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ABSTRACT:

In this paper, we present atedhnique that uses a ombination d the
genetic dgorithm (GA) and the global criterion method to find the
optimum, in the min-max sense, of a multiobjedive optimizaion
design poblem with multiple @nstraints. The objedives may be
conflicting and norcommensurable, and the technique can ded
with minimizaion and maximizaion poblems (or a mixture of
both). The optimum, in the min-max sense, gives a solution that
treas all the objedives onterms of equal importance, and presents
the avantage of being wvery efficient and easy to implement.
Furthermore, when the min-max approad is combined with the
weighting method we can generate the set of Pareto
(nondaninant) solutions for both convex and norconvex
problems. Taking advantage of the floating pant representation
used for the GA, we muld solve design problems that involve a
mix of continuots, discrete and integer design variables. This
technique was tested with multiobedive engineging cesign
problems found in the literature, and ou results were compared
with traditional mathematicd programming techniques that use
other seach strategies.

In this paper, we present a tednique that uses a cmbination d the genetic
algorithm (GA) and the global criterion method to find the optimum, in the min-
max sense, of a multiobedive optimization design poblem with multiple
constraints. The objedives may be nflicting and norcommensurable, and the
technique can ded with minimization and maximizaion problems (or a mixture of
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design problems that involve a mix of continuois, discrete and integer design
variables. This tedhnique was tested with multiobjedive engineging design
problems found in the literature, and ou results were compared with traditional
mathematica programming techniques that use other seach strategies.

INTRODUCTION

Engneaing ogdimizaioniscurrently avery adive aeaof reseach. However, it has
been urtil recently that more atention hes been focused onmultiobjedive problems,
even when it is well known that red-world applicaions normally have severa
(possbly corflicting) objedives to be optimized at the same time. To ded with
these problems, alot of mathematica programming techniques have been developed
(Cohon and Marks, 1979, (Hwang and Masud, 1979, (Hwang et a., 1980,
(Stadler, 1984).

On the other hand, the potential of genetic dgorithms (GAs) for multiobjedive
optimization was rewmgnized since its ealy days (Rosenberg, 1967). Since then,
severa attempts have been made to combine the objedive functions in dfferent
ways (Fonseca ad Fleming, 1994 from simple weighted sum approades (Jakob et
a., 1992 to target vedor optimization (Wienke d a., 1992. Our approad is very
smple and easy to implement, and alows the generation d the Pareto set of
solutions, providing asinge final optimum solution in the min-max sense.

STATEMENT OF THE PROBLEM
The multiobjedive optimization problem can be defined as foll ows:
Findthe vedor X" =[x;, x;,...,x;]T which will satisfy the minequality constraints:
g(X)=20 i=12,....m (D)
the p equality constraints
h(X)=0 i=12,...,p )
and ogimizethe vedor function
F(R) =[1,(%), £, (X),.... f ()] 3)

where >‘<:[x1,x2,...,xn]T Is the vedor of dedsion variables. In ather words, we

wish to determine from among the set of all numbers which satisfy equations (1)
and (2), the particular set X;,X,...,X, which yields the optimum values of al the
objedive functions.



OUR APPROACH

In our implementation, we used the eguation

L, (x)= g?kw-p

to generate the set of nondominated solutions, with dfferent weights (w,) for the
given ohjedives, and p=1. In this equation, f__ is the worst passble value for

criterion i; f(X) is the result of implementing dedsion X with resped to the ith
criterion and f° is the ided solution for objedive i. Additionally, we cmmpute the

min-max optimum considering equal weights for al the objedives. It shoud be
mentioned that even thoughis necessary that the user provides the different weight
combinations that he wants to try, it is not necessary to perform any sort of scaing
of the fitness function since we ae measuring relative deviations from the ided
vedor, and the noncommesurable nature of the objedives is not relevant for our
tedhnique. Our system alows the aittomatic encoding and cecoding d design
variables, and the use of a mix of continuows, discrete and integer variables. The
operation d our system can be described as foll ows:

f,(x) - f°

fi max fio

prf’®
U
B

(4)

1. The user shoud provide the objedive functions and equality and inequality
constraints imposed by the problem.

2. Different sets of weights dioud be inpu to the system such that their
respedive sum is always one.

3. The design variables shoud be defined, together with their desired predsion,
type and range. If the variables are discrete, then the set of possble values
shoud be provided. If they are continuous, then the preasion required will be
requested.

4. The system will automaticdly encode the design variables, choasing the
most appropriate representation scheme for the GA. It will normally use
floating pant representation for continuous variables and kinary for integer and
discrete variables.

5. The user may modify the preset parameters of the GA (popuation size=00,
tournament seledion, two-point crosover, max. number of generations=50).

6. Generate n processes, ead correspondng to a diff erent objedive function.

7. Generate m processes, eat correspondng to a different weight combination
provided by the user. Since there is no relationship between any o these
processes, we may generate the Pareto set by runnng separate processes with
different weight combinations at the same time. Within ead process we run
the GA 81 times (we loopthe aosver and mutation rates from 0.1 to 0.9 in a
nested manner). The final result will be the best of al these runs. The fitness
function consisted o the maximum relative deviation between the given
solution and the ided vedor.

8. Output the Pareto set of solutions.

9. Output the optimum solution in the min-max sense.



It shoud be naticed that we focused this work on the generation d the Pareto-
optimal set of solutions asuuming that the set of weights is given. However, it is
possble to generate such weight combinations using the GA itself (Hgela and Lin,
1992. This is, nevertheless an addtional problem that has to take into acourt
other considerations (i.e., the designer can impose alditional constraints based on
his/her own experience, and we have to dedde how many weight combinations will
be used), and that will not be addressed in this work.

EXAMPLES

Our first example is the design d an I-beam. The details of this example can be
foundin (Osyczka, 1985. This problem has two (conflicting) objedive functions:
minimize the aoss ®dion d the beam while minimizing its defledion, and four
design variables. We generated the four Pareto-optimal solutions presented by
Haela and Lin (1992, and we included the ided solution vedor and the optimum
value in the min-max sense. To evaluate our results, we used the maximum
deviation from the optimum, which is defined by

Lp(f):iwi

1=1

fiO - fi(X)
P;

©)

where n is the number of objedive functions, and p, = f°, or f,(x), depending on
which gves the maximum value for L (f). Our results are shown onTable 1. As

you can see our approach gves dightly better results than the Branch-and-Bound
algorithm used by Hajela and Lin (1992. The optimum solution in the min-max
sense is obtained when w, =w, = 0.5, andit turns out to be slightly better using our

approadh. Notice that in this problem, all design variables were mnsidered
continuots.

Our seoondexample isthe design d amadiine tod spinde taken from Schenauer
et a. (1990. This problem has two conflicting ohedive functions (minimize the
volume of the spinde while minimizing its datic displacenent) and four design
variables that define the geometry of the spinde. Unfortunately, we could na find
enough results in the literature to compare with ou approad for this problem.
Nevertheless we compared two dfferent weight combinations with the results
produced by CAMOS (Schenauer et a., 1990. It shoud be pointed ou that
CAMOS generates lutions that sometimes violate one of the constraints impaosed
in this problem, whereas our approadh generates only completely valid solutions. As
it can be seen from the results, even in the presence of such constraint violation, our
tedhnique produced a better solution in ore of the two cases of comparison. The
remaining results were generated only by ou approad), and include the ided
solution vedor, and a subset of the Pareto-optimal set of solutions. Notice that two
of the dedsion variables are discrete.



TABLE 1: PARETO-OPTIMAL AND OPTIMUM SOLUTIONS FOR THE I-BEAM OF THE FIRST EXAMPLE

Method W, W, f, f, X, X, X, X, L ()
Hajela 1 0 127.443 0.005934  61.78 40.81 0.9 0.9 0.03
GA 1 0 127.413 0.061616 60.3822  41.4937 0.9 0.9 0.0
Hajela 0 1 850.000 0.005903  80.00 50.00 5.0 5.0 0.0
GA 0 1 850.000 0.005903  80.00 50.00 5.0 5.0 0.0
Hajela 0.45 0.55 307.53 0.0127 79.99 49.99 0.9 2.39 1.269441
GA 0.45 0.55 333.0058 0.011658  80.00 50.00 0.9 2.6579  1.262331
Hajela 0.55 0.45 276.55 0.0143 80.00 50.00 0.9 2.083 1.283902
GA 0.55 0.45 281.3624 0.014051  80.00 50.00 0.9 2.132 1.285694
Hajela 0.65 0.35 247.88 0.0163 79.99 50.00 0.9 1.791 1.231026
GA 0.65 0.35 237.4179 0.017119  80.00 50.00 0.9 1.6845 1.226213
Hajela 0.80 0.20 206.14 0.0205 80.00 39.79 0.9 1.725  0.988876
GA 0.80 0.20 177.1722 0.024727  80.00 50.00 0.9 1.071  0.950208
Hajela 0.50 0.50 291.43  0.01351 79.99 49.99 0.9 2.235 1.28798
GA 0.50 0.50 305.9026 0.012794  80.00 50.00 0.9 2.3819  1.284127

CONCLUSIONS AND FUTURE WORK

Our results show that our system provides good solutions when compared to ather
weigthed min-max approadies. Besides the two engineging problems indicaed in
this paper, we have tested it with ather more complicated ogimization poblems,
such as the munterweight balancing d a roba arm, and the design d plane and
spacetrusses. This approad isvery simple and easy to implement, and it avoids the
need for scding the fitness function. Furthermore, it is very efficient and it can
generate both the Pareto set of solutions and a single final optimum solution in the
min-max sense. We have seen hav our implementation can handle a mixture of
integer, continuows and dscrete design variables, and how it is able to ded with
maximizaion and minimization problems or any mixture of them. We dso provided
with a way of measuring the quality of a cetain solution to a multiobedive
optimization poblem when using the weighted min-max method Genetic seach
has proven to be very efficient and reliable even in the presence of complex
constraints and oljedives. A lot of work remains to be dore in terms of expanding
our system and improving the user interface More GA-based techniques and
mathematica programming tedhniques will be incorporated in the nea future.
Finaly, we ae dso interested onexperimenting with dfferent genetic operators and
seledion strategies that have been previously used by the scientific community
interested onmultiobjedive optimizaion wsing GAs.

TABLE 2: PARETO-OPTIMAL AND OPTIMUM SOLUTIONS FOR
THE MACHINE TOOL SPINDLE OF THE SECOND EXAMPLE

Method W, W, f, f, X, X, X, X, L ()
Schenauer  0.30 0.70 694101.0 0.0230779  66.454  183.365  95.00 85.00 0.411114
GA 0.30 0.70  682106.223 0.0215272  71.649 187.826  95.00 90.00 0.338192
Schenauer  0.70 0.30 531059.8 0.0301825  63.894  183.286  85.00 80.00 0.328228
GA 0.70 0.30 536509.715 0.030518 63.999 187.826  85.00 80.00  0.342329
GA 1 0 474658.099 0.0371834  59.999 187.813  80.00 75.00 0.0
GA 0 1 1645985.12 0.0166127 25.00 190.466  95.00 90.00 0.0
GA 0.50 0.50 671530.495 0.0216886  71.999 187.826  95.00 90.00 0.360155
GA 0.20 0.80 862859.245 0.0194481  65.378 187.826  95.00 90.00 0.300111

GA 0.80 0.20  474767.012 0.0371792  59.995 187.818  80.00 75.00 0.247783
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