efficiently the search.

– Design (single-objective optimization) test functions that are particularly difficult
for MOEAs to tackle and devise appropriate metrics to measure their performance
in this context.

7 Where are we heading?

Once we have been able to distinguish between the first and second generations in evo-
lutionary multiobjective optimization, a reasonable question is: where are we heading
now?

In the last few years, there has been a considerable growth in the number of publica-
tions related to evolutionary multiobjective optimization. However, the variety of topics
covered is not as rich as the number of publications released each year. The current
trend is to either develop new algorithms (validating them with some of the metrics and
test functions available) or to develop interesting applications of existing algorithms.

We will finish this section with a list of some of the research topics that we believe
that will keep researchers busy during the next few years:

– New metrics with some insightful analysis of their behavior and limitations. Also,
metrics that measure not only offline performance, but also online performance are
expected to arise.



– More test functions with more than two objectives and with high dimensional-
ity. Concerns about epistasis, deception, dynamic functions, uncertainty and noise
should also be reflected in the upcoming work in this topic.

– Development of a theoretical framework that allows to analyze the behavior of
MOEAs. Topics such as the run-time analysis and bounded convergence times of
an MOEA are expected to be tackled in the next few years. We should also expect
more work on convergence and on modelling MOEAs using statistical tools.

8 Conclusions

This chapter has provided a rather brief and general picture of the past, current and
future research in evolutionary multiobjective optimization. A brief analysis of some of
the most popular algorithms reported in the literature has also been provided together
with a summary of the main contributions made in this area in the last few years. Finally,
some promising areas of future research were also provided.

Our main goal was to provide a motivation for researchers and students to get into
this exciting research discipline to tackle the problems that are our main concern right
now. Being a young research area, evolutionary multiobjective optimization still has a
lot of opportunities to offer to newcomers and we expect many of them to join us in the
next few years.
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Ian Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2000), pages 771–777, San Francisco, California, 2000.
Morgan Kaufmann.

42. R. S. Rosenberg. Simulation of genetic populations with biochemical properties. PhD thesis,
University of Michigan, Ann Arbor, MI, 1967.

43. Günter Rudolph. On a Multi-Objective Evolutionary Algorithm and Its Convergence to the
Pareto Set. In Proceedings of the 5th IEEE Conference on Evolutionary Computation, pages
511–516, Piscataway, NJ, 1998. IEEE Press.

44. Günter Rudolph and Alexandru Agapie. Convergence Properties of Some Multi-Objective
Evolutionary Algorithms. In Proceedings of the 2000 Conference on Evolutionary Compu-
tation, volume 2, pages 1010–1016, Piscataway, NJ, July 2000. IEEE Press.

45. J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. PhD thesis, Vanderbilt University, Nashville, TN, 1984.

46. J. David Schaffer. Multiple objective optimization with vector evaluated genetic algorithms.
In Genetic Algorithms and their Applications: Proceedings of the First International Con-
ference on Genetic Algorithms, pages 93–100, Hillsdale, NJ, 1985. Lawrence Erlbaum.

47. J. David Schaffer and John J. Grefenstette. Multiobjective learning via genetic algorithms. In
Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85),
pages 593–595, Los Angeles, CA, 1985. AAAI.

48. N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.

49. W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, editor, Multicriteria
Optimization in Engineering and the Sciences, pages 1–25. Plenum Press, New York, NY,
1988.

50. Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA method: Constrained optimisa-
tion by multiobjective genetic algorithms. Control and Cybernetics, 26(3):391–412, 1997.

51. Patrick D. Surry, Nicholas J. Radcliffe, and Ian D. Boyd. A multi-objective approach to
constrained optimisation of gas supply networks : The COMOGA method. In Terence C.



Fogarty, editor, Evolutionary Computing. AISB Workshop. Selected Papers, pages 166–180,
Sheffield, U.K., 1995. Springer-Verlag. Lecture Notes in Computer Science No. 993.

52. David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analy-
ses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering.
Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB,
OH, May 1999.

53. David A. Van Veldhuizen and Gary B. Lamont. Evolutionary computation and convergence
to a pareto front. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming
1998 Conference, pages 221–228, Stanford, CA, July 1998. Stanford University Bookstore.

54. P. B. Wilson and M. D. Macleod. Low implementation cost IIR digital filter design using
genetic algorithms. In IEE/IEEE Workshop on Natural Algorithms in Signal Processing,
pages 4/1–4/8, Chelmsford, U.K., 1993.

55. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective Evolu-
tionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, Summer
2000.

56. Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Lab-
oratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-
8092 Zurich, Switzerland, May 2001.

57. Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary Computa-
tion, 3(4):257–271, November 1999.


