
MOSES : A Multiobjective Optimization Tool for Engineering Design

Carlos A. Coello Coello & Alan D. Christiansen

Department of Computer Science, Tulane University, New Orleans, LA 70118, USA

Abstract: In this paper, we introduce a multiobjective optimization tool called MOSES (Multiobjective Optimiza-

tion of Systems in the Engineering Sciences). This tool is a convenient testbed for analyzing the performance of

new and existing multicriteria optimization techniques, and it is an e�ective engineering design tool. Two new

multiobjective optimization techniques based on the genetic algorithm (GA) are introduced, and two engineering

design problems are solved using them. These methods are based in the concept of min-max optimum, and can

produce the Pareto set and the best trade-o� among the objectives. The results produced by these approaches are

compared to those produced with other mathematical programming techniques and GA-based approaches, showing

the new techniques' capability to generate better trade-o�s than the approaches previously reported in the literature.

Keywords: multiobjective optimization, genetic algorithms, design optimization, min-max optimization, multi-

criteria optimization, arti�cial intelligence.

1 Introduction

Much work has been done in engineering optimization during the last few years, but the trend has been to

deal with ideal and unrealistic problems, rather than with real-world applications. One of the reasons for this

has been that for many years only single-objective functions were considered. As we know, this is not a realistic

assumption, since most real-world problems have several (possible con
icting) objectives. This situation has led

designers to make decisions and trade-o�s based on their experience, instead of using some well-de�ned optimality

criterion.

Over the years, more than 20 mathematical programming techniques have been developed to deal with multiple

objectives. However, the main focus of these approaches is to produce a single trade-o� based on some notion

of optimality, rather than producing several possible alternatives from which the designer may choose. More

recently, the genetic algorithm (GA), an arti�cial intelligence search technique based on the mechanics of natural

selection, has been found to be e�ective on some scalar optimization problems. In order to extend the GA to deal

with multiple objectives, the structure of the GA has been modi�ed to handle a vector �tness function.

This paper will review some of the previous work in multiobjective optimization using genetic algorithms, and

two new approaches, proposed by the authors, will be introduced. Also, MOSES (Multiobjective Optimization of

Systems in the Engineering Sciences), a system developed as a testbed for multiobjective optimization techniques

by the authors, will be described together with two examples of its use. The new approaches, based on the notion

of min-max optimum, are able to generate the Pareto set and better trade-o�s than any of the other techniques

included in MOSES. Interestingly, the GA-based engine included in MOSES has been able to generate better

ideal vectors than traditional mathematical programming techniques, by using alphabets of cardinality higher

than two, contradicting the common notion that the GA is not very appropriate as a numerical optimization tool.

2 General Concepts

Here we de�ne some concepts that will be used in this paper.

2.1 Statement of the Problem

Multiobjective optimization (also called multicriteria optimization, multiperformance or vector optimization)

can be de�ned as the problem of �nding [49]:

a vector of decision variables which satis�es constraints and optimizes a vector function whose elements

represent the objective functions. These functions form a mathematical description of performance

criteria which are usually in con
ict with each other. Hence, the term \optimize" means �nding such

a solution which would give the values of all the objective functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector �x

�

= [x

�

1

; x

�

2

; : : : ; x

�

n

]

T

which will satisfy the m inequality constraints:

g

i

(�x) � 0 i = 1; 2; : : : ;m (1)

the p equality constraints

h

i

(�x) = 0 i = 1; 2; : : : ; p (2)

and optimize the vector function

�

f(�x) = [f

1

(�x); f

2

(�x); : : : ; f

k

(�x)]

T

(3)

where �x = [x

1

; x

2

; : : : ; x

n

]

T

is the vector of decision variables.

In other words, we wish to determine from among the set of all numbers which satisfy (1) and (2) the particular

set x

�

1

; x

�

2

; : : : ; x

�

k

which yields the optimum values of all the objective functions.

The constraints given by (1) and (2) de�ne the feasible region X and any point �x in X de�nes a feasible

solution. The vector function

�

f(�x) is a function which maps the set X in the set F which represents all possible

values of the objective functions. The k components of the vector

�

f(�x) represent the non-commensurable criteria

which must be considered. The constraints g

i

(�x) and h

i

(�x) represent the restriction imposed on the decision

variables. The vector �x

�

will be reserved to denote the optimal solutions (normally there will be more than one).

2.2 Ideal Vector

Let us assume that we �nd the minimum (or maximum) of each of the objective functions f

i

(�x) separately.

Assuming that they can be found, let

�x

0(i)

= [x

0(i)

1

; x

0(i)

2

; : : : ; x

0(i)

n

]

T

(4)

be a vector of variables which optimizes (either minimizes or maximizes) the ith objective function f

i

(x). In

other words, the vector �x

0(i)

2 X is such that

f

i

(�x

0(i)

) =

opt

x 2 X

f

i

(�x) (5)

In general, there will be a uni�ed criterion with respect to \opt". Most authors prefer to treat it as a minimum.

In that case, f

i

(�x

0(i)

) or simply f

0

i

(more convenient notation) will denote the minimum value of the ith function.

Hence, the vector

�

f

0

= [f

0

1

; f

0

2

; : : : ; f

0

k

]

T

is ideal for a multiobjective optimization problem, and the point in

R

n

which determined this vector is the ideal (utopical) solution, and is called the ideal vector. Although this

solution is generally not feasible, this is an important de�nition that will be used later.

H(Strongly)

Minimal Curve

Weakly Minimal

 Curve

f

f (x)

1

2

(x)

Figure 1: Weakly and strongly non-dominated curves on the biobjective case.

2.3 Pareto Optimum

The concept of Pareto optimum was formulated by Vilfredo Pareto in 1896 [50], and constitutes by itself

the origin of research in multiobjective optimization. We say that a point �x

�

2 X is Pareto optimal if for every

�x 2 X either,

^

i 2 I

(f

i

(�x) = f

i

(�x

�

)) (6)

or, there is at least one i 2 I such that

f

i

(�x) > f

i

(�x

�

) (7)

In words, this de�nition says that �x

�

is Pareto optimal if there exists no feasible vector �x which would decrease

some criterion without causing a simultaneous increase in at least one criterion. Unfortunately, the Pareto

optimum almost always gives not a single solution, but rather a set of solutions called non-inferior or non-

dominated solutions.

2.4 Non-dominated Solutions

A point �x

�

2 X is a weakly non-dominated solution if there is no �x 2 X such that f

i

(�x) < f

i

(�x

�

), for

i = 1; : : : ; n.

A point �x

�

2 X is a strongly non-dominated solution if there is no �x 2 X such that f

i

(�x) � f

i

(�x

�

), for

i = 1; : : : ; n and for at least one value of i, f(�x) < f(�x

�

).

Thus, if �x

�

is strongly non-dominated, it is also weakly non-dominated, but the converse is not necessarily

true. Non-dominated solutions for the biobjective case can readily be represented graphically by passing into the

objective function space ff

1

(�x); f

2

(�x)g. To the locus of strongly non-dominated points corresponds the so-called

minimal curve, and to the locus of weakly non-dominated points, the weakly minimal curve [2]. These two

curves are sketched in Figure 1 (taken from Duckstein [14]). We will use X

p

to denote the set of noninferior or

nondominated solutions, and F

p

to denote the map of X

p

in the space of objectives. The set X

p

is, of course,

determined from the set F

p

which satis�es (6) and (7).

In engineering optimization, strongly non-dominated solutions are sought, and the quali�cation \strongly" is

generally omitted [14]. Let H be the set, called the pay-o� set and shown in Figure 1, de�ned by:

H = (�aj�a = (a

i

) 2 R

n

; �x 2 X such that a

i

= f

i

(�x) for every i) (8)

Then, as proved by Szidarovszky and Duckstein [62], if H is non-empty closed and for every i

max fa

i

j(a

i

) 2 Hg <1; (9)

then H has at least one strongly non-dominated solution. Thus, a large class of multiobjective optimization

problems in engineering design may be expected to possess at least one non-dominated solution, and usually the

problem is, as we mentioned before, that there is a great number of possible solutions to choose from, and this

may cause di�culties both in generating the solution set and in handling the results [39] [35].

2.5 Min-max Optimum

The idea of stating the min-max optimum and applying it to multiobjective optimization problems, was

taken from game theory, which deals with solving con
icting situations. The min-max approach to a linear model

was proposed by Jutler [48] and Solich [48]. It has been further developed by Osyczka [46] [47], Rao [52] and

Tseng and Lu [63].

The min-max optimum compares relative deviations from the separately attainable minima. Consider the ith

objective function for which the relative deviation can be calculated from

z

0

i

(�x) =

jf

i

(�x)� f

0

i

j

jf

0

i

j

(10)

or from

z

00

i

(�x) =

jf

i

(�x)� f

0

i

)j

jf

i

(�x)j

(11)

It should be clear that for (10) and (11) we have to assume that for every i 2 I and for every �x 2 X, f

i

(�x) 6= 0.

If all the objective functions are going to be minimized, then equation (10) de�nes function relative increments,

whereas if all of them are going to be maximized, it de�nes relative decrements. Equation (11) works conversely.

Let �z(�x) = [z

1

(�x); : : : ; z

i

(�x); : : : ; z

k

(�x)]

T

be a vector of the relative increments which are de�ned in R

k

. The

components of the vector z(�x) will be evaluated from the formula

8

i2I

(z

i

(�x) = max fz

0

i

(�x); z

00

i

(�x)g (12)

Now we de�ne the min-max optimum as follows [48]:

A point �x

�

2 X is min-max optimal, if for every �x 2 X the following recurrence formula is satis�ed:

Step 1:

v

1

(�x

�

) =

min

x 2 X

max

i 2 I

fz

i

(�x)g (13)

and then I

i

= fi

1

g, where i

1

is the index for which the value of z

i

(�x) is maximal.

If there is a set of solutions X

1

� X which satis�es Step 1, then

Step 2:

v

2

(�x

�

) =

min

x 2 X

1

max

i 2 I; i 62 I

1

fz

i

(�x)g (14)

and then I

2

= fi

1

; i

2

g, where i

2

is the index for which the value of z

i

(x) in this step is maximal.

If there is a set of solutions X

r�1

� X which satis�es step r � 1 then

Step r:

v

r

(�x

�

) =

min

x 2 X

r�1

max

i 2 I; i 62 I

r�1

fz

i

(�x)g (15)

and then I

r

= fI

r�1

; i

r

g, where i

r

is the index for which the value of z

i

(�x) in the rth step is maximal.

2X

X1

f

f1

2

Figure 2: An example of a problem with two variables and two objective functions. The pareto optimal solutions

are indicated by the shaded boundaries of the design region.

If there is a set of solutions X

k�1

� X which satis�es Step k � 1, then

Step k:

v

k

(�x

�

) =

min

�x 2 X

k�1

z

i

(�x)

max

i 2 I; i 62 I

k�1

for i 2 I and i 62 I

k�1

(16)

where v

1

(�x

�

); : : : ; v

k

(�x) is the set of optimal values of fractional deviations ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes of the objective functions which

can be obtained by solving the optimization problems for each criterion separately, the desirable solution is the

one which gives the smallest values of the relative increments of all the objective functions.

The point �x

�

2 X which satis�es the equations of Steps 1 and 2 may be called the best compromise solution

considering all the criteria simultaneously and on equal terms of importance. It should be noted that although

these equations look quite complicated, in many optimization models, only the �rst step of this process will be

necessary to determine the optimum.

In most cases, there will be several optimal solutions in the Pareto sense, and the designer will have to look

at the values of the objective functions corresponding to F (X

p

) in order to decide which value seems the most

appropriate. This process in which a solution is accepted is called the decision making process.

2.6 Pareto Front

The minima in the Pareto sense are going to be in the boundary of the design region, or in the locus of the

tangent points of the objective functions. Figure 2 (taken from Hern�andez [36]) shows these boundaries shaded.

This shaded region is called the Pareto Front. In general, it is not easy to �nd an analytical expression of the

line or surface that contains these points, and the normal procedure is to compute the points X

p

and their

corresponding F (X

p

). When we have a su�cient amount of these, we may proceed to take the �nal decision.

In general, we can say that if all the criteria are equally important in a problem, then the optimum in the

min-max sense may give us a desirable solution. In all other cases a solution from the set of optimal solutions in

the Pareto sense should be chosen.

F

f *

C + f *

C

f (x)

f (x)

1

2

Figure 3: Graphical illustration of the contact theorem.

3 Mathematical Programming Techniques

The �rst step in developing a mathematical programming technique to deal with multiobjective optimization

problems is to be able to identify, given a set of feasible solutions to the problem, which of them are Pareto

optimal. After that, it will be desirable to agree upon a concept of optimality in this context, in case the designer

desires a single �nal solution. For the scope of this work, we will adopt the concept of min-max optimum for that

sake. Therefore, we will also provide an algorithm that will give us the min-max optimum from a certain set of

solutions.

3.1 Generating Pareto Optimal Solutions

We have seen the concept of Pareto optimality, but we have not yet described any algorithm that can identify

the Pareto optimal solutions from a given set of feasible solutions. Osyczka [48] provides an algorithm that is

based on the contact theorem, which is one of the main theorems in multiobjective optimization [43].

First, let us de�ne a negative cone [48]. The negative cone in R

k

is the set

C

�

= f

�

f 2 R

k

j

�

f � 0g (17)

Thus, the contact theorem is:

A vector f

�

is a Pareto optimal solution for the general multiobjective optimization problem if and only if

(C

�

+

�

f

�

) \ F = ff

�

g (18)

A graphical illustration of this theorem for a two criterion problem is shown in Figure 3 (taken from Osyczka

[48]).

Consider two solutions �x

(1)

and �x

(2)

for which we may have two speci�c cases

(1)(C

�

+

�

f(�x

(1)

)) � (C

�

+

�

f(�x

(2)

)) (19)

(2)(C

�

+

�

f(�x

(1)

)) � (C

�

+

�

f(�x

(2)

)) (20)

A graphical illustration of these cases is presented in Figure 4 (taken from Osyczka [48]).

f(x)
(1)

(2)f (x)f(x)

f (x)

(1)

(2)

f (x)

f (x) f (x)

f (x)

1 1

2 2

C + f(x)
(1)

C + f(x)

C + f(x)

C + f(x)
(2) (1)

(2)

Figure 4: Graphical illustration of equations (19) and (20).

We denote �x

(l)

= [x

l

1

; x

l

2

; : : : ; x

l

n

]

T

= any given point in X,

f(�x

(l)

) = [f

1

(�x

(l)

); f

2

(�x

(l)

); : : : ; f

k

(�x

(l)

)]

T

= vector of objective functions for the point �x

(l)

,

�x

p

j

= [x

p

1j

; x

p

2j

; : : : ; x

p

nj

]

T

= The jth Pareto optimal solution,

�

f

p

j

= [f

p

1j

; f

p

2j

; : : : ; f

p

kj

]

T

=vector of objective functions for the jth Pareto optimal solution.

Now the problem is to choose from any given set of solutions

L = f1; 2; : : : ; l; : : : ; l

a

g, the set of Pareto optimal solutions

J = f1; 2; : : : ; j; : : : ; j

a

g.

The main idea behind the Pareto algorithm is the following. Let �x

(l)

be a new solution to be considered. If in

the set of Pareto optimal solutions there is a solution x

p

j

such that it

(i) satis�es (19) then �x

(l)

is substituted for �x

p

j

, or

(ii) satis�es (20) then �x

(l)

is discarded.

If none of the solutions from the Pareto set satis�es either (19) or (20), then �x

(l)

becomes a new Pareto optimal

solution.

The steps of the algorithm are the following [48]:

(1) Read k (number of objective functions), n (number of decision variables), l

a

(number of solutions available).

(2) Set f

p

i1

=1 for i = 1; 2; : : : ; k and j

a

= 1.

(3) Set l = 1.

(4) Read �x

(l)

and f(�x

(l)

).

(5) Set j = 1.

(6) If for every i 2 I we have f

i

(�x

(l)

) < f

p

ij

then substitute �x

p

j

= �x

(l)

and f

p

j

= f(�x

(l)

) and go to 10, otherwise

go to 7.

(7) If for every i 2 I we have f

i

(�x

(l)

) > f

p

ij

then go to 10 otherwise go to 8.

(8) Set j = j + 1.

(9) If j > j

a

then j

a

= j

a

+ 1 and x

p

ja

= �x

(l)

and

�

f

p

j

=

�

f(�x

(l)

) and go to 10, otherwise go to 6.

(10) Set l = l + 1.

(11) If l � l

a

, then go to 4, otherwise go to 12.

(12) Print �x

p

j

and

�

f

p

j

for j = 1; 2; : : : ; j

a

.

This algorithm is called PARETO by Osyczka [48] and it was translated from FORTRAN to C and incorporated

into MOSES.

3.2 The min-max algorithm

This algorithm chooses from any given set of solutions L = f1; 2; : : : ; l; : : : ; l

a

g, the min-max optimal solution

as de�ned in Chapter 1. We assume that the ideal vector

�

f

0

is given.

The steps of the algorithm are the following [48]:

(1) Read k (number of objective functions), n (number of decision variables), l

a

(number of available solutions)

,

�

f

0

(ideal vector).

(2) Set v

�

1

=1.

(3) Set l = 1.

(4) Read �x

(l)

and

�

f(�x

(l)

).

(5) Evaluate vector �z(�x

(l)

) using formula (12).

(6) If �z(�x

(l)

) = 0 then retain this solution as the optimum since there is no better solution, and go to 11,

otherwise go to 7.

(7) Find the maximal values of all the steps of formula (14) for the points �x

(l)

. These values are denoted v

r

for r = 1; 2; : : : ; k, and can be evaluated as follows

v

1

=

max

i 2 I

fz

i

(x

(l)

)g (21)

and then I

1

= fi

1

g, where i

1

is the index for which the value of z

i

(�x

(l)

) is maximal,

v

2

=

max

i 2 I; i 62 I

1

fz

i

(�x

(l)

)g (22)

and the I

2

= fi

1

; i

2

g, where i

2

is the index for which the value of z

i

(�x

(l)

) is maximal,

v

r

=

max

i 2 I; i 62 I

r�1

fz

i

(�x

(l)

)g (23)

and then I

r

= fI

r�1

; i

r

g, where i

r

is the index for which the value of z

i

(�x

(l)

) is maximal,

v

k

= z

i

(�x

(l)

) for i 2 I and i 62 I

k�1

(24)

(8) Replace v

�

r

by v

r

for r = 1; 2; : : : ; k and retain this solution as the optimum if the following function is

satis�ed

v

1

< v

�

1

_

r 2 f2; : : : ; kg

((v

r

< v

�

r

)

^

s 2 f1; : : : ; rg

(v

s

= v

�

s

)) (25)

where v

�

1

; v

�

2

; : : : ; v

�

k

is the set of optimal values of relative increments ordered non-increasingly.

(9) Set l = l + 1.

(10) If l � l

a

then go to 4, otherwise go to 11.

(11) Print x

�

; l

�

;

�

f (�x

�

); �z(�x

�

).

This algorithm is called MINMAX by Osyczka [48] and it was also translated from FORTRAN to C and incor-

porated into MOSES, both in the mathematical programming software and in some of the GA-based approaches.

3.3 Monte Carlo Methods

We also implemented the two Monte Carlo methods used by Osyczka [48] to �nd the min-max optimum. These

methods are called exploratory because a point is generated by means of a rule which disregards the results

previously obtained. In particular, the Monte Carlo method picks a certain number of points at random over the

estimated range of all the variables of the problem. This is done formally by obtaining the randomly selected

value for x

i

from the following formula

x

i

= x

a

i

+ �

i

(x

b

i

� x

a

i

) for i = 1; 2; : : : ; n (26)

where x

a

i

is the estimated or given lower limit for x

i

, x

b

i

is the estimated or given upper limit for x

i

, and �

i

is

a random number between zero and one. We employed the same random number generator used by the genetic

algorithm to implement the FORTRAN function RANF of the original program.

If we want to generate the values of variables for l

a

points, we start by generating random numbers �

i

for each

point, and then use equation (26) to obtain the values of the variables x

i

. After that, we test each generated

point for violation and discard it if it is not a feasible solution. If the point is in the feasible region, we evaluate

the objective function for that point. The best result is taken as the minimum, and a new set of random numbers

is generated for each of l

a

points.

The two Monte Carlo methods described by Osyczka [48] to �nd the min-max optimum are presented next.

3.3.1 Monte Carlo method 1

In this method, the space of variables is explored twice, �rst searching for the ideal vector

�

f

0

and then searching

for the min-max optimum. The algorithm is the following [48]:

Do steps 1, 2, 3, 4, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise go to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

Do steps 5, 6, 7, 8, for l = 1; 2; : : : ; l

a

(5) Generate a random point �x

(l)

.

(6) If the point x

(l)

is not in the feasible region go to 5, otherwise go to 7.

(7) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(8) Call MINMAX to check if the point �x

(l)

is the min-max optimum.

3.3.2 Monte Carlo method 2

Here, the space of variables is explored only once, and the Pareto set is generated while searching for the ideal

vector

�

f

0

. Then, this set analyzed to check which solution is the min-max optimum. The algorithm is the

following [48]:

Do steps 1, 2, 3, 4, 5, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

(5) Call PARETO for checking if the point �x

(l)

is Pareto optimal.

Do steps 6, 7 for j = 1; 2; : : : ; j

a

(6) Evaluate f

i

(�x

p

j

) for i = 1; 2; : : : ; k.

(7) Call MINMAX for checking if the point �x

p

j

is the min-max optimum.

There are several trade-o�s between these two methods. For example, the second method uses less CPU time

than the �rst, because the space of variables is explored only once, but it also requires much more memory since

the whole Pareto set has to be stored. Obviously, the designer normally wants to analyze the entire Pareto

set in order to take a decision, but as we mentioned before, this set could be too large and the computational

resources available could be insu�cient for that sake. Osyczka recommends the reduction of this set by introducing

constraints of the form

f

i

(�x) � f

0

i

for i = 1; 2; : : : ; k

where values of f

0

i

are chosen by the designer.

The second method should be preferred for problems with a large number of constraints and for discrete

programming problems, because in those cases we expect to have a small Pareto set. The main advantage

of exploratory methods in general is their
exibility, since they can be applied both to linear and non-linear

programming problems. However, they are normally recommended only for cases where a few decision variables

are handled because otherwise they could take too long to �nd a reasonable good solution.

3.4 Osyczka's Multicriterion Optimization System

This system was developed at the Technical University of Cracow, and its FORTRAN implementation is

provided in Osyczka's book [48]. A C translation of that code was incorporated into MOSES, and its contents

are explained next.

Osyczka's system contains several multiobjective optimization methods:

(1) Min-max method : Equation (12) is used to determine the elements of the vector �z(�x).

(2) Global criterion method : In this method, the equation:

f(�x) =

k

X

i=1

�

f

0

i

� f

i

(�x)

f

0

i

�

p

(27)

is used as the global function. For this formula Boychuk and Ovchinnikov [6] have suggested p = 1, and

Salukvadze [57] has suggested p = 2, but other values of p can also be used. Obviously, the results will di�er

greatly depending on the value of p chosen. Thus, the selection of the best p is an issue in this method, and it

could also be the case that any p could produce an unacceptable solution. We assumed p = 2 for our experiments.

(3) Weighting min-max method : This is a combination of the weighting method and the min-max approach

that can �nd the Pareto set of solutions for both convex and non-convex problems. The equation

8

i2I

(z

i

(�x) = maxfw

i

z

0

i

(�x); w

i

z

00

i

(�x)g) (28)

is used to determine the elements of vector �z(�x).

(4) Pure weighting method : The equation

min

k

X

i=1

w

i

f

i

(�x) (29)

is used to determine a preferred solution, where w

i

� 0 are the weighting coe�cients representing the relative

importance of the objectives. It is usually assumed that

k

X

i=1

w

i

= 1 (30)

(5) Normalized weighting method :

�

f(�x) is used in equation (3.4).

Since all these methods require the ideal vector, the user is given the choice of providing it, or letting the

system to �nd it automatically. For this purpose, the system includes a single criterion optimization technique:

(i) The
exible tolerance (FT) method : This is a sequential method in which a point is established on the

basis of the previously obtained results. Based on this information, the method will know where the minimum

is likely to be so that the appropriate search direction may be established. Normally sequential methods, even

when are more e�cient and more highly developed than exploratory methods, tend to be designed to solve only

continuous convex problems. However, this particular method can deal with non-linear models [31]. A detailed

explanation of this algorithm and its implementation may be found in [10].

4 Genetic Algorithms

The famous naturalist Charles Darwin de�ned Natural Selection or Survival of the Fittest in his book [11] as

the preservation of favorable individual di�erences and variations, and the destruction of those that are injurious.

In nature, individuals must adapt to their environment in order to survive. This process is called evolution, in

which those features that make an individual more suited to compete are preserved when it reproduces, and

those features that make it weaker are eliminated. Such features are controlled by units called genes which form

sets called chromosomes. Over subsequent generations not only the �ttest individuals survive, but also their

�ttest genes which are transmitted to their descendants during the sexual recombination process which is called

crossover.

John H. Holland became interested in the application of natural selection to machine learning, and in the late

60s, while working at the University of Michigan, he developed a technique that allowed computer programs to

mimic the process of evolution. Originally, this technique was called reproductive plans, but the term genetic

algorithm became popular after the publication of his book [32] [33].

In 1989, Goldberg published a book [21] that provided a solid scienti�c basis for this area, and cited no less than

73 successful applications of the genetic algorithm. In the last few years the growing interest on this technique

is re
ected in a larger number of conferences, a new international journal, and an increasing amount of software

and literature devoted to this subject.

Koza [40] provides a good de�nition of a GA:

The genetic algorithm is a highly parallel mathematical algorithm that transforms a set (pop-

ulation of individual mathematical objects (typically �xed-length character strings patterned after

chromosome strings), each with an associated �tness value, into a new population (i.e., the next

generation) using operations patterned after the Darwinian principle of reproduction and survival

of the �ttest and after naturally occurring genetic operations (notably sexual recombination).

Actually, the genetic algorithm derives its behavior from a metaphor of one of the mechanisms of evolution in

nature which is called hard selection [29]. Under this scheme, only the best available individuals are retained

for generating descendants. This contrasts with soft selection, which o�ers a probabilistic mechanism for

maintaining individuals to be parents of future progeny despite possessing relatively poorer objective values.

It has been argued [29] that the term genetic algorithm (GA) is misleading, since natural selection is only one

of the mechanisms of evolution, and it would be more appropriate to call them hard selection (HS) algorithms

to re
ect the fact that they deal with only that particular selection scheme. However, the term is so common

today, that a change does not seem feasible, at least in the near future.

A genetic algorithm for a particular problem must have the following �ve components [45]:

1. A representation for potential solutions to the problem.

2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solutions in terms of their \�tness".

4. Genetic operators that alter the composition of children.

5. Values for various parameters that the genetic algorithm uses (population size, probabilities of applying

genetic operators, etc.).

Some of the basic terminology used by the genetic algorithms (GAs) community is the following [29]:

� A chromosome is a data structure that holds a \string" of task parameters, or genes. This string may be

stored, for example, as a binary bit-string (binary representation) or as an array of integers (
oating point

o real-coded representation) that represent a
oating point number. This chromosome is analogous to the

base-4 chromosomes present in our own DNA. Normally, in the GA community, the haploid model of a cell

is assumed (one-chromosome individuals). However, diploids have also been used in the past [21].

� A gene is a subsection of a chromosome that usually encodes the value of a single parameter.

� An allele is the value of a gene. For example, for a binary representation each gene may have an allele of

0 or 1, and for a
oating point representation, each gene may have an allele from 0 to 9.

� The �tness of an individual is a value that re
ects its performance (i.e., how well solves a certain task). A

�tness function is a mapping of the chromosomes in a population to their corresponding �tness values.

� A genotype represents a potential solution to a problem, and is basically the string of values chosen by

the user, also called chromosome.

� A phenotype is the meaning of a particular chromosome, de�ned externally by the user.

� Genetic drift is the name given to the changes in gene/allele frequencies in a population over many gener-

ations, resulting from chance rather than from selection. It occurs most rapidly in small populations and

can lead some alleles to become extinct, thus reducing the genetic variability in the population.

� A niche is a group of individuals which have similar �tness. Normally in multiobjective and multimodal

optimization, a technique called sharing is used to reduce the �tness of those individuals who are in the same

niche. This prevents the population from converging to a single solution, so that stable sub-populations can

be formed, each one corresponding to a di�erent objective or peak (in a multimodal optimization problem)

of the function.

The basic operation of a Genetic Algorithm is illustrated in the following segment of pseudo-code [8]:

generate initial population, G(0);

evaluate G(0);

t:=0;

repeat

t:=t+1;

generate G(t) using G(t-1);

evaluate G(t);

until a solution is found

First, an initial population is randomly generated. The individuals of this population will be a set of chromo-

somes or strings of characters (letters and/or numbers) that represent all the possible solutions to the problem.

We apply a �tness function to each one of these chromosomes in order to measure the quality of the solution

encoded by the chromosome. Knowing each chromosome's �tness, a selection process takes place to choose the

individuals (presumably, the �ttest) that will be the parents of the following generation. The most commonly

used selection schemes are the following [23]:

� Proportionate Reproduction: This term is used generically to describe several selection schemes that

choose individuals for birth according to their objective function values f . In these schemes, the probability

of selection p of an individual from the ith class in the tth generation is calculated as

p

i;t

=

f

i

P

k

j=1

m

j;t

f

j

(31)

where k classes exist and the total number of individuals sums to n. Several methods have been suggested for

sampling this probability distribution, including Monte Carlo or roulette wheel selection [38], stochastic

remainder selection [5] [7], and stochastic universal selection [4] [27].

� Ranking Selection: In this scheme, proposed by Baker [3] the population is sorted from best to worst,

and each individual is copied as many times as it can, according to a non-increasing assignment function,

and then proportionate selection is performed according to that assignment.

� Tournament Selection: The population is shu�ed and then is divided into groups of k elements from

which the best individual (i.e., the �ttest) will be chosen. This process has to be repeated k times because

on each iteration only m parents are selected, where

m =

population size

k

For example, if we use binary tournament selection (k = 2), then we have to shu�e the population twice,

since in each stage half of the parents required will be selected. The interesting property of this selection

1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1 1 0

1 1 1 0 1 1 0 1

Cross-point Cross-point

Descendants

Figure 5: Use of a single-point crossover between two chromosomes. Notice that each pair of chromosomes

produces two descendants for the next generation. The cross-point may be located at the string boundaries, in

which case the crossover has no e�ect and the parents remain intact for the next generation.

1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1

1 1 1 1

Descendants

0 1

011 0

 Cross-points Cross-points

1 0

Figure 6: Use of a two-point crossover between two chromosomes. In this case the genes at the extremes are kept,

and those in the middle part are exchanged. If one of the two cross-points happens to be at the string boundaries,

a single-point crossover will be performed, and if both are at the string boundaries, the parents remain intact for

the next generation.

scheme is that we can guarantee multiple copies of the �ttest individual among the parents of the next

generation.

After being selected, crossover takes place. During this stage, the genetic material of a pair of individuals is

exchanged in order to create the population of the next generation. The two main ways of performing crossover

are called single-point and two-point crossover. When a single-point crossover scheme is used, a position of the

chromosome is randomly selected as the crossover point as indicated in Figure 5. When a two-point crossover

scheme is used, two positions of the chromosome are randomly selected as indicated in Figure 6.

Mutation is another important genetic operator that randomly changes a gene of a chromosome. If we use

a binary representation, a mutation changes a 0 to 1 and vice-versa. This operator allows the introduction of

new chromosomic material to the population and, from the theoretical perspective, it assures that, given any

population, the entire search space is connected [8].

If we knew the �nal solution in advance, it would be trivial to determine how to stop a genetic algorithm.

However, as this is not normally the case, we have to use one of the two following criteria to stop the GA: either

give a �xed number of generations in advance, or verify when the population has stabilized (i.e., all or most of

the individuals have the same �tness).

GAs di�er from traditional search techniques in several ways [8]:

01 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 01

27053 5

Representation of the number 35.5072 using
binary encoding

Representation of the number 35.5072 using
floating point encoding

Figure 7: Representing the same number using binary and
oating point encodings.

� GAs do not require problem speci�c knowledge to carry out a search.

� GAs use stochastic instead of deterministic operators and appear to be robust in noisy environments.

� In evaluating a population of n strings, the GA implicitly estimates the average �tnesses of all schemas that

are present in the population, and increasing or decreasing their representation. This simultaneous implicit

evaluation of large number of schemas in a population of n strings is known as implicit parallelism. This

ability makes them less susceptible to local maxima and noise.

The traditional representation used by the genetic algorithms community is the binary scheme according to

which a chromosome is a string the form hb

1

; b

2

; : : : ; b

m

i, where b

1

; b

2

; : : : ; b

m

are called alleles (either zeros or

ones). Since the binary alphabet o�ers the maximum number of schemata per bit of information of any coding

[21], its use has became very popular among scientists. This coding also facilitates theoretical analysis of the

technique and allows elegant genetic operators. However, since the \implicit parallelism" property of GAs does

not depend on using bit strings [45] it is worthwhile to experiment with larger alphabets, and even with new

genetic operators. In particular, for optimization problems in which the parameters to be adjusted are continuous,

a
oating point representation scheme seems a logical choice. According to this representation, a chromosome is

a string of the form hd

1

; d

2

; : : : ; d

m

i, where d

1

; d

2

; : : : ; d

m

are digits (numbers between zero and nine). Consider

the examples shown in Figure 7, in which the same value is represented using binary and
oating point encoding.

The term \
oating" may seem misleading since the position of the implied decimal point is at a �xed position,

and the term \�xed point representation" seems more appropriate. However, the reason that the term \
oating

point" is preferred is because in this representation each variable (representing a parameter to be optimized) may

have the point at any position along the string. This means that even when the point is �xed for each gene, is

not necessarily �xed along the chromosome. Therefore, some variables could have a precision of 3 decimal places,

while others are integers, and still they could all be represented with the same string. The term real-coded GAs

is also used in the literature [22] [65].

Floating point representation is faster and easier to implement, and provides a higher precision than its

binary counterpart, particularly in large domains, where binary strings would be prohibitively long. One of the

advantages of
oating point representation is that it has the property that two points close to each other in the

representation space must also be close in the problem space, and vice versa [45]. This is not generally true in

the binary approach, where the distance in a representation is normally de�ned by the number of di�erent bit

positions.

Goldberg [22] has presented a theory of convergence for real-coded or
oating-point GAs, and also real numbers

and other alphabets have been proposed [65], particularly for numerical optimization, in a resemblance of the

power of evolutionary strategies [59] in this domain. As Eshelman and Scha�er [16] point out, many researchers

in the GA community have agreed to use real-coded genetic algorithms for numerical optimization despite of the

fact that there are theoretical arguments that seem to show that small alphabets should be more e�ective than

large alphabets. Practitioners, on the other hand, have shown that real-coded genes work better in practice [12].

A few attempts have been made to develop a theoretical defense of this representation scheme, from which the

recent work by Eshelman and Scha�er deserves special attention [16]. One of the main abilities of real-coded

GAs is their capacity to exploit the gradualness of functions of continuous variables (where gradualness is taken

to mean that small changes in the variables correspond to small changes in the function) [16] [65].

5 Multiobjective Optimization using GAs

Goldberg [21] indicates that the notion of genetic search in a multicriteria problem dates back to the late 60s,

in which Rosenberg's [56] study contained a suggestion that would have led to multicriteria optimization if he had

carried it out as presented. His suggestion was to use multiple properties (nearness to some speci�ed chemical

composition) in his simulation of the genetics and chemistry of a population of single-celled organisms. Since his

actual implementation contained only one single property, the multiobjective approach could not be shown in his

work, but it was a starting point for researchers interested in this topic.

Genetic algorithms require scalar �tness information to work, which means that when approaching multicriteria

problems, we need to perform a scalarization of the objective vectors. One problem is that it is not always possible

to derive a global criterion based on the formulation of the problem. In the absence of information, objectives

tend to be given equivalent importance, and when we have some understanding of the problem, we can combine

them according to the information available, probably assigning more importance to some objectives. Optimizing

a combination of the objectives has the advantage of producing a single compromise solution, requiring no further

interaction with the decision maker [18]. The problem is, that if the optimal solution cannot be accepted, either

because the function used excluded aspects of the problem which were unknown prior to optimization or because

we chose an inappropriate setting of the coe�cients of the combining function, additional runs may be required

until a suitable solution is found.

5.1 Use of aggregating functions

Several attempts have been made to combine the objective functions in di�erent ways, as Fonseca and Fleming

report [18]. One general approach involves the use of aggregating functions. Several attempts are reported in the

literature, and will be described next.

5.1.1 Weighted sum approach

Jakob et al. [37] assign weights that estimate the importance of each objective. The problem with this approach

is precisely how to determine such weights when we do not have enough information about the problem. In this

case, the optimal point obtained will be a function of the coe�cients used to combine the objectives. We normally

use a simple linear combination of the objectives and we can generate the trade-o� surface (the term \trade-o�"

in this context refers to the fact that we are trading a value of one objective function for a value of another

function or other functions) by varying the weights. This approach is very simple and easy to implement, but it

has the disadvantage of missing concave portions of the trade-o� curve [55].

5.1.2 Reduction to a single objective

Ritzel and Wayland [55] suggest coding the GA in such a way that all the objectives, except for one, are constant

(constrained to a single value), and the remaining objective becomes the �tness function for the GA. Then,

through a process of running the GA numerous times with di�erent values of the constrained objectives, a trade-

o� surface can be developed. The obvious drawback of this approach is that it is time-consuming, and the coding

of the objective functions may be di�cult or even impossible for certain problems.

21 n. . .

gene performance

parentsGeneration(t) Generation(t+1)

select n
subgroups
using each
dimension of
performance
in turn

popsize

1

shuffle apply genetic
operators

popsize

1

STEP STEP STEP1 2 3

.

.

.

.

.

.

1

.

.

.

2

n

Figure 8: Schematic of VEGA selection.

5.1.3 Goal attainment

Wilson and Macleod [64] used this method to solve an optimization problem. In this method, a vector of weights

relating the relative under- or over-attainment of the desired goals must be elicited from the decision maker

in addition to the goal vector. By varying the weights, we can generate the set of noninferior solutions, even

for nonconvex problems [9]. In the case of underattainment of the desired goals, a smaller weighting coe�cient

is associated with a more important objective. For overattainment of the desired goals, a smaller weighting

coe�cient is associated with a less important objective [53].

5.1.4 Use of Penalty Functions

The basic idea of this approach is to \punish" the �tness value of a chromosome whenever the solution produced

violates some of the constraints imposed by the problem. Theoretically, the penalty decreases when the value

of the penalty function coe�cient is increased and convergence is achieved by increasing the penalty function

coe�cient to in�nity [1]. However, a large value for the penalty function coe�cient causes ill conditioning in

the optimization process and results in numerical instability or slow convergence. Furthermore, since the value

of the penalty function coe�cient is unknown, much experimentation is required to �nd an appropriate value.

The augmented Lagrangian method has been suggested by Adeli and Cheng [1] to deal with this problem. They

integrate the penalty function method with the primal-dual method, which is based on sequential minimization

of the Lagrangian function. Instead of only a single penalty function coe�cient, in this approach two parameters

associated with each constraint are used, and there is no need for the Lagrangian multipliers go to in�nity to

ensure convergence. Nevertheless, the problem that remains is that penalty functions are generally problem

dependent, and therefore di�cult to establish.

5.2 Non-Pareto approaches

To overcome the di�culties involved in the aggregating approach, much work has been devoted to the de-

velopment of alternative approaches based on ranking [51]. We will examine next some of the most popular

non-Pareto approaches.

5.2.1 VEGA

David Scha�er [58] extended Grefenstette's GENESIS program [25] to include multiple objective functions. Schaf-

fer's approach was to use an extension of the Simple Genetic Algorithm (SGA) that he called the Vector Evaluated

Genetic Algorithm (VEGA), and that di�ered from GENESIS only in the way in which selection was performed.

This operator was modi�ed so that at each generation a number of sub-populations was generated by performing

proportional selection according to each objective function in turn. Thus, for a problem with k objectives, k sub-

populations of size N=k each would be generated, assuming a total population size of N . These sub-populations

would be shu�ed together to obtain a new population of size N , on which the GA would apply the crossover and

mutation operators in the usual way. This process is illustrated in Figure 8 (taken from Scha�er [58]). Scha�er

realized that the solutions generated by his system were non-inferior in a local sense, because their non-inferiority

is limited to the current population, and while a locally dominated individual is also globally dominated, the

converse is not necessarily true [58]. An individual who is not dominated in one generation may become domi-

nated by an individual who emerges in a later generation. Also, he noted that the so-called \speciation" problem

could arise from his approach (i.e., we could have the evolution of \species" within the population which excel on

di�erent aspects of performance). This problem arises because this technique selects individuals who excel in one

dimension of performance, without looking at the other dimensions. The potential danger doing that is that we

could have individuals with \middling" performance in all dimensions, which could be very useful for compromise

solutions, but that will not survive under this selection scheme, since they are not in the extreme for any di-

mension of performance (i.e., they do not produce the best value for any objective function, but only moderately

good values for all of them). Speciation is undesirable because it is opposed to our goal of �nding a compromise

solution. Scha�er suggested some heuristics to deal with this problem. For example, to use a heuristic selection

preference approach for non-dominated individuals in each generation, to protect our \middling" chromosomes.

Also, crossbreeding among the \species" could be encouraged by adding some mate selection heuristics instead

of using the random mate selection of the traditional GA.

Although Scha�er reported some success, Richardson et al. [54] noted that the shu�ing and merging of all the

sub-populations corresponds to averaging the �tness components associated with each of the objectives. Since

Scha�er used proportional �tness assignment, these were in turn proportional to the objectives themselves [18].

Therefore, the resulting expected �tness corresponded to a linear combination of the objectives where the weights

depended on the distribution of the population at each generation [54]. As a consequence, di�erent non-dominated

individuals were generally assigned di�erent �tness values. This problem becomes more severe when we have a

concave trade-o� surface because points in concave regions of the trade-o� surface cannot be found by optimizing

a linear combination of the objectives, no matter what set of weights we use.

5.2.2 Lexicographic ordering

The basic idea of this technique is that the designer ranks the objectives in order of importance. The optimum

solution is then found by minimizing the objective functions, starting with the most important one and proceeding

according to the order of importance of the objectives [53]. Fourman [19] suggested a selection scheme based on

lexicographic ordering. In a �rst version of his algorithm, objectives were assigned di�erent priorities by the user

and each pair of individuals were compared according to the objective with the highest priority. If this resulted

in a tie, the objective with the second highest priority was used, and so on. A second version of this algorithm,

reported to work surprisingly well, consisted of randomly selecting the objective to be used in each comparison.

As in VEGA, this corresponds to averaging �tness across �tness components, each component being weighted

by the probability of each objective being chosen to decide each tournament [18]. However, the use of pairwise

comparisons makes an important di�erence with respect to VEGA, since in this case scale information is ignored.

Therefore, the population may be able to see as convex a concave trade-o� surface, depending on its current

distribution, and on the problem itself.

5.2.3 Evolutionary Strategies

Kursawe [41] formulated a multiobjective version of evolutionary strategies [59] (ESs). Selection consisted of as

many steps as objective functions had the problem. At each step, one of these objectives was selected randomly

according to a probability vector, and used to delete a fraction of the current population. After selection, the

survivors became the parents of the next generation. The map of the trade-o� surface was produced from the

points evaluated during the run. Since the environment was allowed to change over time, diploid individuals were

necessary to keep recessive information stored.

5.2.4 Weighted Sum

Hajela and Lin [28] included the weights of each objective in the chromosome, and promoted their diversity in

the population through �tness sharing. Their goal was to be able to simultaneously generate a family of Pareto

optimal designs corresponding to di�erent weighting coe�cients in a single run of the GA. Besides using sharing,

Hajela and Lin used a vector evaluated approach based on VEGA to achieve their goal.

5.3 Pareto-based approaches

We will also review some of the main Pareto-based approaches.

5.3.1 Pareto-based �tness assignment

This approach was �rst proposed by Goldberg [21] to solve the problems of Scha�er's approach. He suggested the

use of non-domination ranking and selection to move a population toward the Pareto front in a multiobjective

problem. The basic idea is to �nd the set of strings in the population that are Pareto non-dominated by the

rest of the population. These strings are then assigned the highest rank and eliminated from further contention.

Another set of Pareto nondominated strings are determined from the remaining population and are assigned the

next highest rank. This process continues until the population is suitably ranked. Goldberg also suggested the use

of some kind of niching to keep the GA from converging to a single point on the front. A niching mechanism such

as sharing [24] would allow the GA to maintain individuals all along the non-dominated frontier. Hilliard et al.

[30] used a Pareto optimality ranking method to handle the objectives of minimizing cost and minimizing delay

in a scheduling problem. They tentatively concluded that the Pareto optimality ranking method outperformed

the VEGA method. The Pareto method was found to be superior to a VEGA by Liepins et al. [42] when

applied to a variety of set covering problems. Ritzel et al. [55] also used non-dominated ranking and selection

combined with deterministic crowding [44] as the niching mechanism. They applied the GA to a groundwater

pollution containment problem in which cost and reliability were the objectives. Though the actual Pareto front

was unknown, Ritzel et al. used the best trade-o� surface found by a domain-speci�c algorithm, called MICCP

(Mixed Integer Chance Constrained Programming), to compare the performance of the GA. They found that

selection according to Pareto non-domination was superior to both VEGA and non-domination with deterministic

crowding, at least for �nding points near or on the front found by MICCP.

5.3.2 Multiple Objective Genetic Algorithm

Fonseca and Fleming [17] have proposed a scheme in which the rank of a certain individual corresponds to the

number of chromosomes in the current population by which it is dominated. Consider, for example, an individual

x

i

at generation t, which is dominated by p

(t)

i

individuals in the current generation. Its current position in the

individuals' rank can be given by [17]:

rank(x

i

; t) = 1 + p

(t)

i

(32)

All non-dominated individuals are assigned rank 1, while dominated ones are penalized according to the

population density of the corresponding region of the trade-o� surface.

Fitness assignment is performed in the following way [17]:

1. Sort population according to rank.

2. Assign �tness to individuals by interpolating from the best (rank 1) to the worst (rank n

�

� N) in the way

proposed by Goldberg [21], according to some function, usually linear, but not necessarily.

No

is

gen < maxgen

 ?
No

S T A R T

initialize

population

gen = 0

front = 1

classified ?

population
is identify

Nondominated
individuals

assign
dummy fitness

sharing in

current front

front = front + 1

 crossover

 mutation

S T O P

Yes

gen = gen + 1

reproduction

according to

dummy fitness

Yes

Figure 9: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).

3. Average the �tnesses of individuals with the same rank, so that all of them will be sampled at the same

rate. This procedure keeps the global population �tness constant while maintaining appropriate selective

pressure, as de�ned by the function used.

As Goldberg and Deb [23] point out, this type of blocked �tness assignment is likely to produce a large selection

pressure that might produce premature convergence. To avoid that, Fonseca and Fleming use a niche-formation

method to distribute the population over the Pareto-optimal region, but instead of performing sharing on the

parameter values, they have used sharing on objective function values [61]. This maintains diversity in the

objective function values, but may not maintain diversity in the parameter set, which is an important issue for a

decision maker. Furthermore, this approach may not be able to �nd multiple solutions in problems where di�erent

Pareto-optimal points correspond to the same objective function value.

In this approach, it is possible to evolve only a certain region of the trade-o� surface, by combining Pareto

dominance with partial preference information in the form of a goal vector. While the basic ranking scheme

remains unaltered, as we perform a Pareto comparison of the individuals, then those objectives which already

satisfy their goals will not be selected. If we specify fully unattainable goals, then objectives will never be excluded

from comparison. Changing the goal values during the search alters the �tness landscape accordingly and allows

the decision maker to magnify a particular region of the trade-o� surface.

5.3.3 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and Deb [60], and is based

on several layers of classi�cations of the individuals. Before the selection is performed, the population is ranked

on the basis of nondomination: all nondominated individuals are classi�ed into one category (with a dummy

�tness value, which is proportional to the population size, to provide an equal reproductive potential for these

individuals). To maintain the diversity of the population, these classi�ed individuals are shared with their dummy

�tness values. Then this group of classi�ed individuals is ignored and another layer of nondominated individuals

is considered. The process continues until all individuals in the population are classi�ed. A stochastic remainder

proportionate selection was used for this approach. Since individuals in the �rst front have the maximum �tness

value, they always get more copies than the rest of the population. This allows to search for nondominated

regions, and results in quick convergence of the population toward such regions. Sharing, by its part, helps to

distribute it over this region. The e�ciency of NSGA lies in the way multiple objectives are reduced to a dummy

�tness function using a nondominated sorting procedure. With this approach, any number of objectives can be

solved [61], and both maximimization and minimization problems can be handled. Figure 9 (taken from Srinivas

and Deb [61]) shows the general
ow chart of this approach.

5.3.4 Niched Pareto GA

Horn and Nafpliotis [34] proposed a tournament selection scheme based on Pareto dominance. Instead of limiting

the comparison to two individuals, a number of other individuals in the population was used to help determine

dominance. When both competitors were either dominated or non-dominated (i.e., there was a tie), the result

of the tournament was decided through �tness sharing [24]. Population sizes considerably larger than usual were

used so that the noise of the selection method could be tolerated by the emerging niches in the population [18].

The pseudocode for Pareto domination tournaments assuming that all of the objectives are to be maximized

is presented below [34]. S is an array of the N individuals in the current population, random pop index is an

array holding the N indices of S, in a random order, and t

dom

is the size of the comparison set.

function selection /* Returns an individual from the current population S */

begin

shu�e(random pop index); /* Re-randomize random index array */

candidate 1 = random pop index[1];

candidate 2 = random pop index[2];

candidate 1 dominated = false;

candidate 2 dominated = false;

for comparison set index = 3 to t

dom

+ 3 do

/* Select t

dom

individuals randomly from S */

begin

comparison individual = random pop index[comparison set index];

if S[comparison individual] dominates S[candidate 1]

then candidate 1 dominated = true;

if S[comparison individual] dominates S[candidate 2]

then candidate 2 dominated = true;

end /* end for loop */

if (candidate 1 dominated AND : candidate 2 dominated)

then return candidate 2;

else if (: candidate 1 dominated AND candidate 2 dominated)

then return candidate 1;

else

do sharing;

end

Scaling of the objectives determines the convexity of the trade-o� surface, so that if we use a non-linear

rescaling, the objective values may convert a concave surface into a convex one, and vice-versa. Pareto-ranking

is blind to the convexity of the trade-o� surface, but this does not mean that it always precludes speciation [18],

since this can still occur if certain regions of the trade-o� region are simply easier to �nd than others. However,

Pareto-ranking eliminates sensitivity to the possible non-convexity of the trade-o� surface, and also it encourages

the production of compromise solutions.

It should be noted that even when Pareto-based ranking correctly assigns all non-dominated individuals the

same �tness, it does not guarantee that the Pareto set will be uniformly sampled, since �nite populations will

tend to converge to only one optimum when several equivalent optima are present, due to stochastic errors in the

selection process [18]. This phenomenon, which is known as genetic drift, has been observed in both natural

and arti�cial evolution, and can also occur in Pareto-based GA optimization [18].

Goldberg and Richardson [24] proposed the used of �tness sharing to prevent em genetic drift and to promote

the sampling of the whole Pareto set by the population. Fonseca and Fleming [17] implemented �tness sharing

in the objective domain and provided theory for estimating the necessary niche sizes based on the properties of

the Pareto set. Horn and Nafpliotis [34] also arrived at a form of �tness sharing in the objective domain, and

suggested the use of a metric combining both the objective and the decision variable domains, leading to what

they called nested sharing.

Another interesting aspect that has been considered in GA-based multiobjective optimization has been the

viability of crossover. This is an important issue, because we could have di�erent genetic representations across

di�erent regions of the trade-o� surface, and therefore we could need to restrict crossover to happen only locally

[21]. So far, crossover restrictions have been implemented based on the distance between individuals in the

objective domain, either directly [17] or indirectly [28].

6 A New GA-based Approach Based on a Weighted Min-Max Strategy

This is really a variant of Hajela's idea, in which a few changes were introduced by the authors [10]:

1. The initial population is generated in such a way that all their individuals constitute feasible solutions. This

can be ensured by checking that none of the constraints is violated by the solution vector encoded by the

corresponding chromosome.

2. The user should provide a vector of weights, which are used to spawn as many processes as weight com-

binations are provided (normally this number will be reasonably small). Each process is really a separate

genetic algorithm in which the given weight combination is used in conjunction with a min-max approach to

generate a single solution. Notice that in this case the weights do not have to be encoded in the chromosome

as in Hajela's approach.

3. After the n processes are terminated (n=number of weight combinations provided by the user), a �nal �le

is generated containing the Pareto set, which is formed by picking up the best solution from each of the

processes spawned in the previous step.

4. Since this approach requires knowing the ideal vector, the user is given the opportunity to provide such

values directly (in case he/she knows them) or to use another genetic algorithm to generate it. This

additional program works in a similar manner, spawning k processes (k=number of objective functions),

where each process corresponds to a genetic algorithm responsible for a single objective function. When all

the processes terminate, there will be a �le containing the ideal vector, which turns out to be simply the

best values produced by each one of the spawned processes.

5. The crossover and mutation operators were modi�ed to ensure that they produced only feasible solutions.

Whenever a child encodes an infeasible solution, it is replaced by one of its parents.

6. Notice that the Pareto solutions produced by this method are guaranteed to be feasible, as opposed to the

other GA-based methods in which there could be convergence towards a non-feasible solution.

6.1 A New GA-based Approach Based on Min-Max Selection with Sharing

This is another new approach in which a Min-Max selection strategy replaces the Pareto ranking selection

scheme previously reported in the literature, and sharing is used to avoid the GA converging to a single solution.

The basic algorithm is the following:

1. The initial population is generated as in the previous approach, ensuring that all the individuals at generation

zero encode only valid solutions.

2. By exploring the population at each generation, the local ideal vector is produced. This is done by comparing

the values of each objective function in the entire population.

3. The binary tournament selection algorithm is modi�ed, so that instead of comparing the �tnesses of two

individuals, we compare their maximal deviations with respect to the local ideal vector. If one dominates

the other, then it wins the tournament, and if there is a tie, then sharing is used to decide who is the winner,

in a way similar to the NPGA. This means that we count the number of individuals within the niche of

each one of the competitors, and the individual with a lower count wins.

4. The crossover and mutation operators were modi�ed as in the previous algorithm to ensure that they

produced only feasible solutions. Whenever a child encodes an infeasible solution, it is replaced by one of

its parents.

5. Notice that the Pareto solutions produced by this method are also guaranteed to be feasible, as opposed to

the other GA-based methods in which there could be convergence towards an infeasible solution.

6.2 The GA optimizer for single-objective problems

Using the GA itself as an optimizer for single-objective problems is a controversial topic, mainly because the

di�culties found to adjust its parameters (i.e., population size, maximum number of generations, mutation and

crossover rate) [26]. Since one of the goals of this work is to be able to produce a reliable design optimization

system, this is a natural problem to face. In practice, GA parameters are empirically adjusted in a trial and error

process that could take quite a long time in some cases.

For several months, we experimented with a very simple methodology, explained below, for a variety of en-

gineering design optimization problems. The results that we obtained led us to think that it was a reasonable

choice to use in MOSES. The method is the following:

� Choose a certain value for the random number seed and make it a constant.

� Make constants for the population size and the maximum number of generations (we normally use 100

chromosomes and 50 generations, respectively).

� Loop the mutation and crossover rates from 0:1 to 0:9 at increments of 0:1 (this is actually a nested loop).

This implies that 81 runs are necessary. In each step of the loop, the population is not reinitialized.

� For each run, update 2 �les. One contains only the �nal costs, and the other has a summary that includes,

in addition to the cost, the corresponding values of the design parameters and the mutation and crossover

rates used.

� When the whole process ends, the �le with the costs is sorted in ascending order, and the smallest value is

searched for in the other �le, returning the corresponding design parameters as the �nal answer.

So far, we have found much better results using
oating point representation with this methodology, and our

results show that this is a trend in numerical optimization problems [10]. This approach is actually a dynamic

adjustment of parameters, because the population is initialized only once in the process, so that the individuals'

�tness continues improving while changing the crossover and mutation rates. Notice that even when we could

know the crossover and mutation rates produced the best answer, running the GA once with those parameters

P

x4

1x

3x

2x

Z

Y

Q

L = 200 cm

L/2

Figure 10: The simply supported I-beam of Example 1.

will not necessary generate the exact same answer. The reason is that the population at the moment of �nding

the best result could have been recombined and improved several times, being quite di�erent of the random

initial population of a simple GA. This procedure has some resemblance with Eshelman's CHC Adaptive Search

Algorithm [15], but in our case we do not use any re-feeding of the population through high mutation values

when it has stabilized, nor a highly disruptive recombinator operator that produces o�spring that are maximally

di�erent from both parents. Our approach uses a conventional two-point crossover and it exhibits its best behavior

with a
oating point representation in numerical optimization problems.

7 Examples

To illustrate the use of MOSES and the e�ciency of the two new techniques proposed, we selected two

engineering design examples from the literature [10]. Since it is generally intractable to obtain an analytical

representation of the Pareto front, it is usually very di�cult to measure the performance of a multiobjective

optimization technique. For the purposes of this paper we compared the results only in terms of the best trade-

o�s that could be achieved. For that sake, we used the expression

L

p

(f) =

k

X

i=1

w

i

�

�

�

�

f

0

i

� f

i

(x)

�

i

�

�

�

�

(33)

where k is the number of objectives, �

i

= f

0

i

,or f

i

(x), depending on which gives the maximum value for

L

p

(f), and w

i

refers to the weight assigned to each objective (if not known, equal weights are assigned to all the

objectives).

7.1 Example 1 : Design of an I-beam

The multiobjective optimization problem is formulated as follows [49]:

Find the dimensions of the beam presented in Figure 10 (taken from Osyczka [49]) which satisfy the

geometric and strength constraints and which optimize the following criteria:

1. cross section area of the beam which for the given length minimizes its volume; and

2. static de
ection of the beam for the displacement under the force P.

Both criteria are to be minimized. It should be noted that these criteria are contrary to one another (i.e., the

best solution for the �rst objective function gives the worst solution for the second one and viceversa).

It is assumed that:

1. Permissible bending stress of the beam material k

g

= 16 kN=cm

2

.

2. Young's Modulus of Elasticity E = 2� 10

4

kN=cm

2

.

3. Maximal bending forces P = 600 kN and Q = 50 kN .

The vector of the decision variables is x = [x

1

; x

2

; x

3

; x

4

]

T

. Their values will be given in centimeters. The

geometric constraints are:

10 � x

1

� 80; 10 � x

2

� 50; 0:9 � x

3

� 5; 0:9 � x

4

� 5 (34)

The strength constraint is

M

y

W

y

+

M

z

W

z

� k

g

(35)

where M

y

and M

z

are maximal bending moments in Y and Z directions respectively; W

y

and W

z

are section

moduli in Y and Z directions respectively. For the forces acting the values of M

y

and M

z

are 30; 000 kN � cm

and 2; 500 kN � cm respectively. The section moduli can be expressed as follows:

W

y

=

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

6x

1

(36)

W

z

=

(x

1

� 2x

4

)x

3

3

+ 2x

4

x

3

2

6x

2

(37)

Thus the strength constraint is:

16�

180; 000x

1

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

�

15; 000x

2

(x

1

� 2x

4

)x

3

3

+ 2x

4

x

3

2

� 0 (38)

The objective functions can be expressed as follows

1. Cross-section area

f

1

(x) = 2x

2

x

4

+ x

3

(x

1

� 2x

4

) cm

2

(39)

2. Static de
ection

f

2

(x) =

P l

3

48EI

cm (40)

where I is the moment of inertia which can be calculated from

I =

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

12

(41)

After substitution the second objective function is

f

2

(x) =

60; 000

x

3

(x

1

� 2x

4

)

3

+ 2x

2

x

4

[4x

2

4

+ 3x

1

(x

1

� 2x

4

)]

(42)

The solution to this problem, as well as Example 2, will be discussed in section 8.

Test v f d SR SI TL MRR

No. (sfm) (ipr) (in) (�in) (% undamaged) (min) (in

3

/min)

1 625 0.002 0.050 25 24 150.6 0.75

2 625 0.010 0.050 150 31 108.1 3.75

3 625 0.018 0.050 230 19 89.8 6.75

4 625 0.010 0.097 86 29 80.2 7.28

5 625 0.018 0.097 180 20 29.4 13.10

6 966 0.005 0.078 30 55 32.7 4.52

7 966 0.015 0.078 210 45 24.2 13.56

8 1200 0.010 0.050 95 30 30.5 7.20

Table 1: Machinability data for 390 die cast/carbonide/wet.

7.2 Example 2 : Machining recommendations

The problem is the following [20]:

Machinability tests on 390 die cast aluminum cut with VC-3 carbide cutting tools were conducted over the

following ranges of speed, feed rates, and depths of cut:

Cutting speed (v) : 600 sfm to 1200 sfm

Feed rate (f): 0.002 ipr to 0.018 ipr

Depth of cut (d): 0.050 in to 0.100 in

Table 1 (taken from Ghiassi et al. [20]) provides the cutting conditions and associated machining performance

measures (criteria). The data in this table were used to develop �rst-order predicting equations for the performance

variables SR, SI, TL, and MRR in terms of the controllable variables v, f and d, in logarithmic transformed

coordinates. The following equations represent the least-squares �t to the data; the feed and depth of cut have

been multiplied by 1000 to ensure that their logarithms are positive.

lnSR = 7:49� 0:44 ln v + 1:16ln(1000f)� 0:61 ln(1000d)

lnSI = �4:13 + 0:92 ln v � 0:16 ln(1000f) + 0:43 ln(1000d)

lnTL = 21:90� 1:94 ln v � 0:30 ln(1000f)� 1:04 ln(1000d)

lnMRR = �11:33 + ln v + ln(1000f) + ln(1000d)

(43)

Bounds on the values of the controllable variables are de�ned below to re
ect the ranges over which the

machinability tests were run, and bounds on the values of the performance variables.

600 � v � 1200 sfm

0:002 � f � 0:018 ipr

0:05 � d � 0:10 in

(44)

SR � 75 �in

SI � 50% undamaged

TL � 30 min

(45)

In order to express the variables in Equations (44) and (45) in the same form as in the performance model,

Equation (43), their logarithmic transformations are given in Equations (46) and (47):

6:3969 � ln v � 7:0901

0:6931 � ln(1000f) � 2:8904

3:9120 � ln(1000d) � 4:6052

(46)

�0:44 ln v + 1:16ln(1000f)� 0:61 ln(1000d) � �3:17

�0:92 ln v + 0:16 ln(1000f)� 0:43 ln(1000d) � �8:04

1:94 ln v + 0:30 ln(1000f) + 1:04 ln(1000d) � 18:50

(47)

The natural logarithms of SR, TL and SI have been substituted from Equation (43) to obtain Equation (47).

The constraint of TL was multiplied by �1 to maintain the same direction of inequality as the other constraints.

To simplify the statement of the problem, let x

1

= ln v, x

2

= ln(1000f), x

3

= ln(1000d), and the vector

x = (x

1

; x

2

; x

3

). Also, de�ne z

1

(x) = lnSR, z

2

(x) = lnSI, z

3

(x) = ln TL, and z

4

(x) = lnMRR. Again,

for simplicity, we will refer to the objective functions as z

1

, z

2

, z

3

and z

4

, respectively, and de�ne the vector

z = (�z

1

; z

2

; z

3

; z

4

). Note that minimizing z

1

= lnSR is equivalent to maximizing �z

1

. Accordingly, the

components of z [from Equation (1)] may be expressed as:

�z

1

= �7:49 + 0:44x

1

� 1:16x

2

+ 0:61x

3

z

2

= �4:13 + 0:92x

1

� 0:16x

2

+ 0:43x

3

z

3

= 21:90� 1:94x

1

� 0:30x

2

� 1:04x

3

z

4

= �11:331 + x

1

+ x

2

+ x

3

(48)

Maximize z, as de�ned by Equation (48), under the following constraints:

6:3969 � x

1

� 7:0901

0:6931 � x

2

� 2:8904

3:9120 � x

3

� 4:6052

(49)

�0:44x

1

+ 1:16x

2

� 0:61x

3

� �3:1725

�0:92x

1

+ 0:16x

2

� 0:43x

3

� �8:0420

1:94x

1

� 0:30x

2

� 1:04x

3

� 18:4988

(50)

Inequalities (49) and (50) correspond to inequalities (46) and (47), respectively.

8 Comparison of Results

We will compare the ideal vector that each method generates with the best results reported in the Literature.

We used the Monte Carlo methods included in MOSES, together with Osyczka's multiobjective optimization

system to obtain the ideal vector. Also, several GA-based approaches will be tested using the same parameters

(same population size and same crossover and mutation rates). If niching is required, then the niche size will be

computed according to the methodology suggested by the developers of the method (see [10] for details).

8.1 Example 1

The ideal vector of this problem was computed using Monte Carlo methods 1 and 2 (generating 100 points),

Osyczka's multiobjective optimization system and a GA (with a population of 100 chromosomes running during

50 generations) using binary and
oating point representation, with the procedure described before to adjust its

parameters. The corresponding results are shown in Table 2, including the best results reported in the literature

[49]. The results for Monte Carlo Method 2 are the same as for Method 1, and the results presented for the

Min-max method are also the basis for computing the best trade-o� for all the methods in Osyczka's system. As

can be seen from these results, the GA provided the best ideal vector, combining the results produced with both

binary and
oating point representation, although the second representation scheme provides better results in

general [10].

As we can see in Table 3, the two new GA-based approaches proposed by the authors, named GAminmax1

and GAminmax2 respectively, provide the best overall results when a
oating point representation is used. The

second method slightly improves the result obtained using the �rst method, although it should be mentioned that

the �rst technique does not require any sort of niching parameters as the second approach. Population size and

Method x

1

x

2

x

3

x

4

f

1

f

2

Monte Carlo 1 30.84 28.26 3.79 4.06 188:65 0.06175

Monte Carlo 1 52.97 44.08 1.99 0.99 555.22 0:00849

Min-Max (OS) 74.97 44.97 1.97 1.97 316:85 0.01697

Min-Max (OS) 74.99 44.99 1.99 2.06 326.49 0:01636

GA (Binary) 66.39 38.63 0.90 0.91 128:27 0.05241

GA (Binary) 80.00 50.00 4.99 4.99 848.41 0:00591

GA (FP) 61.14 41.14 0.90 0.90 127:46 0.06034

GA (FP) 80.00 50.00 5.00 5.00 850.00 0:00590

Literature 60.70 49.90 0.90 0.90 128:47 0.060

Literature 80.00 50.00 5.00 5.00 850.00 0:0059

Table 2: Comparison of results computing the ideal vector of the �rst example (design of an I-beam). For each

method the best results for optimum f

1

and f

2

are shown in boldface. OS stands for Osyczka's Multiobjective

Optimization System. Every objective is being minimized.

niching parameters play vital roles in numerical optimization with GAs, so it is important to choose appropriate

values for them. Some guidelines for this are presented next. Additional details may be found in [10].

From our experience in numerical optimization, we advise the use of populations of at least as many individuals

as the length of the chromosome, and to use twice that amount when possible (i.e., when the CPU time required

for the analysis is not too high). As we have stated before [10],
oating point representation produces better

results and in a shorter period of time, because the chromosomic strings required under this representation

scheme are always shorter and easier to decode than their binary counterparts. For this problem, for instance,

the chromosome length is 49 using binary representation, but only 16 using
oating point representation.

The niche size of our second approach is computed following the work by Deb and Goldberg [13] in which

sharing is done over the parameters. The principle to derive such an estimate is to assume that each niche is

enclosed in a p-dimensional hypersphere of radius �

share

such that each sphere encloses

1

q

of the volume of the

space, where q is the number of peaks in the solution space. The radius of a hypersphere containing the entire

space is calculated as [13]

r =

1

2

v

u

u

t

p

X

k=1

(x

k;max

� x

k;min

)

2

(51)

and the volume is calculated as V = cr

p

with c a constant. Dividing this volume in q parts and recognizing

that the hypervolume has the same form regardless of size, �

share

may be calculated as:

�

share

=

r

p

p

q

(52)

The results obtained for this problem show how easily the mathematical programming techniques can be

surpassed by a GA-approach, using the same number of points, though the GA starts with a completely random

population (our approaches ensure that the initial population contains only feasible individuals, but these solutions

are still randomly generated). Although we used the same random numbers generator that the Monte Carlo

techniques use, the results are quite di�erent. For those who think that a simple linear combination of objectives

should be good enough to deal with multiobjective optimization problem, the results for GALC (see Table 3)

show the contrary even for this simple bi-objective problem. Finally, it is interesting to notice how some simple

approaches, like Lexicographic ordering (in which an objective is randomly selected at each turn) work remarkably

well with problems that have few objectives, like this. Our �rst approach requires the ideal vector (computed

previously with another GA), and a set of weights to delineate the Pareto front. For this example, ten weights

were used (all combinations of two, from 0.1 to 0.9). Our second approach computes the ideal vector during

run-time, but it requires niching parameters to avoid convergence to a single solution, as indicated before.

Method x

1

x

2

x

3

x

4

f

1

f

2

L

p

(f)

Ideal Vector 127.46 0.0059 0.000000

Monte Carlo 1 77.57 20.59 3.47 3.88 401.77 0.0159 3.837581

Monte Carlo 2 75.01 31.02 1.76 2.48 277.09 0.0198 3.525181

Min-max (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

GCM (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

WMM (OS) 75.06 44.99 1.99 1.99 320.55 0.0167 3.350946

PMM (OS) 74.97 44.97 1.97 1.97 316.85 0.0170 3.360191

NMM (OS) 74.99 44.99 1.99 2.06 326.49 0.0164 3.332501

GALC (B) 80.00 50.00 0.92 3.98 463.99 0.0083 3.042494

GALC (FP) 80.00 50.00 0.90 3.80 445.55 0.0086 2.953417

Lexicographic (B) 80.00 45.25 0.98 2.73 319.95 0.0124 2.614093

Lexicographic (FP) 80.00 50.00 0.90 2.26 293.74 0.0134 2.572228

VEGA (B) 80.00 50.00 0.94 2.24 295.59 0.0134 2.589958

VEGA (FP) 80.00 23.33 3.52 5.00 479.49 0.0116 3.736026

NSGA (B) 80.00 44.28 2.39 4.35 555.19 0.0080 3.714160

NSGA (FP) 80.00 50.00 5.00 1.18 506.56 0.0132 4.210141

MOGA (B) 80.00 46.48 1.29 2.70 347.27 0.0119 2.743380

MOGA (FP) 80.00 30.38 0.90 3.53 279.95 0.0146 2.668388

NPGA (B) 78.75 36.69 1.40 3.71 372.17 0.0117 2.909137

NPGA (FP) 78.52 29.36 2.51 2.74 344.44 0.0160 3.409632

Hajela (B) 80.00 50.00 0.90 4.72 535.48 0.0072 3.418376

Hajela (FP) 80.00 50.00 1.92 5.00 634.05 0.0066 4.090622

GAminmax1 (B) 80.00 40.58 0.92 3.02 312.77 0.0127 2.603628

GAminmax1 (FP) 80.00 50.00 0.90 2.43 310.33 0.0126 2.568096

GAminmax2 (B) 80.00 49.59 1.12 2.33 315.36 0.0129 2.653479

GAminmax2 (FP) 80.00 50.00 0.90 2.35 303.06 0.0129 2.567664

Table 3: Comparison of the best overall solution found by each one of the methods included in MOSES for the

�rst example (design of an I-beam). GA-based methods were tried with binary (B) and
oating point (FP)

representations. The following abbreviations were used: OS = Osyczka's System, GCM = Global Criterion

Method (exponent=2.0), WMM (Weighting Min-max), PWM (Pure Weighting Method), NWM (Normalized

Weighting Method), GALC = Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.5 (equal weight for both objectives). Each objective is being minimized.

Method v f d SR SI TL MRR

(sfm) (ipr) (in) (�in) (% udmg) (min) (in

3

/min)

Monte Carlo 1 1105.94 0.0020 0.0695 14:03 56.15 39.67 1.87

Monte Carlo 1 1105.94 0.0020 0.0695 14.03 56:15 39.67 1.87

Monte Carlo 1 1014.64 0.0026 0.0739 18.78 51.18 40:76 2.35

Monte Carlo 1 949.56 0.00330 0.0925 22.16 51.06 34.22 3:48

Min-Max (OS) 1200.00 0.0016 0.0496 13:02 54.18 51.14 1.18

Min-Max (OS) 1200.00 0.0016 0.0496 13.02 54:18 51.14 1.18

Min-Max (OS) 1200.00 0.0016 0.0496 13.02 54.18 51:14 1.18

Min-Max (OS) 1200.00 0.0026 0.0499 21.95 50.49 44.43 1:86

GA (Binary) 1045.64 0.0020 0.100 11:31 62.52 30.42 2.51

GA (Binary) 1200.00 0.0020 0.0783 12.36 63:88 30.03 2.25

GA (Binary) 1020.42 0.0020 0.0628 15.18 50.05 51:74 1.54

GA (Binary) 1074.73 0.0035 0.0819 24.16 53.80 30.01 3:70

GA (FP) 1053.00 0.0020 0.1000 11:28 62.93 30.01 2.53

GA (FP) 1053.00 0.0020 0.1000 11.28 62:93 30.01 2.53

GA (FP) 1134.11 0.0020 0.0500 16.66 50.01 53:43 1.36

GA (FP) 952.98 0.0042 0.0960 28.57 50.09 30.42 4:61

Literature 1048.0 0.0020 0.1000 11:30 62.65 30.29 2.51

Literature 1200.0 0.002 0.0776 12.43 63:64 30.31 2.23

Literature 840.0 0.002 0.1000 12.46 51.11 46:52 2.02

Literature 944.0 0.004 0.1000 25.60 51.16 30.38 4:40

Table 4: Comparison of results computing the ideal vector of the second example (machining recommendations).

For each method the best results for each objective function are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. SR is being minimized, and SI, TL and MRR are being maximized.

8.2 Example 2

The second example (machinign recommendations) is very interesting, because it has four objective functions,

but the ideal vector is practically achievable [10]. In this case we also used a population size of 100 and the

GA was executed for 50 generations. For the Monte Carlo methods and the Osyczka multiobjective optimization

system, we generated 100 initial points.

The ideal vector is displayed on Table 4. Again, a combination of the results produced by the GA under binary

and
oating point representations provides an ideal vector better than the solution previously reported in the

literature.

As we can see in Table 5, the two new GA-based approaches proposed by the authors provide again the best

overall results when a
oating point representation is used. The second method is practically able to �nd the ideal

vector, which is normally only targetable with much larger populations [10]. The chromosome length required for

this example is 40 under binary representation and 13 using
oating point representation.

The Lexicographic method, like most of the other GA-based techniques, performs very poorly in this problem,

indicating, as we mentioned before, its incapability to keep its good performance when the number of objective

functions is increased. As expected, a simple linear combination of objectives provides an extremely poor solution.

Hajela's approach (very similar to our weighted min-max technique) gets a very good solution, but unfortunately

this good behavior is rather erratical [10]. NPGA, on the other hand, is normally very good to �nd the Pareto

front and to keep the GA from converging to a single solution, but it is not as good for �nding the best trade-o�

because it never manipulates the real objective function values within the GA.

Through these results we can see that the second approach proposed by the authors provides remarkable

solutions when a proper niche size is used. However, a disadvantage of this method is that it is normally intended

to produce a single solution, since it turns out to be quite di�cult to keep the GA from converging to a unique

value after 50 generations. This is �ne for many engineering applications, but it could be undesirable in problems

in which several possible trade-o�s exist with equivalent advantages each, and the designer wants to be able to see

them all to decide which one to choose. For that sake, the �rst method proposed by the authors works a lot better,

since it uses weights to let the designer determine the relative importance of the objectives. Normally, just a few

weights are necessary (in this example we used, for instance, 15 weights combinations) to get a reasonably good

trade-o�, and it is generally the case that each of this weight combinations will produce a di�erent non-dominated

solution. Therefore, using our �rst approach, the designer is able to see a good portion of the Pareto front, so that

he/she can decide which solution to adopt based on his/her own needs. Although this �st approach emphasizes

the generation of the Pareto front, the best trade-o� that it �nds is still better than those found by the rest of

the techniques included in MOSES (see Tables 3 and 5).

9 Conclusions

We have proposed two multiobjective optimization methods based on the min-max optimization approach.

The �rst approach is very robust because it transforms the multiobjective optimization problem into several

single objective optimization problems, and it works very well independently of the representation scheme used.

However, a
oating point representation seems to work better for numerical optimization applications with any of

the two approaches proposed. The main drawbacks of the �rst min-max approach proposed is that it requires the

ideal vector and a set of weights to delineate the Pareto set. Nevertheless, when the ideal vector is not known, a

set of target (desirable) values for each objective can be provided instead. Also, �nding proper weights is normally

an easy task, since not many of them are required to get reasonably good results.

The second technique that we proposed does not require the ideal vector, since it is able to compute it based on

the local populations generated. However, to avoid convergence to a single solution, a form of sharing similar to

that employed by the NPGA (Niched Pareto Genetic Algorithm) was implemented, but the problem of �nding an

optimum tournament size was eliminated by using a min-max binary tournament selection strategy. Nevertheless,

the niche sharing factor still has to be provided by the user. For that purpose, we have proposed the use of sharing

on the parameter values by computing the optimum niche size using the guidelines provided by Goldberg and Deb

[13]. Our second method is very fast and reliable except in cases in which it is possible to �nd solutions that highly

Method v f d SR SI TL MRR L

p

(f)

(sfm) (ipr) (in) (�in) (% udmg) (min) (in

3

/min)

Ideal Vector 11.28 63.88 53.43 4.61 0.000000

Monte Carlo 1 914.37 0.0030 0.0969 19.55 51.11 36.12 3.18 1.385445

Monte Carlo 2 1014.64 0.0026 0.0739 18.77 51.18 40.76 2.35 1.279883

Min-max (OS) 1200.00 0.0026 0.0499 21.95 50.49 44.43 1.86 1.889006

GCM (OS) 1200.00 0.0026 0.0499 21.95 50.49 44.43 1.86 1.889006

WMM (OS) 1200.00 0.0026 0.0499 21.95 50.49 44.43 1.86 1.889006

PMM (OS) 1200.00 0.0016 0.0496 13.02 54.18 51.14 1.18 1.856245

NMM (OS) 1200.00 0.0016 0.0496 13.02 54.18 51.14 1.18 1.856245

GALC (B) 1200.00 0.0044 0.0607 36.03 50.47 30.89 3.84 2.944513

GALC (FP) 987.57 0.0020 0.1000 11.60 59.32 33.98 2.37 0.280571

Lexicographic (B) 1200.00 0.0020 0.0657 13.76 59.24 36.05 1.89 0.745638

Lexicographic (FP) 1200.00 0.0020 0.0759 12.60 63.03 31.02 2.19 0.295288

VEGA (B) 1200.00 0.0020 0.0781 12.38 63.81 30.11 2.25 0.230000

VEGA (FP) 1037.39 0.0020 0.1000 11.35 62.07 30.89 2.49 0.064436

NSGA (B) 1200.00 0.0020 0.0691 13.34 60.54 34.20 1.99 0.586649

NSGA (FP) 959.16 0.0020 0.1000 11.75 57.75 35.96 2.30 0.411813

MOGA (B) 1118.34 0.0021 0.0868 12.67 62.10 30.49 2.45 0.184670

MOGA (FP) 1200.00 0.0020 0.0740 12.79 62.35 31.85 2.13 0.371517

NPGA (B) 1075.07 0.0021 0.0939 12.29 61.94 30.33 2.54 0.122571

NPGA (FP) 1094.35 0.0020 0.0927 11.61 63.11 30.13 2.43 0.073782

Hajela (B) 1045.55 0.0020 0.1000 11.31 62.52 30.42 2.51 0.030583

Hajela (FP) 1200.00 0.0034 0.0556 28.19 50.65 36.57 2.72 1.990499

GAminmax1 (B) 1082.18 0.0020 0.0943 11.55 62.92 30.25 2.45 0.063389

GAminmax1 (FP) 1049.50 0.0020 0.1000 11.29 62.73 30.20 2.52 0.014317

GAminmax2 (B) 992.77 0.0020 0.0989 11.65 59.32 34.03 2.36 0.291994

GAminmax2 (FP) 1052.99 0.0020 0.1000 11.28 62.93 30.01 2.53 0.000012

Table 5: Comparison of the best overall solution found by each one of the methods included in MOSES for the

second example (machining recommendations). GA-based methods were tried with binary (B) and
oating point

(FP) representations. The following abbreviations were used: OS = Osyczka's System, GCM = Global Criterion

Method (exponent=2.0), WMM (Weighting Min-max), PWM (Pure Weighting Method), NWM (Normalized

Weighting Method), GALC = Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.25 (equal weight for every objective). SR is being minimized, and SI, TL

and MRR are being maximized.

favor more than one objective (namely when some elements of the ideal vector are achievable) but that highly

disfavors other objectives [10]. This behavior is common in highly convex search spaces which are unfortunately

very common in engineering optimization problems and more work is required to extend this method to deal with

such situations.

The two techniques that we developed ensure that only feasible points are produced at generation zero, and

the crossover and mutation operators were modi�ed in such a way that infeasible solutions are never generated

by the algorithms. This property makes our approaches unique, since none of the other GA-based techniques

analyzed considered this important issue. This is mainly because most of the previous work with multiobjective

optimization techniques dealt only with unconstrained problems.

Finally, the importance of MOSES as a benchmark for new multiobjective optimization methods should be ob-

vious, since no other similar tools, combining GA-based approaches with mathematical programming techniques,

were previously available. Additional details may be found in [10]. Also, the system is a valuable tool, as it is,

for engineering design optimization, because of the variety of di�erent approaches that it contains.

10 Future Work

Much additional work remains to be done, since this is a very broad area of research. For example, it is

desirable to do more theoretical work on niches and population sizes for multiobjective optimization problems to

verify our empirical results. In that sense, we expect that MOSES may be useful as an experimentation tool for

those interested in this area. To talk about convergence in this context seems a rather di�cult task, since there

is no common agreement on what optimum really means. However, if we use concepts from Operations Research

such as the min-max optimum, it should be possible to develop such a theory of convergence for these kinds of

problems. Also, it is highly desirable to be able to �nd more ways of incorporating knowledge about the domain

into the GA, as long as it can be automatically assimilated by the algorithm during its execution and does not

have to be provided by the user (to preserve its generality). It is also important to follow Eshelman and Scha�er's

work on a theoretical framework for the excellent performance of real-coded GAs so that practice can �nally meet

theory in numerical optimization problems.

References

[1] Hojjat Adeli and Nai-Tsang Cheng. Augmented lagrangian genetic algorithm for structural optimization.

Journal of Aerospace Engineering, 7(1):104{18, jan 1994.

[2] H. Baier. Uber algorithmen zur emittlung und charakterisierung pareto-optimaler losungen bei entwurfsauf-

gaben elastischer tragwerke. ZAMM, 57(22):318{320, 1977.

[3] J. E. Baker. Adaptive selection methods for genetic algorithms. In J. J. Grefenstette, editor, Proceedings of

an International Conference on Genetic Algorithms and Their Applications, pages 100{111, Hillsdale, New

Jersey, 1985. Lawrence Erlbaum.

[4] J. E. Baker. Reducing bias and ine�ciency in the selection algorithm. In John Grefenstette, editor, Pro-

ceedings of the Second International Conference on Genetic Algorithms, pages 14{21, Hillsdale, New Jersey,

1987. Lawrence Erlbaum Associates.

[5] L. B. Booker. Intelligent behavior as an adaptation to the task environment. Technical Report 243, University

of Michigan at Ann Arbor, Ann Arbor, Michigan, 1982.

[6] L. M. Boychuk and V. O. Ovchinnikov. Principal methods of solution of multicriterial optimization problems

(survey). Soviet Automatic Control, 6:1{4, 1973.

[7] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, Department of Computer Science of

the University of Alberta, Alberta, Canada, 1981.

[8] Bill P. Buckles and Frederick E. Petry. Genetic Algorithms. Technology Series. IEEE Computer Society

Press, 1992.

[9] Y. L. Chen and C. C. Liu. Multiobjective VAR planning using the goal-attainment method. IEE Proceedings

on Generation, Transmission and Distribution, 141(3):227{232, may 1994.

[10] Carlos Artemio Coello Coello. An Empirical Study of Evolutionary Techniques for Multiobjective Optimiza-

tion in Engineering Design. PhD thesis, Department of Computer Science, Tulane University, New Orleans,

LA, apr 1996.

[11] Charles Darwin. The Origin of Species by Means of Natural Selection or the Preservation of Favored Races

in the Struggle for Life. The Book League of America, 1929. Originally published in 1859.

[12] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, New York,

1991.

[13] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species formation in genetic function

optimization. In J. David Scha�er, editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 42{50, San Mateo, California, jun 1989. George Mason University, Morgan Kaufmann

Publishers.

[14] L. Duckstein. Multiobjective optimization in structural design: The model choice problem. In E. Atrek,

R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz, editors, New Directions in Optimum Structural

Design, pages 459{481. John Wiley and Sons, 1984.

[15] Larry J. Eshelman. The CHC adaptive search algorithm: How to have safe search when engaging in non-

traditional genetic recombination. In Gregory E. Rawlins, editor, Foundations of Genetic Algorithms, pages

265{283. Morgan Kaufmann Publishers, San Mateo, California, 1991.

[16] Larry J. Eshelman and J. Davis Scha�er. Real-coded genetic algorithms and interval-schemata. In L. Darrell

Whitley, editor, Foundations of Genetic Algorithms 2, pages 187{202. Morgan Kaufmann Publishers, San

Mateo, California, 1993.

[17] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formula-

tion, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 416{423, San Mateo, California, 1993. University of Illinois at

Urbana-Champaign, Morgan Kau�man Publishers.

[18] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in multiobjective optimiza-

tion. Technical report, Department of Automatic Control and Systems Engineering, University of She�eld,

She�eld, U. K., 1994.

[19] M. P. Fourman. Compaction of symbolic layout using genetic algorithms. In Genetic Algorithms and their Ap-

plications: Proceedings of the First International Conference on Genetic Algorithms, pages 141{153. Lawrence

Erlbaum, 1985.

[20] M. Ghiassi, R. E. DeVor, M. I. Dessouky, and B. A. Kijowski. An application of multiple criteria decision

making principles for planning machining operations. IIE Transactions, 16(2):106{114, jun 1984.

[21] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Mass. :

Addison-Wesley Publishing Co., 1989.

[22] David E. Goldberg. Real-coded genetic algorithms, virtual alphabets and blocking. Technical Report 90001,

University of Illinois at Urbana-Champaign, Urbana, Illinois, sep 1990.

[23] David E. Goldberg and Kalyanmoy Deb. A comparison of selection schemes used in genetic algorithms. In

G.J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69{93. Morgan Kaufmann, San Mateo,

California, 1991.

[24] David E. Goldberg and J. Richardson. Genetic algorithm with sharing for multimodal function optimiza-

tion. In J. J. Grefenstette, editor, Genetic Algorithms and Their Applications: Proceedings of the Second

International Conference on Genetic Algorithms, pages 41{49. Lawrence Erlbaum, 1987.

[25] J. J. Grefenstette. GENESIS: A system for using genetic search procedures. In Proceedings of the 1984

Conference on Intelligent Systems and Machines, pages 161{165, 1984.

[26] J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems,

Man, and Cybernetics, 16(1):122{128, 1986.

[27] J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical look at implicit parallelism. In

J. David Scha�er, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages

20{27, San Mateo, California, jun 1989. George Mason University, Morgan Kaufmann Publishers.

[28] P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal design. Structural Optimization,

4:99{107, 1992.

[29] Joerg Heitkoetter and David Beasley. The hitch-hiker's guide to evolutionary computation (faq in

comp.ai.genetic). USENET, sep 1995. (Version 3.3).

[30] M. R. Hilliard, G. E. Liepins, M. Palmer, and G. Rangarajen. The computer as a partner in algorithmic

design: Automated discovery of parameters for a multiobjective scheduling heuristic. In R. Sharda, B. L.

Golden, E. Wasil, O. Balci, and W. Stewart, editors, Impacts of Recent Computer Advances on Operations

Research. North-Holland Publishing Company, New York, 1989.

[31] David M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill Book Company, New York, 1972.

[32] John H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Harbor : University of Michigan Press,

1975.

[33] John H. Holland. Adaptation in Natural and Arti�cial Systems. An Introductory Analysis with Applications

to Biology, Control and Arti�cial Intelligence. MIT Press, Cambridge, Massachusetts, 1992.

[34] J. Horn and N. Nafpliotis. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Technical

Report IlliGAl Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.

[35] C. L. Hwang and A. S. M. Masud. Multiple objective decision-making methods and applications. In Lecture

Notes in Economics and Mathematical Systems, volume 164. Springer-Verlag, New York, 1979.

[36] Santiago Hern�andez Ib�a~nez. M�etodos de Dise~no Optimo de Estructuras. Colegio de Ingenieros de Caminos,

Canales y Puertos, 1990. (in Spanish).

[37] W. Jakob, M. Gorges-Schleuter, and C. Blume. Application of genetic algorithms to task planning and

learning. In R. M�anner and B. Manderick, editors, Parallel Problem Solving from Nature, 2nd Workshop,

Lecture Notes in Computer Science, pages 291{300, Amsterdam, 1992. North-Holland Publishing Company.

[38] A. K. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University

of Michigan, 1975.

[39] K. Koski. Multicriterion optimization in structural design. In E. Atrek, R. H. Gallagher, K. M. Ragsdell,

and O. C. Zienkiewicz, editors, New Directions in Optimum Structural Design, pages 483{503. John Wiley

and Sons, 1984.

[40] John R. Koza. Genetic Programming. On the Programming of Computers by Means of Natural Selection.

The MIT Press, 1992.

[41] Frank Kursawe. A variant of evolution strategies for vector optimization. In H. P. Schwefel and R. M�anner,

editors, Parallel Problem Solving from Nature. 1st Workshop, PPSN I, volume 496 of Lecture Notes in

Computer Science, pages 193{197, Berlin, Germany, oct 1991. Springer-Verlag.

[42] G. E. Liepins, M. R. Hilliard, J. Richardson, and M. Palmer. Genetic algorithms application to set covering

and travelling salesman problems. In D. E. Brown and C. C. White, editors, Operations research and

Arti�cial Intelligence: The integration of problem-solving strategies, pages 29{57. Kluwer Academic, Norwell,

Massachusetts, 1990.

[43] J. G. Lin. Maximal vectors and multi-objective optimization. Journal of Optimization Theory and Applica-

tions, 18(1):41{64, jan 1976.

[44] S. M. Mahfoud. Crowding and preselection revisited. In R. M�anner and B. Manderick, editors, Parallel

problem Solving from Nature, 2nd Workshop, Amsterdam, 1992. North-Holland Publishing Company.

[45] ZbigniewMichalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, second

edition, 1992.

[46] A. Osyczka. An apporach to multicriterion optimization problems for engineering design. Computer Methods

in Applied Mechanics and Engineering, 15:309{333, 1978.

[47] A. Osyczka. An approach to multicriterion optimization for structural design. In Proceedings of International

Symposium on Optimal Structural Design. University of Arizona, 1981.

[48] Andrzej Osyczka. Multicriterion Optimization in Engineering with FORTRAN programs. Ellis Horwood

Limited, 1984.

[49] Andrzej Osyczka. Multicriteria optimization for engineering design. In John S. Gero, editor, Design Opti-

mization, pages 193{227. Academic Press, 1985.

[50] Vilfredo Pareto. Cours D'Economie Politique, volume I and II. F. Rouge, Lausanne, 1896.

[51] David Powell and Michael M. Skolnick. Using genetic algorithms in engineering design optimization with

non-linear constraints. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 424{431. Morgan Kaufmann Publishers, jul 1993.

[52] S. Rao. Game theory approach for multiobjective structural optimization. Computers and Structures,

25(1):119{127, 1986.

[53] S. S. Rao. Multiobjective optimization in structural design with uncertain parameters and stochastic pro-

cesses. AIAA Journal, 22(11):1670{1678, nov 1984.

[54] Jon T. Richardson, Mark R. Palmer, Gunar Liepins, andMike Hilliard. Some guidelines for genetic algorithms

with penalty functions. In J. David Scha�er, editor, Proceedings of the Third International Conference on

Genetic Algorithms, pages 191{197, George Mason University, 1989. Morgan Kaufmann Publishers.

[55] Brian J. Ritzel, J. Wayland Eheart, and S. Ranjithan. Using genetic algorithms to solve a multiple objective

groundwater pollution containment problem. Water Resources Research, 30(5):1589{1603, may 1994.

[56] R. S. Rosenberg. Simulation of genetic populations with biochemical properties. PhD thesis, University of

Michigan, Ann Harbor, Michigan, 1967.

[57] M. E. Salukvadze. On the existence of solution in problems of optimization under vector valued criteria.

Journal of Optimization Theory and Applications, 12(2):203{217, 1974.

[58] J. David Scha�er. Multiple objective optimization with vector evaluated genetic algorithms. In Genetic

Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms,

pages 93{100. Lawrence Erlbaum, 1985.

[59] H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley and sons, Great Britain, 1981.

[60] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms.

Technical report, Department of Mechanical Engineering, Indian Institute of Technology, Kanput, India,

1993.

[61] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic

Algorithms. Evolutionary Computation, 2(3):221{248, fall 1994.

[62] F. Szidarovszky and L. Duckstein. Basic properties of MODM problems. In Classnotes 82-1. Department of

Systems and Industrial Engineering, University of Arizona, Tucson, Arizona, 1982.

[63] C. H. Tseng and T. W. Lu. Minimax multiobjective optimization in structural design. International Journal

for Numerical Methods in Engineering, 30:1213{1228, 1990.

[64] P. B. Wilson and M. D. Macleod. Low implementation cost IIR digital �lter design using genetic algorithms.

In IEE/IEEE Workshop on Natural Algorithms in Signal Processing, pages 4/1{4/8, Chelmsford, U.K., 1993.

[65] Alden H. Wright. Genetic algorithms for real parameter optimization. In Gregory J. E. Rawlins, editor,

Foundations of Genetic Algorithms, pages 205{218. Morgan Kaufmann Publishers, San Mateo, California,

1991.

