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Abstract

In this paper, we present a hybrid approach to opti-

mize the counterweight balancing of a robot arm, which

uses a combination of a genetic algorithm (GA) with

the min-max multiobjective optimization method to get

the Pareto optimal set of solutions. This set corre-

sponds to several possible robot designs from which the

most appropriate has to be chosen by the designer.

Our approach is compared to a more traditional min-

max search technique in which a combination of ran-

dom and sequential search was used to generate the

Pareto optimal solutions. Our results show how the

GA is able to get solutions with a lower deviation from

the ideal vector.

Keywords: genetic algorithms, multiobjective opti-

mization, robot arm optimization, design optimiza-

tion, counterweight balancing

1 Introduction

The use of industrial robots in di�erent �elds of

technology is becoming more common every day, mak-

ing it more important to be able to improve their e�-

ciency in terms of energy consumption and working ac-

curacy. The proper balancing of a robot manipulator

is one way to improve such e�ciency. There are two

main methods of balancing a robot manipulator [5]:

1) by spring mechanisms, and 2) by counterweights.

The second approach, which is the one selected for

this work, has been frequently used in the literature

for establishing better mass distributions of mecha-

nisms and its use on robot manipulators involves the

�
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minimization of driving forces or torques as well as

the support reactions at joints. Since these two cri-

teria have to be satis�ed at the same time, a multi-

objective optimization approach has to be taken. The

lengths and masses of balancing mechanisms of the

robot arm are used as design variables, and several

constraints derived from the allowable movements of

the arm are imposed. The optimization model used

for this work is based on the rigid-body dynamics of

the PUMA-560 robot [6] [1]. We used a hybrid ap-

proach to solve this problem, in which we combined a

GA with the min-max method to get the Pareto op-

timal set, which corresponds to several possible robot

designs from which the decision maker has to choose

the most appropriate. Our approach is compared to a

more traditional min-max technique in which a com-

bination of random and sequential search is used to

generate the Pareto optimal solutions. This problem

has a highly non-convex search space, which implies

the presence of several local minima.

2 Statement of the Problem

Koski and Osyczka [5] present a multiobjective op-

timization model of a PUMA-560 robot arm based on

its rigid-body dynamics. By using angular coordinates

for the PUMA-560 robot, it is possible to calculate the

generalized torques at each joint applying:
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is the rotation at joint i and
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is the cor-

responding angular velocity. The term

L = T � V (2)



represents the Lagrangian function of the mechan-

ical system. Here, T is the total kinetic energy of the

system and V is the total potential energy. The ap-

plication of eq. (1) to a fully articulated robot arm

results in the following nonlinear second-order system

of di�erential equations
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+ c�m = 0 (3)

The manipulator is an isostatic structure, and thus

it is possible to get explicit expressions for all forces

and moments in the system. The friction in the joints

as well as the exibility of the arm are not included

in our design model. For the application of optimiza-

tion methods, a two-member robot arm, which cor-

responds to the two links of the PUMA-560 robot in

a plane motion, is considered. This arm is assumed

to move in the xy-plane only. In the model used by

Koski and Osyczka, only the counterweight masses m

4

and m

5

, as well as their distances from the joints x

1

and x

2

are treated as design variables, whereas all the

other quantities are �xed. Unfortunately, due to lack

of space, we could not include the complete mathe-

matical expressions for the torques and the reactions,

but they may be found in Koski and Osyczka [5]. The

�rst two criteria are chosen as follows:
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where notation
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,
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is associated with the chosen

angular velocity pro�le. The construction of joints,

especially with the choice of bearings, depends largely

on the reaction forces at the joints. Thus, it seems

reasonable to choose the maximum values of the joint

forces as two additional criteria. By using the �xed

trapezoidal velocity pro�les and every feasible position

of the arm, these criteria can be expressed in the form
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The multiobjective optimization problem [5] be-

comes:

min (f
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The numerical design data for the problem under

consideration is given below [5]. These values are close

to those for the �rst two links of the PUMA-560 robot

[1].
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3 The Classical Min-Max Method

In the classical min-max method, an optimal so-

lution is a vector of decision variables which mini-

mizes some global criterion. A function describing

this global criterion is a measurement of how close the

decision maker can get to the ideal vector|i.e., the

vector that contains the optimal solutions of every

objective function assuming that these were treated

independently|, which we'll denote by f

0

. The use

of weighting coe�cients has been introduced before [4]

in conjunction with this method to rank the impor-

tance of the candidate criterion, so that the min-max

problem can be restated as follows
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where !

i

is the weighting coe�cient representing

the relative importance of the ith criterion. Koski and

Osyczka [5] took this approach to solve the counter-

weight balancing problem presented in this paper, by

using the Computer Aided Multicriteria Optimization

System (CAMOS) [2]. They used a method which

combines random and sequential search to generate

the Pareto-optima.

4 Use of the Genetic Algorithm

Our approach consisted on using a genetic algo-

rithm (GA) to obtain both, the ideal vector and the

Pareto-optimal solutions. First, we ran GAs to opti-

mize each objective separately. Then, with this vector,

we introduced the following �tness function:
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The weights w

i

were also chosen such that w

1

+

w

2

+w

3

+w

4

= 1.

For all the tests, we used binary tournament selec-

tion, double-point crossover, and a population size of

100 chromosomes. Instead of doing several runs with

random values for the crossover and mutation proba-

bilities, we used a nested loop in which these two val-

ues ranged from 0:1 to 0:9 at increments of 0:1, over 50

generations. This implies that 81 runs were necessary

for each design. This procedure showed to be very

reliable in terms of �nding \good" solutions with the

GA, when using a oating-point representation. Ex-

ecution time becomes an issue, since each run of the

GA takes about 2.5 hours on a Sun Workstation with

four 90 MHz HyperSparc CPUs. However, the inde-

pendence of each process made it possible to run them

simultaneously on di�erent machines, to improve the

performance of the GA.

5 Comparison of Results

We generated the ten Pareto-optimal designs pre-

sented by Koski and Osyczka [5]. The ideal vec-

tor is f

0

= (112:75; 30:21; 374:82;195:21) according

to Koski. The GA produce a better ideal vector:

f

0

= (92:03; 29:59;374:80; 195:19). To evaluate our

results, we used as a parameter the maximum devia-

tion from the optimum, which is de�ned by
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where �

i

= f

0

i

,or f

i

(x), depending on which gives

the maximum value for L

p

(f).

The comparison of our results with those found by

Koski and Osyczka [5] are shown in Table 1. The �rst

eight rows corresponds to the optimal solution vec-

tor, and therefore in those cases the deviation L

p

(f)

is computed by directly comparing the two results,

taking the lower as the optimal and the di�erence of

the other one with respect to the �rst as the deviation.

We can clearly see how the GA provided better results

in all cases.

From these results we can see that the set of weights

w

1

= 0:1, w

2

= 0:1, w

3

= 0:4 and w

4

= 0:4 gives the

best compromise solution overall. Other interesting

aspects to notice from the results to this problem is

that there is a great variation in the ranges of the solu-

tions, and that when the mass of the counterweight is

close to zero, the variables x

1

and x

2

(joint distances)

may assume any value we want, because they won't

inuence the solution in a signi�cant way.

6 Future Work

We are considering to use several other approaches

to multiobjective optimization that have been pro-

posed within the GA community. For example, we

want to try the weighted sum approach proposed

by Hajela and Lin [3] which includes the weights of

each objective in the chromosome, and promotes their

diversity in the population through �tness sharing.

This allows the simultaneous generation of a family

of Pareto optimal designs corresponding to di�erent

weighting coe�cients in a single run of the GA. Fi-

nally, because of the intensive CPU time-consuming

nature of this problem, it would be desirable to ex-

plore the use of other techniques that can reduce the

number of function evaluations, such as the approx-

imation of functions by low order polynomials over

some small region. In this case a computationally ex-

pensive function is evaluated at a su�cient number of

points to construct a low order polynomial approxi-

mation. Then, an iterative optimization algorithm is

used for �nding the minimumof the approximate func-

tion. At the point obtained the optimization model is

replaced by a new approximate model, and the pro-

cess continues until the improvement in the objective

function can't be distinguished.

7 Conclusions

A GA-based min-max approach has been proposed

for a complex multiobjective optimization problem: a

robot arm balancing. This problem has four objective

functions to be minimized, and is highly non-convex.
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Koski 0.25 0.25 0.25 0.25 138.88 38.93 510.18 268.92 0.186 0.198 7.95 4.06 0.3809

GA 0.25 0.25 0.25 0.25 133.16 41.87 375.73 195.92 0.200 0.200 0.029 0.045 0.2170

Koski 0.3 0.3 0.2 0.2 139.91 37.98 612.36 298.39 0.171 0.184 16.9 5.66 0.4737

GA 0.3 0.3 0.2 0.2 102.45 41.87 532.12 195.92 0.200 0.200 20.46 0.045 0.2431

Koski 0.35 0.35 0.15 0.15 152.99 37.74 667.45 336.62 0.194 0.182 19.6 7.59 0.5540

GA 0.35 0.35 0.15 0.15 96.99 40.70 581.09 209.56 0.200 0.200 25.055 0.853 0.2438

Koski 0.4 0.4 0.1 0.1 152.76 38.85 800.85 344.61 0.130 0.193 32.9 7.84 0.5793

GA 0.4 0.4 0.1 0.1 94.71 40.20 615.27 215.86 0.200 0.1778 27.689 1.237 0.2298

Koski 0.2 0.2 0.3 0.3 136.76 38.91 505.85 264.17 0.190 0.197 8.05 3.82 0.3711

GA 0.2 0.2 0.3 0.3 133.15 41.87 375.76 195.92 0.200 0.200 0.033 0.045 0.1742

Koski 0.15 0.15 0.35 0.35 139.62 38.63 457.88 245.80 0.200 0.200 0.039 0.044 0.2917

GA 0.15 0.15 0.35 0.35 133.14 41.87 375.79 195.91 0.200 0.200 0.039 0.044 0.1315

Koski 0.1 0.1 0.4 0.4 141.63 39.46 408.89 228.29 0.103 0.114 0.138 2.08 0.1915

GA 0.1 0.1 0.4 0.4 133.16 41.87 375.72 195.91 0.200 0.200 0.03 0.044 0.08862

Koski 0.5 0.1 0.2 0.2 99.44 41.46 592.53 202.09 0.172 0.093 26.5 0.45 0.2036

GA 0.5 0.1 0.2 0.2 98.91 41.88 553.41 195.84 0.200 0.200 23.244 0.04 0.1749

Koski 0.1 0.5 0.2 0.2 153.03 35.75 645.41 335.46 0.198 0.157 17.0 7.84 0.4584

GA 0.1 0.5 0.2 0.2 133.25 41.84 375.83 196.25 0.200 0.200 0.0 0.065 0.2533

Koski 0.4 0.2 0.2 0.2 121.99 38.42 606.99 258.65 0.148 0.182 20.6 3.6 0.3788

GA 0.4 0.2 0.2 0.2 98.91 41.87 553.44 195.91 0.200 0.200 23.243 0.044 0.2090

Table 1: Pareto-optimal and minimal solutions for the robot arm considered.

Furthermore, the complex calculations involved con-

sume a lot of CPU time, and make necessary the de-

velopment of heuristic techniques that need the least

possible number of function evaluations. The great

variation of the results obtained show that this prob-

lem would be very di�cult to solve with pure random

search, or with brute-force techniques. Also, to �nd a

reasonable heuristics seems a di�cult task given the

factors previously mentioned, and the possible pres-

ence of local minima. The GA has showed to be very

consistent in this application, �nding better compro-

mise solutions for all the instances of the problem un-

der consideration.
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