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Abstract. The performance of an information retrieval system is usu-
ally measured in terms of two different criteria, precision and recall.
This way, the optimization of any of its components is a clear example
of a multiobjective problem. However, although evolutionary algorithms
have been widely applied in the information retrieval area, in all of these
applications both criteria have been combined in a single scalar fitness
function by means of a weighting scheme. In this paper, we will tackle
with a usual information retrieval problem, the automatic derivation of
Boolean queries, by incorporating a well known Pareto-based multiobjec-
tive evolutionary approach, MOGA, into a previous proposal of a genetic
programming technique for this task.

1 Introduction

Information retrieval (IR) may be defined, in general, as the problem of the
selection of documentary information from storage in response to search ques-
tions provided by a user [15]. Information retrieval systems (IRSs) are a kind of
information systems that deal with data bases composed of information items
—documents that may consist of textual, pictorial or vocal information— and
process user queries trying to allow the user to access to relevant information
in an appropriate time interval. Nowadays, the world wide web constitutes the
main example of an IRS.

Most of the commercial IRSs are based on the Boolean IR model [17], based
on the use of Boolean queries where the query terms are joined by the logical
operators AND and OR. This way, the user needs to have a clear knowledge on
how to connect the query terms together using the Boolean operators in order
to build a query defining his information needs and allowing him to retrieve
relevant documents.

The difficulty found by non-expert users to formulate these kinds of queries
makes necessary the design of automatic methods for this task. The paradigm of
Inductive Query by Example (IQBE) [4], where a query describing the informa-
tion contents of a set of documents provided by a user is automatically derived,
can be useful to assist the user in the query formulation process. Focusing on the
Boolean IR model, the only existing approach is that of Smith and Smith [16],
which is based on genetic programming (GP) [11]. As usual in the topic, this



approach is guided by a weighted fitness function combining the two common
criteria to measure the performance of an IRS, precision and recall.

In this paper, we will propose a new IQBE algorithm to learn Boolean queries
by extending Smith and Smith approach in order to transform it into a multi-
objective evolutionary algorithm (EA) not based on a weighted fitness function
[5]. This way, we will work as in [14], incorporating MOGA [9] Pareto-based
evolutionary multiobjective components into GP. The experimental testbed will
be based on one of the most known IR benchmarks, the Cranfield document
collection [15,1].

With this aim, this contribution is structured as follows. Section 2 is devoted
to the preliminaries, including the basis of Boolean IRSs, the definition of both
precision and recall criteria, and the basis of IQBE techniques. Then, Smith and
Smith’s proposal is reviewed in Section 3. Section 4 presents the adaptations
made to include the Pareto-based multiobjective EA components in the latter
algorithm while the experiments developed to test the new proposal are showed
in Section 5. Finally, several concluding remarks are pointed out in Section 6.

2 Preliminaries

2.1 Boolean Information Retrieval Systems

An IRS is basically constituted of three main components: documentary data
base, query subsystem and matching or evaluation mechanism, whose composi-
tion for Boolean IRSs are introduced as follows.

The documentary data base. This component stores the documents and the
representation of their information contents. It is associated with the indexer
module, which automatically generates a representation for each document by
extracting the document contents. Textual document representation is typically
based on index terms (that can be either single terms or sequences) which are
the content identifiers of the documents.

In the Boolean retrieval model, the indexer module performs a binary index-
ing in the sense that a term in a document representation is either significant
(appears at least once in it) or not (it does not appear in it at all). Let D be
a set of documents and T be a set of unique and significant terms existing in
them. The indexer module of the Boolean IRS defines an indexing function:
F:DxT — {0,1}, where F(d,t) takes value 1 if term ¢ appears in document
d and 0 otherwise.

The query subsystem. It allows the users to formulate their queries and presents
the relevant documents retrieved by the system to them. To do so, it includes a
query language, that collects the rules to generate legitimate queries and proce-
dures to select the relevant documents.

Boolean queries are expressed using a query language that is based on query
terms and permits combinations of simple user requirements with logical opera-
tors AND, OR and NOT [17]. The result obtained from the processing of a query



is a set of documents that totally match with it, i.e., only two possibilities are
considered for each document: to be or not to be relevant for the user’s needs,
represented by his query.

The matching mechanism. It evaluates the degree to which the document rep-
resentations satisfy the requirements expressed in the query, the retrieval status
value (RSV), and retrieves those documents that are judged to be relevant to it.

As said, the RSV has only two values associated, 0 and 1, in Boolean IRSs.
In order to match a query, a document has to fulfill it completely, i.e., it has to
include the positive query terms specified in the search expression and not to
include those that have been specifically given in that negative way. In order to
obtain the set of relevant documents for a query, it is represented as a parse tree
and is evaluated from the leaves to the root. Each leaf is associated to the set of
documents including (or not including) the corresponding (negative) query term.
Then, the retrieved document sets in the inner nodes are computed by applying
set arithmetic (with the AND operator being the set intersection and the OR
operator standing for the set union). The final set of retrieved documents is that
associated to the root when finishing the evaluation of the tree.

2.2 Evaluation of Information Retrieval Systems

There are several ways to measure the quality of an IRS, such as the system
eficiency and effectiveness, and several subjective aspects related to the user
satisfaction (see, for example, [1], chapter 3). Traditionally, the retrieval effec-
tiveness —usually based on the document relevance with respect to the user’s
needs— is the most considered. There are different criteria to measure this as-
pect, with the precision and the recall being the most used.

Precision is the rate between the relevant documents retrieved by the IRS in
response to a query and the total number of documents retrieved, whilst recall
is the rate between the relevant documents retrieved and the total number of
relevant documents to the query existing in the data base [17]. The mathematical
expression of each of them is showed as follows:

_ 2ara-fa _Dqrd- fa
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with r4 € {0,1} being the relevance of document d for the user and f; € {0,1}
being the retrieval of document d in the processing of the current query. Notice
that both measures are defined in [0,1], with 1 the optimal value.

Notice that the only way to know all the relevant documents for a query
existing in a documentary base (needed to compute the recall measure) is to
evaluate them all one by one. Due to this and to the relevence subjectivity,
there are several classical documentary bases available, each of them with a set
of queries with known relevance judgments, that can be used to test the different
new proposals in the field of IR [15,1]. In this contribution, we will deal with
the well known Cranfield collection.



As said, up to our knowledge, all the previous applications of machine learn-
ing techniques to any of the IRS components trying to optimize both criteria
have considered a weighted combination of them. This is why the aim of our
contribution is to provide a first step on the application of Pareto-based multi-
objective EAs to IR in order to evolve a complete set of Pareto optimal solutions
optimizing both criteria simultaneously.

2.3 Inductive Query by Example

IQBE was proposed in [4] as “a process in which searchers provide sample docu-
ments (examples) and the algorithms induce (or learn) the key concepts in order
to find other relevants documents”. This way, IQBE is a process for assisting the
users in the query formulation process performed by machine learning methods.
It works by taking a set of relevant (and optionally, non relevant documents)
provided by a user —that can be obtained from a preliminary query or from a
browsing process in the documentary base— and applying an off-line learning
process to automatically generate a query describing the user’s needs (as repre-
sented by the document set provided by him). The obtained query can then be
run in other IRSs to obtain more relevant documents. This way, there is no need
that the user interacts with the process as in other query refinement techniques
such as relevance feedback [15].

There have been proposed IQBE proposals for the different existing IR mod-
els. As said, Smith and Smith [16] proposed the GP algorithm to derive Boolean
queries that will be considered in this paper. On the other hand, all of the ma-
chine learning methods considered in Chen et al.’s paper [4] (regression trees, ge-
netic algorithms and simulated annealing) dealt with the vector space model [15].
Moreover, there are several approaches for the derivation of weighted Boolean
queries for fuzzy IRSs [3], such as the GP algorithm of Kraft et al. [12], the
niching GA-P method [7] and the simulated annealing-GP hybrid [8]. For de-
scriptions of some of the previous techniques based on EAs refer to [6].

3 The Smith and Smith’s Genetic Programming-based
Inductive Query by Example Algorithm for Boolean
Information Retrieval Systems

In [16], Smith and Smith proposed an IQBE to derive Boolean queries based on
GP. Tts components are described next:

Coding Scheme: The Boolean queries are encoded in expression trees, whose
terminal nodes are query terms and whose inner nodes are the Boolean operators
AND, OR or NOT.

The different expression trees are derived from the following grammar [16):

< QUERY >:=<TERM > |(< QUERY >< OPERATOR >< QUERY >)
< OPERATOR >:= AND|OR|NOT
<TERM >:=ty|...|tn



Selection Scheme: Each generation is based on selecting two parents, with the
best fitted one having a greater chance to be chosen, and generating two offspring
from them. Both offspring are added to the current population®.

Genetic Operators: The usual GP crossover is considered [11], which is based on
randomly selecting one edge in each parent and exchanging both subtrees from
these edges between the both parents. No mutation operator is considered?.

Generation of the Initial Population: All the individuals in the first population
are randomly generated. A pool is created with all the terms included in the
set of relevant documents provided by the user, having those present in more
documents a higher probability of being selected.

Fitness function: The following function combining precision and recall is used:
1
a-(p)+8- (%)

where a and f are the weighting factors. As can be seen, F' has to be maximized.
Moreover, when comparing two queries with the same F' value, the shorter one
is preferred.

F =

4 Incorporating Pareto-based Multiobjective
Components to the Smith and Smith’s Algorithm

As said, the Pareto-based multiobjective EA considered to be incorporated to
the basic Smith and Smith’s GP algorithm in this first work has been Fonseca
and Fleming’s MOGA [9]. The selection scheme of MOGA is based on dividing
the population in several ranked blocks and assigning a higher probability of
selection to the blocks with a lower rank, taking into account that individuals in
the same block will be equally preferable and thus will receive the same selection
probability. The rank of an individual in the population (and consequently of
his belonging block) will depend on the number of individuals dominating it.

Therefore, the selection scheme of our multiobjective GP involves the follow-
ing four steps:

1. Each individual is assigned a rank equal to the number of individuals dom-
inating it plus one (chromosomes encoding non-dominated solutions receive
rank 1).

2. The population is increasingly sorted according to that rank.

! Our implementation differs in this point as we consider a classical generational
scheme where the selection probabilities are assigned by the proportional scheme
and the reproduction is performed by Baker’s stochastic universal sampling [2].

2 We do use a mutation operator which changes a randomly selected term or operator
by a random one, or a randomly selected subtree by a randomly generated one.



3. Each individual is assigned a fitness value which depends on its ranking in
the population. In this contribution, we consider the following assignment:
f(C) = m

4. The fitness assignment of each equivalence class (group of individuals with
the same rank, i.e., which are non dominated among them) is averaged among
them, so that all of them finally receive the same fitness value.

Once the final fitness values have been computed, a usual selection mechanism
is applied. In this contribution we consider the proportional assignment and
Baker’s stochastic universal sampling [2].

It is known that the MOGA selection scheme can cause a large selection
pressure that might produce premature convergence. Fonseca and Fleming con-
sidered this issue and suggested to use a niching method to appropriately dis-
tribute the population in the Pareto [9]. However, as said in [5], one of the main
weaknesses of MOGA is that sharing is performed in the objective space, thus
making more difficult that two different Pareto solutions with the same objective
function values can simultaneously coexist in the population.

For example, this is not a desirable characteristic in our case, as we are
interested on obtaining as many queries with the same precision-recall values as
possible. Fortunately, as Coello also mentions, there is no specific requirement
in the MOGA algorithm to perform sharing in the objective space.

This way, in this paper we apply niching in the parameter (genotypic) space.
To do so, we have to keep in mind that we are dealing with chromosomes encoding
Boolean queries, and hence we need a metric capable of measuring distances
between expression trees. In our case, this is put into effect by the so-called edit
or Levenshtein distance [13], a text metric that computes the distance between
two strings as the number of edit (delete, insert or change) steps needed to
convert one into the other. In order to compute distances between trees with
this metric, we apply it on the strings encoding the preorder representation of
the trees.

Let a = (a1,...,a,) and b = (by,...,b,) be the two tree preorder strings.
The edit distance between them is recursively computed as follows®:

E(ar, - san), (b1, b)) =
n, ifm=0
m, ifn=0
min{E((a1,...,an-1),(b1,...,bm)) +1,
E((a1,...,an),(b1,...,bm_1)) +1, otherwise
E((G’l: s 7an—1)7 (b17 ) bm_l)) + d(ana bm)}7

with d(z,y) = 1 if £ = y, and 0 otherwise, being the character distance.

Once a valid metric for trees has been defined, it is easy to apply sharing by

using the classical Goldberg and Richardson’s sharing function [10]:

3 We should note that in this contribution we have been computed it iteratively by
the corresponding Dynamic Programming algorithm.



1—(=—2),ifd < ospare

f(CGi) . _ -
’ Sh(d) = 0, " otherwise

Y, Sh(d(C;, Cy))

F(Cy) =

with ospere being the niche radius.

5 Experiments Developed and Analysis of Results

As said, the experimental study has been developed using the Cranfield collec-
tion, composed of 1400 documents about Aeronautics. The 1400 textual docu-
ments has been automatically indexed in the usual way by first extracting the
non-stop words, thus obtaining a total number of 3857 different indexing terms,
and then considering the binary indexing to generate the term weights in the
document representations.

Among the 225 queries associated to the Cranfield collection, we have selected
those presenting 20 or more relevant documents. The resulting seven queries
(numbers 1, 2, 23, 73, 157, 220 and 225) have 29, 25, 33, 21, 40, 20 and 25
relevant documents associated, respectively.

Apart from our Pareto-based Multiobjective proposal, we have also run the
basic Smith and Smith’s algorithm with a typical setting for the weights in the
fitness function ((a, ) = (1.2,0.8)). Every algorithm have been run three times
with different initializations during the same fixed number of fitness function
evaluations (100000). The common parameter values considered are a maximum
of 20 nodes for the trees, 0.8 and 0.2 for the crossover and mutation probabilities,
respectively, and a population size of M =1600 queries. The high value for the
latter parameter is because it is well known that GP requires large population
sizes to achieve good performance. Finally, the sharing function parameter =y
takes value 2 and the niche radius ospqre has been experimentally set to 4 (a
20% of the maximum tree size).

The results obtained by the basic algorithm are showed in Table 1, where
only the best of the three runs is reported. In this table, #q stands for the
corresponding query number, Run for the number of the run where this result
was derived, Sz for the generated query size, P and R for the precision and recall
values, respectively, #rt for the number of documents retrieved by the query,
and #rr for the number of relevant documents retrieved.

On the other hand, Table 2 shows several statistics corresponding to our
multiobjective proposal. First, the number of non-dominated solutions found in
the last population and the number of different queries (trees) existing among
them are collected in columns #p and #dp, respectively. Then, the distribution of
the generated Pareto is reported as the value of two of the usual multiobjective
EA metrics M, and Mj [18]. On the one hand, My € [0,#p] measures the
distribution of the genotypes of the #p non-dominated solutions found? (i.e.,

* The value of neighborhood parameter ¢ considered in this metric has been set to
the value of the niche radius ospgre-



Table 1. Results obtained by the basic Smith and Smith’s IQBE algorithm

#q|Run|Sz|P| R |#rr/#rt
1 3 |17/(1.0/0.1379 4/4
211,3|19(1.0| 0.16 4/4
23| 1 |17/1.0/0.1515| 5/5
73| 1 |19/1.0/0.2857| 6/6
157 1 [15(1.0] 0.15 6/6
220(1,2,3/19(1.0| 0.15 | 3/3
225 2 |13]1.0] 0.2 5/5

the diversity of the solutions found). On the other hand, M3 estimates the
range to which the Pareto front spreads out in the objective values. As our
problem is composed of just two objectives, it is equal to the distance among
the objective vectors of the two outer solutions (the two queries with maximum
precision and maximum recall, respectively), whose associated data are showed
in the remaining columns of the table.

In view of these results, the performance of our proposal is very significant.
On the one hand, it overcomes the basic Smith and Smith’s algorithm in all
cases as the results of the latter when considering typical values for the weighted
combination are dominated by the solutions in the Pareto front of the former. It
seems that the use of a weighting scheme and the lack of a niching scheme make
the basic algorithm not to perform appropriately. On the other hand, the main
aim of this paper have been clearly fulfilled since the Pareto fronts obtained are
very well distributed, as demonstrated by the high number of solutions included
in them and the high values in the My and MJ metrics. As an example, Figure
1 shows the Pareto front obtained in the first run of query 1.
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Fig. 1. Pareto front of the first run for query 1



Table 2. Results obtained by the proposed multiobjective IQBE algorithm

|#q|Run|#p|#dp| M- | M3 |P| R |Sz|#r7"/#rt| P |R|Sz|#rr/#rt|

1 [134| 74 | 62.7 (1.292]1.0{0.2758(19| 8/8 [0.0534|1.0|19| 29/543

1| 2 |149] 72 | 71.1 |1.269|1.0]0.3448(19| 10/10 |0.0433|1.0|19| 29/669

3 [126| 62 | 59.8 |1.294/1.0{0.2758|19| 8/8 |0.0475/1.0{19| 29/610

1 |118| 62 | 54.7 {1.269(1.0| 0.36 19| 9/9 ]0.0290({1.0{19| 25/861

2 | 2 |559|478(274.1|11.301|1.0| 0.28 |19| 7/7 |0.0261|1.0{19| 25/956

3 |411/337(202.1{1.299(1.0| 0.28 |19| 7/7 |0.0307|1.0{19| 25/813

1 |126| 69 | 58.4 {1.321|1.0/0.3030{19| 10/10 |0.0274(1.0/19|33/1204

23| 2 |140| 73 | 66.6 |1.319|1.0|0.2121{19| 7/7 |0.0425|1.0|19| 33/776
3 |[118| 62 | 54.7 |1.269(1.0({0.2121|19| 7/7 |0.0464|1.0{19| 33/710

1 |101| 48 |44.1|1.180(1.0|0.5238/19| 11/11 |0.0820|1.0|/19| 21/256

73| 2 | 96| 39 |43.3|1.184|1.0|0.5238/19| 11/11 |0.0739(1.0/19| 21/284
3 |218|145|101.7|1.210(1.0{0.4761|19| 10/10 |0.0573|1.0{19| 21/366

1 |274/185(133.8(1.301|1.0| 0.25 |19| 10/10 |0.0556|1.0/19| 40/719

157| 2 |131] 56 | 61.8 |1.310{1.0| 0.225 [19| 9/9 |0.0568|1.0{19| 40/704
3 [119| 59 | 56.8 |1.316(1.0| 0.225 (19| 9/9 ]0.0429|1.0{19| 40/931

1 |354|273(172.4(1.226/1.0| 0.45 |19| 9/9 |0.0465|1.0/19| 20/430

220 2 | 95| 56 |41.8|1.243|1.0| 0.4 |19| 8/8 |0.0543|1.0{19| 20/368
3 [122| 60 | 48.6 |1.202{1.0{ 0.5 (19| 10/10 |0.0549/1.0{19| 20/364

1 |136| 60 |62.3 |1.248/1.0| 0.4 |19| 10/10 |0.0413|1.0/19| 25/604

225| 2 |373|314(182.8]|1.271|1.0| 0.36 |19| 9/9 (0.0239|1.0{19| 25/1042
3 |150| 52 | 70.8 |1.248|1.0| 0.4 (19| 10/10 |0.0421|1.0{19| 25/593

6 Concluding Remarks

The automatic derivation of Boolean queries has been considered by incorporat-
ing the MOGA Pareto-based multiobjective evolutionary approach to an existing
GP-based IQBE proposal. The proposed approach has performed appropriately
in seven queries of the well known Cranfield collection in terms of absolute re-
trieval performance and of the quality of the obtained Paretos.

In our opinion, many different future works arise from this preliminary study.
On the one hand, more advanced Pareto-based evolutionary multiobjective schemes
(such as those considering an auxiliary population in order to better cover the
Pareto front [5]) can be incorporated to the basic GP algorithm in order to im-
prove the performance of the multiobjective EA proposed. On the other hand,
preference information of the user on the kind of queries to be derived can
be included in the Pareto-based selection scheme in the form of a goal vector
whose values are adapted during the evolutionary process [9]. Finally, and more
generically, Pareto-based evolutionary multiobjective optimization can be ap-
plied either to the automatic derivation of queries for other kinds of IR models
(such as the extended Boolean ones tackled in the EAs proposed in [7,8,12]) or
to other IR problems being solved by EAs [6], thus benefiting from the potential
of these techniques in the problem solving.
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