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Abstract. In this paper, we propose an algorithm based on the clonal selection principle to solve multiobjective
optimization problems (either constrained or unconstrained). The proposed approach uses Pareto dominance and
feasibility to identify solutions that deserve to be cloned, and uses two types of mutation: uniform mutation is
applied to the clones produced and non-uniform mutation is applied to the “not so good” antibodies (which are
represented by binary strings that encode the decision variables of the problem to be solved). We also use a
secondary (or external) population that stores the nondominated solutions found along the search process. Such
secondary population constitutes the elitist mechanism of our approach and it allows it to move towards the true
Pareto front of a problem over time. Our approach is compared with three other algorithms that are representative
of the state-of-the-art in evolutionary multiobjective optimization. For our comparative study, three metrics are
adopted and graphical comparisons with respect to the true Pareto front of each problem are also included. Results
indicate that the proposed approach is a viable alternative to solve multiobjective optimization problems.
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1. Introduction

Given that our own life depends on our immune system, it should be obvious why it is
considered as one of the most important biological mechanisms that humans possess. In
recent years, several researchers have developed computational models of the immune sys-
tem that attempt to capture some of its most remarkable features such as its self-organizing
capability [17, 25].

From the information processing perspective, the immune system can be seen as a parallel
and distributed adaptive system [9, 19]. It is capable of learning, it uses memory and
is capable of associative retrieval of information in recognition and classification tasks.
Particularly, it learns to recognize patterns, it remembers patterns that it has been shown
in the past and its global behavior is an emergent property of many local interactions [9].
All these features of the immune system provide, in consequence, great robustness, fault
tolerance, dynamism and adaptability [17]. These are the properties of the immune system
that mainly attract researchers to try to emulate it in a computer.

Most optimization problems naturally have several objectives to be achieved (normally
conflicting with each other), but in order to simplify their solution, they are treated as if they
had only one (the remaining objectives are normally handled as constraints). These problems
with several objectives, are called “multiobjective” or “vector” optimization problems, and
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were originally studied in the context of economics. However, scientists and engineers soon
realized that such problems naturally arise in all areas of knowledge.

Over the years, the work of a considerable number of operational researchers has pro-
duced a wide variety of techniques to deal with multiobjective optimization problems [31].
However, it was until relatively recently that researchers became aware of the potential of
evolutionary algorithms (EAs) and other population-based heuristics in this area.

The first implementation of a multiobjective evolutionary algorithm (MOEA) dates back
to the mid-1980s [39, 40]. Since then, a considerable amount of research has been done
in this area, now known as evolutionary multiobjective optimization (EMO for short). The
growing importance of this field is reflected by a significant increment (mainly during the
last eight years) of technical papers in international conferences and peer-reviewed journals,
books, special sessions at international conferences and interest groups on the Internet [7].1

The main motivation for using EAs (or any other population-based heuristics) in solving
multiobjective optimization problems is because EAs deal simultaneously with a set of
possible solutions (the so-called population) which allows us to find several members of
the Pareto optimal set in a single run of the algorithm, instead of having to perform a series
of separate runs as in the case of the traditional mathematical programming techniques
[31]. Additionally, EAs are less susceptible to the shape or continuity of the Pareto front
(e.g., they can easily deal with discontinuous and concave Pareto fronts), whereas these two
issues are a real concern for mathematical programming techniques [3].

Despite the considerable amount of EMO research in the last few years, there have been
very few attempts to extend certain population-based heuristics (e.g., cultural algorithms
and particle swarm optimization). Particularly, the efforts to extend an artificial immune
system to deal with multiobjective optimization problems have been practically inexistent
until very recently. In this paper, we precisely provide one of the first proposals to extend
an artificial immune system to solve multiobjective optimization problems (either with or
without constraints). Our proposal is based on the clonal selection principle and is validated
using several test functions and metrics, following the standard methodology adopted in the
EMO community [7, 11].

2. Basic definitions

Definition 1 (Global minimum). Given a function f : � ⊆ Rn → R, � �= ∅, for �x ∈ �

the value f ∗ � f (�x∗) > −∞ is called a global minimum if and only if

∀�x ∈ � : f (�x∗) ≤ f (�x) . (1)

Then, �x∗ is the global minimum solution(s), f is the objective function, and the set � is the
feasible region (� ∈ S), where S represents the whole search space.

Definition 2 (General multiobjective optimization problem (MOP). Find the vector �x∗ =
[x∗

1 , x∗
2 , . . . , x∗

n ]T which will satisfy the m inequality constraints:

gi (�x) ≥ 0 i = 1, 2, . . . , m (2)
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the p equality constraints

hi (�x) = 0 i = 1, 2, . . . , p (3)

and will optimize the vector function

�f (�x) = [
f1(�x), f2(�x), . . . , fk(�x)

]T
(4)

where �x = [x1, x2, . . . , xn]T is the vector of decision variables.

Having several objective functions, the notion of “optimum” changes, because in MOPs,
the aim is to find good compromises (or “trade-offs”) rather than a single solution as in global
optimization. The notion of “optimum” that is most commonly adopted is that originally
proposed by Francis Ysidro Edgeworth [15] and later generalized by Vilfredo Pareto [37].
Although some authors call Edgeworth-Pareto optimum to this notion (see for example
[45]), it is normally preferred to use the most commonly accepted term: Pareto optimum.
The formal definition is provided next.

Definition 3 (Pareto optimality). A point �x∗ ∈ � is Pareto optimal if for every �x ∈ � and
I = {1, 2, . . . , k} either,

∀i∈I ( fi (�x) = fi (�x∗)) (5)

or, there is at least one i ∈ I such that

fi (�x) > fi (�x∗) (6)

In words, this definition says that �x∗ is Pareto optimal if there exists infeasible vector �x
which would decrease some criterion without causing a simultaneous increase in at least
one other criterion. The phrase “Pareto optimal” is considered to mean with respect to the
entire decision variable space unless otherwise specified.

Other important definitions associated with Pareto optimality are the following:

Definition 4 (Pareto dominance). A vector �u = (u1, . . . , uk) is said to dominate
�v = (v1, . . . , vk) (denoted by �u  �v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi .

Definition 5 (Pareto optimal set). For a given MOP �f (x), the Pareto optimal set (P∗) is
defined as:

P∗ := {x ∈ � | ¬∃ x ′ ∈ � �f (x ′)  �f (x)}. (7)

Definition 6 (Pareto front). For a given MOP �f (x) and Pareto optimal set P∗, the Pareto
front (PF∗) is defined as:

PF∗ := {�u = �f = ( f1(x), . . . , fk(x)) | x ∈ P∗}. (8)
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In general, it is not easy to find an analytical expression of the line or surface that contains
these points and in most cases, it turns out to be impossible to do it. The normal procedure
to generate the Pareto front is to compute the points � and their corresponding f (�). When
there is a sufficient number of these, it is then possible to determine the nondominated
points and to produce the Pareto front.

Pareto optimal solutions are also termed non-inferior, admissible, or efficient solu-
tions [24]; their corresponding vectors are termed nondominated.

3. The immune system

One of the main goals of the immune system is to keep our organism healthy. The immune
system is capable of recognizing and combating pathogens (infectious foreign elements).
Molecular patterns expressed on those pathogens are called antigens. An antigen is any
molecule that can be recognized by the immune system provoking its response. This immune
response is specific to each antigen.

The cells called lymphocytes have a very important role in the immune system. There
are two types of lymphocytes: B lymphocytes (or B cells) and T lymphocytes (or T cells).
When an antigen is detected, those B cells that best recognize the antigen, will proliferate by
cloning. Some of these new cloned cells will be differentiated into plasma cells, which are
the most active antibodies secretors. Meanwhile, the other cloned cells will become memory
cells. These new cloned cells suffer a high-rate somatic mutation (or hypermutation) that
will promote their genetic variation. Subsequently, a mechanism of selective pressure will
possibly result in the survival of cells with increased affinity. These mutations experienced
by the clones are proportional to their affinity to the antigen. The highest affinity cloned
cells experiment the lowest mutation rates, whereas the lowest affinity cloned cells have
high mutation rates. Due to the random nature of this mutation process, some clones could
be dangerous for the body and should therefore be eliminated.

Plasma cells are capable of secreting only one type of antibodies, which are relatively
specific for the antigen. Antibodies are molecules that play the main role in the immune
response. They are capable of adhering to the antigens in order to neutralize and mark them
for elimination for other cells of the immune system.

These cloning and hypermutation processes are called the clonal selection principle [2].
Although the clonal selection principle operates on both B and T cells, we have only

focused on the B cells process in order to provide a very simplified way to explain the
immune response.

Once the antigens have been eliminated with the help of the antibodies, the regulatory
mechanisms of the immune system will cause the removal of exceeding cells and the
convergence to a somewhat stable state, capable of reflecting the past experiences faced by
the immune system. However, some cells remain circulating throughout the body as memory
cells. When the immune system is later exposed to the same type of antigen (or a similar
one), these memory cells are activated, presenting a better and more efficient response. This
second encounter with the same antigen is called secondary response.

The algorithm proposed in this paper is based on the clonal selection principle previously
described.
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Figure 1. Immune system model (fitness scoring) pseudocode.

4. Previous work

One of the applications in which the emulations of the immune system has been found
useful is to maintain diversity in the population of a genetic algorithm (GA) used to solve
multimodal optimization problems [18, 42, 43]. The proposal in this case has been to use
binary strings to model both antibodies and antigens. Then, matching of an antibody and
an antigen is determined if their bit strings are complementary (i.e., maximally different).
The algorithm proposed in this case to compute fitness is shown in Figure 1 (this algorithm,
assumes a population that includes antigens and antibodies both represented with binary
strings) [43]. The main idea of this approach is to construct a population of antigens and a
population of antibodies. Antibodies are then matched against antigens and a fitness value
is assigned to each antibody based on this matching (i.e., maximize matching between
antigens and antibodies). Finally, a conventional genetic algorithm is used to replicate the
antibodies that better match the antigens present.

Smith et al. [43] show that fitness sharing emerges when their emulation of the immune
system is used. Furthermore, this approach is more efficient (computationally speaking) than
traditional fitness sharing [13], and it does not require additional information regarding the
number of niches to be formed.

This same approach has been used to handle constraints in evolutionary optimization
[22, 23] and has also been hybridized with a multiobjective evolutionary algorithm [8, 29].
However, the first direct use of the immune system to solve multiobjective optimization
problems reported in the literature is the work of Yoo and Hajela [51]. This approach uses
a linear aggregating function to combine objective function and constraint information into
a scalar value that is used as the fitness function of a GA. Then, the best designs according
to this value are defined as antigens and the rest of the population as a pool of antibodies.
The simulation of the immune system is then done as in the previous work of the authors
where the technique is used to handle constraints [23]. The algorithm is the following:

1. Select randomly a single antigen from the population of antigens.
2. From the population of antibodies, take a sample (randomly selected) without replace-

ment (Yoo and Hajela [51] suggest three times the number of antigens).
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3. Each antibody in the sample is matched against the selected antigen, and a match score
(based on the Hamming distance measured on the genotype) is computed.

4. The antibody with the highest score is identified, and ties are broken at random.
5. The matching score of the winning antibody is added to its fitness value (i.e., it is

“rewarded”).
6. The process is repeated a certain number of times (typically three times the number of

antibodies).

This approach is applied to some structural optimization problems with two objectives
(a two-bar truss structure, a simply supported I-beam, and a 10-bar truss structure). The
use of different weights allows the authors to converge to a certain (pre-specified) num-
ber of points of the Pareto front, since they make no attempt to use any specific tech-
nique to preserve diversity. In this study, the approach is not compared to any other
technique.

More recently, Anchor et al. [1] used both lexicographic ordering and Pareto-based
selection in an evolutionary programming algorithm that adopts an artificial immune system
to detect (computer) virus attacks and hacker intrusions in general. In this work, however,
emphasis is placed on the application rather than on the multiobjective aspects of the
algorithm, since that is the main aim of this work. Therefore, the algorithm is not compared
to other multiobjective optimization approaches.

It is also worth mentioning CLONALG, which is an artificial immune system based
on the clonal selection principle that has been used for (single-objective and multimodal)
optimization [36]. CLONALG uses two populations: one of antigens and another one of
antibodies. When used for optimization, the main idea of CLONALG is to reproduce indi-
viduals with a high affinity, then apply mutation (or blind variation) and select the improved
maturated progenies produced. Note that “affinity” in this case, is defined in terms of better
objective function values rather than in terms of genotypic similarities (as, for example, in
pattern recognition tasks). This implies that CLONALG does not really use antigens when
solving optimization problems, but, instead, the closeness of each antibody to the global
optimum (measured in relative terms with respect to the set of solutions produced so far)
defines the rate of hypermutation to be used.

In a related paper, Nunes de Castro and Von Zuben [35] proposed an artificial immune
system that combines CLONALG with immune network theory [26]. This algorithm is
called aiNet (artificial immune network). In this approach, antibodies are part of an immune
network and the decision about which one will be cloned (proportional to its objective
function value), suppressed or maintained depends on the interaction established by the
immune network. An affinity measure is also used in this case (for all the cells in the
network) and a threshold is adopted to determine which cells are suppressed (i.e., cells
whose affinities are below this threshold are eliminated). This approach has been used for
multimodal optimization [33].

The approach introduced in this paper can then be considered as the first attempt to use
an artificial immune system to solve the general multiobjective optimization problem. To
validate our proposal, we adopt the conventional methodology of the evolutionary mul-
tiobjective optimization community, which includes a comparison with respect to other
algorithms using several test functions and metrics.
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5. The proposed approach

As indicated before, our algorithm has taken ideas from the clonal selection principle,
modeling the fact that only the highest affinity antibodies will proliferate. Antibodies, in
our case, are representented by binary strings that encode the decision variables of the
problem to be solved. However, we do not use a population of antigens, but only Pareto
dominance and feasibility to identify solutions that deserve to be cloned. Additionally, our
approach uses mutation [20] (uniform mutation is applied to the clones and non-uniform
mutation is applied to the “not so good” antibodies, as we will see later on). We also use
a secondary (or external) population that stores the nondominated solutions found along
the search process. Such secondary population is the elitist mechanism most commonly
adopted in multiobjective optimization, and it allows us to move towards the true Pareto
front of a problem over time [7]. The implementation details of the secondary population
adopted in our algorithm are provided in Section 5.3.

Note that despite the fact that the algorithm presented next is based on our previous
proposal reported in [5], several important aspects of such algorithm have been modified,
including the elimination of certain parameters required in our previous version.

5.1. The algorithm

Our algorithm named Multiobjective Immune System Algorithm (MISA) is the following:

1. The initial population is randomly generated.
2. Initialize the secondary population so that it is empty.
3. Determine for each individual in the population, if it is (Pareto) dominated or not. For

constrained problems, determine if an individual is feasible or not. Note that Pareto
dominance is determined only among individuals of the same class (e.g., we only
compare a feasible individual with respect to another feasible individual).

4. Determine which are the “best” antibodies, since we will clone them adopting the
following criteria:

– If the problem is unconstrained, then all the nondominated individuals are cloned.
If the number of nondominated individuals is less than 5% of the population size,
then we select dominated individuals until reaching a number of individuals equal
to the 5% of the population size. Obviously, those individuals that are dominated by
a lower number of individuals are favored.

– If the problem is constrained, then we select all the nondominated individuals that
are feasible. If the number of individuals selected is less than 5% of the population
size, then we select additional individuals (until completing the 5% required) using
the following criteria:
• First, select individuals that are feasible, even if they are dominated. Preference

is given to individuals that are dominated by a lower number of individuals.
• If more individuals are needed, then select infeasible individuals, as long as they

are nondominated. In this case, preference is given to individuals with a lower
amount of constraint violation.
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• Finally, if more individuals are still required, the last case is to select individuals
which are infeasible and dominated. In this case, preference is given to individuals
that are dominated by a lower number of individuals.

Note that in practice, the last two cases are normally not reached, but are included
in our implementation for completeness.

5. Copy the best antibodies (obtained from the previous step) into the secondary
population.

6. We determine for each of the “best” antibodies the number of clones that we wish to
create using the following criteria:

– First, we estimate the total number of clones to be produced by all the individuals
selected. The total number of clones to be produced is of 600% the total population
size (this percentage was empirically derived after performing an exhaustive set
of experiments). This total number of clones is equally distributed among all the
individuals selected (e.g., if 6 individuals are selected for cloning, we estimate that
100 copies of each of them will be produced).

– This initial estimate of the number of clones to be produced for each individual is
increased or decreased using the following rules:
• Case 1: When the secondary population is not full, then we determine the eu-

clidean distances of each individual selected with respect to all the other individ-
uals selected. These distances are computed in objective function space. Then,
we compute the average euclidean distance (with respect to the individuals se-
lected for cloning). Using this average value as a reference (or threshold), we
determine which region is more densely populated: either the region above the
average value or the region below it. For each individual selected, we determine
if it belongs to the most densely populated region or to the less densely pop-
ulated region. If the individual belongs to the most densely populated region,
its number of clones is decreased in 50%. Conversely, if it belongs to the less
densely populated region, its number of clones is increased in 50%. Finally, if
the individual has an euclidean distance equal to the average value, its number
of clones remains unchanged.

• Case 2: When the secondary population is full, there are three possible cases:

(a) If the individual to be inserted into the secondary population is not allowed
access either because it is already within it, or because it belongs to the
most crowded region of objective function space, then the number of clones
created from this antibody is zero.

(b) When we have an individual that belongs to a cell whose number of so-
lutions contained is below average (with respect to all the occupied cells
in the secondary population), then the number of clones to be generated is
duplicated.

(c) When we have an individual that belongs to a cell whose number of solu-
tions contained is above average (with respect to all the occupied cells in
the adaptive grid—see Section 5.3 for details of the adaptive grid), then the
number of clones to be generated is reduced by half. Note that this average
value is used as a threshold to regulate the number of clones to be produced
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(this number can be increased or decreased), in an analogous way to aiNet
[33].

7. We perform the cloning of the best antibodies based on the information obtained from
the previous step.

8. A mutation operator is applied to the clones. In order to determine the number of
bits to be mutated in each individual, we rank them using the same criteria from
step 4 (i.e., individuals that are both feasible and nondominated are given the highest
possible rank). The individual with the highest rank is mutated in N positions, where
N is the number of decision variables (the specific bits to be mutated are randomly
chosen). When we move down one position in our hierarchy (i.e., when we run out of
feasible nondominated individuals, and we have selected individuals that are feasible
but dominated by a low number of individuals), the number of bits to be mutated is
increased by one. This process continues until reaching the lowest possible rank as
described in step 4. Note that we are using an antigenic affinity measure corresponding
to Pareto dominance and feasibility of an individual. In our case, however, there is
no explicit antigen population to be recognized, but only a set of objective functions
to be optimized and a set of constraints to be satisfied. It is also worth mentioning
that the hypermutation rate for each antibody is proportional to its affinity value as
corresponding to the ranks described in step 4. This scheme follows the suggestions
from [36] for problems with multiple optima.

9. We apply a non-uniform mutation operator to the “not so good” antibodies found. In
this case, the initial mutation rate adopted is high and it is decreased linearly over time
(from 0.6 to 1/L , where L is the total number of bits of each individual).

10. The population size returns to its original value by selecting as many individuals as the
size required using the same criteria described in step 4.

11. We repeat this process from step 3 during a certain (predetermined) number of
times.

Information extracted from the secondary (external) population is used to guide some
aspects of the algorithm, such as the number of clones created from each antibody. This
is possible because the external population divides the Pareto front into regions, and its
filtering mechanism avoids too crowded regions (or cells) of the grid used to store this
secondary population.

The clonal selection principle seems to be very suitable to solve multiobjective optimiza-
tion problems, mainly because of the following reasons:

– It is a population-based approach, which is important in order to allow the generation of
several elements from the Pareto optimal set in one run.

– It allows to perform a local search in different directions along the Pareto front (i.e.,
the exploitation stage) by using the cloning process. At the same time, the mutation
operator applied to the worst antibodies performs the exploration through the whole
search space, trying to get closer to the true Pareto front of the problem. This balance
between exploration and exploitation has been recently targeted as a very promising
research area [7] and therefore our interest in adopting the clonal selection principle for
multiobjective optimization.
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– The use of an affinity measure is an interesting alternative to maintain diversity (instead
of using fitness sharing) in the primary population of our algorithm.

5.2. Biological inspiration

Since the value of using immunological concepts in our algorithm may be questioned, we
have decided to discuss briefly the components of our approach with respect to a traditional
artificial immune system. For this discussion, we used the framework provided in [32],
according to which, an artificial immune system, being a biologically inspired algorithm,
requires are least three basic elements:

– A representation for the components of the system.
– A set of mechanisms to evaluate the interaction of individuals with the enviroment and

with each other.
– Procedures of adaptation that govern the dynamics of the system (i.e., how does it behave

over time).

According with these previous criteria, we can say the following about the components
of our algorithm:

– Antibodies are encoded as binary strings, which represent potential solutions to the
problem. As in CLONALG (when used for optimization), we do not use a population of
antigens [36].

– The interaction between individuals with the enviroment is defined by the objective
functions, and the relationship between individuals (antibodies) is defined by Pareto
dominance relationships and by feasibility. Also, we use an affinity measure in the main
population to control the amount of hypermutation to be applied to each antibody. Ad-
ditionally, there is an interaction with the secondary population to decide (based on
crowding criteria) how many clones to produce.

– The procedures of adaptation of our algorithm are: cloning and mutation.

We can then say that our algorithm is an artificial immune system based solely on immune-
inspired concepts, derived from clonal selection theory and immune network theory.

5.3. Secondary population

We use a secondary or external population as an elitist mechanism in order to maintain
the best solutions found along the process. The individuals stored in this population are
all nondominated not only with respect to each other but also with respect to all of the
previous individuals who attempted to enter the external population. Therefore, the external
population stores our approximation to the true Pareto front of the problem.

In order to enforce a uniform distribution of nondominated solutions that cover the entire
Pareto front of a problem, we implemented the adaptive grid proposed by Knowles and
Corne [28] (see Figure 2). The grid is called “adaptive” because its boundaries (defined in
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Figure 2. An adaptive grid to handle the secondary population.

terms of the maximum and minimum values available so far for each objective function)
change over time, “adapting” to the new values that appear within the secondary population.

Ideally, the size of the external population should be infinite. However, since this is not
possible in practice, we must set a limit to the number of nondominated solutions that we
want to store in this secondary population. By enforcing this limit, our external population
will get full at some point even if there are more nondominated individuals wishing to enter.
When this happens, we use an additional criterion to allow a nondominated individual to
enter the external population: region density (i.e., individuals belonging to less densely
populated regions are given preference).

The algorithm for the implementation of the adaptive grid is the following:

1. Divide objective function space according to the number of subdivisions set by the user.
2. For each individual in the external population, determine the cell to which it belongs.
3. If the external population is full, then determine which is the most crowded cell.
4. To determine if a certain antibody is allowed to enter the external population, do the

following:

– If it belongs to the most crowded cell, then it is not allowed to enter.
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– Otherwise, the individual is allowed to enter. For that sake, we eliminate a (randomly
chosen) individual that belongs to the most crowded cell in order to have an available
slot for the incoming antibody.

6. Experiments

In order to validate our approach, we used several test functions reported in the standard
evolutionary multiobjective optimization literature [7, 10, 48]. In each case, we generated the
true Pareto front of the problem (i.e., the solution that we wished to achieve) by enumeration
using parallel processing techniques. Then, we plotted the Pareto front generated by our
algorithm MISA.

The results indicated below were found using the following parameters for MISA: Popu-
lation size = 100, number of grid subdivisions = 25, size of the external population = 100
(we have eliminated several parameters adopted in our previous work [5]). These parame-
ters produce a total of 12,000 fitness function evaluations, which is a much lower number
than the 138,000 fitness function evaluations reported in our previous work [5].

MISA was compared against the micro-genetic algorithm for multiobjective optimization
(microGA) [6], against the NSGA-II [12, 14] and against PAES [28]. These three algorithms
were chosen because they are representative of the state-of-the-art in evolutionary multiob-
jective optimization and their codes are in the public domain.

The Pareto Archived Evolution Strategy (PAES) was proposed by Knowles and Corne
[28]. PAES consists of a (1+1) evolution strategy (i.e., a single parent that generates a single
offspring) in combination with a historical archive that records some of the nondominated
solutions previously found. This archive is used as a reference set against which each mutated
individual is being compared. An interesting aspect of this algorithm is the mechanism used
to maintain diversity which consists of a crowding procedure that divides objective space
in a recursive manner. Each solution is placed in a certain grid location based on the values
of its objectives (which are used as its “coordinates” or “geographical location”). A map of
such grid is maintained, indicating the number of solutions that reside in each grid location.
Since the procedure is adaptive, no extra parameters are required (except for the number of
divisions of the objective space).

The Nondominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et al.
[12, 14] and is a revised version of the NSGA [44]. The NSGA is based on several lay-
ers of classifications of the individuals. Before selection is performed, the population is
ranked on the basis of nondomination: all nondominated individuals are classified into one
category (with a dummy fitness value, which is proportional to the population size, to pro-
vide an equal reproductive potential for these individuals). The NSGA-II is more efficient
(computationally speaking) than the NSGA, it uses elitism and a crowding comparison
operator that keeps diversity without specifying any additional parameters. The NSGA-II
uses (µ+λ)-selection instead of a secondary population (as PAES) as its elitist mechanism.

The Micro Genetic Algorithm for Multiobjective Optimization was proposed by Coello
Coello and Toscano Pulido [6]. A micro-genetic algorithm is a GA with a small popula-
tion and a reinitialization process. The way in which the microGA works is the follow-
ing. First, a random population is generated. This random population feeds the population
memory, which is divided in two parts: a replaceable and a non-replaceable portion. The
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non-replaceable portion of the population memory never changes during the entire run and
is meant to provide the required diversity for the algorithm. In contrast, the replaceable
portion changes after each cycle of the microGA. The population of the microGA at the
beginning of each of its cycles is taken (with a certain probability) from both portions of
the population memory so that there is a mixture of randomly generated individuals (non-
replaceable portion) and evolved individuals (replaceable portion). During each cycle, the
microGA undergoes conventional genetic operators. After the microGA finishes one cycle,
two nondominated vectors are chosen2 from the final population and they are compared
with the contents of the external population (this population is initially empty). If either
of them (or both) remains as nondominated after comparing it against the vectors in this
external population, then they are included there (i.e., in the external population). This
is the historical archive of nondominated vectors. All dominated vectors contained in the
external population are eliminated. The microGA uses then three forms of elitism: (1) it
retains nondominated solutions found within the internal cycle of the microGA, (2) it uses
a replaceable memory whose contents is partially “refreshed” at certain intervals, and (3)
it replaces the population of the microGA by the nominal solutions produced (i.e., the best
solutions found after a full internal cycle of the microGA).

In general, modern MOEAs (Multiobjective Evolutionary Algorithms) share three main
similarities (this applies to MISA as well): (1) they all use Pareto ranking, which means that
individuals in the population are ranked based on the concept of Pareto dominance (i.e.,
nondominated individuals are given the highest rank), (2) they use some form of elitism
that allows to retain solutions that are globally (rather that only locally) nondominated (i.e.,
with respect not only to the current population, but also to all the previous populations),
and (3) they all use a mechanism to preserve diversity.

What distinguishes one MOEA of another is the specific mechanism used for each of
these 3 components. For example, the NSGA-II ranks the population using layers, whereas
the microGA ranks the entire population at once.

Regarding MISA, it differs from the other MOEAs adopted in our comparative study in
several aspects. First of all, MISA does not use any recombination operator and it adopts
an affinity measure to control the amount of hypermutation applied to each antibody. Also,
no current MOEA replicates (i.e., clones) solutions as MISA does. Finally, none of the
MOEAs adopted for this study interact with the secondary population to affect the re-
production capabilities of an individual. In contrast, MISA decides how many clones to
produce from a certain antibody based on how crowded is the region to which it belongs
in the secondary population. These (apparently small) differences distinguish one type of
MOEA from another. Interestingly, it has been found (empirically) that such changes can
be translated into a significant difference in terms of performance and therefore the current
extended proliferation of new MOEAs [7].

To allow a fair comparison among the approaches used, we adopted a criterion normally
used in evolutionary multiobjective optimization [7]: we made sure that all the algorithms
performed the same number of fitness function evaluations as MISA, and we also adopted
the same size for their secondary populations (when applicable). Although this sort of
practice does not necessarily allow the best possible performance for each of the MOEAs
adopted, we made sure that the combination of parameters chosen for each of the algorithms
compared was appropriate for the approach to have a reasonably good performance. This
can be corroborated by checking the original sources of each of the methods compared.
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In the following examples, the NSGA-II was run using a population size of 100, a
crossover rate of 0.75, tournament selection, and a mutation rate of 1/N , where N =
number of decision variables of the problem. PAES was run using a mutation rate of 1/L ,
where L refers to the length of the chromosomic string that encodes the decision variables.
For the microGA we used an internal population size of 4 individuals, 15 subdivisions of
the adaptive grid, a maximum number of generations of 750, a crossover rate of 0.8 and a
mutation rate of 1/L as in the NSGA-II and PAES.

Despite the graphical comparisons performed, the three following metrics were adopted
to allow a quantitative comparison of results:

– Error Ratio (ER): This metric was proposed by Van Veldhuizen [46] to indicate the
percentage of solutions (from the nondominated vectors found so far) that are not members
of the true Pareto optimal set:

ER =
∑n

i=1 ei

n
, (9)

where n is the number of vectors in the current set of nondominated vectors available; ei

= 0 if vector i is a member of the Pareto optimal set, and ei = 1 otherwise. It should then
be clear that ER = 0 indicates an ideal behavior, since it would mean that all the vectors
generated by our algorithm belong to the Pareto optimal set of the problem.

– Spacing (S): This metric was proposed by Schott [41] as a way of measuring the range
(distance) variance of neighboring vectors in the known Pareto front. This metric is
defined as:

S �

√√√√ 1

n − 1

n∑
i=1

(d − di )2, (10)

where di = min j (| f i
1 (�x) − f j

1 (�x) | + | f i
2 (�x) − f j

2 (�x) |), i, j = 1, . . . , n, d is the mean
of all di , and n is the number of vectors in the Pareto front found by the algorithm being
evaluated. A value of zero for this metric indicates all the nondominated solutions found
are equidistantly spaced.

– Inverted generational distance (GD): The concept of generational distance was intro-
duced by Van Veldhuizen and Lamont [47, 49] as a way of estimating how far are the
elements in the Pareto front produced by our algorithm from those in the true Pareto front
of the problem. This metric is defined as:

GD =
√∑n

i=1 d2
i

n
(11)

where n is the number of nondominated vectors found by the algorithm being analyzed
and di is the Euclidean distance (measured in objective space) between each of these and
the nearest member of the true Pareto front. It should be clear that a value of GD = 0
indicates that all the elements generated are in the true Pareto front of the problem.
Therefore, any other value will indicate how “far” we are from the global Pareto front of
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our problem. Similar metrics were proposed by Rudolph [38], Schott [41], and Zitzler
et al. [52]. In our case, and following the suggestion of a reviewer, we implemented an
“inverted” generational distance metric in which we use as a reference the true Pareto
front, and we compare each of its elements with respect to the front produced by an
algorithm. This intends to reduce some of the problems that occur with the generational
distance metric when an algorithm generates very few nondominated solutions.

Example 1. Our first example is a bi-objective problem proposed by Deb [10]:
Minimize: F = ( f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = (1 + 10y)

×
[

1 −
(

x

1 + 10y

)α

− x

1 + 10y
sin(2πqx)

]

and 0 ≤ x, y ≤ 1, q = 4, α = 2.
In this case, both decision variable space and objective function space are disconnected

(the true Pareto front of the problem consists of 4 Pareto curves).
The comparison of results between the true Pareto front of this example and the Pareto

front produced by MISA, the microGA, the NSGA-II and PAES are shown in Figures 3 and
4. Note that the Pareto front is disconnected (it consists of four Pareto curves). All the Pareto
fronts shown in this paper correspond to the mean result (produced by each algorithm) with
respect to the inverted generational distance metric. Therefore, they indicate the average
behavior of each algorithm with respect to closeness to the true Pareto front of each problem.

The values of the three metrics for each algorithm are presented in Tables 1, 2, and 3,
respectively.

Regarding error ratio, PAES had the best average value, closely followed by the NSGA-
II. MISA ranked third with respect to this metric, but had the lowest standard deviation.
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Figure 3. Pareto fronts produced by MISA (left) and the microGA (right) for the first test function. The true
Pareto front is shown as a continuous line (note that the horizontal segments are NOT part of the Pareto front and
are shown only to facilitate drawing the front).
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Figure 4. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the first test function.

The worst overall performer (i.e., in terms of average value and standard deviation) was
the microGA. With respect to inverted generational distance, MISA had the best perfor-
mance (both in terms of average value and standard deviation), followed by the microGA.
Regarding spacing (i.e., uniform distribution of solutions), MISA and the NSGA-II both
found the best results with very similar average values (0.0082 for MISA vs. 0.0076 for
the NSGA-II). PAES and the microGA ranked second and third, respectively. The worst
performer with respect to this metric was the microGA. Thus, in terms of the metrics, there
is no clear winner.

Table 1. Error Ratio for Example 1.

MISA MicroGA NSGA-II PAES

Average 0.42800 0.70832 0.14250 0.13300
Best 0.34000 0.53000 0.08000 0.06000
Worst 0.51000 0.93333 0.29000 0.26000
Std. dev. 0.04641 0.15826 0.05035 0.05121

Table 2. Spacing for Example 1.

MISA MicroGA NSGA-II PAES

Average 0.00816 0.18410 0.00760 0.03229
Best 0.00722 0.02114 0.00657 0.01246
Worst 0.00904 0.50707 0.00920 0.25179
Std. dev. 0.00057 0.15078 0.00065 0.05240

Table 3. Inverted Generational Distance for Example 1.

MISA MicroGA NSGA-II PAES

Average 0.00030 0.00068 0.00105 0.00304
Best 0.00029 0.00057 0.00052 0.00012
Worst 0.00033 0.00100 0.00308 0.02520
Std. dev. 0.00001 0.00013 0.00057 0.00758
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Since metrics can sometimes be misleading in multiobjective optimization, it is always
important to rely on graphical comparisons (whenever possible). When analyzing the Pareto
front produced by an approach, it is important to identify two main things: (1) if the solutions
are placed on the true Pareto front (which is indicated as a continuous line in this case), and
(2) how uniform is the distribution of solutions along the Pareto front. In Figures 3 and 4,
we can see that the NSGA-II clearly produced the best Pareto fronts, followed by MISA.
In contrast, the microGA and PAES both missed several portions of the true Pareto front.
Thus, we conclude that for this test function the NSGA-II had the best overall performance,
followed by MISA. PAES and the microGA ranked third and fourth, respectively.

Example 2. Our second example is a two-objective optimization problem proposed by
Schaffer [39] that has been used by several researchers [44]:

Minimize f1(x) =




−x if x ≤ 1

−2 + x if 1 < x ≤ 3

4 − x if 3 < x ≤ 4

−4 + x if x > 4

(12)

Minimize f2(x) = (x − 5)2 (13)

and −5 ≤ x ≤ 10.

The comparison of results between the true Pareto front of this example and the Pareto
front produced by MISA, the microGA, the NSGA-II and PAES are shown in Figures 5
and 6. The values of the three metrics for each algorithm are presented in Tables 4, 5, and
6, respectively.

In this case, the microGA had the best performance (both in terms of best average value
found and in terms of lowest standard deviation) with respect to error ratio (followed by
MISA). With respect to spacing, MISA had the best performance (both in terms of best
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Figure 5. Pareto fronts produced by MISA (left) and the microGA (right) for the second test function. The true
Pareto front is shown as a continuous line (note that the vertical segment is NOT part of the Pareto front and is
shown only to facilitate drawing the front).
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Figure 6. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the second test function.

average value found and in terms of lowest standard deviation), followed by the NSGA-II.
Finally, with respect to inverted generational distance, the NSGA-II had the best perfor-
mance (both in terms of best average value found and in terms of lowest standard deviation)
closely followed by MISA. Thus, with respect to the metrics used, we can see that PAES
is clearly the worst performer, and MISA seems to be the most suitable candidate for best
performer since it was the second best both with respect to error ratio and with respect to
inverted generational distance. It is also interesting to see that MISA had the best spacing in

Table 4. Error Ratio for Example 2.

MISA MicroGA NSGA-II PAES

Average 0.00800 0.00550 0.01050 0.01550
Best 0.00000 0.00000 0.00000 0.00000
Worst 0.04000 0.02000 0.04000 0.10000
Std. dev. 0.01005 0.00605 0.01099 0.02645

Table 5. Spacing for Example 2.

MISA MicroGA NSGA-II PAES

Average 0.00816 0.05443 0.04422 0.17232
Best 0.00722 0.04726 0.03906 0.01003
Worst 0.00904 0.05932 0.05035 0.53812
Std. dev. 0.00057 0.00460 0.00292 0.13835

Table 6. Inverted Generational Distance for Example 2.

MISA MicroGA NSGA-II PAES

Average 0.00173 0.00218 0.00097 0.03568
Best 0.00136 0.00216 0.00088 0.00376
Worst 0.00225 0.00219 0.00111 0.23518
Std. dev. 0.00030 0.00001 0.000006 0.06748
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this case, since this contrasts with the (typically not so good) distributions that the previous
version of the algorithm normally obtained [5].

Graphically, we can seen that all the algorithms converged to the true Pareto front of
the problem. However, PAES had problems with the distribution of points from the top
section of the Pareto front. The NSGA-II produced a lot of points on the top portion of
the front, but it had some small holes on the lower portion. MISA had a few holes both at
the top and bottom portions, but it managed to produce most of the front. The microGA
had less solutions on the top part of the Pareto front than the NSGA-II, but its distribution
on the lower portion of the front looks better than the NSGA-II. Thus, from the graphical
comparisons, it is difficult to determine a clear winner, but, except for PAES, all the other
algorithms seem to have had a reasonably good performance in this problem.

Example 3. The third example is the three-objective function problem proposed by Viennet
[50]:

Minimize : F = ( f1(x, y), f2(x, y), f3(x, y))

where

f1(x, y) = (x − 2)2

2
+ (y + 1)2

13
+ 3,

f2(x, y) = (x + y − 3)2

175
+ (2y − x)2

17
− 13,

f3(x, y) = (3x − 2y + 4)2

8
+ (x − y + 1)2

27
+ 15

and −4 ≤ x, y ≤ 4, y < −4x + 4, x > −1, y > x − 2.

The comparison of results between the true Pareto front of this example and the Pareto
front produced by MISA, the microGA, the NSGA-II and PAES are shown in Figures 7
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Figure 7. Pareto fronts produced by MISA (left) and the microGA (right) for the third test function. The true
Pareto front is shown as dots.
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Figure 8. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the third test function.

and 8. The values of the three metrics for each algorithm are presented in Tables 7, 8, and
9, respectively.

In this example, PAES had the best error ratio, followed by MISA. The NSGA-II had the
worst performance with respect to this metric. Regarding spacing, the NSGA-II had the best
performance, closely followed by PAES. MISA had the worst performance with respect to
spacing in this case. Finally, with respect to inverted generational distance, the microGA
had the best performance, closely followed by MISA and the two other algorithms. Thus,

Table 7. Error Ratio for Example 3.

MISA MicroGA NSGA-II PAES

Average 0.08700 0.11500 0.25550 0.04750
Best 0.02000 0.05000 0.10000 0.00000
Worst 0.18000 0.15000 0.45000 0.10000
Std. dev. 0.03262 0.02417 0.12361 0.03654

Table 8. Spacing for Example 3.

MISA MicroGA NSGA-II PAES

Average 0.46113 0.23300 0.13655 0.17736
Best 0.33834 0.14796 0.08508 0.11659
Worst 0.51544 0.36788 0.17795 0.53240
Std. dev. 0.04905 0.06195 0.02557 0.09875

Table 9. Inverted Generational Distance for Example 3.

MISA MicroGA NSGA-II PAES

Average 0.01216 0.01201 0.01382 0.01452
Best 0.01176 0.01179 0.01250 0.01280
Worst 0.01317 0.01332 0.01690 0.02370
Std. dev. 0.00050 0.00034 0.00121 0.00246
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in terms of the metrics, MISA seems to be the most suitable candidate to be considered the
best performer. Note however that all the algorithms converged very close to the true Pareto
front of the problem. This can be corroborated by looking at the graphical results, since all
the algorithms produced similar approximations of the Pareto front of this problem.

Example 4. The fourth example was proposed by Kita et al. [27]:

Maximize F = ( f1(x, y), f2(x, y))

where

f1(x, y) = −x2 + y,

f2(x, y) = 1

2
x + y + 1

x, y ≥ 0, 0 ≥ 1

6
x + y − 13

2
, 0 ≥ 1

2
x + y − 15

2
, 0 ≥ 5x + y − 30.

This problem has a concave Pareto front.

The comparison of results between the true Pareto front of this example and the Pareto
front produced by MISA, the microGA, the NSGA-II and PAES are shown in Figures 9 and
10. The values of the three metrics for each algorithm are presented in Tables 10, 11, and
12, respectively.

In this case, MISA had the best performance in terms of the error ratio metric (both in
terms of the best average value found and in terms of the lowest standard deviation). PAES
ranked second with respect to error ratio. Regarding spacing, the NSGA-II ranked first
and PAES ranked second. MISA had the third best average value with respect to spacing.
Finally, with respect to inverted generational distance, MISA had the best performance
(both in terms of the best average value found and in terms of the lowest standard deviation)
and the microGA ranked second. Thus, in terms of the metrics, MISA is the best algorithm
for this problem.
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Figure 9. Pareto fronts produced by MISA (left) and the microGA (right) for the fourth test function. The true
Pareto front is shown as a continuous line.
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Figure 10. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the fourth test function.

In this problem, however, the graphical results give a much better indicative of the
performance of each algorithm. We can clearly see that the NSGA-II had a very good
distribution of the solutions that it found, but it missed most of the Pareto front. Thus,
the NSGA-II clearly had the worst performance for this problem, despite its good spacing
values. Having a good distribution of solutions becomes irrelevant when the algorithm does
not converge to the true Pareto front of the problem. Both the microGA and PAES also
missed a considerable portion of the true Pareto front. MISA clearly had the best overall

Table 10. Error Ratio for Example 4.

MISA MicroGA NSGA-II PAES

Average 0.34000 0.80188 0.85409 0.65450
Best 0.34000 0.60000 0.69091 0.50000
Worst 0.34000 0.93182 1.00000 0.80000
Std. dev. 0.00000 0.09263 0.10091 0.07870

Table 11. Spacing for Example 4.

MISA MicroGA NSGA-II PAES

Average 0.17955 0.20139 0.02201 0.12157
Best 0.05932 0.04476 0.00724 0.04166
Worst 0.71776 0.94324 0.03504 0.22073
Std. dev. 0.21842 0.23828 0.00742 0.04998

Table 12. Inverted Generational Distance for Example 4.

MISA MicroGA NSGA-II PAES

Average 0.00497 0.01500 0.07066 0.01801
Best 0.00354 0.01064 0.01306 0.00859
Worst 0.00630 0.02597 0.16318 0.02356
Std. dev. 0.00092 0.00452 0.04473 0.00456
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Figure 11. Pareto fronts produced by MISA (left) and the microGA (right) for the fifth test function. The true
Pareto front is shown as a continuous line.

performance (both in terms of the graphical comparisons and in terms of the metrics) for
this problem.

Example 5. Our fifth example is a two-objective optimization problem defined by
Kursawe [30]:

Minimize f1(�x) =
n−1∑
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
(14)

Minimize f2(�x) =
n∑

i=1

(|xi |0.8 + 5 sin(xi )
3) (15)

where

−5 ≤ x1, x2, x3 ≤ 5 (16)

This problem has a disconnected Pareto front that consists of three segments.
The comparison of results between the true Pareto front of this example and the Pareto

front produced by MISA, the microGA, the NSGA-II and PAES are shown in Figures 11
and 12. The values of the three metrics for each algorithm are presented in Tables 13, 14,
and 15, respectively.

Table 13. Error Ratio for Example 5.

MISA MicroGA NSGA-II PAES

Average 0.43600 0.60261 0.25450 0.36650
Best 0.31000 0.52000 0.18000 0.06000
Worst 0.58000 0.70408 0.38000 0.88000
Std. dev. 0.08088 0.06640 0.05326 0.21656
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Table 14. Spacing for Example 5.

MISA MicroGA NSGA-II PAES

Average 0.10906 0.12571 0.06134 0.19530
Best 0.06274 0.09505 0.04645 0.06556
Worst 0.14373 0.14264 0.09914 0.49154
Std. dev. 0.01592 0.01577 0.01284 0.10921

Table 15. Inverted Generational Distance for Example 5.

MISA MicroGA NSGA-II PAES

Average 0.00466 0.01133 0.01663 0.02450
Best 0.00433 0.00698 0.00680 0.00648
Worst 0.00558 0.02298 0.03447 0.09593
Std. dev. 0.00031 0.00538 0.00773 0.02443
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Figure 12. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the fifth test function.

In this example, the NSGA-II had the best performance in terms of the error ratio metric
(both in terms of the best average value found and in terms of the lowest standard deviation).
PAES ranked second and MISA ranked third. Regarding spacing, the NSGA-II had again
the best performance, and the microGA ranked second, closely followed by MISA. Finally,
with respect to the inverted generational distance metric, MISA had the best performance
(both in terms of the best average value and in terms of the lowest standard deviation),
followed by the microGA. Based on the metrics, there is no clear winner.

Graphically, it can be clearly seen that PAES had the worst performance for this example
(as indicated by the generational distance metric). The NSGA-II had a good distribution
of points, but missed the lower right handside portion of the Pareto front. The microGA
also had problems to generate this same portion of the Pareto front. In contrast, MISA was
able to produce this portion of the Pareto front. Thus, based on the graphical results, MISA
seems to be the best overall performer for this problem.
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6.1. Discussion of results

From the results obtained, we could draw the following (preliminary) conclusions about
the performance of our approach:

– MISA was able to produce most of the true Pareto front of all the problems adopted for
our comparative study and it was the best performer in several of them.

– The best performance of the algorithm with respect to inverted generational distance
(closeness to the true Pareto front) was observed in concave and disconnected Pareto
fronts. In fact, in the only problem with a concave Pareto front, MISA was the only
algorithm capable of converging to the true Pareto front.

– MISA ranked first in terms of spacing in one problem and practically tied with the NSGA-
II in one more. It was the worst performer with respect to spacing in only one problem
(the problem with 3 objectives).

– When dealing with a 3-objective problem, all the algorithms were able to converge very
close to the true Pareto front, but their distribution of solutions was, in general terms,
poor (MISA being the worst performer). Despite its bad performance in terms of spacing,
MISA ranked second with respect to both error ratio and inverted generational distance
in the 3-objective problem.

In general, we can see that MISA provided competitive results with respect to the three
other algorithms against which it was compared. Although it did not always ranked first when
using the three metrics adopted, in all cases it produced reasonably good approximations
of the true Pareto front of each problem under study, including those with a concave or a
disconnected Pareto front.

7. Conclusions and future work

We have presented a new multiobjective optimization algorithm based on the clonal selec-
tion principle. The approach is able to produce results similar or better than those generated
by other three algorithms that are representative of the state-of-the-art in evolutionary mul-
tiobjective optimization. Our approach uses an affinity measure to control the amount of
mutation to be applied to the antibodies. Affinity in this case, is defined in terms of non-
dominance and feasibility. This affinity measure, combined with the secondary population
are used to distribute nondominated solutions in a uniform way. The approach proposed
also uses a very simple mechanism to deal with constrained test functions, and our results
indicate that such mechanism, despite its simplicity, is effective in practice.

From this limited comparative study, we conclude that artificial immune systems based
on the clonal selection principle can be effectively used to solve multiobjective optimization
problems in a relatively simple way.3 We also believe that, given the features of artificial
immune systems, an extension of this paradigm for multiobjective optimization (such as
the one proposed here) may be particularly useful to deal with dynamic functions and that
is precisely part of our future research.

As part of our future work, we are also considering the possibility of using spatial data
structures to store and retrieve nondominated solutions in a more efficient way [21].
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Finally, the use of alternative mechanisms to handle constraints (see for example [4])
may also improve the performance of our algorithm.
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Notes

1. The first author maintains an EMO repository which currently contains over 1400 bibliographical entries
at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO, with mirrors at http://www.lania.mx/˜ccoello/EMOO/ and
http://www.jeo.org/emo/

2. This is assuming that there are two or more nondominated vectors. If there is only one, then this vector is the
only one selected.

3. The algorithm proposed here is rather simple to implement, but in any case, our source code is available upon
request to the first author via email.
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