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Abstract

This paper provides a short review of some of the main topics in which the
current research in evolutionary multi-objective optimization is being focused. The
topics discussed include new algorithms, efficiency, relaxed forms of dominance,
scalability, and alternative metaheuristics. This discussion motivates some further
topics which, from the author’s perspective, constitute good potential areas for
future research, namely, constraint-handling techniques, incorporation of user’s
preferences and parameter control. This information is expected to be useful for
those interested in pursuing research in this area.

1 Introduction

Evolutionary algorithms (EAs) are a population-based metaheuristic inspired on the
“survival of the fittest” principle, whose use has become increasingly popular over
the last three decades, mainly for optimization and classification tasks [64, 48]. This
popularity has given rise to a series of subdisciplines within the so-called evolutionary
computation area. One of the subdisciplines that has experienced one of the fastest
growth is evolutionary multi-objective optimization (EMO), which refers to the use of
EAs for solving multi-objective problems (MOPs). A MOP has two or more (usually
conflicting) objective functions that we wish to optimize simultaneously. Because of
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their nature, MOPs normally have several solutions rather than a single one1 (like in
global optimization). Thus, the use of the population to conduct the search presents the
advantage of allowing us to generate several solutions after a single run. Additionally,
because of their heuristic nature, EAs are less susceptibleto the specific features of
a MOP (e.g., continuity) than mathematical programming techniques, and therefore
their increasing popularity within different domains, mainly during the last 15 years
[21, 31, 17, 112].

The first implementation of a multi-objective evolutionaryalgorithm (MOEA) dates
back to the mid-1980s [136, 137]. Since then, many other MOEAs have been proposed,
and an important number of publications have been released.2 Readers interested in the
historical development of this field, should refer to [19].

After 23 years of existence, EMO is now experiencing growingpains. With no
doubt, this is a very popular discipline, but at the same time, it seems less friendly to
newcomers. Producing original contributions has apparently become harder (e.g., at
the level of a PhD thesis), and a lot of “work by analogy” is nowcommonly seen in a
number of publications. This has led to some EMO researchersto raise an important
question: will we continue to do research in EMO during the next few years?
This is precisely the focus of this paper, in which we will briefly discuss some of the
topics that are currently the main focus of research in EMO and that, from the author’s
perspective, represent promising research venues for the years to come. Thus, the main
hypothesis of this paper is that there still exist enough research topics for both novice
and advanced researchers, if one looks carefully within the(now overwhelming) EMO
literature. The main goal of this paper is precisely to provide some hints to get relatively
quickly to these promising research topics.

The remainder of this paper is organized as follows. Section2 presents some ba-
sic concepts on multi-objective optimization, which are provided in order to make this
paper self-contained. The topics that, from the author’s perspective, are more repre-
sentative of the current research trends in the area are discussed in Section 3. Section 4
presents some additional topics that we believe that are worth exploring in the future.
Finally, Section 5 presents our conclusions.

2 Basic Concepts

We are interested in solving problems of the type3:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . , m (2)

1A MOP will have a single solution only if the objectives have no conflict among them, in which case
there is no need to use any sort of special approach, since thesequential optimization of each of the objectives,
considered separately, will lead us to this single solution.

2The author maintains the EMO repository, which currently contains over 3400 bibliographical refer-
ences, plus public-domain software, and a small database ofEMO researchers. The EMO repository is
located at:http://delta.cs.cinvestav.mx/˜ccoello/EMOO

3Without loss of generality, we will assume only minimization problems.
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hi(~x) = 0 i = 1, 2, . . . , p (3)

where~x = [x1, x2, . . . , xn]T is the vector of decision variables,fi : IRn → IR,
i = 1, ..., k are the objective functions andgi, hj : IRn → IR, i = 1, ..., m, j = 1, ..., p

are the constraint functions of the problem.

Now, we will provide some definitions that are required in order to make this paper
more understandable.
Definition 1. Given two vectors~u,~v ∈ IRk, we say that~u ≤ ~v if ui ≤ vi for
i = 1, ..., k, and that~u < ~v if ~u ≤ ~v and~u 6= ~v.

Definition 2. Given two vectors~u,~v ∈ IRk, we say that~u dominates~v (denoted by
~u ≺ ~v) iff ~u < ~v.

Definition 3. We say that a vector of decision variables~x∗ ∈ F (F is the feasible re-
gion) isPareto optimum if there does not exist another~x ∈ F such that~f(~x) ≺ ~f( ~x∗).

Definition 4. ThePareto Optimal SetP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto optimum}

The vectors~x∗ corresponding to the solutions included in the Pareto optimal set are
callednondominated.

Definition 5. ThePareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRn|~x ∈ P∗}

We thus wish to determine the Pareto optimal set from the setF of all the decision
variable vectors that satisfy (2) and (3).

3 Some of the Current Research Trends

Based on an analysis of a sample of the specialized literature, we have selected the
following list of topics, which seem to be representative ofthe main current research
trends in EMO:

1. New algorithms

2. Efficiency

3. Relaxed forms of dominance

4. Scalability

5. Alternative metaheuristics

Each of these topics will be briefly discussed next.
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3.1 New Algorithms

In the early days of EMO, the design of new algorithms was a hottopic. However, from
the many MOEAs that have been proposed in the specialized literature since Schaffer’s
Vector Evaluated Genetic Algorithm(VEGA) [137] (published in 1985), few have be-
come widely used in the EMO community. The most popular nonelitist4 MOEAs were:
Multi-Objective Genetic Algorithm (MOGA) [58], Niched-Pareto Genetic Algorithm
(NPGA) [73], and Nondominated Sorting Genetic Algorithm (NSGA) [142].

Although some notions of elitism had already been contemplated by some EMO
researchers since the mid-1990s (see for example [75, 122]), it was until the publica-
tion of the Strength Pareto Evolutionary Algorithm (SPEA) [169] in the late 1990s,
that elitist MOEAs became common. Although several elitistMOEAs exist, few have
become widely used (see for example [92, 167]), and from them, one has become ex-
tremely popular: the Nondominated Sorting Genetic Algorith-II (NSGA-II) [36]. In
fact, the popularity of this algorithm has created a new trend within EMO to propose
mechanisms that improve (e.g., for a certain class of problems) its performance (see
for example [6, 82, 120, 94]).

It is important to note that MOEAs normally modify EAs in two ways: (1) they
incorporate a selection mechanism based on Pareto optimality, and (2) they adopt a
diversity preservation mechanism that avoids that the entire population converges to
a single solution (as would normally occur because of the stochastic nature of EAs).
Diversity preservation mechanisms have also evolved over the years, from naive fitness
sharing schemes in which an individual is penalized for sharing the same “niche” with
other individuals from the population (a niche is defined either in decision or in ob-
jective function space by adopting a certain niche radius from each individual, whose
value is normally defined by the user) [65, 33]. Over the years, other (more elabo-
rate) schemes have been proposed: clustering [169], the adaptive grid [92, 89], the
crowded-comparison operator [36], and entropy [27, 52, 53], among others.

In spite of the previously indicated trends within this area, the design of algorithms
is still an active area of research, although it is now much less popular than before.
One of the current trends within this area is to adopt a selection mechanism based on
some performance measure. For example, the Indicator-Based Evolutionary Algorithm
(IBEA) [166] is intended to be adapted to the user’s preferences by formalizing such
preferences in terms of continuous generalizations of the dominance relation. This is
a nice idea, since it avoids the need to provide an explicit diversity preservation mech-
anism. In order to achieve this, the optimization goal of IBEA is defined in terms
of a binary performance measure (e.g., the additiveǫ-indicator [171]). Recently, the
same authors introduced the Set Preference Algorithm for Multiobjective Optimization
(SPAM) [170], which consists of a hillclimber based on the same idea of IBEA, but
which turns out to be more general, since it is not restrictedto a single binary perfor-
mance measure (several of such performance measures can be used in sequence, and
any type of set preference relation is acceptable). Within asimilar line of thought,

4Elitism is an operator that retains the best solution from the population of an EA and passes it intact to the
next generation. In EMO, elitism, however, involves ALL thenondominated solutions from the population,
and is normally implemented using an external archive that filters solutions, such that only solutions that are
nondominated with respect to all the previously evaluated populations are retained.
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but without explicitly considering the incorporation of user’s preferences, the S Metric
Selection Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA) [49, 9]
adopts a selection operator based on the hypervolume measure (also known as S met-
ric [168, 165]). There have also been multi-objective extensions of successful single-
objective evolutionary optimizer, such as CMA-ES [76, 77],which is invariant to rota-
tion in its two versions (single- and multi-objective).

Obviously, other types of MOEAs may also be developed inspired, for example,
on concepts from mathematical programming (see for examplethe Nash Genetic Al-
gorithm [140] and theǫ-constraint Cultural Differential Evolution [98]), or on exist-
ing (single-objective) EAs (see for example the Multiobjective Cellular Genetic Al-
gorithm [117, 118] and the micro Genetic Algorithm for Multiobjective Optimization
[23, 150]). Clearly, much remains to be done regarding algorithm design, and a new
generation of MOEAs is expected to arise in the future.

3.2 Efficiency

Several EMO researchers have addressed efficiency issues5 (see for example [73, 92,
36, 79]). If focused on algorithm design, one gets the impression that little can be done
to improve efficiency, since the computational efficiency bounds of nondominance
checking have been known for over thirty years [96]. Nevertheless, this is normally
assumed by researchers, but few detailed studies of MOEA’s algorithmic complexity
and of the algorithms used to extract nondominated solutions from a set are currently
available in the specialized literature (see for example [131, 161]).

Interestingly, most EMO researchers have focused on an apparently easier way of
increasing efficiency: the reduction of the number of individuals that are used for de-
termining nondominance. Perhaps the first attempt to reducethe number of individuals
involved in the Pareto ranking process of a MOEA is the selection mechanism of the
Niched-Pareto Genetic Algorithm (NPGA) [73]. The NPGA usesbinary tournament
selection. However, instead of comparing fitness directly between two individuals (ran-
domly chosen from the population), in this case a small sample of the population is ran-
domly chosen (e.g., 10% of the total population size). Then,each of the two individuals
participating in the tournament are compared with respect to the sample. If one of them
turns out to be nondominated (with respect to the sample) andthe other is dominated,
then the nondominated individual wins the tournament and isselected as a parent. In
any other case (i.e., both individuals are nondominated or both are dominated), the in-
dividual with less neighbors in its niche wins. Since the sample randomly chosen is
smaller than the total population size, the NPGA never ranksan individual with respect
to the entire population. This results in a faster algorithm. Another remarkable work in
the same direction of the NPGA is the improved ranking procedure proposed by Jensen
[79], which significantly reduces the computational complexity of the NSGA-II [36].
However, this approach is based on an algorithm that, as indicated before, is sensitive
to the number of objectives [79]. There have also been proposals in which a very small
population size is adopted, based on the concept of the micro-genetic algorithm [95],

5By efficiency, we refer here to any sort of process that reduces the number of instructions performed in
an algorithm (a MOEA in our case), without modifying the outcome produced by such algorithm.
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in which no more than five individuals are used in the population [23]. This sort of
MOEA requires, however, of clever reinitialization schemes in order to avoid getting
stuck during the search.

Nowadays, a more common research trend has been to focus on the design of
MOEAs that reduce the number of objective function evaluations performed, under
the assumption that such evaluations may be very expensive in some real-world appli-
cations (clearly, much more expensive than a Pareto rankingscheme). For that sake,
EMO researchers have been adopting techniques such as surrogate models, which have
long been used in engineering (see for example [159, 83, 154,88, 126]). The main idea
of surrogate models is to build an approximate model of the problem, which is cheap
(computationally speaking) to evaluate. Their main problem is that these models evi-
dently have errors with respect to the original function to be optimized and, sometimes,
such an error may be very significant. Also, some of the current MOEAs that adopt this
sort of scheme can only be applied to problems of low dimensionality (e.g., parEGO
[88]). Another possible approach is to use previously gathered knowledge (e.g., based
on previous evaluations of the fitness function), in order toadapt the recombination and
mutation operators so that we can sample offspring in promising areas of the search
space (this is the idea of cultural algorithms [130], which have been scarcely consid-
ered for multi-objective optimization [22]). Knowledge ofpast evaluations can also be
used to build an empirical model that approximates the fitness function to optimize.
This approximation can then be used to predict promising newsolutions at a smaller
evaluation cost than that of the original problem (see for example [88, 80]). It is also
possible to use fitness inheritance in order to reduce the number of evaluations of the
objective functions. Fitness inheritance [141] works as follows: when assigning fit-
ness to an individual, sometimes the objective function is evaluated as usual, but the
rest of the time, the fitness of an individual is assigned as the average of the fitnesses
of its parents, thus avoiding a fitness function evaluation based on the assumption of
similarity of the individual to its parents. Fitness inheritance has been extended for
multi-objective optimization by a few researchers (see forexample [15, 128]). For a
more thorough discussion on the different knowledge incorporation schemes that have
been adopted in MOEAs, the interested reader is referred to [99].

It is worth noting, however, that other approaches are possible, by using hybrid
schemes. For example, in [71], a MOEA is used to produce a rough approximation of
the Pareto front, and then a local search scheme based on rough sets theory is adopted to
rebuild the missing portions of the Pareto front. In [133], asimilar scheme is proposed,
but using scatter search as the local search engine, instead. Clearly, the use of powerful
local search schemes hybridized with MOEAs that can producerough approximations
of the Pareto front with a reduced number of evaluations [157], or with MOEAs that
use special operators to accelerate convergence [2, 3], is avery promising research
topic.

3.3 Relaxed Forms of Dominance

In recent years, some researchers have proposed the use of relaxed forms of Pareto
dominance as a way of regulating convergence of a MOEA [93]. From these propos-
als, the most popular is the so-calledǫ-dominance, which was introduced in [102].
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This mechanism acts as an archiving strategy to ensure both properties of convergence
towards the Pareto optimal set and properties of diversity among the solutions found.
The idea is to use a set of boxes to cover the Pareto front, where the size of such boxes
is defined by a user-defined parameter (calledǫ). Within each box, it is only allowed a
single nondominated solution to be retained (e.g., the one closest to the lower lefthand
corner, if both objectives are being minimized). Thus, by using a large value ofǫ, the
user can speed up convergence, but at the sake of sacrificing the quality of the Pareto
front approximation obtained. Conversely, if a high-quality approximation of the front
is required, then a small value ofǫ must be adopted instead. The definition ofǫ, is then,
quite important. Unfortunately, it is not straightforwardto find the most appropriate
value ofǫ that produces a certain (required) number of nondominated solution within
an archive, when nothing is known in advance about the shape of the Pareto front. Also,
to correlate the number of nondominated solutions desired with the value ofǫ chosen
is not easy, and normally some preliminary runs are requiredin order to estimate the
appropriate value. This makes difficult to compare approaches that adoptǫ with respect
to MOEAs that do not use this concept. Additionally, becauseof its nature, this mech-
anism eliminates certain portions of the Pareto front (e.g., almost straight segments
and the extremes of the Pareto front), which may be undesirable in some cases [153].
This, however, can be (at least partially) compensated by using geometrical assump-
tions about the possible shapes of the Pareto front, and adopting boxes of varying size
(see for example [72]).

Several modern MOEAs have adopted the concept ofǫ-dominance (see for example
[34, 113, 35, 134]), and, mainly because of its nice mathematical properties, its use has
become relatively popular in the last few years. However, much more work on this
topic is expected to be developed in the years to come, both from a pragmatic and from
a theoretical point of view.

3.4 Scalability

For several years, most EMO research focused on solving MOPswith only two or three
objectives, and it was assumed that scaling such MOEAs to a larger number of objec-
tives would be straightforward. However, several EMO researchers have found this
assumption to be wrong [87, 74, 155]. One of the reasons for this is that the proportion
of nondominated solutions in a population increases rapidly with the number of objec-
tives. Indeed, in [54], it is shown that this number goes to infinity when the number of
objectives approaches to infinity. This implies that in the presence of many objectives
the selection of new solutions is carried out almost at random since a large number of
the solutions are equally good in the Pareto sense [91]. Thishas made scalability an
important research topic [125, 124, 37, 38].

Currently, there are mainly two approaches to deal with problems involving many
objectives: 1) to adopt relaxed forms of Pareto optimality by proposing an optimality
relation that yields a solution ordering finer than that yielded by Pareto optimality (see
for example [54, 55, 37, 144]) and 2) to reduce the number of objectives of the original
MOP, thus lowering the dimensionality to a reasonable valuethat can be handled by
standard MOEAs [135, 13]. Although the second of these typesof approaches seems
to be an attractive choice, the difficulties commonly associated with dimensionality
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reductions has made relaxed forms of Pareto optimality morepopular in the literature
[106]. Because of its relevance, an important increase of research in this area is ex-
pected to occur in the coming years.

It is worth noting, however, that until recently, the focus of scalability studies has
been high dimensionality in objective function space, but scalability in decision vari-
able space is also worth studying [43, 119].

3.5 Alternative Metaheuristics

Relatively recently, several other biologically-inspired metaheuristics have been adapted
to solve MOPs [21, 26]:

• Artificial Immune Systems: From a computational perspective, our immune
system can be seen as a distributed intelligent system, which is able to learn
and retrieve knowledge previously acquired, in order to solve recognition and
classification tasks [116]. Because of these features, researchers have developed
computational models of our immune system and have used themfor a variety
of tasks, including classification, pattern recognition, and optimization [29, 116,
121]. Several multi-objective extensions of artificial immune systems have been
proposed in the specialized literature (see for example [108, 107, 20, 59, 16]).
Also, combinations of artificial immune systems and anothertype of approach
have been proposed, aiming to solve specific types of MOPs (e.g., [148, 147], in
which the aim is to solve bi-objective flowshop scheduling problems). However,
from the author’s perspective, the potential of multi-objective artificial immune
systems for solving classification and pattern recognitionproblems has not been
fully exploited yet [163].

• Ant Colony Optimization : This is a metaheuristic inspired on the foraging be-
havior of real ants. It is a distributed, stochastic search procedure based on the
indirect communication of a set (called “colony”) of artificial ants, which me-
diate using artificial pheromone trails. These pheromone trails can be seen as
distributed information which is used by the ants to construct their solutions to
the problem at hand. Such pheromone trails are modified during the algorithm’s
execution, such that they reflect the search experience acquired by the ants. This
metaheuristic is intended for solving difficult (both static and dynamic) com-
binatorial optimization problems, in which solutions can be generated through
the use of a construction procedure [25, 41, 10, 42]. There are several multi-
objective extensions of ant colony optimization (ACO) algorithms (see for ex-
ample [132, 78, 7, 66, 39, 40, 61]), but as multi-objective combinatorial opti-
mization becomes more attractive for EMO researchers [45, 60], it is expected
that more multi-objective ACO approaches (and hybrids of ACO algorithms with
MOEAs and other metaheuristics) are proposed in the near future.

• Particle Swarm Optimization: This metaheuristic is inspired on the choreogra-
phy of a bird flock which aim to find food [84, 86]. It can be seen as a distributed
behavioral algorithm that performs (in its more general version) a multidimen-
sional search. The implementation of the algorithm adopts apopulation of par-
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ticles, whose behavior is affected by either the best local (i.e., within a certain
neighborhood) or the best global individual. Particle swarm optimization (PSO)
has been successfully used for both continuous nonlinear and discrete binary op-
timization [44, 85, 86, 50, 51]. An important number of multi-objective versions
of PSO currently exist (see for example [114, 105, 24, 143, 4,127, 129]). How-
ever, until relatively recently, most of the research had concentrated on produc-
ing new variations of existing algorithms, rather than on studying other (more
interesting) topics, such as the role of the main componentsof PSO in multi-
objective optimization. Some recent research in that direction has shown that
certain components that had been traditionally disregarded (e.g., the leader se-
lection mechanism and the parameters of the flight formula) play a key role in
the performance of a multi-objective PSO algorithm [12, 151]. This opens new
paths for future research within this area.

• Scatter Search: This approach was originally conceived as an extension of a
heuristic called surrogate constraint relaxation, which was designed for solving
integer programming problems [62]. The main idea of this approach is to adopt
a series of different initializations to generate solutions. A reference set of solu-
tions (the best found so far) is adopted, and then such solutions are “diversified”
in order to generate new solutions within the neighborhood of the contents of the
reference set. This sort of simple procedure is repeated until no further improve-
ments to the contents of the reference set are detected. In the mid-1990s, some
further mechanisms were added to the original scatter search algorithm, which
allowed its extension to solve nonlinear, binary and permutation optimization
problems [63]. These new applications triggered an important amount of re-
search in the last few years [97, 109]. Multi-objective extensions of scatter search
are relatively recent, but have been steadily increasing [162, 5, 8, 119]. Scatter
search has a lot of potential for hybrid approaches, such as memetic MOEAs
[90], since it can act as a powerful local search engine for tasks such as gener-
ating missing parts of a Pareto front [133]. Because of its flexibility and ease of
use, scatter search is expected to become more commonly adopted in the near fu-
ture, particularly when designing hybrid MOEAs that rely heavily on good local
search engines.

4 What Else Remains to be Done

Other topics that, from the author’s perspective, are worthexploring within the next
few years are the following:

1. Constraint-handling: One of the research areas that has attracted a lot of inter-
est in recent years has been the use of multi-objective optimization concepts
to design constraint-handling mechanisms for (single-objective) EAs (see for
example [145, 70, 160, 156, 111]). Interestingly, however,relatively few re-
search has been done regarding the design of constraint-handling mechanisms
for MOEAs (see for example [67, 123, 158, 69]), in spite of theimportance of
constraints in real-world applications of MOEAs. Most of the current work has
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focused on extending the Pareto optimality relation in order to incorporate con-
straints (e.g., giving preference to feasibility over dominance, such that an infea-
sible solution is discarded even if it is nondominated). Also, the use of penalty
functions that “punish” a solution for not being feasible are easy to incorporate
into a MOEA [18]. However, topics such as the design of constraint-handling
mechanisms for dealing with equality constraints,6 the design of scalable test
functions that incorporate constraints of different types(linear, nonlinear, equal-
ity, inequality), and the study of mechanisms that allow an efficient exploration
of constrained search spaces in MOPs remain practically unexplored.

2. Incorporation of user’s preferences: In practical applications of MOEAs, users
are normally not interested in a large number of nondominated solutions. In-
stead, they are usually only interested in a few types of trade-offs among the
objectives (e.g., perhaps only the solutions around the “knee” of the Pareto front
are of interest to the user). Thus, if such user’s preferences are incorporated
into the selection mechanism of a MOEA, the search can be muchmore ef-
ficient (e.g., one can zoom in a certain region of the Pareto front and evolve
the population only towards the area of interest) and the results more meaning-
ful. Although some research has been done in this direction (see for example
[28, 81, 156, 11]), it is still relatively uncommon to reportresults of a MOEA
that incorporates user’s preferences. It is thus importantthat EMO researchers
get closer to the extensive work done in Operations Researchin this regard (see
for example [57]).

3. Parameter control: The design of mechanisms that allow an automated con-
trol of the parameters of a MOEA (by using, for example, online adaptation
[46, 47] or self-adaptation [110], so that the MOEA can adaptits parameters
without any human intervention) has been scarcely exploredby EMO researchers
[100, 146, 14, 1, 164, 150, 32]. This is clearly a very challenging topic, due to
the high nonlinear interaction among the parameters of an EA[30]. The goal
of a parameterless MOEA is rarely discussed in the EMO literature [150], and
alternative (perhaps more viable) schemes such as the use ofinternal restarts (in
other words, the use of information from previous runs to improve performance
of subsequent runs) is also scarcely addressed [30]. Additionally, studies that
show the effect of the parameters of a MOEA in its performanceare still lack-
ing in the specialized literature (see for example [149]), and are a key aspect of
algorithmic design.

Several other topics that are also very promising research paths will not be dis-
cussed due to obvious space limitations (for example, runtime analysis of MOEAs7

6When dealing with equality constraints, the optimum lies onthe boundary between the feasible and the
infeasible regions. Therefore, the use of approaches that always favor feasible solutions over the infeasible
ones are not effective in this case.

7Runtime analysis addresses the question of how long a certain algorithm takes to find the optimal solu-
tion for a specific problem or a class of problems.

10



[104, 103], archiving techniques8 [115, 139, 89, 72] and convergence analysis9 [101,
152, 138], just to name a few), but they serve as a good indicator of a healthy research
field in which many things remain to be done.

5 Conclusions

This paper has attempted to provide a summary of the main topics in which EMO
researchers are currently working, and which, from the author’s perspective, provide
several interesting challenges for the years to come. This aims to provide a quick
reference for those interested in start doing research in this field, so that they can get a
very general picture of the current state of the area.

At the end of the paper, a few other topics are briefly discussed. Such topics also
offer the potential to become very popular research areas within a few more years, and
have remained relatively unexplored so far, thus offering important opportunities for
newcomers. Hopefully, this general overview of the currentand future status of the
field will serve to maintain and increase the interest of researchers and practitiones in
EMO, since such is the main goal of this paper.
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Durillo, and Andreas Beham. AbYSS: Adapting Scatter Searchto Multiobjec-
tive Optimization.IEEE Transactions on Evolutionary Computation, 12(4):439–
457, August 2008.

[120] Yusuke Nojima, Kaname Narukawa, Shiori Kaige, and Hisao Ishibuchi. Effects
of Removing Overlapping Solutions on the Performance of theNSGA-II Al-
gorithm. In Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart
Zitzler, editors,Evolutionary Multi-Criterion Optimization. Third International
Conference, EMO 2005, pages 341–354, Guanajuato, México, March 2005.
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