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Abstract 

 

This paper provides a short introduction to the evolutionary multi-objective optimization field. The first 

part of the paper discusses the most representative multi-objective evolutionary algorithms that have been 

developed, from a historical perspective. In the second part of the paper, some representative applications 

within materials science and engineering are reviewed. In the final part of the paper, some potential areas for 

future research in this area are briefly described. 

 

 

1 Introduction 
 

In engineering (as well as in many other disciplines), it is very common to face problems having two or 

more objectives that we want to optimize at the same time and which are normally expressed in different units 

and are in conflict with each other. These are the so-called “multi-objective optimization problems”, and have 

been studied since the XIX century, in which a notion of optimality was specifically stated for them, in the 

context of economics [1, 2]. Multi-objective optimization problems have been studied within Operations 

Research since then, and a variety of mathematical programming techniques currently exist to solve them [3]. 

On the other hand, evolutionary algorithms are metaheuristics1 inspired on the “survival of the fittest” 

                                                           
1 The term metaheuristic refers to an approach which tries to combine basic heuristic methods in higher level frameworks aimed at 
efficiently and effectively exploring a search space [4]. The term “meta” means “beyond” (in a sense of “higher level”) and “heuristic” 
means “to find”. A heuristic is a technique which seeks good (i.e., near optimal) solutions at a reasonable computational cost without 
being able to guarantee optimality of the solutions that it obtains [5]. 



principle from Darwin’s evolutionary theory, that have been used as search and optimization techniques since 

the 1960s, in a wide variety of disciplines. Although the first hint regarding the potential use of evolutionary 

algorithms arose in the late 1960s, it was until the mid-1980s that the first actual implementation of a multi-

objective evolutionary algorithm (MOEA) took place [6]. Since then, this area, which is now called 

“evolutionary multi-objective optimization” (EMO for short) has grown in a very significant manner.2 

This paper presents a general overview of the EMO field, including some of its applications in materials 

science and engineering. The remainder of this paper is organized as follows. Section 2 presents some basic 

concepts required to make this paper self-contained. In Section 3, we provide a brief description of the 

historical origins of multi-objective optimization, as well as on the use of evolutionary algorithms in this field. 

Section 4 briefly describes the first development period of the EMO field, which covers approximately 14 

years (from 1984 up to late 1998). Section 5 briefly describes the most representative algorithms from the 

second period of this field (which we are currently living). Section 6 reviews some representative applications 

of MOEAs in materials science and engineering. Some potential paths for future research are sketched in 

Section 7. Finally, Section 8 contains our conclusions. 

 

 

2 Basic Concepts 
 

In this paper, we are interested in the solution of multi-objective optimization problems (MOPs) of the 

form: 
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where k is the number of objective functions fi : ℜn → ℜ. We call [ ]Tnxxxx ,,, 21 K
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decision variables. We wish to determine from among the set F of all vectors which satisfy (2) and (3) the 

particular set of values x*
1, x*

2, . . . , x*
n which yield the optimum values of all the objective functions. 

 

2.1 Pareto optimality 

                                                           
2 The first author maintains the EMOO repository, which, as of July 2008, contains over 3400 bibliographic entries. The EMOO 
repository is located at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO 



It is rarely the case that there exists a single point that simultaneously optimizes all the objective 

functions.3 Therefore, we normally look for “trade-offs”, rather than single solutions when dealing with multi-

objective optimization problems. The notion of “optimality” is therefore, different. The most commonly 

adopted notion of optimality is that originally proposed by Francis Ysidro Edgeworth [1] and later generalized 

by Vilfredo Pareto [2]. Although it is more appropriate to call this notion Edgeworth-Pareto optimality, we 

will use the most commonly accepted term: Pareto optimality. 

We say that a vector of decision variables ∈*xr F is Pareto optimal if there does not exist another ∈xr F 

such that )()( *xfxf ii
rr ≤  for all i = 1, . . . , k and )()( *xfxf jj

rr ≤  for at least one j (assuming minimization). 

In words, this definition says that *xr  is Pareto optimal if there exists no feasible vector of decision 

variables ∈xr F which would decrease some criterion without causing a simultaneous increase in at least one 

other criterion. Unfortunately, this concept almost always gives not a single solution, but rather a set of 

solutions called the Pareto optimal set. The vectors *xr  corresponding to the solutions included in the Pareto 

optimal set are called nondominated. The image of the Pareto optimal set under the objective functions is 

called Pareto front. 

 

 

3 Historical Origins of the Field 
 

The interest in solving problems with multiple objectives is not new, since such problems have been 

studied since the XIX Century. However, the formal development of mathematical programming techniques 

capable of dealing with multi-objective optimization problems dates back to the late 1950s [7]. Today, an 

important number of mathematical programming techniques are available in the Operations Research 

literature in order to deal with multi-objective optimization problems [3, 8]. However, these techniques have a 

number of limitations. For example, some of them require differentiability and continuity of both the 

objective functions and the constraints of the problem. Others are sensitive to the shape of the Pareto front. 

Additionally, in general, these techniques require an initial point to start the search and, therefore, the 

algorithm needs to be executed several times from different starting points in order to generate different 

nondominated solutions.4 

Evolutionary Algorithms (EAs) have been very popular as single-objective optimizers for the last 20 years 

[9, 10]. Because of their main features, EAs are indeed, very suitable to deal with multi-objective 

optimization problems. For example, EAs do not require differentiability or continuity of the objective 

functions or the constraints of a problem. Also, they operate on a set of solutions (the so-called “population”), 

which makes it possible (if appropriately managed) to generate a set of (different) nondominated solutions in 

                                                           
3 This would be possible only if there is no conflict among the objectives. In such case, the optimization of each objective, considered 
separately, would produce this single solution and, therefore, no actual MOEA would be needed. 
4 Note however that the use of different initial points does not, in general, guarantee convergence to different nondominated solutions in 
each run. 



a single run, departing from a random set of initial points. Additionally, the practice has shown that EAs are 

normally little susceptible to the shape or continuity of the Pareto front [11, 12]. 

 

 

4 Early MOEAs 
 

Rosenberg’s PhD thesis, which dates back to the late 1960s [13] contains what seems to be the first 

reference regarding the use of an EA to solve a MOP. In his PhD thesis, Rosenberg suggests the use of 

multiple properties (nearness to some specified chemical composition) in his simulation of the genetics and 

chemistry of a population of single-celled organisms. Unfortunately, the genetic algorithm implemented by 

Rosenberg contained only a single property. The first actual implementation of a MOEA had to wait for 

almost 20 years until David Schaffer developed (in 1984) the Vector Evaluated Genetic Algorithm (VEGA) 

[6, 14]. VEGA was designed to solve machine learning problems [15]. 

During the early days of the EMO field (which goes from 1984 up to late 1998), several MOEAs were 

developed, many of which were straightforward EA extensions of well-known mathematical programming 

techniques (e.g., linear aggregating functions). However, in 1989, David Goldberg analyzed VEGA in his 

famous book on genetic algorithms [9] and proposed a ranking scheme based on Pareto optimality. This 

scheme, which is now called Pareto ranking, consists of identifying the set of individuals which are 

nondominated with respect to the current population. These individuals are assigned the highest (perhaps 

artificial) rank value and are eliminated from further contention. Another set of individuals which are 

nondominated with respect to the remainder of the population is then determined and these individuals are 

assigned the next (possibly artificial) highest rank. This process continues until the entire population is 

suitably ranked. Goldberg indicated that a traditional EA tends to converge to a single solution if run a 

sufficiently large number of iterations, because of stochastic noise. Thus, he suggested to use a mechanism to 

avoid this convergence to a single solution. He suggested the use of fitness sharing [16] or a similar 

mechanism. The two components suggested by Goldberg (i.e., Pareto ranking and a density estimator) are 

today part of every modern MOEA. 

From the several MOEAs developed in the early days of the EMO field, only three became popular among 

practitioners (i.e., they were extensively used by researchers different from those who developed them): 

 

1. The Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca and Fleming [17] in 

1993. In this approach, the rank of an individual corresponds to the number of individuals in the 

current population by which it is dominated. An interesting aspect of MOGA, is that the ranking of 

the entire population is done in a single pass, instead of having to reclassify the same individuals 

several times (as suggested by Goldberg [9]). MOGA used fitness sharing, but its authors proposed a 

relatively simple way of calculating the niche radius, instead of requiring the user to empirically set 

up its value. 



 

2. The Nondominated Sorting Genetic Algorithm (NSGA): Proposed by Srinivas and Deb [18], this 

approach is based on several layers of classifications of the individuals, following Goldberg’s idea 

[9]. Before selection is performed, the population is ranked on the basis of nondomination: all 

nondominated individuals are classified into one category (with a dummy fitness value, which is 

proportional to the population size, to provide an equal reproductive potential for these individuals). 

To maintain the diversity of the population, fitness sharing is applied to these classified individuals 

using their dummy fitness values. Then this group of classified individuals is ignored and another 

layer of nondominated individuals is considered. The process continues until all individuals in the 

population are classified. 

 

3. The Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al. [19], this approach uses a 

binary tournament selection scheme based on Pareto dominance. Two individuals are randomly 

chosen and compared against a subset from the entire population (typically, around 10% of the 

population). There are only two possible outcomes: (1) one of them is dominated (by the individuals 

randomly chosen from the population) and the other is not; in this case, the nondominated individual 

wins. The second possible outcome is that the two competitors are either dominated or nondominated 

(i.e., there is a tie); in that case, the result of the tournament is decided through fitness sharing [16]. 

Since the NPGA does not rank the entire population, but only a sample of it, it is more efficient 

(algorithmically) than MOGA and the NSGA. 

 

The few comparative studies among these 3 MOEAs (MOGA, NPGA, and NSGA) performed during the 

mid and late 1990s, indicated that MOGA was the most effective and efficient approach, followed by the 

NPGA and by the NSGA (in a distant third place) [20, 21]. MOGA was also the most popular MOEA of its 

time, mainly within the automatic control community. 

 

 

5 Modern MOEAs 
 

Elitism in a single-objective EA consists on retaining the best individual from the current generation, and 

passing it intact (i.e., without being affected by crossover or mutation) to the following generation. Elitism is 

important, because it allows us to (mathematically) prove convergence [22]. In multi-objective optimization, 

however, elitism is not straightforward, since all the Pareto optimal solutions are equally good and, in theory, 

all of them should be retained. Elitism was not emphasized (or even considered) in the early MOEAs 

described in the previous section. It was until the late 1990s, when elitism in the context of multi-objective 



optimization was taken seriously.5 This was due to two main factors: the first was the proof of convergence of 

a MOEA developed by [25], which, analogously to the single-objective case, requires elitism. The second was 

the publication of an elitist MOEA: the Strength Pareto Evolutionary Algorithm (SPEA) [26] in the IEEE 

Transactions on Evolutionary Computation, which became a landmark in the field. 

This second period of development of the EMO field (that started in the late 1990s and continues until 

today) has seen the rise of a wide variety of MOEAs. However, as in the early days, very few of these 

MOEAs have become popular. Next, we will briefly discuss three MOEAs that are representative of this era: 

 

 
Figure 1: A graphical illustration of the way in which SPEA 2 operates. 

 

1. The Strength Pareto Evolutionary Algorithm (SPEA): Proposed by Zitzler and Thiele [26], this 

approach was conceived as a way of integrating different MOEAs. It incorporates elitism through the 

use of an archive containing the nondominated solutions previously found (this is called “external 

nondominated set”). At each generation, nondominated individuals are copied to the external 

nondominated set. For each individual in this external set, a strength value is computed. This 

strength is similar to the ranking value of MOGA [17], since it is proportional to the number of 

solutions to which a certain individual dominates. The fitness of each member of the current 

population is computed according to the strengths of all the external nondominated solutions that 

dominate it. The fitness assignment process of SPEA considers both closeness to the true Pareto 

front and even distribution of solutions at the same time. Thus, instead of using niches based on 

distance, Pareto dominance is used to ensure that the solutions are properly distributed along the 

Pareto front. Although this approach does not require a niche radius, its effectiveness relies on the 

size of the external nondominated set. In fact, since the external nondominated set participates in the 

selection process of SPEA, if its size grows too large, it might reduce the selection pressure, thus 

slowing down the search. Because of this, the authors decided to adopt a clustering technique that 

prunes the contents of the external nondominated set so that its size remains below a certain 

threshold. In 2001, a revised version of SPEA (called SPEA2) was introduced. SPEA2 has three 

                                                           
5 It is worth noting, however, that several researchers had already adopted elitism in the mid-1990s. See for example [23, 24]. 



main differences with respect to its predecessor [27]: (1) it incorporates a fine-grained fitness 

assignment strategy which takes into account for each individual the number of individuals that 

dominate it and the number of individuals by which it is dominated; (2) it uses a nearest neighbor 

density estimation technique which guides the search more efficiently, and (3) it has an enhanced 

archive truncation method that guarantees the preservation of boundary solutions. The way in which 

SPEA2 operates is graphically shown in Figure 1. 

 

 
Figure 2: A graphical representation of the external population adopted by PAES. 

 

2. The Pareto Archived Evolution Strategy (PAES): This approach was proposed by Knowles and 

Corne [28], and it consists of a (1+1) evolution strategy (i.e., a single parent that generates a single 

offspring) in combination with a historical archive that records the nondominated solutions 

previously found. This archive is used as a reference set against which each mutated individual is 

being compared. Such a historical archive is the elitist mechanism adopted in PAES. The procedure 

used to maintain diversity consists of a crowding procedure that divides objective space in a 

recursive manner. Each solution is placed in a certain grid location based on the values of its 

objectives (which are used as its “coordinates” or “geographical location”). A map of such grid is 

maintained, indicating the number of solutions that reside in each grid location, as shown in Figure 2. 

Since the procedure is adaptive, no extra parameters are required (except for the number of divisions 

to be applied in objective function space). 

 

3. The Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was proposed by 

Deb et al. [29] as an upgrade of the NSGA [18], although it shares few similarities with it. In the 

NSGA-II, for each solution one has to determine how many solutions dominate it and the set of 

solutions to which it dominates. The NSGA-II estimates the density of solutions surrounding a 

particular solution in the population by computing the average distance of two points on either side 

of this point along each of the objectives of the problem. This value is the so-called crowding 



distance. During selection, the NSGA-II uses a crowded-comparison operator which takes into 

consideration both the nondomination rank of an individual in the population and its crowding 

distance (i.e., nondominated solutions are preferred over dominated solutions, but between two 

solutions with the same nondomination rank, the one that resides in the less crowded region is 

preferred). The NSGA-II does not implement an elitist mechanism based on an external archive. 

Instead, the elitist mechanism of the NSGA-II consists of combining the best parents with the best 

offspring obtained. The way in which the NSGA-II operates is graphically illustrated in Figure 3. 

Due to its clever mechanisms, the NSGA-II is much more efficient (computationally speaking) than 

its predecessor, and its performance is so good, that it has gained a lot of popularity in the last few 

years, becoming a landmark against which other MOEAs are often compared. 

 

 
Figure 3: Graphical illustration of the way in which the NSGA-II works. 

 

Many other MOEAs exist (see for example [30, 31, 32, 33]), but they will not be discussed here due to 

obvious space limitations. For more information on alternative MOEAs and other aspects of the EMO field 

(for example, density estimators, incorporation of user’s preferences and theoretical foundations), interested 

readers are referred to [11]. 

 

 

6 Applications of MOEAs in Materials Science and Engineering 
 

The use of MOEAs in materials science and engineering has become increasingly popular in the last few 

years [34, 35, 36, 37, 38, 39, 40]. However, in the review of applications presented next, no attempt was made 

to be comprehensive for the sake of brevity. Nevertheless, in order to group together the applications 

reviewed, the following taxonomy (based on the contents of the papers analyzed) was adopted: 

 

• Iron-making and steel-making 



 

• Casting of metals 

 

• Polymerization 

 

• Hot and cold rolling 

 

• Design of alloys 

 

• Reheating and heat treatment 

 

6.1 Iron-making and steel-making 
Kumar et al. [41] use SPEA [26] to optimize the gas injection in steelmaking vessels. The authors consider 

a bottom blown gas-stirred system involving an ascending gas bubble stream in a vessel containing molten 

metal. Two objectives are considered: (1) maximize the degree of mixing and (2) minimize the wall stress. In 

order to evaluate these two objective functions, the authors adopt a complex mathematical model for fluid 

analysis, considering Reynolds averaged transient Navier-Stokes equations, energy and species conservation 

equations, and equations for turbulent kinetic energy and its dissipation rate. Since each evaluation of the 

objective functions is very expensive (computationally speaking), SPEA is run only during 20 generations 

(with a main population size of 60 individuals and an external population size of 30 individuals). The authors 

indicate, however, that this is enough to achieve reasonably stable solutions. 

Saxén et al. [42] evolve neural networks using a genetic algorithm implemented in a predator-prey 

framework [43]. The objectives minimized are the approximation error and the number of weights of the 

network (i.e., its size). The authors use a multilayer perceptron, treating the architecture of the lower part of 

the network and its corresponding weight matrix as decision variables. In contrast, the weights in the upper 

part of the network were determined by linear least squares. Then, the authors propose an extension of this 

approach for online learning, in which the weights in the upper layer of the networks are  recursively 

estimated by a Kalman filter. Finally, they apply this approach to the prediction of the silicon content of hot 

metal produced in a blast furnace, which is a challenging problem in the ironmaking industry. The authors 

found that their approach could predict the silicon content very accurately, if we consider the fact that the 

models lack autoregressive terms. They also indicate that an analysis of the final models obtained revealed 

that the inputs that were retained by the approach correspond to variables that are known to affect (or strongly 

correlate), in practice, the hot metal silicon content. 

 

6.2 Casting of metals 



Miettinen [44] adopts an interactive mathematical programming method6 (NIMBUS [3]) in which the 

single-objective optimizations are performed with a real-coded genetic algorithm using an adaptive penalty 

approach to handle constraints. This hybrid approach is applied to the continuous casting of steel where 

secondary cooling plays an important role. The main objective is to find a control that produces steel of the 

best possible quality (i.e., with minimum defects). However, the constraints imposed on the cooling process 

are so difficult to satisfy that the feasible region turns out to be empty. Thus, the author adopts a model in 

which the constraints violations are also minimized. The decision variables are the intensities of the water 

sprays, since they strongly affect the solidification rate of steel, which in turn regulates the quality of the steel 

(e.g., overcooling can lead to the formation of cracks). The results were very satisfactory, since three of the 

original constraints could be satisfied relatively well. 

Filipič et al. [45] use an approach called Differential Evolution for Multiobjective Optimization [46] 

(DEMO) for the multi-objective optimization of secondary coolant flows in continuous casting of steel. The 

authors defined two cost functions related to the deviations of the actual temperatures from the (predefined) 

targets and to the core length, which is the distance between the mold exit and the point of complete 

solidification of the slab. These two cost functions are to be minimized. In their model, the authors consider a 

casting machine with the secondary cooling area divided into nine zones, through which cooling water is 

dispersed. The authors adopt a mathematical model of the process with a finite element method discretization 

of the temperature field in order to calculate the temperature field in the slab as a function of the process 

parameters. The corresponding nonlinear equations are solved using relaxation iterative methods. The authors 

used four instances of an optimization problem consisting of the casting process for a selected steel grade with 

a given slab cross-section. These four instances correspond to different casting speeds. In each instance, the 

speed was kept constant, but at a different value. The values adopted went from 1.2 m/min up to 1.8 m/min. 

The authors clarify that their study is meant to provide a better understanding of the process and for assessing 

the casting machine performance, instead of being intended for control purposes. In the study, the authors 

showed 18 cooling water flows with respect to the two cost functions previously indicated, on an industrial 

casting machine. It is worth noting that despite the high computational cost of the approach, the authors 

perform 50,000 solution evaluations (each run required about 55 hours) and adopt performance measures 

(namely, hypervolume and attainment surfaces) in order to assess the quality of their results. Some of the 

findings of this study were already known by practitioners, but others indicated the need to ensure uniform 

distribution of temperature differences over the different zones defined, and also raised the need to add one 

extra constraint to the model. 

 

6.3 Polymerization 
Mitra and Majumdar [47] use the NSGA-II [29] for the performance improvement of the Poly (propylene 

terepthalate) (PPT) polymerization process. The authors adopt a model in which the aim is to maximize the 

                                                           
6 Interactive mathematical programming methods are based on linear combinations of the objective functions and the user’s preferences 
(which are iteratively asked). This produces a new single-objective optimization problem that can be solved using any search engine 
available. 



degree of polymerization while minimizing the processing time for the esterification step, since this leads to 

achieving the desired polymer quality with maximum possible productivity. This leads them to two instances, 

one of which has three objectives and the other one has four objectives; both problems are nonlinear and have 

several constraints. The authors adopt a large population size (500 individuals) and run the NSGA-II for 300 

generations. The authors indicate that the esterification process shows a reasonable good balance of the 

required functional groups, while maintaining the goal of having a better polymer product within a reasonable 

processing time. 

Babu et al. [48] use Multi-Objective Differential Evolution (MODE) [49] for the optimization of wet film 

Poly-Ethylene Terephthalate (PET) reactors. Two objectives are minimized: (1) acid end group concentration 

and (2) vinyl end group concentration. Results are compared with respect to those reported by Bhaskar et al. 

[50], which used the NSGA [18], but were able to find only a single nondominated solution. In contrast, 

MODE produces the Pareto front of this problem (which represent different operating conditions) in the five 

different cases studied. The two MOEAs are run during 600 generations, but the authors do not indicate the 

population size nor the values of any of the other parameters adopted. 

 

6.4 Hot and cold rolling 
Nandan et al. [51] use two MOEAs for the hot rolling process practiced in a steel plant, considering two 

objectives. The first is used to ensure that there will be no abrupt jumps in the dimensions of the slabs used in 

the schedule7, and the second implies that the total crown in the rolled strip from all sources is kept to a 

minimum. The two MOEAs adopted are: SPEA [26] and the distance-based Pareto genetic algorithm (DPGA) 

[52]. The authors adopted position based crossover and position-based mutation [53]. For their experiments, 

the authors used a batch of 50 different strips actually rolled at an Indian company. The authors only report 

the use of 500 generations to run their algorithms, but not the population size nor any of the values of the 

other parameters adopted in their experiments. SPEA was found to have a better performance than DPGA in 

the problem studied. 

Wang et al. [54] use a genetic algorithm with a weighted linear aggregating function to optimize the 

rolling schedule for a tandem cold strip mill operation. The authors aim to maximize rolling mill throughput 

while minimizing processing costs and crop losses. The rolling schedule is optimized through the use of a cost 

function that combines tension, shape and power distribution costs. The constraints considered include the roll 

force and torque limitations, work roll speed references, strip exit thickness, threading conditions, and tension 

limitations. The genetic algorithm adopts binary encoding, one-point crossover and bit-flip mutation. The 

parameters generated by the genetic algorithm are further checked with respect to practical rolling constraints, 

in order to ensure that they are not unrealistic values. The results indicate that the genetic algorithm can 

produce an effective improvement with respect to the empirical models used as a reference. 

 

6.5 Design of alloys 

                                                           
7 The rolling schedule is the sequence in which the strips are to be rolled during a particular campaign. 



Mahfouf et al. [55] use both a single-objective genetic algorithm and SPEA2 [27] for the optimal design of 

alloy steels. The problem consists on determining the optimal heat treatment regime and the required weight 

percentages for the chemical composites, in order to obtain certain desired mechanical properties in a steel 

alloy. Since the available physical knowledge of the heat treatment process is not enough to allow the 

computation of the mechanical properties, the authors adopt elicited data-driven models. Namely, the authors 

use neural networks to predict the mechanical properties of steel, such as the tensile strength, the reduction of 

area and the elongation. These are precisely the mechanical properties that were optimized, and two 

objectives were considered for each of them: the mechanical property itself and its standard deviation. This 

aims to take into consideration the reliability of the predictions performed. It is worth indicating, however, 

that three different bi-objective optimization problems are solved in the paper, rather than a single one that 

considers the six objective functions of the problem. First, a single-objective genetic algorithm is adopted, 

using a weighted linear aggregating function. The results were acceptable, but the problem of obtaining the 

appropriate weighting between the two objectives became evident. Thus, in the second part of the paper, the 

authors adopt SPEA2 to optimize simultaneously each pair of objectives. Much better trade-offs were 

obtained this time, showing the advantages of using a Pareto-based MOEA in this application. 

Egorov-Yegorov and Dulikravich [56] use a semi-stochastic evolutionary algorithm to determine the 

optimum concentrations of alloying elements in heat-resistant austenitic stainless steel alloys and superalloys 

that maximize certain mechanical properties of such alloys. The authors adopt an approach called “Indirect 

Optimization Based on the Self-Organization (IOSO) Algorithm”. IOSO consists of two stages. In the first 

stage, an approximate model of the objective functions is created. In the second stage, this approximate model 

is optimized. IOSO incorporates evolutionary algorithms, and artificial neural networks with radial basis 

functions that are used to build the response surfaces. The idea is to use this metamodel (or approximate 

model) to perform a very reduced number of evaluations of the actual objective functions of the problem. The 

authors conducted an experiment in which they simultaneously maximized three objectives (strength, 

temperature and time-to-ruptute) for alloys having 17 chemical elements. In the final part of the paper, the 

authors deal with the inverse design of alloy compositions. In this case, the idea is to determine chemical 

compositions of alloys that are able to sustain a specified level of stress at a given temperature for a specified 

length of time. An example of such inverse design is also included in the paper. The resultant alloys were 

tested used experimental techniques, which confirmed their characteristics and, in consequence, the validity 

of the results obtained. 

 

6.6 Reheating and heat treatment 
Chakraborti et al. [57] adopt three optimization heuristics (a simple genetic algorithm, a micro-genetic 

algorithm and differential evolution) with a heat transfer model, for the design of a reheating furnace. In such 

work, the furnace is modeled with 1D and 2D heat conduction differential equations, which are solved using 

finite differences approach. The problem is subject to the dropout temperature constraint, which is handled in 

all the algorithms using the bracket operator penalty parameter approach; this constraint seems to be very 



difficult to satisfy for the approaches adopted in this paper. All the algorithms implement tournament 

selection, and use standard parameters (a population size of 100 for the genetic algorithm and the differential 

evolution, and of 5 for the micro-genetic algorithm, crossover probability of 0.9, mutation probability of 0.02 

but no mutation in the micro-genetic algorithm, crossover constant of 0.5 and scaling factor of 0.8 for the 

differential evolution). Three decision variables are considered: the three burner temperatures. The authors 

report similar good results for the genetic algorithm and the differential evolution, which are better, in 

general, than the results of the micro-genetic algorithm. 

Broughton et al. [58] adopt a genetic algorithm for scheduling in a reheat furnace. Two objectives are 

considered in an aggregative function: the average temperature and the difference between the highest and 

lowest temperature. A set of heuristic rules is applied for pre-processing and post-processing the schedules, 

using previous domain knowledge about the problem. A mutation operator based on swapping is applied, to 

maintain the feasibility of the schedules, in addition to a specialized crossover operator, which is applied 

partially to the chromosomes. Multiple offspring are produced, and the authors use a population size of 30, 

and a maximum number of generations of 150; the algorithm is run in real time, so the parameter values must 

not result in excessive running times. Also, the authors implement a mechanism for the reduction of errors 

when delays and unexpected events occur. 

Sahay et al. [59] perform the optimization in a process of age-hardening of aluminum rods. The first part 

of this work presents a formal modeling approach for these age-hardening processes. Then, the NSGA-II [29] 

is adopted, and two objectives are considered: the minimization of yield strength variation and the 

maximization of furnace productivity; additionally, some experiments are performed with an extra objective: 

to minimize the furnace temperature. Such experiments show that the Pareto front covers a wide variety of 

temperatures, and solutions with lower temperatures (low energy consuming) are feasible. The authors also 

explore the use of multizone furnaces, which increase the number of variables from 2 to 10 (they model a 5-

segment furnace). The optimization simulations using such furnaces present an important reduction in energy 

consumption, while maintaining or improving productivity and quality variations. 

 

 

7 Future Areas of Research 
 

As we have seen, MOEAs have been successfully applied to different problems in materials science and 

engineering. However, there are other possible paths for future research that may be worth exploring. For 

example: 

 

• Use of Mechanisms to Increase Efficiency: Several of the applications reviewed have a very high 

computational cost, which makes it difficult (or even impossible) to perform a large number of objective 

function evaluations. The use of MOEAs hybridized with local search mechanisms (the so-called memetic 

MOEAs [60]), the use of approaches that speed up convergence and then reconstruct the Pareto front from a 



handful of nondominated points (see for example [61]), and the use of metamodels (see for example [62]) are 

possible alternatives to explore the search space of this computationally expensive problems in a more 

efficient way. 

 

• Use of parallelism: Considering the high computational cost required by some of the applications in 

materials science and engineering, it is evidently important to use parallel MOEAs (see for example [63, 64, 

65, 66]). It is worth emphasizing that the careful design of such parallel MOEAs is important in order to 

obtain the maximum possible benefit by improving not only the running time of the algorithm, but also the 

quality of the solutions obtained. 

 

• Incorporation of User’s Preferences: It is normally the case that in a real-world problem only a 

small portion of the Pareto front is needed. Thus, it is very useful when the user can identify regions of 

interest within the Pareto front that can then be explored in more detail. A number of mechanisms that allow 

the incorporation of user’s preferences into a MOEA already exist (see for example [11, 67, 68, 69]), but their 

use is not widespread yet. 

 

• Alternative Metaheuristics: There are several other bio-inspired metaheuristics that have been 

extended for multi-objective optimization and that are becoming increasingly popular in the specialized 

literature. Three of them deserve special attention, from the authors’ perspective, due to their high potential in 

the materials science and engineering field: 

 

1) Particle swarm optimization (PSO): This metaheuristic was proposed by Kennedy and Eberhard 

[70], and simulates the movements of a flock of birds that look for food. It is a population-based 

approach, but does not adopt a crossover or mutation operator. Instead, the search is conducted 

through the adjustment of the velocity and position of a set of particles that move in the search space 

following one or more leaders (i.e., those particles with the best performance so far). PSO has 

become very popular because of its simplicity and effectiveness. Several multi-objective extensions 

of this metaheuristic already exist [71,72], but relatively few applications of it have been reported in 

the materials science and engineering field until now. 

2) Artificial immune systems (AIS): Our immune system can be seen as a highly parallel intelligent 

system, which is able to learn and retrieve previous knowledge to solve a variety of recognition and 

classification tasks. Due to its interesting properties, researchers have proposed computational 

models of artificial immune systems since the early 1990s [73,74]. Several multi-objective 

extensions of AIS exist [75,76], but their potential for solving multi-objective classification and 

pattern recognition problems has not been sufficiently exploited so far. 

3) Ant colony optimization (ACO): This metaheuristic is inspired by colonies of real ants, which 

deposit a chemical substance in the ground, called “pheromone”, and which influences the behavior 

of the ants (they tend to take paths containing a larger amount of pheromone). Computational 



models of these ant colonies have been effectively used for solving combinatorial optimization 

problems [77]. Several multi-objective extensions of ACO already exist [78,79], but their use has 

been restricted mainly to solve portfolio optimization problems and the traveling salesman problem.  

 

8 Conclusions 
 

This chapter has provided a brief introduction to MOEAs and some of their applications in materials 

science and engineering. We have briefly described both, the most representative algorithms and some of their 

applications. Clearly, researchers in materials science and engineering already know and have indeed used 

MOEAs in several of their applications. Thus, we considered unnecessary to attempt to motivate any further 

their interest in the EMO field. Also, no attempt was made to provide a critical review of the use of MOEAs 

in this area, since any of such criticism would be from a purely MOEA designer’s perspective. In fact, the aim 

of this paper is to try to reduce the gap between MOEA designers and the practitioners who apply such 

algorithms in a variety of complex problems. The feedback that practitioners could provide to the MOEA 

designers would be, with no doubt, very valuable, and could certainly change the research trends in the EMO 

field for the years to come. 
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