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Abstract

We present a hybrid approach to optimize the counterweight balancing of a robot arm, which uses a combi-

nation of a genetic algorithm with the min-max multiobjective optimization method to get the Pareto optimal

set of solutions. This set corresponds to several possible robot designs from which the most appropriate has to

be chosen by the designer. Our approach is compared to a more traditional min-max search technique in which

a combination of random and sequential search was used to generate the Pareto optimal solutions. Our results

show how the genetic algorithm is able to get solutions with a lower deviation from the optimal.

Keywords: genetic algorithms, multiobjective optimization, robot arm optimization, design optimization,

counterweight balancing

Introduction

The use of industrial robots in di�erent �elds of technology is becoming more common every day, making it

more important to be able to improve their e�ciency in terms of energy consumption and working accuracy.

The proper balancing of a robot manipulator is one way to improve such e�ciency. There are two main methods

of balancing a robot manipulator [6]: 1) by spring mechanisms, and 2) by counterweights. The second approach,

which is the one selected for this work, has been frequently used in the literature for establishing better mass

distributions of mechanisms and its use on robot manipulators involves the minimization of driving forces or

torques as well as the support reactions at joints. Since these two criteria have to be satis�ed at the same time,

a multiobjective optimization approach has to be taken. The lengths and masses of balancing mechanisms of

the robot arm are used as design variables, and several constraints derived from the allowable movements of

the arm are imposed. The optimization model used for this work is based on the rigid-body dynamics of the

PUMA-560 robot [7] [1]. We used a hybrid approach to solve this problem, in which we combined a genetic

algorithm with the min-max method to get the Pareto optimal set, which corresponds to several possible robot

designs from which the decision maker has to choose the most appropriate. This set was obtained by varying

the importance of each of the four objective functions derived from the optimization model|two torques and

two reactions|. Our approach is compared to a more traditional min-max technique in which a combination

of random and sequential search is used to generate the Pareto optimal solutions. This problem has a highly

non-convex search space, which implies the presence of several local minima. On the other hand, the large

amount of CPU time required to evaluate the di�erent objectives arise some interesting issues on the use of

genetic algorithms in this kind of application.

Statement of the Problem

Koski and Osyczka [6] present a multiobjective optimization model of a PUMA-560 robot arm based on its

rigid-body dynamics. By using angular coordinates for the PUMA-560 robot, it is possible to calculate the

generalized torques at each joint applying:
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where �

i

is the rotation at joint i and
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is the corresponding angular velocity. The term

L = T � V (2)

represents the Lagrangian function of the mechanical system. Here, T is the total kinetic energy of the

system and V is the total potential energy. The application of eq. (1) to a fully articulated robot arm results

in the following nonlinear second-order system of di�erential equations
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+ c �m = 0 (3)

The manipulator is an isostatic structure, and thus it is possible to get explicit expressions for all forces and

moments in the system. The friction in the joints as well as the 
exibility of the arm are not included in our

design model. For the application of optimization methods, a two-member robot arm, which corresponds to

the two links of the PUMA-560 robot in a plane motion, is considered. This arm is assumed to move in the

xy-plane only. The masses of the members are m

1

and m

2

. They are located as point masses at distances e

1

and e

2

from the joints. The external load is represented by the point mass m

3

. In the model used by Koski and

Osyczka, only the counterweight masses m

4

and m

5

, as well as their distances from the joints x

1

and x

2

are

treated as design variables, whereas all the other quantities are �xed. Unfortunately, due to lack of space, we

could not include the complete mathematical expressions for the torques and the reactions, but they may be

found in Koski and Osyczka [6]. The objective of this optimization problem is to �nd such masses m

4

and m

5

for the counterweights and such joint distances x

1

and x

2

which will minimize the four chosen design criteria.

The minimization of the torques is important because they allow the use of smaller motors, and a lower energy

consumption [6]. The torques do not depend on the design variables alone, but also on the position of the robot

arm (�

1

; �

2

), on the angular velocities (
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;
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) and on the angular accelerations (
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). Usually, the working

space of the robot arm is restricted, and thus constraints on the possible values of the angles are imposed. In

each position of the arm, the angular velocities and accelerations may be di�erent. In order to optimize the

performance of the robot, the torques should be as small as possible at all working positions and at all existing

angular velocity acceleration combinations. Thus, the �rst two criteria are chosen as follows:
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where notation
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is associated with the chosen angular velocity pro�le. The construction of joints,

especially with the choice of bearings, depends largely on the reaction forces at the joints. Thus, it seems

reasonable to choose the maximum values of the joint forces as two additional criteria. By using the �xed

trapezoidal velocity pro�les and every feasible position of the arm, these criteria can be expressed in the form
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The multiobjective optimization problem [6] becomes:

min (f
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The numerical design data for the problem under consideration is given below [6]. These values are close to

those for the �rst two links of the PUMA-560 robot [1].
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Solution Procedure

To obtain the term

max(�)

�

1

, we followed the procedure given by Koski and Osyckza [6]:

1. Compute the torques and joint forces at the positions �

l

1

; �

l

1

+��

1

; �

l

1

+2��

1

; : : : ; �

u

1

, where the increment
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1

was chosen to be 20 degrees.



2. Select separately the maximum value for each criterion.

3. Perform the same calculations for

max(�)

�

2

with an increment ��

2

(we used also 20 degrees).

4. The terms

max(�)
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are computed using some chosen combinations of
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for given �
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5. After calculating M

ti

and R

i

for all the chosen values, the maximum values can be determined.

Obviously, the smaller the value of ��

i

the better the accuracy achieved, but also greater the computation

time required. We experimentally found that even an apparently large increment like the one we used didn't

signi�cantly a�ect the �nal result. However, in terms of time, this value made a great di�erence, particularly

if we consider that using either random search or the genetic algorithm, all these computations have to be

performed a lot of times. To get an idea of the importance of this parameter, when an increment of one degree

is used, the time required to get one set of results (i.e., the �nal values of the four objective functions) is of about

2 minutes and 20 seconds on a Sun Workstation with four 90 MHz HyperSparc CPUs. This time is reduced

to only one second when using increments of 20 degrees, without any signi�cant loss of precision (normally the

di�erences were in the decimals).

The Classical Min-Max Method

In the classical min-max method, also known as the Global Criterion method [8], an optimal solution is a

vector of decision variables which minimizes some global criterion. A function describing this global criterion

is a measurement of how close the decision maker can get to the ideal vector|i.e., the vector that contains

the optimal solutions of every objective function assuming that these were treated independently|, which we'll

denote by f

0

. The most common form of this function is

f(x) =
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where k is the number of objective functions.

For this formula Boychuck and Ovhinnikov [2] have suggested p = 1, and Salukvadze [9] has suggested p = 2,

but other values of p can also be used. Another possible measurement of \the closeness to the ideal solution"

is a family of the L

p

�metrics de�ned as follows [5]
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Instead of deviations in the absolute sense, it is recommended to use in eq. (10) relative deviations which

have a direct substantive meaning in any given context. The name min-max method is given to the global

criterion method with the L

1

(f)�metric, because for this metric the optimum x
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is de�ned as
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The solution to this optimization problem yields the best compromise solution, in which all criteria are

considered equally important. The use of weighting coe�cients has been introduced before [5] in conjunction

with this method to rank the importance of the candidate criterion, so that the min-max problem can be

restated as follows
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where !

i

is the weighting coe�cient representing the relative importance of the ith criterion. Koski and

Osyczka [6] took this approach to solve the counterweight balancing problem presented in this paper, by using

the Computer Aided Multicriteria Optimization System (CAMOS) [3]. They used a method which combines

random and sequential search to generate the Pareto-optima. First, they generated some points by the random

search method, and the best of them were stored and used as the starting points for the sequential search

procedure. Then, they minimized each objective separately, to obtain the set of optimal solutions, so that they

could use the weighting min-max method described above for generating several Pareto-optimal solutions. The

weights were chosen so that their sum were always equals to one. While seeking both, the ideal vector and

the other Pareto-optima, they used the random search method in combination with the Nelder-Mead simplex

method with a penalty function.



Use of the Genetic Algorithm

Our approach consisted on using a genetic algorithm (GA) to obtain both, the ideal vector and the Pareto-

optimal solutions. First, we ran GAs to optimize each objective separately. Then, with this vector, we introduced

the following �tness function:
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The weights w

i

were also chosen such that w

1

+ w

2

+ w

3

+w

4

= 1.

For all the tests, we used binary tournament selection, double-point crossover, and a population size of 100

chromosomes. Instead of doing several runs with random values for the crossover and mutation probabilities,

we used a nested loop in which these two values ranged from 0:1 to 0:9 at increments of 0:1, over 50 generations.

This implies that 81 runs were necessary for each design. This procedure showed to be very reliable in terms

of �nding \good" solutions with the GA, when using a 
oating-point representation. Execution time becomes

an issue, since each run of the GA takes about 2.5 hours on a Sun Workstation with four 90 MHz HyperSparc

CPUs. However, the independence of each process made it possible to run them simultaneously on di�erent

machines, to improve the performance of the GA.

Comparison of Results

We generated the �fteen Pareto-optimal designs presented by Koski and Osyczka [6], which include the four

optimal values of the corresponding objective functions. To evaluate our results, we used as a parameter the

maximum deviation from the optimum, which is de�ned by
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where �

i

= f

0

i

,or f

i

(x), depending on which gives the maximum value for L

p

(f).

The comparison of our results with those found by Koski and Osyczka [6] are shown in Table 1. The �rst eight

rows corresponds to the optimal solution vector, and therefore in those cases the deviation L

p

(f) is computed

by directly comparing the two results, taking the lower as the optimal and the di�erence of the other one with

respect to the �rst as the deviation. We can clearly see how the GA provided better results in all cases. Because

Koski and Osyczka didn't state the value of the increments ��

i

, we were unable to make a direct comparison to

our method. Therefore, using their solution vectors, we recomputed the values of the objective functions using

an increment ��

i

= 1. However, we used an increment of 20 degrees within the GA, for the sake of speed.

Nevertheless, the �nal numerical results didn't variate too much even when we used such a large increment.

From these results we can see that the set of weights w

1

= 0:1, w

2

= 0:1, w

3

= 0:4 and w

4

= 0:4 gives the

best compromise solution overall. Other interesting aspects to notice from the results to this problem is that

there is a great variation in the ranges of the solutions, and that when the mass of the counterweight is close

to zero, the variables x

1

and x

2

(joint distances) may assume any value we want, because they won't in
uence

the solution in a signi�cant way.

Future Work

We are considering to use several other approaches to multiobjective optimization that have been proposed

within the GA community. For example, we want to try Scha�er's VEGA (Vector Evaluated Genetic Algorithm)

[10], and the weighted sum approach proposed by Hajela and Lin [4] which includes the weights of each objective

in the chromosome, and promotes their diversity in the population through �tness sharing. This allows the

simultaneous generation of a family of Pareto optimal designs corresponding to di�erent weighting coe�cients

in a single run of the GA.

Finally, because of the intensive CPU time-consuming nature of this problem, it would be desirable to explore

the use of other techniques that can reduce the number of function evaluations, such as the approximation of

functions by low order polynomials over some small region. In this case a computationally expensive function
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Koski 1 0 0 0 112.75 39.06 750.60 303.09 0.199 0.199 34.98 5.77 20.72

GA 1 0 0 0 92.03 40.21 687.37 217.41 0.1568 0.200 35.0 1.299 0

Koski 0 1 0 0 216.76 30.21 713.05 452.31 0.175 0.114 10.24 14.86 0.62

GA 0 1 0 0 168.92 29.59 891.62 444.14 0.200 0.0932 35.0 15.0 0

Koski 0 0 1 0 133.11 41.94 374.82 195.23 0.198 0.14 0.001 0.002 0.02

GA 0 0 1 0 133.10 41.94 374.80 195.21 0.200 0.200 0.0 0.001 0

Koski 0 0 0 1 111.99 41.94 485.66 195.21 0.191 0.198 14.3 0.001 0.02

GA 0 0 0 1 105.36 41.94 693.39 195.19 0.200 0.0932 35.0 0.001 0

Koski 0.25 0.25 0.25 0.25 138.88 38.93 510.18 268.92 0.186 0.198 7.95 4.06 0.3809

GA 0.25 0.25 0.25 0.25 133.16 41.87 375.73 195.92 0.200 0.200 0.029 0.045 0.2170

Koski 0.3 0.3 0.2 0.2 139.91 37.98 612.36 298.39 0.171 0.184 16.9 5.66 0.4737

GA 0.3 0.3 0.2 0.2 102.45 41.87 532.12 195.92 0.200 0.200 20.46 0.045 0.2431

Koski 0.35 0.35 0.15 0.15 152.99 37.74 667.45 336.62 0.194 0.182 19.6 7.59 0.5540

GA 0.35 0.35 0.15 0.15 96.99 40.70 581.09 209.56 0.200 0.200 25.055 0.853 0.2438

Koski 0.4 0.4 0.1 0.1 152.76 38.85 800.85 344.61 0.130 0.193 32.9 7.84 0.5793

GA 0.4 0.4 0.1 0.1 94.71 40.20 615.27 215.86 0.200 0.1778 27.689 1.237 0.2298

Koski 0.2 0.2 0.3 0.3 136.76 38.91 505.85 264.17 0.190 0.197 8.05 3.82 0.3711

GA 0.2 0.2 0.3 0.3 133.15 41.87 375.76 195.92 0.200 0.200 0.033 0.045 0.1742

Koski 0.15 0.15 0.35 0.35 139.62 38.63 457.88 245.80 0.200 0.200 0.039 0.044 0.2917

GA 0.15 0.15 0.35 0.35 133.14 41.87 375.79 195.91 0.200 0.200 0.039 0.044 0.1315

Koski 0.1 0.1 0.4 0.4 141.63 39.46 408.89 228.29 0.103 0.114 0.138 2.08 0.1915

GA 0.1 0.1 0.4 0.4 133.16 41.87 375.72 195.91 0.200 0.200 0.03 0.044 0.08862

Koski 0.5 0.1 0.2 0.2 99.44 41.46 592.53 202.09 0.172 0.093 26.5 0.45 0.2036

GA 0.5 0.1 0.2 0.2 98.91 41.88 553.41 195.84 0.200 0.200 23.244 0.04 0.1749

Koski 0.1 0.5 0.2 0.2 153.03 35.75 645.41 335.46 0.198 0.157 17.0 7.84 0.4584

GA 0.1 0.5 0.2 0.2 133.25 41.84 375.83 196.25 0.200 0.200 0.0 0.065 0.2533

Koski 0.4 0.2 0.2 0.2 121.99 38.42 606.99 258.65 0.148 0.182 20.6 3.6 0.3788

GA 0.4 0.2 0.2 0.2 98.91 41.87 553.44 195.91 0.200 0.200 23.243 0.044 0.2090

Koski 0.2 0.4 0.2 0.2 162.68 39.11 583.60 319.94 0.152 0.198 10.3 6.6 0.5215

GA 0.2 0.4 0.2 0.2 133.16 41.87 375.74 195.92 0.200 0.200 0.031 0.045 0.2566

Table 1: Pareto-optimal and minimal solutions for the robot arm considered.



is evaluated at a su�cient number of points to construct a low order polynomial approximation. Then, an

iterative optimization algorithm is used for �nding the minimum of the approximate function. At the point

obtained the optimization model is replaced by a new approximate model, and the process continues until the

improvement in the objective function can't be distinguished.

Conclusions

A GA-based min-max approach has been proposed for a complex multiobjective optimization problem: a

robot arm balancing. This problem has four objective functions to be minimized, and is highly non-convex.

Furthermore, the complex calculations involved consume a lot of CPU time, and make necessary the development

of heuristic techniques that need the least possible number of function evaluations. The great variation of the

results obtained show that this problem would be very di�cult to solve with pure random search, or with

brute-force techniques. Also, to �nd a reasonable heuristics seems a di�cult task given the factors previously

mentioned, and the possible presence of local minima. The GA has showed to be very consistent in this

application, �nding better compromise solutions for all the instances of the problem under consideration. Also,

some other GA-based approaches seem suitable for this application, especially those in which a Pareto-based

selection is applied. However, time remains to be an issue to be considered in further applications of the GA to

this problem, and it would be desirable to explore techniques for reducing the number of function evaluations.

Nevertheless, the use of such a powerful heuristics should bring bene�ts to the robotics industry, and our work

should be seen as a small module of a larger system whose goal is to optimize the entire design process of a

robot arm.
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